CN103648718A - 研磨垫 - Google Patents

研磨垫 Download PDF

Info

Publication number
CN103648718A
CN103648718A CN201280034917.2A CN201280034917A CN103648718A CN 103648718 A CN103648718 A CN 103648718A CN 201280034917 A CN201280034917 A CN 201280034917A CN 103648718 A CN103648718 A CN 103648718A
Authority
CN
China
Prior art keywords
grinding
degree
groove
pad
abradant surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280034917.2A
Other languages
English (en)
Inventor
竹内奈奈
福田诚司
奧田良治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of CN103648718A publication Critical patent/CN103648718A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/12Lapping plates for working plane surfaces
    • B24B37/16Lapping plates for working plane surfaces characterised by the shape of the lapping plate surface, e.g. grooved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

一种研磨垫,是至少具有研磨层的研磨垫,其特征在于,上述研磨层在研磨面具备槽,该槽具有侧面,上述侧面的至少一方由第一侧面和第二侧面构成,第一侧面从上述研磨面连续,且与上述研磨面所成的角度为α,第二侧面从该第一侧面连续,且与平行于上述研磨面的面所成的角度为β,与上述研磨面所成的角度α大于95度,与平行于上述研磨面的面所成的角度β大于95度,并且与平行于上述研磨面的面所成的角度β比与上述研磨面所成的角度α更小,从上述研磨面到上述第一侧面与上述第二侧面的曲折点为止的曲折点深度大于0.2mm且为3.0mm以下。

Description

研磨垫
技术领域
本发明涉及研磨垫。更详细而言,本发明涉及为了在半导体、电介质/金属复合体和集成电路等中形成平坦面而优选地使用的研磨垫。
背景技术
随着半导体设备高密度化,多层布线和与此相伴的层间绝缘膜形成或插塞、镶嵌等的电极形成等技术重要度增加。与此相伴,这些层间绝缘膜或电极的金属膜的平坦化工艺的重要度增加,作为用于该平坦化工艺的高效技术,普及称为CMP(Chemical Mechanical Polishing,化学机械抛光)的研磨技术。
一般而言,CMP装置由保持作为被处理物的半导体晶片的研磨头、用于进行被处理物的研磨处理的研磨垫、以及保持上述研磨垫的研磨台板构成。而且,半导体晶片的研磨处理使用研磨液(slurry),通过使半导体晶片与研磨垫相对运动,从而除去半导体晶片表面层的突出的部分,使晶片表面层平坦化。垫表面通过使用金刚石修整器等的修整而更新,防止阻塞而进行整修。
一直以来,已知如下技术:在研磨层表面实施的槽的图案为同心圆状,使上述槽的截面形状为大致矩形,从而谋求晶片的平坦性和研磨速率的提高(例如,参照专利文献1)。
然而,在该技术中,有时候槽的截面形状中的角部和由于在研磨前后或研磨中进行的修整等而在角部形成的毛刺状物使擦伤产生。为了解决该问题,公开了在研磨面与槽的边界部设置倾斜面的技术(例如,参照专利文献2、3)。
在先技术文献
专利文献1:日本特开2002-144219号公报;
专利文献2:日本特开2004-186392号公报;
专利文献3:日本特开2010-45306号公报。
发明内容
发明要解决的问题
在此,本发明者们发现,通过在研磨面与槽的边界部设置倾斜面,从而不仅擦伤减少,而且在晶片与研磨垫之间发现吸引力和研磨液流动的改善,发现研磨速率变高。但是,还发现由于倾斜面的角度而不能抑制研磨速率的变动。另外,还发现通过设置倾斜面使得研磨表面积减少、垫切割速率变大、垫的寿命变短。
本发明鉴于所涉及的现有技术的问题,目的在于提供一种在研磨特性中也尤其能够保持高研磨速率同时抑制研磨速率的变动的长寿命的研磨垫。
用于解决问题的方案
本发明者们考虑到从研磨垫至槽底的倾斜使影响波及到垫切割速率,研磨面和槽的边界部的角度使变动波及到研磨速率。为了使其并存,考虑能否通过将垫切割速率变小的角度和研磨速率变动变小的角度组合从而消除。
于是,本发明为了解决上述问题而采用如下方案。即,为一种研磨垫,是至少具有研磨层的研磨垫,其特征在于,上述研磨层在研磨面具备槽,该槽具有侧面,上述侧面的至少一方由第一侧面和第二侧面构成,上述第一侧面从上述研磨面连续,且与上述研磨面所成的角度为α,上述第二侧面从该第一侧面连续,且与平行于上述研磨面的面所成的角度为β,与上述研磨面所成的角度α大于95度,与平行于上述研磨面的面所成的角度β大于95度,并且与平行于上述研磨面的面所成的角度β比与上述研磨面所成的角度α更小,从上述研磨面到上述第一侧面与上述第二侧面的曲折点为止的曲折点深度大于0.2mm且为3.0mm以下。
发明效果
依照本发明,能够提供一种能够保持高研磨速率同时抑制研磨速率的变动的长寿命的研磨垫。
附图说明
图1是示出本发明的一个实施方式所涉及的研磨垫的主要部分的构成的局部截面图。
图2是示出本发明的一个实施方式所涉及的研磨垫的主要部分的构成(第2例)的局部截面图。
图3是示出本发明的一个实施方式所涉及的研磨垫的主要部分的构成(第3例)的局部截面图。
图4是示出本发明的一个实施方式所涉及的研磨垫的主要部分的构成(第4例)的局部截面图。
具体实施方式
以下,说明用于实施本发明的方式。
本发明者专心研究能够保持高研磨速率同时抑制研磨速率的变动的长寿命的研磨垫。结果,本发明者查明,通过构成以下研磨垫而能够一举解决上述问题:该研磨垫是至少具有研磨层的研磨垫,其特征在于,上述研磨层在研磨面具备槽,该槽具有侧面,上述侧面的至少一方由第一侧面和第二侧面构成,上述第一侧面从上述研磨面连续,且与上述研磨面所成的角度为α,上述第二侧面从该第一侧面连续,且与平行于上述研磨面的面所成的角度为β,与上述研磨面所成的角度α大于95度,与平行于上述研磨面的面所成的角度β大于95度,并且与平行于上述研磨面的面所成的角度β比与上述研磨面所成的角度α更小,从上述研磨面到上述第一侧面与上述第二侧面的曲折点为止的曲折点深度大于0.2mm且为3.0mm以下。
在本发明中,研磨垫优选地至少具有研磨层且另外具有缓冲层。在没有缓冲层的情况下,不能缓冲由研磨层的吸水等引起的应变,因而被研磨材料的研磨速率和面内均匀性不稳定地变动。另外,缓冲层的应变常数优选在7.3×10-6μm/Pa以上、4.4×10-4μm/Pa以下的范围内。从被研磨材料的研磨速率变动和局部平坦性的观点来看,作为上限,优选3.0×10-4μm/Pa以下,更优选1.5×10-4μm/Pa以下。另外,作为下限,优选1.0×10-5μm/Pa以上,更优选1.2×10-5μm/Pa以上。在研磨速率的变动大的情况下,被研磨材料的研磨量变动,结果,被研磨材料的膜厚变动且使恶劣影响波及到半导体设备的性能,因而,研磨速率变动率优选20%以下,更优选15%以下。
此外,使用顶端直径为5mm的压头,将用测微器施加27kPa的压力达60秒时的厚度作为(T1)μm、将继续施加177kPa下的压力达60秒时的厚度作为(T2)μm、根据下式算出本发明中的应变常数:
应变常数(μm/Pa)=(T1-T2)/(177-27)/1000。
作为这样的缓冲层,能够列举天然橡胶、腈橡胶、“NEOPRENE(注册商标)”橡胶、聚丁二烯橡胶、热固性聚氨酯橡胶、热塑性聚氨酯橡胶、硅橡胶、“HYTREL(注册商标)”等不起泡的弹性体、“TORAYPEF(注册商标、东丽(股份)制PEF)”等聚烯烃起泡体、NITTA HAAS(股份)制“suba400”等无纺布,但是不限于此。
缓冲层的应变常数,根据其材质的调整是可能的。例如,在缓冲层为起泡体的情况下,如果增大起泡的程度,则有变柔软的倾向,因而有应变常数变大的倾向。另外,在缓冲层为不起泡的情况下,通过调整缓冲层内的交联的程度,使得硬度的调节是可能的。
缓冲层的厚度优选0.1至2mm的范围。从半导体基板整个面的面内均匀性的观点来看,优选0.25mm以上,更优选0.3mm以上。另外,从局部平坦性的观点来看,优选2mm以下,更优选1mm以下。
本发明中的研磨垫的研磨层表面(研磨面)具有槽。作为从研磨层表面观察的槽的形状,列举了格子状、放射状、同心圆状、螺旋状等,但是不限于此。关于槽,沿圆周方向延伸的开放系能够更高效地更新研磨液,因而最优选格子状。
本发明中的槽的侧面的至少一方由第一侧面和第二侧面构成,第一侧面从研磨面连续,且与研磨面所成的角度为α,第二侧面从该第一侧面连续,且与平行于研磨面的面所成的角度为β。第一侧面、第二侧面分别可为平面(在槽的截面形状中为直线状),也可为曲面(在槽的截面形状中为曲线状)。
而且,在本发明中,角度α大于95度,角度β大于95度,并且角度β比角度α更小。由此,能够保持高研磨速率同时抑制研磨速率的变动。这如以下那样说明。一般而言,研磨速率的变动在研磨初期至中期较大,但是通过在研磨面与槽的边界部设置大于95度的倾斜面,从而不仅研磨速率变高,而且还能够有效地抑制这样的初期至中期的研磨速率的变动。
另一方面,这样的构造中,担心被研磨材料和研磨垫表面的接触面积小,垫切割速率大。因此,槽优选在一定深度以后接触面积变大的构造。通过如上所述地调整角度α和角度β,从而能够达成这样的目的。角度α与角度β之差更优选55度以下,进一步优选50度以下。
从研磨液的保持性和流动性的观点来看,角度α中,作为下限,优选105度以上,更优选115度以上。另外,角度α中,作为上限,优选150度以下,更优选140度以下。形成槽的相向两侧面可以为相同的形状,但研磨液因离心力而流动,因而在形成槽的相向侧面之中,至少在位于圆周侧的侧面具有倾斜是更有效的。角度β如果小于角度α,则不特别地限制,但作为上限,优选小于150度,更优选小于140度。
在此,也可以具有从侧面2沿与侧面1相反的方向连续的侧面(侧面3),在该情况下,侧面3与研磨面所成的角度(角度3)优选大于95度且小于角度β。
同样地,使n为3以上的自然数,也可以具有相对于侧面n而沿与侧面(n-1)相反的方向连续的侧面(侧面(n+1)),在该情况下,侧面(n+1)与研磨面所成的角度(角度(n+1))优选大于95度且小于角度n。
伴随被研磨材料的研磨而研磨层被磨削,当研磨面通过作为第一侧面与第二侧面的边界的曲折点时,看到研磨速率的变动。另外,最浅部的槽侧面的垫切割速率与在第一侧面和第二侧面不同,因而从研磨面到曲折点的深度优选为不降低研磨面侧的倾斜的槽部分的效果的程度的深度以上。如果根据该方面和优选研磨垫的寿命长的方面,则从研磨面到曲折点的深度具体而言优选槽整体的深度的10%以上、95%以下,更优选20%以上、90%以下。
使垫的寿命长、抑制研磨速率变动并存是重要的,因而从研磨面到第一侧面与第二侧面的曲折点为止的曲折点深度在大于0.2mm、3.0mm以下的范围内。在此所谓的研磨面是研磨层被磨削前的研磨面。在曲折点深度深的情况下,垫的寿命变短。在曲折点深度浅的情况下,研磨速率变动。作为从研磨面到第一侧面与第二侧面的曲折点为止的曲折点深度的上限,优选2.5mm以下,更优选2.0mm以下,进一步优选1.8mm以下。作为从研磨面到第一侧面与第二侧面的曲折点为止的曲折点深度的下限,优选0.3mm以上,更优选0.4mm以上,进一步优选0.5mm以上。
通过附图说明以上这样的本发明的槽的具体形状。图1是示出本发明的一个实施方式所涉及的研磨垫的主要部分的构成的局部截面图。同图所示的研磨垫1具有研磨层10。在研磨层10的研磨面11形成有槽12。槽12具有与研磨面11连续且相对于研磨面11成角度α倾斜的第一侧面13、与该第一侧面13连续且相对于第一侧面13经由曲折点14曲折的第二侧面15、以及槽最深部16。第二侧面相对于与研磨面11平行的面的角度β比第一侧面13相对于研磨面11的角度α更小。
此外,由槽的第二侧面15和最深部16构成的形状不限于图1所示的形状。例如,如图2所示的研磨垫2的槽17那样,最深部18也可具有与研磨面11大致平行的底面。另外,如图3所示的研磨垫3的槽19那样,第二侧面15与最深部20的边界部分也可为曲面。另外,如图4所示的研磨垫4的槽21那样,第二侧面15与最深部22的截面形状也可为U字状。
作为构成研磨垫的研磨层,具有独立气泡的构造在半导体、电介质/金属复合体以及集成电路等中形成平坦面因而优选。另外,研磨层的硬度优选地在ASKER D硬度计中为45至65度。在ASKER D硬度不足45度的情况下,存在以下倾向:随着被研磨材料的研磨速率的晶片面内均匀度(均匀性)的降低,在晶片面内平坦化特性(平面性)的均匀性(均匀度)降低。
虽然未特别限定,但是作为形成相关构造体的材料,列举了聚乙烯、聚丙烯、聚酯、聚氨酯、聚脲、聚酰胺、聚氯乙烯、聚缩醛、聚碳酸酯、聚甲基丙烯酸甲酯、聚四氟乙烯、环氧树脂、ABS树脂、AS树脂、酚树脂、三聚氰胺树脂、“NEOPRENE(注册商标)”橡胶、丁二烯橡胶、苯乙烯丁二烯橡胶、乙丙橡胶、硅橡胶、氟橡胶以及以这些为主要成分的树脂等。也可使用两种以上这些物质。在这样的树脂中,也能够比较容易地控制独立气泡直径,在这点,更优选以聚氨酯为主要成分的原料。
聚氨酯是指通过聚异氰酸酯的加聚反应或聚合反应而合成的高分子。作为聚异氰酸酯的对称而使用的化合物是含活性氢化合物,即,含有两种以上的多羟基或氨基的化合物。作为聚异氰酸酯,能够列举甲苯基二异氰酸酯、二苯基亚甲基二异氰酸酯、萘二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯等,但不限于此。也可使用两种以上这些物质。
作为含有多羟基的化合物,多元醇是代表性的,列举了聚醚多元醇、聚四亚甲基醚二醇、环氧树脂变性多元醇、聚酯多元醇、丙烯酸多元醇、聚丁二烯多元醇、硅多元醇等。也可使用两种以上这些物质。优选地,根据硬度、气泡直径和起泡倍率来决定聚异氰酸酯与多元醇和催化剂、起泡剂、稳泡剂的组合和最适宜量。
作为独立气泡向这些聚氨酯中的形成方法,在聚氨酯制造时各种起泡剂向树脂中配合的化学起泡法是普遍的,但还能够优选地使用通过机械搅拌而使树脂起泡后硬化的方法。
独立气泡的平均气泡直径从减少擦伤的观点来看优选30μm以上。另一方面,从被研磨材料的局部凹凸的平坦性的观点来看,平均气泡直径优选150μm以下,更优选140μm以下,进一步优选130μm以下。此外,平均气泡直径通过以下求得:当用KEYENCE制VK-8500超深度显微镜以倍率400倍观察样品截面时,在一个视野内观察到的气泡之中,对除了观察为在视野端部缺损的圆状的气泡之外的圆状气泡,用图像处理装置根据截面面积测定圆当量直径,算出算数平均值。
作为本发明的研磨垫的一个实施方式,优选含有乙烯基化合物的聚合体和聚氨酯且具有独立气泡的垫。仅以来自乙烯基化合物的聚合体就能够提高韧性和硬度,但是难以获得具有独立气泡的均质的研磨垫。另外,聚氨酯若提高硬度则变脆。通过使乙烯基化合物浸渍于聚氨酯中,从而能够得到含有独立气泡且韧性和硬度高的研磨垫。
乙烯基化合物是具有聚合性的碳-碳双键的化合物。具体而言,列举了丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸乙酯、n-丙烯酸正丁酯、n-甲基丙烯酸正丁酯、2-甲基丙烯酸异辛酯、甲基丙烯酸异癸酯、n-甲基丙烯酸月桂酯、2-甲基丙烯酸羟乙酯、2-甲基丙烯酸羟丙酯、2-甲基丙烯酸羟丁酯、甲基丙烯酸二甲氨基乙酯、甲基丙烯酸二乙氨基乙酯、甲基丙烯酸缩水甘油酯、二甲基丙烯酸乙二醇酯、丙烯酸、甲基丙烯酸、富马酸、富马酸二甲酯、富马酸二乙酯、富马酸二丙酯、马来酸、马来酸二甲酯、马来酸二乙酯、马来酸二丙酯、苯基马来酰亚胺、环己基马来酰亚胺、异丙基马来酰亚胺、丙烯腈、丙烯酰胺、氯乙烯、偏二氯乙烯、苯乙烯、α-甲基苯乙烯、二乙烯苯、二甲基丙烯酸乙二醇酯、二乙二醇二丙烯酸酯等。也可使用两种以上这些物质。
在上述乙烯基化合物中,优选CH2=CR1COOR2(R1:甲基或乙基,R2:甲基、乙基、丙基或丁基)。其中,甲基丙烯酸甲酯、甲基丙烯酸乙酯、n-甲基丙烯酸正丁酯、甲基丙烯酸异丁酯在独立气泡向聚氨酯的形成容易方面、单体的浸渍性良好方面、聚合硬化容易方面、含有被聚合硬化的乙烯基化合物的聚合体和聚氨酯的起泡构造体的硬度高且平坦化特性良好方面是优选的。
作为为了获得这些乙烯基化合物的聚合体而优选地使用的聚合引发剂,能够列举偶氮二异丁腈、偶氮(2,4-二异庚腈)、偶氮二环己基甲腈、过氧苯甲酰、过氧化月桂酰、过氧二碳酸异丙酯等自由基引发剂。也可使用两种以上这些物质。另外,还能够使用氧化还原系的聚合引发剂,例如过氧化物与胺类的组合。
作为乙烯基化合物向聚氨酯中的浸渍方法,列举了在乙烯基化合物所放入的容器中浸渍聚氨酯的方法。此外,此时为了加快浸渍速度的目的,施以加热、加压、减压、搅拌、振荡、超声波振动等处理也是优选的。
乙烯基化合物向聚氨酯中的浸渍量应当由所使用的乙烯基化合物及聚氨酯的种类和被制造的研磨垫的特性来决定,不能一概而论,但是例如,由聚合硬化的起泡构造体中的乙烯基化合物获得的聚合体与聚氨酯的含有比率按重量比优选30/70至80/20。如果由乙烯基化合物获得的聚合体的含有比率按重量比为30/70以上,则能够使研磨垫的硬度充分高。另外,如果含有比率为80/20以下,则能够使研磨层的弹性充分高。
此外,由聚氨酯中的聚合硬化的乙烯基化合物获得的聚合体和聚氨酯的含有率能够通过热分解气相色谱分析/质量分析方法来测定。作为能够在本方法中使用的装置,能够列举双击热裂解仪“PY-2010D”(FRONTIER LAB(股份)制)作为热分解装置,列举“TRIO-1”(VG公司制)作为气相色谱分析和质量分析装置。
在本发明中,从半导体基板的局部凹凸的平坦性的观点来看,优选地,含有而不分离由乙烯基化合物获得的聚合体相和聚氨酯相。若定量地表示,则优选地,用光点大小为50μm的显微红外分光装置观察研磨垫后的红外光谱具有由乙烯基化合物聚合的聚合体的红外吸收峰和聚氨酯的红外吸收峰,各部位的红外光谱大体相同。作为在此使用的显微红外分光装置,能够列举SPECTRA-TEC公司制的IRμs。
研磨垫以特性改良为目的,也可含有研磨剂、防带电剂、润滑剂、稳定剂、染料等各种添加剂。
在本发明中,从减少局部的平坦性不良或整体阶梯差的观点来看,研磨层的密度优选0.3g/cm3以上,更优选0.6g/cm3以上,进一步优选0.65g/cm3以上。另一方面,从减少擦伤的观点来看,优选1.1g/cm3以下,更优选0.9g/cm3以下,进一步优选0.85g/cm3以下。此外,本发明中的研磨层的密度是使用HARVARD型比重瓶(JIS R-3503基准)以水为介质测定的值。
作为在本发明中被研磨的被研磨材料,列举了例如形成于半导体晶片上的绝缘层或金属布线的表面。作为绝缘层,能够列举金属布线的层间绝缘膜或金属布线的下层绝缘膜或用于元件分离的浅沟道隔离。作为金属布线,能够列举铝、钨、铜以及它们的合金等,在构造上有镶嵌、双镶嵌、插塞等。在将铜作为金属布线的情况下,氮化硅等阻挡金属也成为研磨对象。绝缘膜中,现在氧化硅是主流,但也使用低介电常数绝缘膜。除了半导体晶片以外,还能够用于磁头、硬盘、蓝宝石、SiC、MEMS(Micro Electro Mechanical Systems,微机电系统)等的研磨。
本发明的研磨方法优选地用于在玻璃、半导体、电介质/金属复合体以及集成电路等形成平坦面。
实施例
以下,通过实施例进一步说明本发明的细节。但是,本发明并非由本实施例限定并解释。此外,如下地进行测定。
<气泡直径测定>
当用KEYENCE制VK-8500超深度显微镜以倍率400倍观察样品截面时,在一个视野内观察的气泡中,对除了观察为在视野端部缺损的圆状的气泡以外的圆状气泡,用图像处理装置根据截面面积测定圆当量直径,将算出的算数平均值作为平均气泡直径。
<硬度测定>
以JIS K6253-1997为基准进行。将把制作的聚氨酯树脂切成2cm×2cm(厚度:任意)大小的物件作为硬度测定用试料,在温度23℃±2℃、湿度50%±5%的环境下静置16小时。在测定时,使试料重合而为厚度6mm以上。使用硬度计(高分子计器(股份)制、ASKER D型硬度计)测定硬度。
<微型橡胶A硬度测定>
将把缓冲层切成3cm×3cm大小的物件作为硬度测定用试料,在温度23℃±2℃、湿度50%±5%的环境下静置16小时。使用高分子计器(股份)制微型橡胶硬度计MD-1在一块试料中测定不同的三点,将算出的平均值作为微型橡胶A硬度。
<倾斜角度测定>
将在研磨层表面形成槽的垫以刀刃相对于槽方向垂直的方式配置而沿槽深方向切片,用KEYENCE制VK-8500超深度显微镜观察槽的截面,测定研磨面与和上述槽的研磨面连续的侧面所成的角度(角度α)。在从垫的中心起半径的1/3位置和2/3位置,测定最近的槽,将各一处合计两点的均值作为倾斜角度。角度β也同样地测定。
<曲折点深度测定>
将在研磨层表面形成槽的垫以刀刃相对于槽方向垂直的方式配置而沿槽深方向切片,用KEYENCE制VK-8500超深度显微镜观察槽的截面,测定从研磨面到由第一侧面和第二侧面构成的相向的两个曲折点的中点为止的垂直距离。在从垫的中心起半径的1/3位置和2/3位置,测定最近的槽,将各一处合计两点的均值作为曲折点深度。
<初期曲折点间距测定>
将在研磨层表面形成槽的垫以刀刃相对于槽方向垂直的方式配置而沿槽深方向切片,用KEYENCE制VK-8500超深度显微镜观察槽的截面,测定具有角度α的研磨面和侧面1的相向的2个曲折点的距离,作为曲折点距离。另外,将研磨初期的曲折点间距作为初期曲折点间距。
<应变常数算出>
使用顶端的直径为5mm的压头,将用测微器施加27kPa的压力达60秒时的厚度作为(T1)μm,接着,将施加177kPa下的压力达60秒时的厚度作为(T2)μm,根据下式算出应变常数:
应变常数(μm/Pa)=(T1-T2)/(177-27)/1000。
<平均研磨速率算出>
使用APPLIED MATERIALS(股份)公司制的Mirra 3400而在规定的研磨条件下进行终点检测同时进行研磨。将8英寸晶片的最外周10mm除外而沿直径方向测定研磨特性。在从中心起半径90mm以内的面内每5mm测定37点而算出平均研磨速率(nm/分)。
<研磨速率变动率算出>
在研磨1000块晶片且测定每个晶片的平均研磨速率之后,根据下式算出从第1块到第700块的研磨速率变动率:
研磨速率变动率(%)={(最大晶片平均研磨速率)-(最小晶片平均研磨速率)}/(第1000块晶片平均研磨速率)。
在研磨速率的变动大的情况下,有时候因研磨不足或研磨过多而引起设备的不良,因而研磨速率变动率越小越好,优选30%以下,更优选20%以下。
<平均垫切割速率测定>
使用APPLIED MATERIALS(股份)公司制的Mirra 3400而在规定的研磨条件下进行终点检测同时研磨,以深度计测定研磨30块后的槽深(D1)mm、研磨1000块后的槽深(D2)mm,根据修整器的修整时间(td)分钟而算出:
平均垫切割速率(μm/分)=(D1-D2)×1000/td
另外,平均垫切割速率依存于曲折点间距和角度α及角度β。曲折点间距因研磨的进行而变化。从研磨初期至研磨终期为止的平均曲折点间距越小,平均垫切割速率越小,
平均曲折点间距(mm)={(研磨初期截面积)-(研磨终期截面积)}/{(研磨初期最深部槽深)-(研磨终期最深部槽深)}。
<研磨垫的寿命算出>
测定研磨初期的槽深,算出从最深部起更浅0.3mm的有效槽深(D3)mm,根据研磨晶片的时间(tp)分钟和上述平均垫切割速率而算出:
研磨垫的寿命(小时)=D3×1000/(平均垫切割速率)×tp/60。
研磨垫的寿命优选15小时以上。
以下,说明实施例1至12、比较例1至4。
(实施例1)
将聚丙二醇30重量份、二苯基亚甲基二异氰酸酯40重量份、水0.5重量份、三乙胺0.3重量份、硅稳泡剂1.7重量份以及辛酸锡0.09重量份用RIM成型机混合并吐出至金属模具而进行加压成型,制作独立气泡的起泡聚氨酯片材。
在添加了偶氮二异丁腈0.2重量份的甲基丙烯酸甲酯中将上述起泡聚氨酯片材浸渍60分钟。接着,将上述起泡聚氨酯片材浸渍在由聚乙烯醇“CP”(聚合度:约500、NACALAI TESQUE(股份)制)15重量份、乙醇(试剂特级、片山化学(股份)制)35重量份、水50重量份构成的溶液中后干燥,由此用聚乙烯醇覆盖上述起泡聚氨酯片材表层。
接着,将上述起泡聚氨酯片材经由氯乙烯制垫片夹入两块玻璃板间,通过以65℃加热6小时、以120℃加热3小时而使其聚合硬化。在从玻璃板间脱模且水洗之后,以50℃进行真空干燥。将如此获得的硬质起泡片材切片加工成厚度约2.00mm,从而制作研磨层。研磨层中的甲基丙烯酸甲酯含有率为重量的66%。另外,研磨层的D硬度为54度,密度为0.81g/cm3,独立气泡的平均气泡直径为45μm。
将所获得的硬质起泡片材双面研磨而制作厚度2.4mm的研磨层。
在通过上述方法获得的研磨层上,作为缓冲层,使用辊涂机经由三井化学聚氨酯(股份)制MA-6203粘结层而将应变常数0.15×10-4μm/Pa(微型橡胶A硬度89)的日本MATAI(股份)制的热塑性聚氨酯(缓冲层厚度:0.3μm)层积,进而作为背面带,将积水化学工业(股份)制双面带5604TDM贴合至背面。将该层积体冲裁成508mm的直径的圆,在研磨层表面,将槽距为15mm、角度α为135度、角度β为120度、槽深为1.9mm的槽形成为XY格子状而作为研磨垫。此时,曲折点深度为0.69mm,初期曲折点间距为3mm。
将通过上述方法获得的研磨垫粘附于研磨机(APPLIED MATERIALS(股份)制“Mirra 3400”)的台板。在保持压力=41kPa(6psi)、内管压力=28kPa(4psi)、膜压力=28kPa(4psi)、台板转速=76rpm、研磨头转速=75rpm、研磨液(CABOT公司制、SS-25)以150mL/分的流量流过、用Saesol制修整器负荷为17.6N(4lbf)、研磨时间1分钟、从研磨开始起30秒钟原位修整的情况下研磨1000块氧化膜的8英寸晶片。
第1000块的氧化膜的平均研磨速率为192.2nm/分。1000块中的研磨速率变动率为8.5%。平均垫切割速率为1.22μm/分,研磨垫寿命为22小时,是良好的结果。
(实施例2)
除了将研磨层表面的槽的角度α变更为145度、将研磨层厚度变更为2.25mm、将槽深变更为1.75mm以外,与实施例1同样地研磨。此时,曲折点深度为0.46mm,初期槽曲折点间距为3mm。平均研磨速率为195.2nm/分,研磨速率变动率为13.2%。平均垫切割速率为1.15μm/分,研磨垫寿命为21小时,是良好的结果。
(实施例3)
除了将研磨层表面的槽的角度β变更为100度、将研磨层厚度变更为3.15mm、将槽深变更为2.65mm以外,与实施例1同样地研磨。此时,曲折点深度为1.37mm,初期曲折点间距为3.4mm。平均研磨速率为184.1nm/分,研磨速率变动率为17.2%。平均垫切割速率为1.22μm/分,研磨垫寿命为32小时,是良好的结果。
(实施例4)
除了将研磨层表面的槽的角度α变更为100度、角度β变更为98度、将研磨层厚度变更为2.0mm、将槽深变更为1.5mm以外,与实施例1同样地研磨。此时,曲折点深度为0.3mm,初期曲折点间距为3mm。平均研磨速率为187.8nm/分,研磨速率变动率为17.8%。平均垫切割速率为1.20μm/分,研磨垫寿命为16小时,是良好的结果。
(实施例5)
除了将研磨层表面的槽的角度α变更为150度、角度β变更为145度、将研磨层厚度变更为2.0mm、将槽深变更为1.5mm以外,与实施例1同样地研磨。此时,曲折点深度为0.27mm,初期曲折点间距为5mm。平均研磨速率为201.9nm/分,研磨速率变动率为18.9%。平均垫切割速率为1.24μm/分,研磨垫寿命为16小时,是良好的结果。
(实施例6)
除了将研磨层表面的槽的角度α变更为160度、角度β变更为110度、将研磨层厚度变更为2.5mm、将槽深变更为2.05mm以外,与实施例1同样地研磨。此时,曲折点深度为0.79mm,初期曲折点间距为5mm。平均研磨速率为183.8nm/分,研磨速率变动率为16.4%。平均垫切割速率为1.35μm/分,研磨垫寿命为21小时,是良好的结果。
(实施例7)
除了将研磨层表面的槽的角度α变更为115度、角度β变更为100度、将研磨层厚度变更为2.0mm、将槽深变更为1.5mm以外,与实施例1同样地研磨。此时,曲折点深度为0.27mm,初期曲折点间距为3mm。平均研磨速率为182.5nm/分,研磨速率变动率为17.5%。平均垫切割速率为1.22μm/分,研磨垫寿命为16小时,是良好的结果。
(实施例8)
除了将研磨层表面的槽的角度α变更为165度、角度β变更为155度、将研磨层厚度变更为2.2mm、将槽深变更为1.7mm以外,与实施例1同样地研磨。此时,曲折点深度为0.5mm,初期曲折点间距为5mm。平均研磨速率为190.2nm/分,研磨速率变动率为15.6%。平均垫切割速率为1.36μm/分,研磨垫寿命为17小时,是良好的结果。
(实施例9)
除了将研磨层厚度变更为2.9mm、将槽深变更为2.4mm以外,与实施例1同样地研磨。此时,曲折点深度为2.1mm,初期曲折点间距为3mm。平均研磨速率为185.7nm/分,研磨速率变动率为14.4%。平均垫切割速率为1.23μm/分,研磨垫寿命为28小时,是良好的结果。
(实施例10)
除了将研磨层厚度变更为3.5mm、将槽深变更为3.0mm以外,与实施例1同样地研磨。此时,曲折点深度为2.6mm,初期曲折点间距为3mm。平均研磨速率为183.3nm/分,研磨速率变动率为15.1%。平均垫切割速率为1.24μm/分,研磨垫寿命为36小时,是良好的结果。
(实施例11)
除了变更成使隔着研磨层表面的槽而相向的两个角度α为135度和130度且使相向的两个角度不同以外,与实施例1同样地研磨。此时,曲折点深度为0.69mm,初期曲折点间距为3mm。平均研磨速率为191.8nm/分,研磨速率变动率为9.0%。平均垫切割速率为1.20μm/分,研磨垫寿命为22小时,是良好的结果。
(实施例12)
除了经由粘结剂使厚度188μm的聚酯膜贴合至研磨层背面且使缓冲层贴合至聚酯膜面以外,与实施例1同样地研磨。此时,曲折点深度为0.69mm,初期曲折点间距为3mm。平均研磨速率为192.8nm/分,研磨速率变动率为9.3%。平均垫切割速率为1.22μm/分,研磨垫寿命为22小时,是良好的结果。
(比较例1)
除了将研磨层表面的槽的角度α变更为93度、角度β变更为90度、将研磨层厚度变更为2.0mm、将槽深变更为1.5mm以外,与实施例1同样地研磨。此时,曲折点深度为0.27mm,初期曲折点间距为1.5mm。平均研磨速率为180.1nm/分,研磨速率变动率为45.1%,研磨速率变动大。平均垫切割速率为1.12μm/分,研磨垫寿命为18小时,是良好的结果。
(比较例2)
除了将研磨层表面的槽的角度α变更为93度、角度β变更为90度、将研磨层厚度变更为2.0mm、将槽深变更为1.5mm以外,与实施例1同样地研磨。此时,曲折点深度为0.27mm,初期曲折点间距为3mm。平均研磨速率为189.5nm/分,研磨速率变动率为30.8%,研磨速率变动大。平均垫切割速率为1.5μm/分,研磨垫寿命为13小时,寿命短。
(比较例3)
除了将角度β变更为98度、将研磨层厚度变更为2.0mm、将槽深变更为1.5mm以外,与实施例1同样地研磨。此时,曲折点深度为0.15mm,初期曲折点间距为3mm。平均研磨速率为190.1nm/分,研磨速率变动率为36.2%,研磨速率变动大。平均垫切割速率为1.42μm/分,研磨垫寿命为14小时,寿命短。
(比较例4)
除了将研磨层表面的槽的角度α变更为160度、角度β变更为100度、将研磨层厚度变更为2.5mm、将槽深变更为2.0mm以外,与实施例1同样地研磨。此时,曲折点深度为0.60mm,初期曲折点间距为4mm。平均研磨速率为184.6nm/分,研磨速率变动率为31.0%,研磨速率变动大。平均垫切割速率为1.32μm/分,研磨垫寿命为21小时,是良好的结果。
表1中示出通过以上说明的实施例1至12、比较例1至4所获得的结果。
[表1]
  实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 实施例7 实施例8 实施例9 实施例10 实施例11 实施例12 比较例1 比较例2 比较例3 比较例4
α(度) 135 145 135 100 150 160 115 165 135 135 135,130 135 93 93 135 160
β(度) 120 120 100 98 145 110 100 155 120 120 120 120 90 90 98 100
研磨层厚度(mm) 2.4 2.25 3.15 2.0 2.0 2.5 2.0 2.2 2.9 3.5 2.4 2.4 2.0 2.0 2.0 2.5
槽深(mm) 1.9 1.75 2.65 1.5 1.5 2.05 1.5 1.7 2.4 3.0 1.9 1.9 1.5 1.5 1.5 2.0
曲折点深度(mm) 0.69 0.46 1.37 0.3 0.27 0.79 0.27 0.5 2.1 2.6 0.69 0.69 0.27 0.27 0.15 0.60
初期槽曲折点间距(mm) 3 3 3.4 3 5 5 3 5 3 3 3 3 1.5 3 3 4
平均研磨速率(nm/分) 192.2 195.2 184.1 187.8 201.9 183.8 182.5 190.2 185.7 183.3 191.8 192.8 180.1 189.5 190.1 184.6
研磨速率变动率(%) 8.5 13.2 17.2 17.8 18.9 16.4 17.5 15.6 14.4 15.1 9.0 9.3 45.1 30.8 36.2 31.0
平均垫切割速率(μm/分) 1.22 1.15 1.22 1.20 1.24 1.35 1.22 1.36 1.23 1.24 1.20 1.22 1.12 1.5 1.42 1.32
研磨垫寿命(小时) 22 21 32 16 16 21 16 17 28 36 22 22 18 13 14 21
* 实施例12…在研磨层表面粘附厚度188μm的聚酯膜,且在聚酯膜面粘附缓冲层
符号说明
1、2、3、4 研磨垫
10 研磨层
11 研磨面
12、17、19、21 槽
13 第一侧面
14 曲折点
15 第二侧面
16、18、20、22 最深部

Claims (5)

1. 一种研磨垫,是至少具有研磨层的研磨垫,其特征在于:
所述研磨层在研磨面具备槽,该槽具有侧面,
所述侧面的至少一方由第一侧面和第二侧面构成,所述第一侧面与所述研磨面连续,且与所述研磨面所成的角度为α,所述第二侧面与该第一侧面连续,且与平行于所述研磨面的面所成的角度为β,
与所述研磨面所成的角度α大于95度,与平行于所述研磨面的面所成的角度β大于95度,并且与平行于所述研磨面的面所成的角度β比与所述研磨面所成的角度α更小,
从所述研磨面到所述第一侧面与所述第二侧面的曲折点为止的曲折点深度大于0.2mm且为3.0mm以下。
2. 根据权利要求1所述的研磨垫,其特征在于,与所述研磨面所成的角度α和与平行于所述研磨面的面所成的角度β之差为55度以下。
3. 根据权利要求1或2所述的研磨垫,其特征在于,与所述研磨面所成的角度α为105度以上、150度以下。
4. 根据权利要求1至3中任一项所述的研磨垫,其特征在于,与平行于所述研磨面的面所成的角度β大于95且不足150度。
5. 根据权利要求1至4中任一项所述的研磨垫,其特征在于,所述研磨面的槽的图案为格子状。
CN201280034917.2A 2011-07-15 2012-07-12 研磨垫 Pending CN103648718A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011156424 2011-07-15
JP2011-156424 2011-07-15
PCT/JP2012/067835 WO2013011921A1 (ja) 2011-07-15 2012-07-12 研磨パッド

Publications (1)

Publication Number Publication Date
CN103648718A true CN103648718A (zh) 2014-03-19

Family

ID=47558099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280034917.2A Pending CN103648718A (zh) 2011-07-15 2012-07-12 研磨垫

Country Status (7)

Country Link
US (1) US20140141704A1 (zh)
EP (1) EP2732917A4 (zh)
JP (1) JPWO2013011921A1 (zh)
KR (1) KR20140039043A (zh)
CN (1) CN103648718A (zh)
TW (1) TW201313388A (zh)
WO (1) WO2013011921A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109562506A (zh) * 2017-02-06 2019-04-02 株式会社大辉 抛光垫的凹部形成方法以及抛光垫

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9114501B2 (en) * 2011-07-15 2015-08-25 Toray Industries, Inc. Polishing pad
KR20140062095A (ko) * 2011-09-15 2014-05-22 도레이 카부시키가이샤 연마 패드
US8980749B1 (en) * 2013-10-24 2015-03-17 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method for chemical mechanical polishing silicon wafers
JP2017001111A (ja) * 2015-06-05 2017-01-05 株式会社ディスコ 研磨パッド及びcmp研磨方法
US9925637B2 (en) * 2016-08-04 2018-03-27 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Tapered poromeric polishing pad
TWI595968B (zh) * 2016-08-11 2017-08-21 宋建宏 研磨墊及其製造方法
JP7105334B2 (ja) * 2020-03-17 2022-07-22 エスケーシー ソルミックス カンパニー,リミテッド 研磨パッドおよびこれを用いた半導体素子の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1345264A (zh) * 1999-03-30 2002-04-17 株式会社尼康 抛光盘、抛光机、抛光方法及制造半导体器件的方法
JP2003163192A (ja) * 2001-11-29 2003-06-06 Shin Etsu Handotai Co Ltd 溝入り研磨布並びにワークの研磨方法及び研磨装置
JP2004186392A (ja) * 2002-12-03 2004-07-02 Toshiba Ceramics Co Ltd 研磨布
CN1521813A (zh) * 2003-02-14 2004-08-18 中芯国际集成电路制造(上海)有限公 化学机械研磨垫
CN1990183A (zh) * 2005-12-28 2007-07-04 Jsr株式会社 化学机械抛光垫和化学机械抛光方法
EP2090401A1 (en) * 2008-02-18 2009-08-19 JSR Corporation Chemical mechanical polishing pad
CN101637888A (zh) * 2008-08-01 2010-02-03 智胜科技股份有限公司 研磨垫及其制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882251A (en) * 1997-08-19 1999-03-16 Lsi Logic Corporation Chemical mechanical polishing pad slurry distribution grooves
US6238271B1 (en) * 1999-04-30 2001-05-29 Speed Fam-Ipec Corp. Methods and apparatus for improved polishing of workpieces
JP4855571B2 (ja) 2000-08-31 2012-01-18 ニッタ・ハース株式会社 研磨パッド及びその研磨パッドを用いた被加工物の研磨方法
US7070480B2 (en) * 2001-10-11 2006-07-04 Applied Materials, Inc. Method and apparatus for polishing substrates
JP2009023018A (ja) * 2007-07-17 2009-02-05 Jsr Corp 化学機械研磨パッドおよび化学機械研磨方法
JP2010045306A (ja) 2008-08-18 2010-02-25 Kuraray Co Ltd 研磨パッド
TWM352127U (en) * 2008-08-29 2009-03-01 Bestac Advanced Material Co Ltd Polishing pad
KR20140062095A (ko) * 2011-09-15 2014-05-22 도레이 카부시키가이샤 연마 패드
WO2013039203A1 (ja) * 2011-09-16 2013-03-21 東レ株式会社 研磨パッド

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1345264A (zh) * 1999-03-30 2002-04-17 株式会社尼康 抛光盘、抛光机、抛光方法及制造半导体器件的方法
JP2003163192A (ja) * 2001-11-29 2003-06-06 Shin Etsu Handotai Co Ltd 溝入り研磨布並びにワークの研磨方法及び研磨装置
JP2004186392A (ja) * 2002-12-03 2004-07-02 Toshiba Ceramics Co Ltd 研磨布
CN1521813A (zh) * 2003-02-14 2004-08-18 中芯国际集成电路制造(上海)有限公 化学机械研磨垫
CN1990183A (zh) * 2005-12-28 2007-07-04 Jsr株式会社 化学机械抛光垫和化学机械抛光方法
EP2090401A1 (en) * 2008-02-18 2009-08-19 JSR Corporation Chemical mechanical polishing pad
CN101637888A (zh) * 2008-08-01 2010-02-03 智胜科技股份有限公司 研磨垫及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109562506A (zh) * 2017-02-06 2019-04-02 株式会社大辉 抛光垫的凹部形成方法以及抛光垫
CN109562506B (zh) * 2017-02-06 2021-11-12 株式会社大辉 抛光垫的凹部形成方法以及抛光垫

Also Published As

Publication number Publication date
US20140141704A1 (en) 2014-05-22
WO2013011921A1 (ja) 2013-01-24
JPWO2013011921A1 (ja) 2015-02-23
EP2732917A4 (en) 2015-04-15
TW201313388A (zh) 2013-04-01
KR20140039043A (ko) 2014-03-31
EP2732917A1 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
CN103648718A (zh) 研磨垫
WO2013039181A1 (ja) 研磨パッド
US8133096B2 (en) Multi-phase polishing pad
US6402591B1 (en) Planarization system for chemical-mechanical polishing
CN103347652A (zh) 研磨垫
WO2013039203A1 (ja) 研磨パッド
US10974366B2 (en) Conditioning wheel for polishing pads
CN103648717A (zh) 研磨垫
JP2006210657A (ja) 研磨パッド、研磨装置、および半導体デバイスの製造方法
JP2006339573A (ja) 研磨パッドおよび研磨装置
WO2013103142A1 (ja) 研磨パッド
WO2013129426A1 (ja) 研磨パッド
JP2015196234A (ja) 研磨パッド
JP2006035367A (ja) 研磨パッドおよび研磨装置
JP2014188647A (ja) 研磨パッド
JP2005052901A (ja) シート状研磨材料の製造方法
JP2002353177A (ja) 研磨パッド、およびその製造方法、およびそれを用いた研磨方法
JP2011146413A (ja) 研磨方法および半導体デバイスの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20160914

C20 Patent right or utility model deemed to be abandoned or is abandoned