CN103663400B - 多孔磷酸铝块体的制备方法 - Google Patents

多孔磷酸铝块体的制备方法 Download PDF

Info

Publication number
CN103663400B
CN103663400B CN201310695832.5A CN201310695832A CN103663400B CN 103663400 B CN103663400 B CN 103663400B CN 201310695832 A CN201310695832 A CN 201310695832A CN 103663400 B CN103663400 B CN 103663400B
Authority
CN
China
Prior art keywords
polyoxyethylene
preparation
block
propylene oxide
taken
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310695832.5A
Other languages
English (en)
Other versions
CN103663400A (zh
Inventor
郭兴忠
杨辉
徐晨阳
李文彦
王应恺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201310695832.5A priority Critical patent/CN103663400B/zh
Publication of CN103663400A publication Critical patent/CN103663400A/zh
Application granted granted Critical
Publication of CN103663400B publication Critical patent/CN103663400B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种多孔磷酸铝块体的制备方法,以六水合氯化铝为铝源,以磷酸为磷源,以去离子水与无水甲醇的混合物作为溶剂,以环氧丙烷为凝胶促进剂,以聚氧化乙烯为相分离诱导剂;依次进行如下步骤:1)、将六水合氯化铝和聚氧化乙烯置于反应瓶,掺入去离子水、无水甲醇及磷酸,搅拌直至聚氧化乙烯完全溶解;2)、在冰浴条件下,将环氧丙烷掺入上述步骤1)所得的溶液中,持续搅拌,直至环氧丙烷完全溶解;3)、将反应瓶密封后陈化,然后开盖干燥;4)、将所得的干凝胶于1050~1150℃处理1.5~2.5小时,得到多孔磷酸铝块体。该多孔磷酸铝块体可直接应用于催化、分离、吸附、提取、降解、固化等领域。

Description

多孔磷酸铝块体的制备方法
技术领域
本发明涉及一种多孔磷酸铝块体的制备方法,具体涉及一种湿化学法制备多孔磷酸铝块体的方法。
背景技术
磷酸铝作为催化剂的载体以及分子筛,由铝氧多面体以及磷氧四面体构成,因为其比表面积高、热稳定性好及其独特的表面酸碱特性,使其受到了人们的广泛关注。特别是在作为催化剂的载体方面,它体现出了优越的特性,将过渡金属掺入磷酸铝骨架中也可应用在烷烃、环烷烃以及酚类的氧化反应。
磷酸铝分子筛的合成方法主要采用水热合成法,在传统的水热合成分子筛的基础上,人们又相继研发出溶剂热合成法、微波合成法、干凝胶法、气相转移法以及在非水体系中合成法等多种合成方法。与此同时,为了满足实际必须还采用了多种合成技术,如清液法合成、高温焙烧法合成等方法。
目前制备磷酸铝分子筛体系的专利较多,且大多是研究硅磷酸铝、钛磷酸铝等复合体系。例如:申请号为03121112.7的专利公开了磷硅铝酸盐分子筛催化剂的制备方法;申请号为01126874.3的专利公开了一种新型磷酸铝分子筛及其制备方法;申请号为00123224.X的专利公开了一种硅磷酸铝分子筛SAPO-11的制备方法;申请号为00123144.8的专利公开了一种中孔硅磷酸铝分子筛MPL-1的制备方法;申请号为01106007.7的专利公开了一类含杂原子介孔硅磷酸铝分子筛QMPL-1的制备方法。但这些方法制备的磷酸铝仅针对其分子筛体系,即磷酸铝本身,并没有涉及共连续多孔结构的磷酸铝块体材料的制备。
发明内容
本发明要解决的技术问题是提供一种多孔磷酸铝块体的制备方法,采用本发明方法制备而得的多孔磷酸铝块体具有阶层多孔结构,骨架连续,比表面积大。
为了解决上述技术问题,本发明提供一种多孔磷酸铝块体的制备方法,以六水合氯化铝为铝源,以磷酸为磷源,以去离子水与无水甲醇的混合物作为溶剂,以环氧丙烷为凝胶促进剂,以聚氧化乙烯(平均分子量为1×104)为相分离诱导剂;依次进行如下步骤:
1)、将1.0g的六水合氯化铝和44~48mg聚氧化乙烯置于反应瓶,掺入0.8~1.2ml的去离子水、0.8~1.2ml的无水甲醇及0.25~0.35ml的磷酸,搅拌直至聚氧化乙烯(PEO)完全溶解;
2)、在冰浴条件下,将1.9~2.5ml环氧丙烷掺入上述步骤1)所得的溶液中,持续搅拌,直至环氧丙烷完全溶解;
3)、将反应瓶密封后置于35~45℃陈化20~28小时,然后开盖并于35~45℃干燥4~6天;得干凝胶;
4)、将所述干凝胶于1050~1150℃处理1.5~2.5小时,得到多孔磷酸铝块体。
作为本发明的多孔磷酸铝块体的制备方法的改进:
所述步骤1)中:
将1.0g的六水合氯化铝和46mg的聚氧化乙烯置于反应瓶,依次掺入1.0ml的去离子水、1.0ml的无水甲醇及0.3ml的磷酸,搅拌至聚氧化乙烯完全溶解;
所述步骤2)中,环氧丙烷的用量为2ml。
本发明的多孔磷酸铝块体的制备方法,采用了溶胶-凝胶伴随相分离法。
本发明采用了将普通烷氧基硅烷的水解-聚合过程与金属盐的环氧化物介导的溶胶-凝胶反应相结合的方法,制备了具有共连续的通孔和骨架结构的多孔磷酸铝块体,其孔径尺寸及其形态等由添加的聚氧化乙烯及环氧丙烷的量决定。具体为:
当上调聚氧化乙烯的量时,开始形成内部的孔结构,孔径增大;当下降聚氧化乙烯的量时,内部相分离程度下降,孔径减小;
当上调环氧丙烷量时,凝胶快,获得大孔;当下降环氧丙烷量时,凝胶时间慢,孔径减小直至内部不形成孔结构。
本发明的有益效果是制备了一种具有共连续结构的阶层多孔磷酸铝块体材料,并且可以方便有效地控制孔径尺寸和孔容。因为制备出的直接是块体材料,具有一定的强度,并由于其独特的阶层多孔结构,制备的多孔磷酸铝块体有望在多相催化、分离、吸附、提取、降解、固化等领域展现重要的应用前景。同时,该制备方法有机结合了溶胶-凝胶原理与相分离理论的各自特点,具有湿化学高纯制备,可构造精细阶层多孔结构,工艺简单,设备低廉等优点。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细说明。
图1为实施例1所得的多孔磷酸铝块体的宏观形貌照片及内部孔结构的扫描电镜照片。
具体实施方式
实施例1、一种多孔磷酸铝块体的制备方法,以六水合氯化铝为铝源,以磷酸为磷源,以去离子水与无水甲醇的混合物作为溶剂,以环氧丙烷为凝胶促进剂,以聚氧化乙烯(平均分子量为1×104)为相分离诱导剂;依次进行如下步骤:
1)、将1.0g的六水合氯化铝、46mg的聚氧化乙烯置于反应瓶,依次掺入1.0ml的去离子水、1.0ml的无水甲醇及0.3ml的磷酸,搅拌至聚氧化乙烯(PEO)完全溶解;
2)、在冰浴条件下,将2.00ml的环氧丙烷均匀掺入上述步骤1)所得的溶液中,持续强烈搅拌(转速为400转/分钟),直至环氧丙烷完全溶解;
3)、将反应瓶密封后置于40℃下陈化24h,然后开盖置于40℃恒温箱中干燥5天;得干凝胶;
4)、将所述干凝胶于1110℃处理2小时,即可得到多孔磷酸铝块体。
上述实施例1制备得到的多孔磷酸铝块体形态优良。由扫描电镜图可以看出内部形成了良好的双连续阶层多孔结构,孔洞分布与孔径均匀,骨架连续且牢固。由氮气气体吸附曲线图明显看出,曲线为IV型吸附曲线,存在有滞后环,表明仍然存在有介孔。由中孔孔径分布图可知,比表面积(BET)=49m2/g,总的孔体积=0.06cc/g。
本例制备得到的多孔磷酸铝块体外形良好、完整,并且内部具有共连续的宏观通孔结构和完好骨架,而骨架由球状、带状的纳米晶颗粒组成。磷酸铝大孔孔径分布在很窄的范围内,主要分布在300~600nm;块体体积密度为0.85g/cm3;气孔率为54.2%。该多孔磷酸铝块体的N2吸-脱附曲线为H3型,表明块体因其骨架结构而存在狭缝状介孔,介孔大致消失,孔径分布主要在介孔到大孔区间范围内,比表面积为35m2/g。如图1所示。
实施例2、
将实施例1步骤2)中环氧丙烷的用量由2.00ml改成2.50ml;其余等同于实施例1。
此实施例2相对于实施例1而言,保持PEO加入量不变,将环氧丙烷(PO)的量增加为2.50ml。本实施例2制备出的多孔磷酸铝块体内部开始形成了类似双连续的孔结构,PEO加入量足够使样品发生相分离,但样品内部的孔不均匀,有些孔洞是不连续的。这是由于PO加入量增加,使凝胶时间早于相分离时间,导致样品内部形成了在连续凝胶相上分布独立孔的多孔结构。样品宏观不透明。由中孔孔径分布图可知,比表面积(BET)=39m2/g,总的孔体积=0.12cc/g。孔型多为大孔结构,孔径分布于10um左右;块体体积密度为1.03g/cm3;气孔率为40.8%。
得出结论,增加环氧丙烷后,会使多孔块体内部孔径增大,得到在连续凝胶相上分布的独立大孔。
实施例3、
将实施例1的步骤1)中聚氧化乙烯的用量由46mg改成44mg;其余等同于实施例1。
实施例3对比与实施例1,保持PO含量不变,将PEO的量更改为44mg。由SEM照片显示其内部并未形成多孔结构,仍是团絮状的磷酸铝聚集体,应该是PEO加入量过少,导致相分离晚于凝胶。样品宏观形貌为半透明状,不是纯白色。由中孔孔径分布图可知,比表面积(BET)=37m2/g,总的孔体积=0.03cc/g。大孔基本不存在,其孔径主要分布于200~300nm;块体体积密度为1.24g/cm3;气孔率为35.6%。
得出结论,减少聚氧化乙烯的量,会使孔径减小,在多孔块体内部形成纳孔结构。
对比例1、
将实施例1中的凝胶促进剂由“环氧丙烷”分别改成使用甲酰胺、或使用乙二醇甲醚和乙酰丙酮的混合物(1:1的质量比);摩尔用量不变(即同环氧丙烷的摩尔量),其余等同于实施例1。
所得产物结果分别对应的为:
使用甲酰胺的实验组中,由原料配置成的澄清溶胶体在陈化过程中不发生凝胶,原因可能是甲酰胺在体系中的作用不仅是凝胶促进剂,还与原料中的某些物质发生了不期望的化学反应,导致凝胶效果差;
使用乙二醇甲醚和乙酰丙酮混合物的实验组中,于冰浴条件下向溶胶中滴加混合物凝胶促进剂时,凝胶极快,每滴入一滴就会立即形成白色的固态凝胶物质,加入后整个体系基本已经凝胶完成,并极不均匀。干燥后发现内部结构不均匀,基本未发现共连续的多孔结构。
经以上实验可以发现,使用这两种凝胶促进剂替换环氧丙烷,对该体系多孔磷酸铝块体的制备不利。
对比例2、
将实施例1中的相分离诱导剂由“聚氧化乙烯”分别改成聚乙烯基吡咯烷酮(PVP)、聚乙烯醇;摩尔用量不变(即,同聚氧化乙烯的摩尔量),其余等同于实施例1。
所得产物结果分别对应的为:
使用聚乙烯基吡咯烷酮的样品,得到的磷酸铝多孔块体中的骨架上出现了许多球状物,分析应为PVP不适合该体系,骨架形成后出现了异常的二次分相;
使用聚乙烯醇的样品SEM电镜照片与PVP体系相似,骨架上有二次分相的杂质,使骨架表面不光滑。
以上两种相分离诱导剂均会导致磷酸铝多孔块体的骨架形成不良,表面不光滑,这会在应用中降低块体内部的液体流动性,导致块体结构不稳定。
对比例3、
取消实施例1步骤2)中的冰浴条件,改为常温下强烈搅拌并掺入环氧丙烷;其余等同于实施例1。
在该对比实验中,环氧丙烷溶解很快。当环氧丙烷全部滴入后,经40min的观察,发现溶胶体系出现分层现象,下层凝胶,上层仍为澄清液。将下层制成干凝胶后拍摄SEM照片,发现内部没有多孔结构。可能原因是不添加冰浴,使PO分散过快,并容易下沉,将凝胶效果作用于溶液底层,使溶胶相仅仅在下层凝胶。
最后,还需要注意的是,以上列举的仅是本发明的若干个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (2)

1.多孔磷酸铝块体的制备方法,其特征在于:以六水合氯化铝为铝源,以磷酸为磷源,以去离子水与无水甲醇的混合物作为溶剂,以环氧丙烷为凝胶促进剂,以聚氧化乙烯为相分离诱导剂;依次进行如下步骤:
1)、将1.0g的六水合氯化铝和44~48mg聚氧化乙烯置于反应瓶,掺入0.8~1.2ml的去离子水、0.8~1.2ml的无水甲醇及0.25~0.35ml的磷酸,搅拌直至聚氧化乙烯完全溶解;
2)、在冰浴条件下,将1.9~2.5ml环氧丙烷掺入上述步骤1)所得的溶液中,持续搅拌,直至环氧丙烷完全溶解;
3)、将反应瓶密封后置于35~45℃陈化20~28小时,然后开盖并于35~45℃干燥4~6天;得干凝胶;
4)、将所述干凝胶于1050~1150℃处理1.5~2.5小时,得到多孔磷酸铝块体。
2.根据权利要求1所述的多孔磷酸铝块体的制备方法,其特征在于:
所述步骤1)中:
将1.0g的六水合氯化铝和46mg的聚氧化乙烯置于反应瓶,依次掺入1.0ml的去离子水、1.0ml的无水甲醇及0.3ml的磷酸,搅拌至聚氧化乙烯完全溶解;
所述步骤2)中,环氧丙烷的用量为2ml。
CN201310695832.5A 2013-12-15 2013-12-15 多孔磷酸铝块体的制备方法 Active CN103663400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310695832.5A CN103663400B (zh) 2013-12-15 2013-12-15 多孔磷酸铝块体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310695832.5A CN103663400B (zh) 2013-12-15 2013-12-15 多孔磷酸铝块体的制备方法

Publications (2)

Publication Number Publication Date
CN103663400A CN103663400A (zh) 2014-03-26
CN103663400B true CN103663400B (zh) 2015-07-08

Family

ID=50302313

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310695832.5A Active CN103663400B (zh) 2013-12-15 2013-12-15 多孔磷酸铝块体的制备方法

Country Status (1)

Country Link
CN (1) CN103663400B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6882816B1 (ja) * 2020-06-22 2021-06-02 富田製薬株式会社 リン酸アルミニウム化合物およびその製造方法、並びに、タンパク質精製用担体およびそれを用いたタンパク質精製方法
CN114213145B (zh) * 2021-12-27 2022-10-14 中建材玻璃新材料研究院集团有限公司 一种泡沫状磷酸铝的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1346797A (zh) * 2001-09-26 2002-05-01 复旦大学 一种磷酸铝分子筛及其制备方法
CN1749165A (zh) * 2005-08-26 2006-03-22 吉林大学 高热稳定的有序介孔磷酸铝材料及其制备方法
CN103242027A (zh) * 2013-05-14 2013-08-14 浙江大学 多孔莫来石块体的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1346797A (zh) * 2001-09-26 2002-05-01 复旦大学 一种磷酸铝分子筛及其制备方法
CN1749165A (zh) * 2005-08-26 2006-03-22 吉林大学 高热稳定的有序介孔磷酸铝材料及其制备方法
CN103242027A (zh) * 2013-05-14 2013-08-14 浙江大学 多孔莫来石块体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
阶层多孔材料的制备机理及应用研究;李文彦;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20130815(第8期);文章62-66页4.2和4.4 *

Also Published As

Publication number Publication date
CN103663400A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
CN106634986B (zh) 一种提高钙钛矿稳定性的金属有机框架复合方法
US20190126257A1 (en) Hollow porous carbon nitride nanospheres composite loaded with agbr nanoparticles, preparation method thereof, and its application in dye degradation
CN108889329B (zh) 一种氮化碳量子点改性多级孔TiO2-SiO2光催化剂
Zheng et al. Synthesis and characterization of mesoporous titania and silica–titania materials by urea templated sol–gel reactions
CN108855220B (zh) 一种二氧化钛掺杂zif及其制备方法和应用
CN108722384A (zh) 一种富氧空位二氧化钛纳米花及其制备方法
CN109019614B (zh) 一种稀土增韧硅气凝胶前驱体
CN108097180B (zh) 一种二氧化钛/二氧化硅复合气凝胶的制备方法
CN108313991B (zh) 一种多孔石墨相氮化碳纳米片粉末的制备方法
CN107583671B (zh) 一种核壳结构纳米复合材料及其制备方法
CN109126853A (zh) 一种具有碳缺陷的反蛋白石g-C3N4光催化剂的制备方法
CN113318764A (zh) 一种氮缺陷/硼掺杂的管状氮化碳光催化剂的制备方法及应用
CN109126852A (zh) 有序分级多孔石墨相氮化碳光催化材料的制备方法
CN103730259A (zh) 一种双尺度孔隙结构的纳米晶二氧化钛薄膜及其制备方法
Fei et al. One-pot synthesis of porous g-C3N4 nanomaterials with different morphologies and their superior photocatalytic performance
CN103663400B (zh) 多孔磷酸铝块体的制备方法
CN100542955C (zh) 一种纳米二氧化硅的制备方法
CN105217676A (zh) 具有纳米片及纳米多孔结构的氧化钛气凝胶及其制备方法
CN111573650B (zh) 一种制备高比表面积介孔碳粉末的方法
CN104107689A (zh) 一种大孔径纳米复合材料及其制备方法
CN106975484A (zh) 有序介孔二氧化钛‑纳米金复合材料的制备方法及其应用
CN103242027A (zh) 多孔莫来石块体的制备方法
Chen et al. Macroporous TiO2 foam with mesoporous walls
CN110803710B (zh) 一种基于无表面活性剂微乳液制备氧化锌材料的方法
CN108658052B (zh) 一种片层状多孔氮化碳的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant