WO2013103142A1 - 研磨パッド - Google Patents
研磨パッド Download PDFInfo
- Publication number
- WO2013103142A1 WO2013103142A1 PCT/JP2012/084179 JP2012084179W WO2013103142A1 WO 2013103142 A1 WO2013103142 A1 WO 2013103142A1 JP 2012084179 W JP2012084179 W JP 2012084179W WO 2013103142 A1 WO2013103142 A1 WO 2013103142A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- groove
- polishing
- polishing pad
- grooves
- cross
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/26—Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
Definitions
- the present invention relates to a polishing pad. More particularly, the present invention relates to a polishing pad preferably used for forming a flat surface in a semiconductor, a dielectric / metal composite, an integrated circuit, and the like.
- CMP Chemical Mechanical Polishing
- a CMP apparatus includes a polishing head that holds a semiconductor wafer that is an object to be processed, a polishing pad that performs polishing of the object to be processed, and a polishing surface plate that holds the polishing pad.
- the polishing process of the semiconductor wafer uses a slurry to move the semiconductor wafer and the polishing pad relative to each other, thereby removing the protruding portion of the layer on the surface of the semiconductor wafer and flattening the layer on the surface of the wafer.
- CMP is a technique for polishing a material to be polished while supplying slurry using a polishing pad having a polishing surface and a groove formed on the polishing surface.
- CMP polishing has required characteristics such as ensuring local flatness of a wafer, ensuring global flatness, preventing occurrence of defects, and ensuring a high average polishing rate in the wafer surface. Therefore, in order to achieve these, various ingenuity has been made to the groove configuration (groove pattern and groove cross-sectional shape, etc.) of the polishing pad, which is one of the major factors affecting the polishing characteristics. Yes.
- the cross-sectional shape of the groove formed on the surface is a parallelogram, and a plurality of inclined grooves such as concentric circles, petals, or inclined grooves extending spirally are used as the groove pattern to stabilize the polishing characteristics.
- a plurality of inclined grooves such as concentric circles, petals, or inclined grooves extending spirally are used as the groove pattern to stabilize the polishing characteristics.
- corners in the cross-sectional shape of the groove may cause scratches on the wafer surface, or the cross-sectional shape may be caused by dressing performed before or after polishing or during polishing. In some cases, scratches may occur due to the formation of burrs on the surface, and in order to eliminate this, it is described that an inclined surface is provided at the boundary between the polishing surface and the groove (for example, Patent Documents). 2-4).
- the present inventors improve the suction force between the wafer and the polishing pad and improve the slurry flow at a specific inclination angle. And found that the polishing rate was increased. Since it is important to provide an inclined surface at the boundary between the polishing surface and the groove, this also applies when the cross-sectional shape of the groove is V-shaped, trapezoidal, and cross-sectional shape of a countersunk screw (Y-shaped).
- the cross-sectional shape can be a trapezoidal or countersunk groove, but increasing the cross-sectional area means that the volume of the polishing pad is reduced, resulting in The problem of short life occurs.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a polishing pad that can suppress a decrease in pad life while maintaining a high polishing rate.
- the inventors of the present invention have found that even when the groove cross-sectional shape is inclined, the effect is manifested only by the inclination on the rotation front side with respect to the rotational speed direction of the polishing surface.
- a polishing pad is a polishing pad for chemical mechanical polishing having at least a circular polishing surface, and the polishing surface has a non-concentric circular shape.
- a plurality of grooves, the first grooves having a first groove side surface located on the front side and a second groove side surface located on the rear side with respect to the rotational speed direction of the polishing pad.
- an angle formed by the polishing surface and the side of the first groove continuous with the polishing surface is 105 degrees or more and 150 degrees or less, and the polishing surface and the polishing surface are continuous with the first surface.
- the angle formed by the side surfaces of the two grooves is less than 105 degrees, and the total length of the first grooves is equal to or greater than the total length of the grooves other than the first groove among the plurality of grooves. It is characterized by.
- the life of the pad can be reduced by increasing the cross-sectional area of the groove. It is possible to provide a polishing pad that does not exist.
- FIG. 1 is a diagram for explaining a groove shape in a polishing pad according to an embodiment of the present invention.
- FIG. 2 is a diagram illustrating the groove shape of the polishing pad according to the embodiment of the present invention.
- FIG. 3A is a cross-sectional view schematically showing another example of the groove shape of the polishing pad according to the embodiment of the present invention.
- FIG. 3B is a cross-sectional view schematically showing another example of the groove shape of the polishing pad according to the embodiment of the present invention.
- FIG. 3C is a cross-sectional view schematically showing another example of the groove shape of the polishing pad according to the embodiment of the present invention.
- FIG. 3A is a cross-sectional view schematically showing another example of the groove shape of the polishing pad according to the embodiment of the present invention.
- FIG. 3B is a cross-sectional view schematically showing another example of the groove shape of the polishing pad according to the embodiment of the present invention.
- FIG. 3C is a cross-sectional
- FIG. 3D is a cross-sectional view schematically showing another example of the groove shape of the polishing pad according to the embodiment of the present invention.
- FIG. 3E is a cross-sectional view schematically showing another example of the groove shape of the polishing pad according to the embodiment of the present invention.
- FIG. 3F is a cross-sectional view schematically showing another example of the groove shape of the polishing pad according to the embodiment of the present invention.
- FIG. 3G is a cross-sectional view schematically showing another example of the groove shape of the polishing pad according to the embodiment of the present invention.
- FIG. 3H is a cross-sectional view schematically showing another example of the groove shape of the polishing pad according to the embodiment of the present invention.
- FIG. 3I is a cross-sectional view schematically showing another example of the groove shape of the polishing pad according to the embodiment of the present invention.
- FIG. 3J is a cross-sectional view schematically showing another example of the groove shape of the polishing pad according to the embodiment of the present invention.
- FIG. 4A is a schematic diagram illustrating an example of the configuration of the polishing pad according to the embodiment of the present invention.
- 4B is a cross-sectional view taken along the line a′-a ′′ of FIG. 4A.
- 4C is a cross-sectional view taken along line b′-b ′′ of FIG. 4A.
- 4D is a cross-sectional view taken along line c′-c ′′ of FIG. 4A.
- FIG. 4E is a cross-sectional view taken along line d′-d ′′ of FIG. 4A.
- FIG. 5A is a schematic diagram illustrating another example of the configuration of the polishing pad according to the embodiment of the present invention.
- FIG. 5B is a cross-sectional view taken along the line e′-e ′′ of FIG. 5A.
- FIG. 5C is a cross-sectional view taken along line f′-f ′′ of FIG. 5A.
- FIG. 5D is a cross-sectional view taken along the line g′-g ′′ of FIG. 5A.
- FIG. 5E is a cross-sectional view taken along the line h′-h ′′ of FIG. 5A.
- FIG. 6A is a diagram illustrating a groove shape when the groove processing direction is parallel to the rotation speed direction of the rotating polishing pad.
- FIG. 6B is a diagram for explaining the groove shape when the groove processing direction is parallel to the rotational speed direction of the rotating polishing pad.
- FIG. 7A is a schematic diagram illustrating a configuration of a polishing pad according to an embodiment of the present invention, and a cross-sectional perspective view illustrating an example of a groove shape.
- FIG. 7B is a diagram for explaining the processing direction of the groove shape of the polishing pad according to the embodiment of the present invention.
- FIG. 8 is a schematic diagram showing a configuration of a main part of the polishing pad according to the embodiment of the present invention.
- FIG. 9 is a schematic diagram illustrating a configuration of a polishing pad according to Example 1 in an example of the present invention.
- FIG. 10 is a schematic diagram illustrating a configuration of a polishing pad according to Example 2 in an example of the present invention.
- FIG. 11 is a schematic diagram illustrating a configuration of a polishing pad according to Example 3 in the example of the present invention.
- FIG. 12 is a schematic diagram showing a configuration of a polishing pad according to Example 4 in the example of the present invention.
- FIG. 13 is a schematic diagram illustrating a configuration of a polishing pad according to Example 5 of the example of the present invention.
- FIG. 14A is a schematic diagram illustrating a configuration of a polishing pad according to Comparative Example 3 in the example of the present invention.
- FIG. 14B is a cross-sectional view illustrating a groove-shaped configuration of the polishing pad according to Comparative Example 3 in the example of the present invention.
- FIG. 15 is a schematic diagram illustrating a configuration of a polishing pad according to Comparative Example 4 in the example of the present invention.
- FIG. 16 is a schematic diagram showing a configuration of a polishing pad according to Comparative Example 5 in the example of the present invention.
- the circular chemical mechanical polishing polishing pad of the present invention is a chemical mechanical polishing polishing pad having at least a circular polishing surface, and a plurality of non-concentric circular grooves are formed on the polishing surface,
- the plurality of grooves have at least a portion of a first groove having a first groove side surface located on the front side and a second groove side surface located on the rear side with respect to the rotational speed direction of the polishing pad,
- the angle formed by the first groove side surface continuous with the polishing surface is 105 degrees or more and 150 degrees or less, and the angle formed by the polishing surface and the second groove side surface continuous with the polishing surface is less than 105 degrees.
- the polishing pad of the present invention is characterized in that the total length of the first grooves is equal to or greater than the total length of the grooves other than the first groove among the plurality of grooves.
- FIG. 1 is a diagram for explaining a groove shape in a polishing pad according to an embodiment of the present invention.
- a groove 2 is formed in a polishing pad with respect to a planar polishing surface 1.
- the groove 2 extends in a straight line on the polishing surface 1 and forms a V-shape having symmetry by two groove side surfaces 20 forming an inclined surface inclined with respect to the polishing surface 1.
- the angle formed between the polishing surface 1 and each groove side surface 20 is the same angle ⁇ 1 .
- FIG. 2 is a diagram for explaining the groove shape of the polishing pad according to the present embodiment.
- the polishing pad according to the present invention has a first groove side surface 21 that extends linearly with respect to a planar polishing surface 1 and forms an inclined surface that is inclined with respect to the polishing surface 1.
- a groove 2 a (first groove) is formed that includes a second groove side surface 22 that is a surface substantially orthogonal to the polishing surface 1.
- the groove 2 a is substantially V-shaped by the first groove side surface 21 and the second groove side surface 22.
- the angle formed between the polishing surface 1 and the first groove side surface 21 is an angle ⁇ 2 ( ⁇ 2 ⁇ 105 degrees).
- the angle formed between the polishing surface 1 and the second groove side surface 22 is an angle ⁇ 3 ( ⁇ 3 ⁇ 90 degrees).
- the first groove side surface 21 is formed so as to be on the front side with respect to the rotational speed direction of the rotating polishing pad (arrow Y1 direction in FIG. 2, hereinafter referred to as the rotational speed direction Y1) (hereinafter referred to as the front side).
- the rotational speed direction Y1 (hereinafter referred to as the front side).
- the second groove side surface 22 is formed so as to be on the rear side with respect to the rotational speed direction Y1 of the rotating polishing pad (hereinafter, also referred to as a rear inclined surface).
- the first groove side surface 21 and the second groove side surface 22 in the groove 2a are based on the rotational speed direction Y1 of the rotating polishing pad, and should be selected as appropriate, but should be unclear with this. is not.
- the groove 2a is inclined angle theta 2 of the first groove side surface 21 is not more than 150 degrees 105 degrees, the inclination angle theta 3 of the second groove flank 22 which is opposite the first groove flank 21 is less than 105 degrees It is a groove.
- the shape of the groove bottom of the polishing pad of the present invention is not particularly limited. Specific groove cross-sectional shapes and groove patterns are shown in FIGS. 3A to 3I. 3A to 3I are cross-sectional views schematically showing other examples of the groove shape of the polishing pad according to the present embodiment.
- the groove 2b shown in FIG. 3A is connected to the second groove side surface 22 which is a surface substantially orthogonal to the polishing surface 1, and the end of the second groove side surface 22 on the side different from the side connected to the polishing surface 1, 1 is a plane that is substantially parallel to the groove 1 and is formed on the groove bottom surface 23 that forms the bottom surface of the groove 2b and the end of the groove bottom surface 23 that is different from the second groove side surface 22 side.
- a first groove side surface 24 which is a surface.
- the groove 2 b is substantially U-shaped by the second groove side surface 22, the groove bottom surface 23, and the first groove side surface 24.
- the groove 2c shown in FIG. 3B is connected to the second groove side surface 22 which is a surface substantially orthogonal to the polishing surface 1 and the end of the second groove side surface 22 on the side different from the side connected to the polishing surface 1.
- the inclination angle of the first inclined portion 241 with respect to the polishing surface 1 is smaller than the inclination angle of the second inclined portion 242 with respect to the polishing surface 1.
- the groove 2d shown in FIG. 3C is connected to the second groove side surface 22 which is a surface substantially orthogonal to the polishing surface 1 and the end of the second groove side surface 22 on the side different from the side connected to the polishing surface 1. It is a plane that is substantially parallel to the groove bottom surface 23 that forms the bottom surface of the groove 2d and the end of the groove bottom surface 23 that is different from the side that is continuous with the second groove side surface 22 and that is orthogonal to the polishing surface 1.
- the first groove side surface 24b includes a certain orthogonal portion 243, and a first groove side surface 24b having an inclined portion 244 that is continuous with the orthogonal portion 243 and is inclined with respect to the polishing surface 1.
- the groove 2 e shown in FIG. 3D is connected to the second groove side surface 22, which is a surface substantially orthogonal to the polishing surface 1, and the end of the second groove side surface 22 on the side different from the side connected to the polishing surface 1.
- the first inclined portion 245 which is a surface inclined with respect to the first inclined portion 245 and the first groove side surface 24c which has a second inclined portion 246 which is a surface inclined with respect to the polishing surface 1.
- the inclination angle of the first inclined portion 245 with respect to the polishing surface 1 is smaller than the inclination angle of the second inclined portion 246 with respect to the polishing surface 1.
- the groove 2 f shown in FIG. 3E is connected to the second groove side surface 22, which is a surface substantially orthogonal to the polishing surface 1, and the end of the second groove side surface 22 on the side different from the side connected to the polishing surface 1. It is a curved surface having an arcuate shape that protrudes away from the groove, and is connected to the groove bottom surface 23a that forms the bottom surface of the groove 2f, and the end of the groove bottom surface 23a that is different from the side that is connected to the first groove side surface 22, and the polishing surface 1 And a first groove side surface 24d which is a surface inclined with respect to the first groove side surface 24d.
- the groove 2g shown in FIG. 3F is connected to the second groove side surface 22 which is a surface substantially orthogonal to the polishing surface 1 and the end of the second groove side surface 22 on the side different from the side connected to the polishing surface 1. It is a substantially parallel flat surface, and forms a bottom surface of the groove 2g and has a groove bottom surface 23b having a concave portion 231 having a concave shape at the center, and an end portion on a side different from the side continuous with the second groove side surface 22 of the groove bottom surface 23b.
- the first groove side surface 24b includes an orthogonal portion 243 that is continuous with the polishing surface 1 and an inclined portion 244 that is continuous with the orthogonal portion 243 and is inclined with respect to the polishing surface 1.
- the groove 2 h shown in FIG. 3G is connected to the second groove side surface 22, which is a surface substantially orthogonal to the polishing surface 1, and the end of the second groove side surface 22 on the side different from the side connected to the polishing surface 1.
- the curved surface portion 232 that is an arc-shaped curved surface that protrudes away from the separation side, and the inclined portion 233 that has an inclined surface that expands from both ends of the curved surface portion 232 and extends, and is inclined with respect to the polishing surface 1.
- a first groove side surface 24b having an inclined portion 244 that is continuous with the orthogonal portion 243 and is inclined with respect to the polishing surface 1.
- the groove 2 i shown in FIG. 3H is connected to the second groove side surface 22, which is a surface substantially orthogonal to the polishing surface 1, and the end of the second groove side surface 22 on the side different from the side connected to the polishing surface 1.
- the groove bottom surface 23d forming the bottom surface of the groove 2i and the end of the groove bottom surface 23d on the side different from the side continuous with the second groove side surface 22 are orthogonal to the polishing surface 1.
- the groove 2j shown in FIG. 3I is connected to the second groove side surface 22 which is a surface substantially orthogonal to the polishing surface 1 and the end of the second groove side surface 22 on the side different from the side connected to the polishing surface 1,
- the tip In a cross section having a cross-section as a plane orthogonal to each other, the tip has a substantially U shape with a reduced diameter.
- a first groove side surface 24 that is continuous with the end portion and is inclined with respect to the polishing surface 1.
- FIG. 3J is a cross-sectional view schematically showing another example of the groove shape of the polishing pad according to the present embodiment.
- the groove 2k shown in FIG. 3J is connected to two groove side surfaces 25 that are substantially orthogonal to the polishing surface 1 and ends of the groove side surface 25 that are different from the side that is connected to the polishing surface 1, and is substantially parallel to the polishing surface 1.
- a groove bottom surface 23 forming the bottom surface of the groove 2k.
- the groove 2k is substantially U-shaped by the groove side surface 25 and the groove bottom surface 23.
- the groove 2a is provided on the front side with respect to the rotational velocity direction Y1, the first groove flank 21 angle of inclination theta 2 is less than 150 degrees 105 degrees, a side opposite the first groove flank 21, A second groove side surface 22 provided on the rear side with respect to the rotational speed direction Y1 and having an inclination angle ⁇ 3 of less than 105 degrees.
- the action of the first groove side surface 21 in which the inclination angle of the front inclined surface is 105 degrees or more and 150 degrees or less in relation to the rotational speed direction Y1 of the rotating polishing pad (sometimes referred to as a groove moving direction). Is considered with reference to FIG.
- the first groove side surface 21 having the inclination angle ⁇ 2 of 105 degrees or more and 150 degrees or less is the front direction with respect to the rotational speed direction Y1 (direction in which the groove moves) (the inclination angle ⁇ 3 is less than 105 degrees). If the two-groove side surface 22 is in the rear direction with respect to the direction in which the groove moves, it is considered that the polishing rate increases due to the suction force acting between the wafer and the polishing pad and the improvement of the slurry flow. In addition, it is considered that a high polishing uniformity of the wafer is given to the polishing rate of the wafer due to the effect of the suction force acting and the improvement of the slurry flow to bring the polishing pad into contact with the wafer surface uniformly.
- the front of the rotational speed direction Y1 (direction in which the groove moves) Since the front and rear surfaces have inclined surfaces, the front inclined surface exerts a suction force between the wafer and the polishing pad, and exhibits an effect of increasing the polishing rate and improving in-plane uniformity.
- the rear inclined surface has an inclination angle, it is considered that the action of the inclined surface on the groove side surface, which is the front direction with respect to the direction in which the groove moves, does not appear on the rear inclined surface.
- the groove side surface has an inclined surface, if the groove direction is parallel to the rotational speed direction, the groove does not become a front inclined surface, so that the action of the front inclined surface is not expected to occur.
- the slurry held between the polishing surface and the wafer is promoted to be discharged by rotation, but by having the rear inclined surface, the discharge of the slurry between the polishing surface and the wafer is further promoted, and the polishing rate and surface are increased. It is conceivable that the internal uniformity is reduced.
- the cross-sectional shape of the groove is V-shaped, or when the cross-sectional shape of trapezoidal and countersunk screws (Y-shaped groove) is made, the effect by the front inclined surface and the reverse effect by the rear inclined surface are antagonized, Since sufficient performance may not be exhibited, it is necessary to reduce the ratio of the rear inclined surface (inclination angle), and it is preferable to eliminate the rear inclined surface.
- the first groove formed in the polishing pad of the present invention has a first groove side surface (front inclined surface) having an inclination angle of 105 degrees or more and 150 degrees or less, and is a second groove opposite to the first groove side surface.
- the inclination angle of the groove side surface (rear inclined surface) is less than 105 degrees.
- the angle formed between the polishing surface and the side surface (groove side surface) continuous to the polishing surface is too large, the area of the polishing surface is reduced, and the cross-sectional area of the groove is too large, so that the slurry is excessively discharged and polishing is performed. Incurs a decrease in rate.
- the angle of the front inclined surface in the groove needs to be 105 degrees or more and 150 degrees or less, preferably 110 degrees or more, more preferably 115 degrees or more, and 120 degrees or more. More preferably.
- the angle ⁇ 3 of the rear inclined surface in the groove 2a needs to be less than 105 degrees, preferably 60 degrees or more, more preferably 80 degrees or more, and 85 degrees or more. Further preferred. Further, it is more preferably 100 degrees or less, and further preferably 95 degrees or less.
- the cross-sectional shape of the grooves constituting the polishing pad need not be one kind.
- at least one of the edge portions in the groove width direction is a groove having a plurality of groove cross-sectional shapes in which the angle of the front inclined surface is 105 degrees or more and 150 degrees or less and the angle of the rear inclined surface is less than 105 degrees. It is also possible to constitute a polishing pad by combining. From the viewpoint of in-plane uniformity, it is more preferable to configure the polishing pad with one type of cross-sectional shape.
- the effect of the front inclined surface and the adverse effect of the rear inclined surface are antagonized, and sufficient performance may not be exhibited, so it is necessary to reduce the ratio (inclination angle) of the rear inclined surface.
- the total length of the first groove (the length in the direction in which the groove extends) composed of the groove 2a having the groove side surface 22 is the length of the grooves other than the first groove among the plurality of grooves provided in the polishing pad. It is necessary to be greater than or equal to the total.
- FIG. 4A is a schematic diagram showing an example of the configuration of the polishing pad according to the present embodiment, and is an example of the arrangement of grooves having a symmetric shape with respect to a specific line segment of the polishing pad.
- the grooves 2a are uniformly arranged in an XY lattice pattern on the polishing pad 3 as shown in FIG. 4A.
- the polishing pad 3 is rotated and used. Therefore, the first groove side surface 21 and the second groove side surface 22 are also formed on the front inclined surface depending on the formation location and the rotational speed direction. It can also be a rear inclined surface.
- the proportion of the front inclined surface is large in a certain portion
- the proportion of the rear inclined surface is increased in a certain portion. That is, as in the case of the V-shaped groove (groove side surface 20) and the like, when viewed macroscopically, the effect of the front inclined surface and the reverse effect of the front inclined surface by the rear inclined surface antagonize, and sufficient Performance may not be manifested.
- FIG. 4B is a cross-sectional view taken along the line a′-a ′′ of FIG. 4A.
- FIG. 4C is a cross-sectional view taken along the line b′-b ′′ of FIG. 4A.
- 4D is a cross-sectional view taken along the line c′-c ′′ of FIG. 4A.
- FIG. 4E is a cross-sectional view taken along the line d′-d ′′ of FIG. 4A.
- a line segment PaPc connecting the point Pa to the point Pc and a line segment PbPd connecting the point Pb to the point Pd pass through the center O of the polishing pad 3.
- the groove group 30 composed of a plurality of grooves formed along the line segment PaPc is symmetric with respect to a vertical plane that includes the line segment PbPd and is orthogonal to the polishing surface 1 of the polishing pad 3.
- the groove group 31 including a plurality of grooves formed along the line segment PbPd is symmetric with respect to a vertical plane that includes the line segment PaPc and is orthogonal to the polishing surface 1. That is, the groove group along the line connecting the center O of the polishing pad 3 and the point Pa has a front inclined surface on the a ′′ side (the tip side in the rotational speed direction Y1) (see FIG. 4B).
- the groove group along the line connecting Pc has a front inclined surface on the c ′ side (see FIG. 4D).
- the groove group along the line connecting the center O and the point Pb is inclined forward on the b ′′ side.
- the groove group along the line segment connecting the center O and the point Pd has a front inclined surface on the d ′ side (see FIG. 4E). Therefore, when viewed macroscopically, the effect of the front inclined surface and the effect / inverse effect of the rear inclined surface are antagonized, and sufficient performance is not exhibited.
- the groove of the polishing pad of the present invention is asymmetric with respect to all the perpendicular surfaces including the diameter of the polishing pad and perpendicular to the polishing pad surface.
- FIG. 5A is a schematic diagram showing another example of the configuration of the main part of the polishing pad according to the present embodiment, and is an example of the arrangement of grooves that are asymmetrical with respect to all the diameters of the polishing pad.
- 5B is a cross-sectional view taken along the line e′-e ′′ of FIG. 5A.
- FIG. 5C is a cross-sectional view taken along the line f′-f ′′ of FIG. 5A.
- 5D is a cross-sectional view taken along the line g′-g ′′ of FIG. 5A.
- FIG. 5E is a cross-sectional view taken along the line h′-h ′′ of FIG. 5A.
- a line segment PePg connecting point Pe to point Pg and a line segment PfPh connecting point Pf to point Ph pass through the center O of polishing pad 3a.
- the groove groups 32 and 33 formed of a plurality of grooves formed along the line segment eg pass through the center O of the polishing pad 3a and are orthogonal to the polishing surface 1 (for example, a plane passing through the line segment PfPh).
- the groove 2a is formed asymmetrically.
- the groove groups 34 and 35 formed of a plurality of grooves formed along the line segment PfPh pass through the center O of the polishing pad 3a and are perpendicular to the polishing surface 1 (for example, pass through the line segment PePg).
- the groove 2a is formed asymmetrically with respect to the plane.
- the grooves 2a of the groove groups 33 and 35 are reversed when viewed from the same direction with respect to the grooves 2a of the groove groups 32 and 34. That is, the groove 2a of the groove group along the line segment connecting the center O of the polishing pad 3a and the point Pe has a front inclined surface on the e ′′ side (see FIG. 5B), and the center O of the polishing pad 3a and the point Pg The groove 2a of the groove group along the line connecting the two has a front inclined surface on the g ′′ side (see FIG. 5D). Further, the groove 2a of the groove group along the line segment connecting the center O of the polishing pad 3a and the point Pf has a front inclined surface on the f ′′ side (see FIG.
- the groove 2a of the groove group along the line connecting the two has a front inclined surface on the h ′′ side (see FIG. 5E).
- the groove 2a in the groove groups 32 to 35 has the first groove side surface 21 located on the front side in the rotational speed direction Y1.
- FIG. 6A is a diagram illustrating the groove shape when the groove processing direction is parallel to the rotation speed direction of the rotating polishing pad.
- FIG. 6B is a diagram for explaining the groove shape when the groove processing direction is parallel to the rotational speed direction of the rotating polishing pad.
- the cross-sectional shape of the groove 200 formed in the polishing pad 300 is a groove having a front inclined surface and a rear inclined surface
- the groove direction is the pad rotation speed. Since it is parallel to the direction (rotational speed direction Y100), it is considered that the action of the front inclined surface does not appear.
- the grooves of the present invention are not concentric.
- FIG. 7A is a schematic diagram illustrating a configuration of a polishing pad according to the present embodiment, and a cross-sectional perspective view illustrating an example of a groove shape.
- FIG. 7B is a diagram for explaining the processing direction of the groove shape of the polishing pad according to the present embodiment.
- the front inclined surface (first groove side surface 24b) of the groove 2d is formed as shown in FIG. 7B.
- FIG. 8 is a schematic diagram showing a configuration of a main part of the polishing pad according to the present embodiment.
- a groove 2a is formed in the polishing layer having the polishing surface 1.
- FIG. 8 shows the processing direction of each groove 2a (the direction in which the groove 2a extends toward the outer periphery) Y22 to Y25, which is the same distance from the center O of the polishing pad 3b, and the rotational speed direction Y1 of the polishing pad 3b. Angles ⁇ 5 to ⁇ 8 are shown respectively.
- angles ⁇ 5 to ⁇ 8 formed by the rotational speed direction Y1 of the polishing pad 3b and the processing direction of the groove 2a angles of 30 degrees or more and 90 degrees or less are employed.
- the angle formed by the processing direction of the groove 2a and the rotational speed direction of the polishing pad 3b is more preferably 45 degrees or more.
- the processing directions Y22 to Y25 of the groove 2a are perpendicular to the width direction of the groove.
- the rotation speed direction Y1 indicates the direction of the rotation speed at one point on the machining direction Y22 to Y25 of the groove 2a. At this time, it is assumed that one point on the processing direction Y22 to Y25 of the groove 2a is equal in distance from the center O.
- the angles ⁇ 5 to ⁇ 8 of the machining directions Y22 to Y25 with respect to the rotational speed direction Y1 satisfy the relationship ⁇ 5 ⁇ 6 ⁇ 7 ⁇ 8 .
- This is inversely proportional to the magnitude relationship of the shortest distances between the machining directions Y22 to Y25 and the center O. That is, when the shortest distance from the center O of the polishing pad 3b is large in the formation range of the groove 2a formed on the polishing surface, the angle becomes small at the outer periphery of the pad as shown in FIG.
- the groove 2a is preferably formed so as to pass through a range of 90% or less of the pad radius length (the length in the radial direction) in the direction orthogonal to the groove 2a because it may not be expressed. Is more preferably formed so as to pass through the range of 50% or less, more preferably formed so as to pass through the range of 50% or less, and particularly preferably formed so as to pass through the range of 40% or less. .
- the above range is a circle centered on the center O, and indicates a range in which the radius of this circle is 90% or less with respect to the pad radius length.
- the polishing surface of the polishing pad has grooves (grooves) that a normal polishing pad can take, such as a lattice shape, dimple shape, spiral shape, concentric shape, etc., in order to suppress the hydroplane phenomenon and to prevent the pad from sticking to the wafer. ) May be provided, and a combination of these is also preferably used, and a lattice shape is more preferable.
- the groove also includes a groove and sufficient performance may not be exhibited, it is preferably 90% or less, and 75% or less with respect to the total length of all the grooves formed on the polished surface. Is more preferably 65% or less, and particularly preferably 55% or less.
- the total length of the grooves is preferably 5% or more, more preferably 10% or more, more preferably 15% or more, and more preferably 20% or more, 30 % Or more is more preferable, and 40% or more is particularly preferable.
- a micro rubber A hardness of 70 degrees or more and a structure having closed cells is a flat surface in semiconductors, dielectric / metal composites, integrated circuits and the like. Is preferable.
- materials for forming such a structure include polyethylene, polypropylene, polyester, polyurethane, polyurea, polyamide, polyvinyl chloride, polyacetal, polycarbonate, polymethyl methacrylate, polytetrafluoroethylene, epoxy resin, ABS resin, AS resin, phenol resin, melamine resin, “neoprene (registered trademark)” rubber, butadiene rubber, styrene butadiene rubber, ethylene propylene rubber, silicon rubber, fluororubber, and resins mainly composed of these. Two or more of these may be used. Even in such a resin, a material mainly composed of polyurethane is more preferable in that the closed cell diameter can be controlled relatively easily.
- Polyurethane is a polymer synthesized by polyaddition reaction or polymerization reaction of polyisocyanate.
- the compound used as the symmetry of the polyisocyanate is an active hydrogen-containing compound, that is, a compound containing two or more polyhydroxy groups or amino groups.
- Examples of the polyisocyanate include tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate, but are not limited thereto. Two or more of these may be used.
- the polyhydroxy group-containing compound is typically a polyol, and examples thereof include polyether polyol, polytetramethylene ether glycol, epoxy resin-modified polyol, polyester polyol, acrylic polyol, polybutadiene polyol, and silicone polyol. Two or more of these may be used. It is preferable to determine the combination and optimum amount of polyisocyanate and polyol, catalyst, foaming agent, and foam stabilizer depending on the hardness, the cell diameter and the expansion ratio.
- the chemical foaming method is generally used by blending various foaming agents into the resin during polyurethane production, but it is cured after foaming the resin by mechanical stirring.
- the method of making it can also be used preferably.
- the average cell diameter of the closed cells is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more from the viewpoint of holding the slurry on the pad surface. On the other hand, it is preferably 150 ⁇ m or less, more preferably 140 ⁇ m or less, and even more preferably 130 ⁇ m or less from the viewpoint of ensuring the flatness of local irregularities of the semiconductor substrate.
- the average bubble diameter is observed in a circular shape that is missing at the edge of the field among the bubbles observed in one field of view when the cross section of the sample is observed at a magnification of 400 times with a VK-8500 ultra-deep microscope manufactured by Keyence.
- the circular bubbles excluding the generated bubbles are obtained by measuring the equivalent circle diameter from the cross-sectional area with an image processing apparatus and calculating the number average value.
- a preferred embodiment of the polishing pad according to the present invention is a pad containing a polymer of a vinyl compound and polyurethane and having closed cells. Toughness and hardness can be increased only with a polymer from a vinyl compound, but it is difficult to obtain a homogeneous polishing pad having closed cells, and polyurethane becomes brittle when the hardness is increased. By impregnating a polyurethane with a vinyl compound, a polishing pad containing closed cells and having high toughness and hardness can be obtained.
- a vinyl compound is a compound having a polymerizable carbon-carbon double bond. Specifically, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, n-lauryl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl Methacrylate, 2-hydroxybutyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, glycidyl methacrylate, ethylene glycol dimethacrylate, acrylic acid, methacrylic acid, fumaric acid, dimethyl fumarate, diethyl fumarate, dipropyl fumarate, maleic acid, maleic Dimethyl acid, diethyl maleate, dipropyl maleate,
- CH 2 CR 1 COOR 2 (R 1 : methyl group or ethyl group, R 2 : methyl group, ethyl group, propyl group or butyl group) is preferable.
- R 1 methyl group or ethyl group
- R 2 methyl group, ethyl group, propyl group or butyl group
- methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, and isobutyl methacrylate are easy to form closed cells in polyurethane, good in impregnation of monomers, easy to cure by polymerization, and vinyl compounds that have been cured by polymerization.
- the foamed structure containing the polymer and polyurethane is preferred because of its high hardness and good flattening characteristics.
- Polymerization initiators preferably used for obtaining polymers of these vinyl compounds include azobisisobutyronitrile, azobis (2,4-dimethylvaleronitrile), azobiscyclohexanecarbonitrile, benzoyl peroxide, lauroyl peroxide. Examples thereof include radical initiators such as oxide and isopropyl peroxydicarbonate. Two or more of these may be used.
- a redox polymerization initiator for example, a combination of a peroxide and an amine can also be used.
- a method for impregnating a polyurethane with a vinyl compound a method of immersing the polyurethane in a container containing a vinyl compound can be mentioned.
- the amount of vinyl compound impregnated in polyurethane should be determined by the type of vinyl compound and polyurethane used and the characteristics of the polishing pad to be produced.
- the content ratio of the polymer obtained from the vinyl compound in the body and the polyurethane is preferably 30/70 to 80/20 by weight. If the content ratio of the polymer obtained from the vinyl compound is 30/70 or more by weight, the hardness of the polishing pad can be sufficiently increased. Further, if the content ratio is 80/20 or less, the elasticity of the polishing layer can be sufficiently increased.
- the polymer and polyurethane content obtained from the polymerized and cured vinyl compound in polyurethane can be measured by a pyrolysis gas chromatography / mass spectrometry method.
- a pyrolysis gas chromatography / mass spectrometry method As an apparatus that can be used in this method, a double shot pyrolyzer “PY-2010D” (manufactured by Frontier Laboratories) is used as a thermal decomposition apparatus, and “TRIO-1” (manufactured by VG) is used as a gas chromatograph / mass spectrometer. Can be mentioned.
- the polymer phase obtained from the vinyl compound and the polyurethane phase are contained without being separated.
- the infrared spectrum of the polishing pad observed with a micro-infrared spectrometer having a spot size of 50 ⁇ m has an infrared absorption peak of a polymer polymerized from a vinyl compound and an infrared absorption peak of polyurethane.
- the infrared spectra at various points are almost the same.
- IR ⁇ s manufactured by SPECTRA-TEC can be mentioned.
- the polishing pad may contain various additives such as an abrasive, an antistatic agent, a lubricant, a stabilizer, and a dye for the purpose of improving characteristics.
- the micro rubber A hardness of the polishing layer is a value evaluated with a micro rubber hardness meter MD-1 manufactured by Kobunshi Keiki Co., Ltd.
- the micro rubber A hardness meter MD-1 is capable of measuring the hardness of thin and small objects that were difficult to measure with a conventional hardness meter, and is about 1/5 of a spring type rubber hardness meter (durometer) A type. Since it is designed and manufactured as a reduced model, a measured value that matches the hardness of the spring type hardness tester A type can be obtained. Since a normal polishing pad has a thickness of a polishing layer or a hard layer of less than 5 mm, it cannot be evaluated with a spring type rubber hardness tester A type. Therefore, evaluation is performed with the micro rubber hardness tester MD-1.
- the hardness of the polishing layer is preferably 70 degrees or more, more preferably 80 degrees or more in terms of micro rubber A hardness, from the viewpoint of the flatness of local irregularities of the semiconductor substrate.
- the density of the polishing layer is preferably 0.3 g / cm 3 or more, more preferably 0.6 g / cm 3 or more, and 0.65 g / cm 3 from the viewpoint of reducing local flatness defects and global steps. More preferably, it is cm 3 or more. On the other hand, from the viewpoint of reducing scratches, 1.1 g / cm 3 or less is preferable, 0.9 g / cm 3 or less is more preferable, and 0.85 g / cm 3 or less is more preferable.
- the density of the polishing layer in the present invention is a value measured using water as a medium in accordance with JIS R-3503 using a Harvard pycnometer.
- the polishing pad according to the present invention preferably has a cushion layer having a bulk modulus of 40 MPa or more and a tensile modulus of 1 MPa or more and 20 MPa or less because the in-plane uniformity is good.
- the bulk modulus in the present invention is measured by the following method.
- a sample piece and water at 23 ° C. are placed in a stainless steel measuring cell having an internal volume of about 40 mL, and a 0.5 mL borosilicate glass pipette (minimum scale 0.005 mL) is attached.
- a tube made of polyvinyl chloride resin (inner diameter 90 mm ⁇ ⁇ 2000 mm, wall thickness 5 mm) is used as a pressure vessel, and the measurement cell in which the above sample piece is placed is placed therein.
- V1 is measured.
- nitrogen is pressurized with the pressure P, and the volume change V0 is measured.
- the volume elastic modulus of the cushion layer is preferably 40 MPa or more.
- the bulk modulus is preferably 40 MPa or more.
- the in-plane uniformity of the entire surface of the semiconductor substrate can be improved.
- the measuring device include Tensilon Universal Tester RTM-100 manufactured by Orientec. As measurement conditions, the test speed is 5 cm / min, the test piece shape is a dumbbell shape having a width of 5 mm and a sample length of 50 mm.
- the tensile elastic modulus of the cushion layer is preferably 1 MPa or more, and more preferably 1.2 MPa or more, from the viewpoint of in-plane uniformity over the entire surface of the semiconductor substrate. Moreover, 20 MPa or less is preferable and 10 MPa or less is more preferable.
- Examples of such a cushion layer include non-foamed elastomers such as natural rubber, nitrile rubber, “neoprene (registered trademark)” rubber, polybutadiene rubber, thermosetting polyurethane rubber, thermoplastic polyurethane rubber, and silicon rubber. However, it is not limited to these.
- the thickness of the cushion layer is preferably in the range of 0.1 mm to 2 mm. From the viewpoint of in-plane uniformity over the entire surface of the semiconductor substrate, 0.2 mm or more is preferable, and 0.3 mm or more is more preferable. Moreover, from a viewpoint of local flatness, 2 mm or less is preferable and 1.75 mm or less is more preferable.
- Examples of means for bonding the polishing layer and the cushion layer include a double-sided tape or an adhesive.
- the polishing pad of the present invention may be provided with a double-sided tape on the surface of the cushion sheet that adheres to the platen.
- a double-sided tape a tape having a general configuration in which an adhesive layer is provided on both surfaces of a base material can be used as described above.
- a base material a nonwoven fabric, a film, etc. are mentioned, for example.
- examples of the composition of the adhesive layer include rubber adhesives and acrylic adhesives. Considering the content of metal ions, an acrylic adhesive is preferable because the metal ion content is low. Also, the cushion sheet and the platen often have different compositions, and the composition of each adhesive layer of the double-sided tape can be made different to optimize the adhesive force to the cushion sheet and the platen.
- Examples of the material to be polished in the present invention include the surface of an insulating layer or metal wiring formed on a semiconductor wafer.
- Examples of the insulating layer include an interlayer insulating film of metal wiring, a lower insulating film of metal wiring, and shallow trench isolation used for element isolation.
- Examples of the metal wiring include aluminum, tungsten, and copper, and structurally include damascene, dual damascene, and plug.
- a barrier metal such as silicon nitride is also subject to polishing.
- silicon oxide is currently mainstream, but a low dielectric constant insulating film is also used. In addition to semiconductor wafers, it can also be used for polishing magnetic heads, hard disks, sapphire, and the like.
- the polishing method using the polishing pad according to the present invention is suitably used for forming a flat surface on glass, semiconductors, dielectric / metal composites, integrated circuits and the like.
- a pad with grooves formed on the surface of the polishing layer is sliced in the groove depth direction. Slicing is done by slicing perpendicularly to the groove processing direction to create a surface that makes it easy to observe the groove cross-sectional shape, and observing the cross-section of the groove with a Keyence VK-8500 ultra-deep microscope and polishing surface
- the angle formed by the side surface (groove side surface) continuous with the surface was measured.
- the groove closest to the positions of 50 mm, 250 mm, and 450 mm from the center of the pad was measured, and the average of these three points was taken as the inclination angle.
- Polishing was performed under predetermined polishing conditions using a Mirror 3400 manufactured by Applied Materials. The polishing characteristics were measured by averaging 37 points excluding the outermost 10 mm of the 8-inch wafer, and the average polishing rate (nm / min) was calculated. Further, the value obtained by dividing the difference between the maximum value and the minimum value of the 37-point polishing rate by the average polishing rate was calculated as in-plane uniformity.
- the polished wafer is immersed in 0.5 wt% hydrofluoric acid for 10 minutes, washed with water, and then washed with a mixed solution of 1.0 wt% ammonia solution and 1.0 wt% hydrogen peroxide solution. And washed with water and dried. With respect to the cleaned wafer, the number of defects of 0.155 ⁇ m or more was counted using SP-1 manufactured by KLA-Tencor.
- Example 1 30 parts by weight of polypropylene glycol, 40 parts by weight of diphenylmethane diisocyanate, 0.5 part by weight of water, 0.3 part by weight of triethylamine, 1.7 parts by weight of a silicone foam stabilizer and 0.09 part by weight of tin octylate are mixed with RIM (Reaction Injection). Molding) The mixture is mixed with a molding machine, discharged into a mold and subjected to pressure molding. A foamed polyurethane sheet having a thickness of 2.6 mm (micro rubber A hardness: 42 degrees, density: 0.76 g / cm 3 , An average cell diameter of closed cells: 34 ⁇ m) was produced.
- RIM Reaction Injection
- the foamed polyurethane sheet was immersed in methyl methacrylate to which 0.2 part by weight of azobisisobutyronitrile was added for 60 minutes. Next, 15 parts by weight of polyvinyl alcohol “CP” (degree of polymerization: about 500, manufactured by Nacalai Tesque Co., Ltd.), 35 parts by weight of ethyl alcohol (special grade reagent, manufactured by Katayama Chemical Co., Ltd.), and 50% by weight of water are used for the polyurethane foam sheet.
- the foamed polyurethane sheet surface layer was coated with polyvinyl alcohol by drying in a solution consisting of parts after drying.
- the foamed polyurethane sheet coated with polyvinyl alcohol was sandwiched between two glass plates via a vinyl chloride gasket, and polymerized and cured by heating at 65 ° C. for 6 hours and at 120 ° C. for 3 hours. After releasing from between the glass plates and washing with water, vacuum drying was performed at 50 ° C.
- a polishing layer was prepared by slicing the hard foam sheet thus obtained to a thickness of 2.00 mm.
- the methyl methacrylate content in the polishing layer was 66% by weight.
- the D hardness of the polishing layer was 54 degrees, the density was 0.81 g / cm 3 , and the average cell diameter of closed cells was 45 ⁇ m.
- the obtained hard foam sheet was ground on both sides to prepare a polishing layer having a thickness of 2 mm.
- a coater lamination was carried out through an MA-6203 adhesive layer manufactured by Mitsui Chemicals Polyurethane Co., Ltd., and a double-sided tape 5604TDM manufactured by Sekisui Chemical Co., Ltd. was bonded to the back surface as a back tape.
- FIG. 9 is a schematic diagram illustrating a configuration of a polishing pad according to Example 1 in an example of the present invention.
- the laminate with the cushion layer laminated is punched into a circle with a diameter of 508 mm, and grooves with a groove pitch d 10 , d 11 of 15 mm, a groove width of 1.5 mm, and a groove depth of 1.0 mm are formed in an XY lattice pattern on the surface of the polishing layer.
- the polishing pad was formed asymmetric with respect to all the diameters of the polishing pad.
- the groove depth corresponds to the length of the second groove side face 22, the length corresponding to the groove bottom face 23 is 1.0 mm, and the length corresponding to the orthogonal part 243 is 0.5 mm.
- the polishing pad 3 c according to the first example is provided with groove groups 41 to 44 in which a plurality of grooves 2 d (broken lines) are formed extending from the edge to the vicinity of the center O.
- the extending direction of the groove 2d is parallel to each other, and the cross-sectional shape of the groove 2d is asymmetric with respect to a plane passing through the center O and orthogonal to the polishing surface.
- the extending direction of the groove 2d is parallel to each other, and the cross-sectional shape of the groove 2d is asymmetric with respect to a plane passing through the center O and orthogonal to the polishing surface.
- the direction in which the groove 2d of the groove groups 41 and 43 extends is perpendicular to the direction in which the groove 2d of the groove groups 42 and 44 extends.
- the formation region of the groove groups 41 and 43, the distance in the direction orthogonal to the direction in which the groove 2d extends is grooved 2d such that d 20 is formed.
- Forming regions of groove groups 42 and 44, the distance in the direction orthogonal to the direction in which the groove 2d extends is grooved 2d such that d 21 is formed.
- the distances d 20 and d 21 are 3 of the diameter of the polishing pad 3c.
- Example 1 in a region other than the region where the groove 2d is disposed, a plurality of grooves 2k (solid lines) having a rectangular cross-sectional shape as shown in FIG. Has been.
- the length of the groove bottom surface 23 and the groove side surface 25 at this time was 1.0 mm.
- the polished wafer was counted for defects of 0.155 ⁇ m or more by the above method, the number of defects was as good as 332.
- the pad grinding rate during polishing was as good as 1.25 ⁇ m / min.
- FIG. 10 is a schematic diagram illustrating a configuration of a polishing pad according to Example 2 of the present example.
- the groove shape of the polishing pad 3c according to Example 1 was changed to a groove 2a (broken line) having a cross-sectional shape shown in FIG.
- the groove width corresponds to the distance d 31 in Figure 2
- the groove depth was 1.0 mm corresponding to the length of the second groove side surface 22.
- the number of defects was as good as 421.
- the pad grinding rate during polishing was as good as 1.26 ⁇ m / min.
- FIG. 11 is a schematic diagram illustrating a configuration of a polishing pad according to Example 3 of the present example.
- the groove shape of the polishing pad 3c according to the first embodiment is changed to the groove 2a having the cross-sectional shape shown in FIG. 2, and the plurality of grooves 2k having a rectangular cross-sectional shape are used.
- the groove 2a shown in FIG. 2 was formed.
- the grooves 2a (dashed lines) other than the grooves 2a (broken lines) corresponding to the groove groups 41 to 44 extend from one edge of the polishing pad 3e to the other edge.
- the groove width corresponds to the distance d 31 in Figure 2
- the groove depth was 1.0 mm corresponding to the length of the second groove side surface 22.
- the polished wafer was counted for defects of 0.155 ⁇ m or more by the above method, the number of defects was 278, which was good.
- the pad grinding rate during polishing was as good as 1.35 ⁇ m / min.
- FIG. 12 is a schematic diagram illustrating a configuration of a polishing pad according to Example 4 of the present example.
- a groove 2a (broken line, one-dot chain line) having a cross-sectional shape shown in FIG. )
- the grooves other than the grooves corresponding to the groove groups 41 to 44 extend from one edge of the polishing pad 3f to the other edge.
- the groove width corresponds to the length of the distance d 31 and groove bottom face 23 in FIG.
- the number of defects was as good as 290.
- the pad grinding rate during polishing was as good as 1.33 ⁇ m / min.
- FIG. 13 is a schematic diagram illustrating a configuration of a polishing pad according to Example 5 of the present example.
- a part of the groove 2d is replaced with the groove 2a (broken line) having the sectional shape shown in FIG.
- the groove group 41a to 44a is narrower than the region, and the remaining groove 2d is changed to the groove 2k.
- the extending direction of the groove 2a is parallel to each other, and the cross-sectional shape of the groove 2a is asymmetric with respect to a plane passing through the center O and orthogonal to the polishing surface.
- the extending direction of the groove 2a is parallel to each other, and the cross-sectional shape of the groove 2a is asymmetric with respect to a plane passing through the center O and orthogonal to the polishing surface.
- the direction in which the groove 2a of the groove groups 41a and 43a extends and the direction in which the groove 2a of the groove groups 42a and 44a extend are orthogonal to each other.
- the distances d 22 and d 23 were set to be 11.5% with respect to the total length of all the grooves formed on the groove polishing surface.
- the groove pitches d 12 and d 13 were set to 10 mm.
- the groove width corresponds to the length of the distance d 31 and groove bottom face 23 in FIG. 2, it was 1.0mm, respectively.
- the groove depth was 1.0 mm corresponding to the length of the second groove side surface 22 and the groove side surface 25.
- the average polishing rate was 215 nm / min, and the in-plane uniformity was good at 6.1%.
- the polishing rate during polishing was as good as 1.11 ⁇ m / min.
- Comparative Example 1 In Comparative Example 1, with respect to the polishing pad 3c according to Example 1, the groove 2d was changed to a groove 2k having a rectangular cross section.
- the groove 2k was the same as in Example 1 except that the groove width (groove bottom surface 23) was 1.5 mm, the groove pitch (distance between the grooves 2k) was 15 mm, and the groove depth (groove side face 25) was 1.5 mm. And polished.
- the average polishing rate was 180 nm / min and the in-plane uniformity was 12.2%, both of which were poor.
- the number of defects was as good as 583.
- the pad grinding rate during polishing was as good as 1.13 ⁇ m / min.
- Comparative Example 2 In Comparative Example 2, with respect to the polishing pad 3c according to Example 1, the groove 2d was changed to a groove 2 (see FIG. 1) having a V-shaped cross section.
- the groove 2 has a groove width (d 32 in FIG. 1) of 3.0 mm, a groove pitch of 15 mm, an inclination angle ( ⁇ 1 ) of 135 degrees V-shaped, a groove depth (d 33 of FIG. 1) of 1.5 mm only. Polishing was performed in the same manner as in Example 1 except that. In the polishing pad according to Comparative Example 2, the average polishing rate was good at 217 nm / min, but the in-plane uniformity was poor at 21.1%.
- the polished wafer was counted for defects of 0.155 ⁇ m or more by the above method, the number of defects was very good at 297. Further, the pad grinding rate during polishing was poor at 1.73 ⁇ m / min.
- FIG. 14A is a schematic diagram illustrating a configuration of a polishing pad according to Comparative Example 3 in the present example.
- FIG. 14B is a cross-sectional view illustrating a groove-shaped configuration of the polishing pad according to Comparative Example 3 in the present example.
- the groove 2k is formed so as to intersect at the center of the polishing surface 100, and the groove 201 having the cross-sectional shape shown in FIG. 14B is formed on the edge side of the polishing surface 100. did. It is assumed that the groove 2k and the groove 201 extend from one edge of the polishing pad 300a to the other edge.
- the groove 201 includes a groove side surface 210 that is an inclined surface with respect to the polishing surface 100, and a groove bottom surface 220 that is continuous with each groove side surface 210 at both ends and has a concave shape having a bottom surface substantially parallel to the polishing surface 100. . That is, the groove 201 has the above-described first groove side surface in the front-rear direction and has a symmetrical shape.
- the groove pitch d 100 and the groove pitch d 110 of the groove 201 are set to 15 mm.
- the groove 201 includes a plurality of grooves 201, and an arrangement region of the groove group 400 provided on one end side is provided so as to have a distance d 200. Yes.
- a plurality of grooves 201, providing area groove group 410 provided at the other end is provided so as to be a distance d 210. Further, a plurality of grooves 201, providing area groove group 420 consisting of a groove 201 extending in the direction orthogonal to the grooves 201 of the groove group 400 and the groove group 410 is provided such that the distance d 220. At this time, the distances d 200 , d 210 , and d 220 are 1/3 of the diameter of the polishing pad 300a.
- the average polishing rate was 179 nm / min, and the in-plane uniformity was 18.2%, both of which were poor.
- the polish wafer was counted for defects of 0.155 ⁇ m or more by the above method, the number of defects was as good as 414. Further, the pad grinding speed during polishing was poor at 1.51 ⁇ m / min.
- FIG. 15 is a schematic diagram illustrating a configuration of a polishing pad according to Comparative Example 4 in the present example.
- the cross-sectional shape of the groove 2d (dotted line) seen from the direction of arrows E to H is a shape obtained by inverting the shape shown in FIG. 3C with respect to the polishing pad 3c according to the first embodiment. . That is, the second groove side surface 22 is located on the front side and the first groove side surface 24b is located on the rear side with respect to the rotational speed direction Y100.
- the dimension of the cross-sectional shape of the groove 2d is the same as that of the first embodiment. Further, the distances d 230 and d 240 of the arrangement region of the groove group including the plurality of grooves 2d are the same as the distance d 20 described above.
- the average polishing rate was 185 nm / min, and the in-plane uniformity was 15.7%, which were both poor.
- the polishing rate during polishing was as good as 1.28 ⁇ m / min.
- FIG. 16 is a schematic diagram illustrating a configuration of a polishing pad according to Comparative Example 5 in the present example.
- the cross-sectional shape of the groove 2a (broken line) viewed from the direction of arrows E to H is a shape obtained by inverting the shape shown in FIG. . That is, the second groove side surface 22 is located on the front side and the first groove side surface 21 is located on the rear side with respect to the rotational speed direction Y100.
- the dimension of the cross-sectional shape of the groove 2a is the same as that of the second embodiment.
- the average polishing rate was 190 nm / min, and the in-plane uniformity was 10.1%, both of which were poor.
- the number of defects was as good as 404.
- the pad grinding rate during polishing was as good as 1.25 ⁇ m / min.
- Polishing was performed in the same manner as in Example 5 except that the groove shape on the polishing layer surface was changed to 4.1% with respect to the total groove length formed on the polishing surface with a groove pitch of 5 mm.
- the average polishing rate was 180 nm / min and the in-plane uniformity was 11.1%, both of which were poor.
- the number of defects was as good as 387.
- the pad grinding rate during polishing was as good as 1.13 ⁇ m / min.
- the polishing pad according to the present invention is useful for suppressing a decrease in pad life while maintaining a high polishing rate.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
本発明は、少なくとも円状の研磨面を有する化学機械研磨用の研磨パッドであって、研磨面には、非同心円状の複数の溝が形成され、複数の溝は、研磨パッドの回転速度方向に対して、前側に位置する第1溝側面、および後側に位置する第2溝側面を有する第1の溝を少なくとも一部に有し、研磨面および該研磨面と連続する第1溝側面のなす角度が、105度以上150度以下であって、研磨面および該研磨面と連続する第2溝側面のなす角度が、105度未満であり、第1の溝の長さの合計は、複数の溝のうち、第1の溝以外の溝の長さの合計以上である。
Description
本発明は、研磨パッドに関する。より詳しくは、半導体、誘電/金属複合体および集積回路等において平坦面を形成するために好ましく使用される研磨パッドに関する。
半導体デバイスが高密度化するにつれ、多層配線、および多層配線に伴う層間絶縁膜形成や、プラグ、ダマシンなどの電極形成等の技術が重要度を増している。これに伴い、これら層間絶縁膜や電極の金属膜の平坦化プロセスの重要度は増しており、この平坦化プロセスのための効率的な技術として、CMP(Chemical Mechanical Polishing)と呼ばれる研磨技術が普及している。
一般にCMP装置は、被処理物である半導体ウェハーを保持する研磨ヘッド、被処理物の研磨処理を行うための研磨パッド、前記研磨パッドを保持する研磨定盤から構成されている。そして、半導体ウェハーの研磨処理はスラリーを用いて、半導体ウェハーと研磨パッドを相対運動させることにより、半導体ウェハー表面の層の突出した部分を除去し、ウェハー表面の層を平坦化するものである。
CMPは、研磨面と、研磨面に形成された溝とを有する研磨パッドを用いて、スラリーを供給しながら被研磨材を研磨する技術である。CMP研磨には、ウェハーの局所平坦性の確保、グローバル平坦性の確保、欠陥の発生防止、ウェハー面内の高い平均研磨レートの確保などの要求特性がある。そのため、これらの達成のために、研磨特性に影響を与える因子のうち、大きなものの一つである研磨パッドの溝の構成(溝のパターンおよび溝の断面形状等)には様々な工夫がなされている。例えば、表面に形成されている溝の断面形状が平行四辺形で、同心的に伸びる円形、花びら形等の複数の傾斜溝、または螺旋状に伸びる傾斜溝を溝のパターンとし、研磨特性の安定化を図っている(例えば、特許文献1参照)。
また、溝の断面形状における角部(研磨面と溝との交差部分)がウェハーの表面にスクラッチを発生させたり、断面形状において、研磨前後や研磨中に行われるドレッシング等に起因して、角部にバリ状物が形成されることでスクラッチを発生させたりすることがあり、これを解消するため、研磨面と溝の境界部に傾斜面を設けることが記載されている(例えば、特許文献2~4参照)。
ここで、本発明者らは、研磨面と溝の境界部に傾斜面を設けることで、特定の傾斜角度において、ウェハーと研磨パッドの間で吸引力が働くことやスラリーの流れが改善することで、研磨レートが高くなることを見出した。これは研磨面と溝との境界部に傾斜面を設けることが重要であるため、溝の断面形状がV字形、台形および皿ネジの断面形状(Y字形)をなす場合にも当てはまる。
ところで、V字形状をなす溝の場合、研磨パッド寿命終期においては、研磨パッドの磨耗により溝断面積が著しく減少し、スラリーの供給と排出のバランスが崩れ、欠陥が増加してしまうことが知られている。また、スラリーの供給と排出のバランスを補完するため、断面形状を台形や皿ネジ断面形状の溝とする事もできるが、断面積を大きくすることは即ち、研磨パッドの体積が減少し、結果、短寿命になると言う問題が生じる。
本発明は、上記課題に鑑みてなされたものであり、高い研磨レートを保ちながら、パッド寿命の低下を抑制することができる研磨パッドを提供することをその課題とする。
本発明者らは、溝断面形状に傾斜を有する形状でも、その効果が研磨面の回転速度方向に対して回転前方側の傾斜のみによって発現することを見出した。
上述した課題を解決し、目的を達成するために、本発明にかかる研磨パッドは、少なくとも円状の研磨面を有する化学機械研磨用の研磨パッドであって、前記研磨面には、非同心円状の複数の溝が形成され、前記複数の溝は、当該研磨パッドの回転速度方向に対して、前側に位置する第1溝側面、および後側に位置する第2溝側面を有する第1の溝を少なくとも一部に有し、前記研磨面および該研磨面と連続する前記第1溝側面のなす角度が、105度以上150度以下であって、前記研磨面および該研磨面と連続する前記第2溝側面のなす角度が、105度未満であり、前記第1の溝の長さの合計は、前記複数の溝のうち、前記第1の溝以外の溝の長さの合計以上であることを特徴とする。
本発明により、高い研磨レートを保ちながら、すなわちウェハーと研磨パッドの間の吸引力やスラリーの供給、排出機能を低減させず、溝の断面積を大きくすることでパッドの寿命を低減することの無い研磨パッドを提供することができる。
以下、本発明を実施するための形態を図面と共に詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解でき得る程度に形状、大きさ、および位置関係を概略的に示してあるに過ぎない。すなわち、本発明は各図で例示された形状、大きさ、および位置関係のみに限定されるものではない。
本発明の円状の化学機械研磨用の研磨パッドは、少なくとも円状の研磨面を有する化学機械研磨用の研磨パッドであって、研磨面には、非同心円状の複数の溝が形成され、複数溝は、研磨パッドの回転速度方向に対して、前側に位置する第1溝側面、および後側に位置する第2溝側面を有する第1の溝を少なくとも一部に有し、研磨面および該研磨面と連続する第1溝側面のなす角度が、105度以上150度以下であって、研磨面および該研磨面と連続する第2溝側面のなす角度が、105度未満であることを特徴とする。また本発明の研磨パッドは、第1の溝の長さの合計が、複数の溝のうち、第1の溝以外の溝の長さの合計以上であることを特徴とする。
図1は、本発明の実施の形態にかかる研磨パッドにおける溝形状を説明するための図である。図1に示すように、研磨パッドには、平面状をなす研磨面1に対し、例えば溝2が形成される。溝2は、研磨面1上で直線状に延び、研磨面1に対して傾斜した傾斜面をなす二つの溝側面20によって、対称性を有するV字形状をなしている。ここで、研磨面1と各溝側面20とのなす角度は、同一の角度θ1となっている。
図2は、本実施の形態にかかる研磨パッドの溝形状を説明する図である。本発明にかかる研磨パッドには、図2に示すように、平面状をなす研磨面1に対し、直線状に延び、研磨面1に対して傾斜した傾斜面をなす第1溝側面21と、研磨面1と略直交する面である第2溝側面22とからなる溝2a(第1の溝)が形成されている。溝2aは、第1溝側面21および第2溝側面22によって、略V字形状をなしている。ここで、研磨面1と第1溝側面21とのなす角度は、角度θ2(θ2≧105度)となっている。また、研磨面1と第2溝側面22とのなす角度は、角度θ3(θ3≒90度)となっている。このとき、第1溝側面21は、回転する研磨パッドの回転速度方向(図2中の矢印Y1方向、以下、回転速度方向Y1という)に対して前側になるように形成される(以下、前傾斜面と呼ぶこともある)。また、第2溝側面22は回転する研磨パッドの回転速度方向Y1に対して後側になるように形成される(以下、後傾斜面と呼ぶこともある)。溝2aにおける第1溝側面21と第2溝側面22とは、回転する研磨パッドの回転速度方向Y1によるものであり、これらは適宜選択されるべきものであるが、これをもって不明確とすべきではない。
そして、溝2aは、第1溝側面21の傾斜角度θ2が105度以上150度以下であり、第1溝側面21の反対側である第2溝側面22の傾斜角度θ3が105度未満である溝である。
本発明の研磨パッドの溝の溝底の形状は特に限定されるものではない。具体的な溝断面形状や溝パターンを図3A~3Iに示す。図3A~3Iは、本実施の形態にかかる研磨パッドの溝形状の他の例を模式的に示す断面図である。まず、図3Aに示す溝2bは、研磨面1に略直交する面である第2溝側面22と、第2溝側面22の研磨面1と連なる側と異なる側の端部に連なり、研磨面1と略平行な平面であって、溝2bの底面をなす溝底面23と、溝底面23の第2溝側面22と連なる側と異なる側の端部に連なり、研磨面1に対して傾斜した面である第1溝側面24と、からなる。溝2bは、第2溝側面22、溝底面23および第1溝側面24によって略U字形状をなす。
図3Bに示す溝2cは、研磨面1に略直交する面である第2溝側面22と、第2溝側面22の研磨面1と連なる側と異なる側の端部に連なり、研磨面1と略平行な平面であって、溝2cの底面をなす溝底面23と、溝底面23の第2溝側面22と連なる側と異なる側の端部に連なり、研磨面1に対して傾斜した面である第1傾斜部241、および第1傾斜部241に連なり、研磨面1に対して傾斜した面である第2傾斜部242を有する第1溝側面24aと、からなる。ここで、第1傾斜部241の研磨面1に対する傾斜角度は、第2傾斜部242の研磨面1に対する傾斜角度より小さい。
図3Cに示す溝2dは、研磨面1に略直交する面である第2溝側面22と、第2溝側面22の研磨面1と連なる側と異なる側の端部に連なり、研磨面1と略平行な平面であって、溝2dの底面をなす溝底面23と、溝底面23の第2溝側面22と連なる側と異なる側の端部に連なり、研磨面1に対して直交した面である直交部243、および直交部243に連なり、研磨面1に対して傾斜した面である傾斜部244を有する第1溝側面24bと、からなる。
図3Dに示す溝2eは、研磨面1に略直交する面である第2溝側面22と、第2溝側面22の研磨面1と連なる側と異なる側の端部に連なり、研磨面1に対して傾斜した面である第1傾斜部245、および第1傾斜部245に連なり、研磨面1に対して傾斜した面である第2傾斜部246を有する第1溝側面24cと、からなる。ここで、第1傾斜部245の研磨面1に対する傾斜角度は、第2傾斜部246の研磨面1に対する傾斜角度より小さい。
図3Eに示す溝2fは、研磨面1に略直交する面である第2溝側面22と、第2溝側面22の研磨面1と連なる側と異なる側の端部に連なり、研磨面1から離れる側に凸となる弧状をなす曲面であって、溝2fの底面をなす溝底面23aと、溝底面23aの第1溝側面22と連なる側と異なる側の端部に連なり、研磨面1に対して傾斜した面である第1溝側面24dと、からなる。
図3Fに示す溝2gは、研磨面1に略直交する面である第2溝側面22と、第2溝側面22の研磨面1と連なる側と異なる側の端部に連なり、研磨面1と略平行な平面であって、溝2gの底面をなし、中央部に凹形状をなす凹部231を有する溝底面23bと、溝底面23bの第2溝側面22と連なる側と異なる側の端部に連なり、研磨面1に対して直交した面である直交部243、および直交部243に連なり、研磨面1に対して傾斜した面である傾斜部244を有する第1溝側面24bと、からなる。
図3Gに示す溝2hは、研磨面1に略直交する面である第2溝側面22と、第2溝側面22の研磨面1と連なる側と異なる側の端部に連なり、研磨面1から離れる側に凸となる弧状をなす曲面である曲面部232と、曲面部232の両端から拡径して延出する傾斜面を有する傾斜部233とを有し、研磨面1に対して傾斜した面であって溝2hの底面をなす溝底面23cと、溝底面23cの第1溝側面22と連なる側と異なる側の端部に連なり、研磨面1に対して直交した面である直交部243、および直交部243に連なり、研磨面1に対して傾斜した面である傾斜部244を有する第1溝側面24bと、からなる。
図3Hに示す溝2iは、研磨面1に略直交する面である第2溝側面22と、第2溝側面22の研磨面1と連なる側と異なる側の端部に連なり、平面が段階的に傾斜して略U字状をなし、溝2iの底面をなす溝底面23dと、溝底面23dの第2溝側面22と連なる側と異なる側の端部に連なり、研磨面1に対して直交した面である直交部243、および直交部243に連なり、研磨面1に対して傾斜した面である傾斜部244を有する第1溝側面24bと、からなる。
図3Iに示す溝2jは、研磨面1に略直交する面である第2溝側面22と、第2溝側面22の研磨面1と連なる側と異なる側の端部に連なり、研磨面1に直交する平面を切断面とする断面において、先端が縮径した略U字形状をなし、溝2jの底面をなす溝底面23eと、溝底面23eの第2溝側面22と連なる側と異なる側の端部に連なり、研磨面1に対して傾斜した面である第1溝側面24と、からなる。
また、図3Jは、本実施の形態にかかる研磨パッドの溝形状のその他の例を模式的に示す断面図である。図3Jに示す溝2kは、研磨面1に略直交する面である二つの溝側面25と、溝側面25の研磨面1と連なる側と異なる側の端部に連なり、研磨面1と略平行な平面であって、溝2kの底面をなす溝底面23と、からなる。溝2kは、溝側面25および溝底面23によって略U字形状をなす。
さて、溝2aは、回転速度方向Y1に対して前側に設けられ、傾斜角度θ2が105度以上150度以下である第1溝側面21と、第1溝側面21の反対側であって、回転速度方向Y1に対して後側に設けられ、傾斜角度θ3が105度未満である第2溝側面22とを有する。ここで、回転する研磨パッドの回転速度方向Y1(溝が移動する方向という場合がある。)との関係における前傾斜面の傾斜角度が105度以上150度以下である第1溝側面21の作用について図2を用いて考察する。
傾斜角度θ2が105度以上150度以下である第1溝側面21が、回転速度方向Y1(溝が移動する方向)に対して前方向である(傾斜角度θ3が105度未満である第2溝側面22が、溝が移動する方向に対して後方向である)とすると、ウェハーと研磨パッドの間で吸引力が働くことやスラリー流れの改善により、研磨レートが上昇すると考えられる。また、吸引力が働くことやスラリー流れの改善によりウェハー面内に均一に研磨パッドが接触する効果も伴い、ウェハーの研磨レートに高い面内均一性を与えると考えられる。
ここで、溝の断面形状が対称なV字形状をなす場合、または台形および皿ネジの断面形状(Y字型溝)をなす場合、回転速度方向Y1(溝が移動する方向)に対して前方向にも後ろ方向にも傾斜面を有している為、前傾斜面はウェハーと研磨パッドの間で吸引力が働き、研磨レートの上昇、面内均一性の向上などの効果を示す。しかし、後傾斜面が傾斜角度を有していたとしても、後傾斜面において、溝が移動する方向に対して前方向である溝側面における傾斜面の作用は発現しないと考えられる。また、溝側面が傾斜面を有していても、溝方向が回転速度方向と平行であれば、前傾斜面にならないので、前傾斜面の作用は発現しないと考えられる。
逆に、研磨面とウェハー間に保持されるスラリーは回転により排出が促進されるが、後傾斜面を有することにより、さらに研磨面とウェハー間のスラリーの排出が促進されすぎ、研磨レートや面内均一性の低下を招くことが考えられる。
従って、溝の断面形状がV字形状をなす場合、または台形および皿ネジの断面形状様(Y字型溝)をなす場合、前傾斜面による効果と、後傾斜面による逆効果が拮抗し、十分な性能が発現しないことがあるため、後傾斜面の割合(傾斜角度)を減らすことが必要であり、後傾斜面をなくすことが好ましい。
そこで、本発明の研磨パッドに形成される第1の溝は、第1溝側面(前傾斜面)の傾斜角度が105度以上150度以下であり、第1溝側面の反対側である第2溝側面(後傾斜面)の傾斜角度が105度未満である。前傾斜面の傾斜角度と後傾斜面の傾斜角度とを異なる溝(片羽根溝)とすることで、上記課題を解決しようとするものである。
研磨面と該研磨面に連続する側面(溝側面)とのなす角度は、大きすぎると研磨面の面積が低減し、また、溝の断面積が大きくなりすぎるため、スラリーが排出過多となり、研磨レートの低下を招く。一方、小さすぎると傾斜する溝側面が有する吸引効果や流れの改善が発現しない。このため、溝における前傾斜面の角度は、105度以上150度以下であることが必要であり、110度以上であることが好ましく、115度以上であることがより好ましく、120度以上であることがさらに好ましい。
また、溝2aにおける、後傾斜面の角度θ3は105度未満であることが必要で、60度以上であることが好ましく、80度以上であることがより好ましく、85度以上であることがさらに好ましい。また、100度以下であることがより好ましく、95度以下であることがさらに好ましい。
ここで、研磨パッドを構成する溝の断面形状は1種類である必要はない。例えば、少なくとも一方の溝幅方向の縁端部において、前傾斜面の角度が105度以上150度以下であり、後傾斜面の角度が105度未満の溝である複数の溝断面形状の溝を組み合わせることによって研磨パッドを構成することも可能である。なお、面内均一性の観点からは1種類の断面形状によって研磨パッドを構成する方がより好ましい。
また、前述の通り、前傾斜面による効果と、後傾斜面による逆効果が拮抗し、十分な性能が発現しないことがあるため、後傾斜面の割合(傾斜角度)を減らすことが必要であり、本発明においては、回転速度方向Y1に対して前側に設けられる第1溝側面21と、第1溝側面21の反対側であって、回転速度方向Y1に対して後側に設けられる第2溝側面22とを有する溝2aからなる第1の溝の長さ(溝が延びる方向の長さ)の合計が、研磨パッドに設けられる複数の溝のうち、第1の溝以外の溝の長さの合計以上であることが必要である。
図4Aは、本実施の形態にかかる研磨パッドの構成の一例を示す模式図であって、研磨パッドの特定の線分に対して対称な形状をなす溝の配置例である。例えば片羽根溝が形成された研磨パッド3であっても、図4Aのように、研磨パッド3にXY格子状に一様に溝2aを配し、溝2aが、研磨面1の一端から他端まで同一の断面形状をなして延びている場合、研磨パッド3は回転させて用いるので、第1溝側面21および第2溝側面22は、形成箇所や回転速度方向によって、前傾斜面にも後傾斜面にもなりうる。そうすると、ある部位では前傾斜面の割合が多くても、ある部位では後傾斜面の割合が多くなってしまう。すなわち、上記のV字形溝(溝側面20)等の場合と同様に、巨視的にみれば、前傾斜面による効果と、後傾斜面による前傾斜面とは逆の効果が拮抗し、十分な性能が発現しないことがある。
図4Bは、図4Aのa’-a”線の断面図である。図4Cは、図4Aのb’-b”線の断面図である。図4Dは、図4Aのc’-c”線の断面図である。図4Eは、図4Aのd’-d”線の断面図である。ここで、任意の点Pa~Pdにおいて、対向する点である点Paから点Pcを結ぶ線分PaPc、および点Pbから点Pdを結ぶ線分PbPdが、研磨パッド3の中心Oを通過する。
つまり、図4Aにおいて、線分PaPcに沿って形成された複数の溝からなる溝群30は、線分PbPdを含み研磨パッド3の研磨面1に直交する垂直な面に対して対称であり、線分PbPdに沿って形成された複数の溝からなる溝群31は、線分PaPcを含み研磨面1に直交する垂直な面に対して対称である。すなわち、研磨パッド3の中心Oと点Paとを結ぶ線分に沿った溝群はa”側(回転速度方向Y1の先端側)に前傾斜面があり(図4B参照)、中心Oと点Pcとを結ぶ線分に沿った溝群は、c’側に前傾斜面がある(図4D参照)。中心Oと点Pbとを結ぶ線分に沿った溝群はb”側に前傾斜面があり(図4C参照)、中心Oと点Pdとを結ぶ線分に沿った溝群はd’側に前傾斜面がある(図4E参照)。よって、巨視的にみれば、前傾斜面による効果と、後傾斜面による効果・逆効果が拮抗し、十分な性能が発現しない。よって、本発明においては、微視的には前傾斜面による効果を発現しても、巨視的にみた時に、前傾斜面による効果と、後傾斜面による逆効果を拮抗させないことが重要である。その意味において、本発明の研磨パッドの溝は、研磨パッドの径を含み研磨パッド面に直交する垂直な面すべてに対して非対称である。
図5Aは、本実施の形態にかかる研磨パッドの要部の構成の他の例を示す模式図であって、研磨パッドのすべての径に対して非対称な形状をなす溝の配置例である。図5Bは、図5Aのe’-e”線の断面図である。図5Cは、図5Aのf’-f”線の断面図である。図5Dは、図5Aのg’-g”線の断面図である。図5Eは、図5Aのh’-h”線の断面図である。ここで、任意の点Pe~Phにおいて、対向する点である点Peから点Pgを結ぶ線分PePg、および点Pfから点Phを結ぶ線分PfPhが、研磨パッド3aの中心Oを通過する。
線分egに沿って形成された複数の溝からなる溝群32,33は、研磨パッド3aの中心Oを通過し、かつ研磨面1と直交する平面(例えば、線分PfPhを通過する平面)に対して溝2aが非対称に形成されている。また、線分PfPhに沿って形成された複数の溝からなる溝群34,35は、研磨パッド3aの中心Oを通過し、かつ研磨面1と直交する平面(例えば、線分PePgを通過する平面)に対して溝2aが非対称に形成されている。溝群32,34の溝2aに対し、溝群33,35の溝2aは、同一方向から見た際に反転した形状をなしている。すなわち、研磨パッド3aの中心Oと点Peとを結ぶ線分に沿った溝群の溝2aは、e”側に前傾斜面があり(図5B参照)、研磨パッド3aの中心Oと点Pgとを結ぶ線分に沿った溝群の溝2aは、g”側に前傾斜面がある(図5D参照)。また、研磨パッド3aの中心Oと点Pfとを結ぶ線分に沿った溝群の溝2aは、f”側に前傾斜面があり(図5C参照)、研磨パッド3aの中心Oと点Phとを結ぶ線分に沿った溝群の溝2aは、h”側に前傾斜面がある(図5E参照)。これにより、溝群32~35における溝2aは、回転速度方向Y1に対して、前側に第1溝側面21が位置している。
図6Aは、溝加工方向が回転する研磨パッドの回転速度方向と平行となる場合の溝形状について説明する図である。図6Bは、溝加工方向が回転する研磨パッドの回転速度方向と平行となる場合の溝形状について説明する図である。例えば、研磨パッド300に形成された溝200の断面形状が前傾斜面および後傾斜面を有する溝であっても、研磨パッド300に同心円状に一様に配した場合、溝方向がパッド回転速度方向(回転速度方向Y100)と平行となるため、前傾斜面の作用は発現しないと考えられる。よって、本発明の溝は同心円状でない。
図7Aは、本実施の形態にかかる研磨パッドの構成を示す模式図、および溝形状の一例を示す断面斜視図である。図7Bは、本実施の形態にかかる研磨パッドの溝形状の加工方向について説明する図である。例えば、図7Aに示すように上述した溝2dと溝2kとが研磨面1に形成されているものとしたとき、図7Bのように、溝2dの前傾斜面(第1溝側面24b)を有する溝の加工方向Y20と、研磨パッドの回転速度方向Y21とのなす角度θ4が角度を有する場合、前傾斜面が溝の移動方向に対して角度を有することとなり、ウェハーと研磨パッドの間で吸引力が働く、あるいはスラリー流れが改善する。
図8は、本実施の形態にかかる研磨パッドの要部の構成を示す模式図である。図8に示す研磨パッド3bには、研磨面1を有する研磨層に溝2aが形成されている。また、図8に、研磨パッド3bの中心Oから等しい距離にある各溝2aの加工方向(溝2aが外周に向けて延びる方向)Y22~Y25と、研磨パッド3bの回転速度方向Y1とでなす角度θ5~θ8をそれぞれ示す。研磨パッド3bの回転速度方向Y1と溝2aの加工方向のなす角度θ5~θ8は、30度以上90度以下の角度を採用するものとする。溝2aの加工方向と、研磨パッド3bの回転速度方向のなす角度は45度以上がより好ましい。ここで、溝2aの加工方向Y22~Y25とは、溝の幅方向の垂直方向である。また、回転速度方向Y1は、溝2aの加工方向Y22~Y25上の一点における回転速度の方向をさす。このとき、溝2aの加工方向Y22~Y25上の一点は、それぞれ中心Oからの距離は等しいものとする。
図8では、回転速度方向Y1に対する各加工方向Y22~Y25の角度θ5~θ8が、θ5<θ6<θ7<θ8の関係を満たす。これは、各加工方向Y22~Y25と中心Oとの最短距離の大小関係と反比例したものとなっている。すなわち、研磨面に形成される溝2aの形成範囲は、研磨パッド3bの中心Oからの最短距離が大きいと、図8に示す通り、パッドの外周部においては角度が小さくなり、十分な性能が発現しないことがあるため、溝2aは、溝2aと直交する方向においてパッド半径長さ(径方向の長さ)の90%以下の範囲を通過するように形成されることが好ましく、60%以下の範囲を通過するように形成されることがより好ましく、50%以下の範囲を通過するように形成されることがさらに好ましく、40%以下の範囲を通過するように形成されることが特に好ましい。なお、上記の範囲は、中心Oを中心とする円であって、この円の半径がパッド半径長さに対して90%以下である範囲を指す。
研磨パッドの研磨面には、ハイドロプレーン現象を抑える為やウェハーに対するパッドの吸いつきを防止する為に、格子形状、ディンプル形状、スパイラル形状、同心円形状等、通常の研磨パッドがとり得る溝(グルーブ)を設けてもよく、これらの組み合わせでも好ましく用いられ、格子形状がより好ましい。
この場合、上述した形状(図2、図3A~図3Iなど参照)をなす第1の溝は、研磨面に形成されたすべての溝の長さの合計に対して長すぎると、パッドの外周部にも溝が含まれることとなり、十分な性能が発現しないことがあるため、研磨面に形成されたすべての溝の長さの合計に対して90%以下であることが好ましく、75%以下であることがより好ましく、65%以下であることがさらに好ましく、55%以下であることが特に好ましい。
また、研磨面に形成される第1の溝は、研磨面に形成されたすべての溝の合計に対して短すぎると、十分な性能が発現しないことがあるため、研磨面に形成されたすべての溝の長さの合計に対して5%以上であることが好ましく、10%以上であることがより好ましく、15%以上であることがより好ましく、20%以上であることがより好ましく、30%以上であることがさらに好ましく、40%以上であることが特に好ましい。
本発明において研磨パッドの研磨面を構成する研磨層としては、マイクロゴムA硬度で70度以上であり、独立気泡を有する構造のものが、半導体、誘電/金属複合体および集積回路等において平坦面を形成するので好ましい。特に限定されないが、かかる構造体を形成する材料としては、ポリエチレン、ポリプロピレン、ポリエステル、ポリウレタン、ポリウレア、ポリアミド、ポリ塩化ビニル、ポリアセタール、ポリカーボネート、ポリメチルメタクリレート、ポリテトラフルオロエチレン、エポキシ樹脂、ABS樹脂、AS樹脂、フェノール樹脂、メラミン樹脂、“ネオプレン(登録商標)”ゴム、ブタジエンゴム、スチレンブタジエンゴム、エチレンプロピレンゴム、シリコンゴム、フッ素ゴムおよびこれらを主成分とした樹脂等が挙げられる。これらを2種以上用いてもよい。このような樹脂においても、独立気泡径が比較的容易にコントロールできる点でポリウレタンを主成分とする素材がより好ましい。
ポリウレタンとは、ポリイソシアネートの重付加反応または重合反応により合成される高分子である。ポリイソシアネートの対称として用いられる化合物は、含活性水素化合物、すなわち、二つ以上のポリヒドロキシ基、あるいはアミノ基含有化合物である。ポリイソシアネートとして、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートなど挙げることができるがこれに限定されるものではない。これらを2種以上用いてもよい。ポリヒドロキシ基含有化合物としてはポリオールが代表的であり、ポリエーテルポリオール、ポリテトラメチレンエーテルグリコール、エポキシ樹脂変性ポリオール、ポリエステルポリオール、アクリルポリオール、ポリブタジエンポリオール、シリコーンポリオール等が挙げられる。これらを2種以上用いてもよい。硬度、気泡径および発泡倍率によって、ポリイソシアネートとポリオール、および触媒、発泡剤、整泡剤の組み合わせや最適量を決めることが好ましい。
これらのポリウレタン中への独立気泡の形成方法としては、ポリウレタン製造時における樹脂中への各種発泡剤の配合による化学発泡法が一般的であるが、機械的な撹拌により樹脂を発泡させたのち硬化させる方法も好ましく使用することができる。
独立気泡の平均気泡径は、パッド表面にスラリーを保持する観点から20μm以上が好ましく、30μm以上がより好ましい。一方、半導体基板の局所的凹凸の平坦性を確保する観点から150μm以下が好ましく、140μm以下がより好ましく、130μm以下が更に好ましい。なお、平均気泡径は、サンプル断面をキーエンス製VK-8500の超深度顕微鏡にて倍率400倍で観察したときに一視野内に観察される気泡のうち、視野端部に欠損した円状に観察される気泡を除く円状気泡を画像処理装置にて断面面積から円相当径を測定し、数平均値を算出することにより求められる。
本発明における研磨パッドの一実施態様として好ましいものは、ビニル化合物の重合体およびポリウレタンを含有し、独立気泡を有するパッドである。ビニル化合物からの重合体だけでは靭性と硬度を高めることはできるが、独立気泡を有する均質な研磨パッドを得ることが困難であり、またポリウレタンは、硬度を高くすると脆くなる。ポリウレタン中にビニル化合物を含浸させることにより、独立気泡を含み、靭性と硬度の高い研磨パッドとすることができる。
ビニル化合物は、重合性の炭素-炭素二重結合を有する化合物である。具体的にはメチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、n-ブチルアクリレート、n-ブチルメタクリレート、2-エチルヘキシルメタクリレート、イソデシルメタクリレート、n-ラウリルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、グリシジルメタクリレート、エチレングリコールジメタクリレート、アクリル酸、メタクリル酸、フマル酸、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジプロピル、マレイン酸、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピル、フェニルマレイミド、シクロヘキシルマレイミド、イソプロピルマレイミド、アクリロニトリル、アクリルアミド、塩化ビニル、塩化ビニリデン、スチレン、α-メチルスチレン、ジビニルベンゼン、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート等が挙げられる。これらを2種以上用いてもよい。
上述したビニル化合物の中で、CH2=CR1COOR2(R1:メチル基またはエチル基、R2:メチル基、エチル基、プロピル基またはブチル基)が好ましい。中でもメチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレートは、ポリウレタンへの独立気泡の形成が容易な点、モノマーの含浸性が良好な点、重合硬化が容易な点、重合硬化されたビニル化合物の重合体とポリウレタンを含有している発泡構造体の硬度が高く平坦化特性が良好な点で好ましい。
これらのビニル化合物の重合体を得るために好ましく用いられる重合開始剤としては、アゾビスイソブチロニトリル、アゾビス(2,4-ジメチルバレロニトリル)、アゾビスシクロヘキサンカルボニトリル、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、イソプロピルパーオキシジカーボネート等のラジカル開始剤を挙げることができる。これらを2種以上用いてもよい。また、酸化還元系の重合開始剤、例えばパーオキサイドとアミン類の組合せを使用することもできる。
ビニル化合物のポリウレタン中への含浸方法としては、ビニル化合物が入った容器中にポリウレタンを浸漬する方法が挙げられる。なお、その際、含浸速度を速める目的で、加熱、加圧、減圧、撹拌、振盪、超音波振動等の処理を施すことも好ましい。
ビニル化合物のポリウレタン中への含浸量は、使用するビニル化合物およびポリウレタンの種類や、製造される研磨パッドの特性により定められるべきものであり、一概にはいえないが、例えば、重合硬化した発泡構造体中のビニル化合物から得られる重合体とポリウレタンの含有比率が重量比で30/70~80/20であることが好ましい。ビニル化合物から得られる重合体の含有比率が重量比で30/70以上であれば、研磨パッドの硬度を十分高くすることができる。また、含有比率が80/20以下であれば、研磨層の弾力性を十分高くすることができる。
なお、ポリウレタン中の重合硬化したビニル化合物から得られる重合体およびポリウレタンの含有率は、熱分解ガスクロマトグラフィ/質量分析手法により測定することができる。本手法で使用できる装置としては、熱分解装置としてダブルショットパイロライザー“PY-2010D”(フロンティア・ラボ社製)を、ガスクロマトグラフ・質量分析装置として、“TRIO-1”(VG社製)を挙げることができる。
本発明において、半導体基板の局所的凹凸の平坦性の観点から、ビニル化合物から得られる重合体の相とポリウレタンの相とが分離されずに含有されていることが好ましい。定量的に表現すると、研磨パッドをスポットの大きさが50μmの顕微赤外分光装置で観察した赤外スペクトルがビニル化合物から重合される重合体の赤外吸収ピークとポリウレタンの赤外吸収ピークを有しており、色々な箇所の赤外スペクトルがほぼ同一であることである。ここで使用される顕微赤外分光装置として、SPECTRA-TEC社製のIRμsを挙げることができる。
研磨パッドは、特性改良を目的として、研磨剤、帯電防止剤、潤滑剤、安定剤、染料等の各種添加剤を含有してもよい。
本発明において、研磨層のマイクロゴムA硬度は、高分子計器株式会社製マイクロゴム硬度計MD-1で評価した値をさす。マイクロゴムA硬度計MD-1は、従来の硬度計では測定が困難であった薄物・小物の硬さ測定を可能にするもので、スプリング式ゴム硬度計(デュロメータ)A型の約1/5の縮小モデルとして、設計・製作されているため、スプリング式硬度計A型の硬度と一致した測定値が得られる。通常の研磨パッドは、研磨層または硬質層の厚みが5mmを切るので、スプリング式ゴム硬度計A型では評価できないので、前記マイクロゴム硬度計MD-1で評価する。
本発明において、研磨層の硬度は、半導体基板の局所的凹凸の平坦性の観点から、マイクロゴムA硬度で70度以上が好ましく、80度以上がより好ましい。
本発明において、研磨層の密度は、局所的な平坦性不良やグローバル段差を低減する観点から、0.3g/cm3以上が好ましく、0.6g/cm3以上がより好ましく、0.65g/cm3以上がさらに好ましい。一方、スクラッチを低減する観点から、1.1g/cm3以下が好ましく、0.9g/cm3以下がより好ましく、0.85g/cm3以下がさらに好ましい。なお、本発明における研磨層の密度は、ハーバード型ピクノメーターを用い、JIS R-3503に準拠し、水を媒体に測定した値である。
本発明における研磨パッドは、体積弾性率が40MPa以上でかつ引っ張り弾性率が1MPa以上20MPa以下のクッション層を有することが、面内均一性が良好であるので好ましい。体積弾性率とは、あらかじめ体積を測定した被測定物に等方的な印加圧力を加えてその体積変化を測定し、体積弾性率=印加圧力/(体積変化/元の体積)により算出される。本発明においては、23℃においてサンプルに0.04~0.14MPaの圧力がかかった時の体積弾性率を言う。
本発明における体積弾性率は、以下の方法により測定する。内容積が約40mLのステンレス製の測定セルに、試料片と23℃の水を入れ、容量0.5mLの硼珪酸ガラス製メスピペット(最小目盛り0.005mL)を装着する。別に、圧力容器としてポリ塩化ビニル樹脂製の管(内径90mmφ×2000mm、肉厚5mm)を使用して、その中に上記試料片を入れた測定セルを入れ、圧力Pで窒素加圧し、体積変化V1を測定する。続いて、試料を測定セルに入れないで、圧力Pで窒素加圧し、体積変化V0を測定する。圧力PをΔV/Vi=(V1-V0)/Viで除した値を前記試料の体積弾性率として算出する。
本発明において、クッション層の体積弾性率は40MPa以上が好ましい。体積弾性率を40MPa以上とすることにより、半導体基板全面の面内均一性を向上させることができる。また、研磨パッドの表面と裏面を貫通する孔に流れ込むスラリーや水がクッション層に含浸しにくく、クッション特性を維持できる。
本発明における引張り弾性率は、ダンベル形状にして引っ張り応力を加え、引っ張り歪み(=引っ張り長さ変化/元の長さ)が0.01から0.03までの範囲で引っ張り応力を測定し、引っ張り弾性率=((引っ張り歪みが0.03時の引っ張り応力)-(引っ張り歪みが0.01時の引っ張り応力))/0.02で定義されるものである。測定装置として、オリエンテック社製テンシロン万能試験機RTM-100などが挙げられる。測定条件としては、試験速度は5cm/分で試験片形状は幅5mmで試料長50mmのダンベル形状である。
本発明において、クッション層の引張り弾性率は、半導体基板全面の面内均一性の観点から、1MPa以上が好ましく、1.2MPa以上がより好ましい。また、20MPa以下が好ましく、10MPa以下がより好ましい。
この様なクッション層としては、天然ゴム、ニトリルゴム、“ネオプレン(登録商標)”ゴム、ポリブタジエンゴム、熱硬化ポリウレタンゴム、熱可塑性ポリウレタンゴム、シリコンゴムなどの無発泡のエラストマを挙げることができるが、これらに限定されるわけではない。クッション層の厚みは、0.1mm以上2mm以下の範囲が好ましい。半導体基板全面の面内均一性の観点からは、0.2mm以上が好ましく、0.3mm以上がより好ましい。また、局所平坦性の観点からは2mm以下が好ましく、1.75mm以下がより好ましい。
研磨層とクッション層を貼り合わせる手段としては、例えば研磨層とクッション層を両面テープあるいは接着剤が挙げられる。
本発明の研磨パッドは、クッションシートのプラテンと接着する面に両面テープが設けられていてもよい。該両面テープとしては、上述と同様に基材の両面に接着層を設けた一般的な構成を有するものを用いることができる。基材としては、例えば不織布やフィルム等が挙げられる。研磨パッドの使用後のプラテンからの剥離を考慮すれば、基材にフィルムを用いることが好ましい。
また、接着層の組成としては、例えば、ゴム系接着剤やアクリル系接着剤等が挙げられる。金属イオンの含有量を考慮すると、アクリル系接着剤は、金属イオン含有量が少ないため好ましい。また、クッションシートとプラテンは組成が異なることが多く、両面テープの各接着層の組成を異なるものとし、クッションシート、及びプラテンへの接着力を適正化することも可能である。
本発明において研磨される被研磨材としては、例えば半導体ウェハーの上に形成された絶縁層または金属配線の表面が挙げられる。絶縁層としては、金属配線の層間絶縁膜や金属配線の下層絶縁膜や素子分離に使用されるシャロートレンチアイソレーションを挙げることができる。金属配線としては、アルミ、タングステン、銅等を挙げることができ、構造的にダマシン、デュアルダマシン、プラグなどがある。銅を金属配線とした場合には、窒化珪素等のバリアメタルも研磨対象となる。絶縁膜は、現在酸化シリコンが主流であるが、低誘電率絶縁膜も用いられる。半導体ウェハー以外に磁気ヘッド、ハードディスク、サファイヤ等の研磨に用いることもできる。
本発明にかかる研磨パッドを用いた研磨方法は、ガラス、半導体、誘電/金属複合体および集積回路等に平坦面を形成するために好適に使用される。
以下、実施例によって本発明の詳細を説明する。しかし、本実施例により本発明が限定して解釈されるわけではない。なお、測定は以下のとおりに行った。
(傾斜角度測定)
研磨層表面に溝を形成したパッドを溝深さ方向にスライスする。スライスは、溝の加工方向に対して垂直にスライスして、溝断面形状を観察しやすい面を作成し、溝の断面をキーエンス製VK-8500の超深度顕微鏡にて観察して研磨面と研磨面と連続する側面(溝側面)の成す角度を測定した。パッドの中心から50mm、250mm、450mmの位置から最も近い溝を測定し、この3点の平均を傾斜角度とした。
研磨層表面に溝を形成したパッドを溝深さ方向にスライスする。スライスは、溝の加工方向に対して垂直にスライスして、溝断面形状を観察しやすい面を作成し、溝の断面をキーエンス製VK-8500の超深度顕微鏡にて観察して研磨面と研磨面と連続する側面(溝側面)の成す角度を測定した。パッドの中心から50mm、250mm、450mmの位置から最も近い溝を測定し、この3点の平均を傾斜角度とした。
(研磨レート測定および面内均一性の評価)
アプライドマテリアルズ株式会社製のMirra 3400を用いて、所定の研磨条件で研磨を行った。研磨特性は、8インチウェハーの最外周10mmを除外した37ポイントを測定して平均化し、平均研磨レート(nm/分)を算出した。また、37ポイントの研磨レートの最大値と最小値の差を、平均研磨レートで除した値を面内均一性として算出した。
アプライドマテリアルズ株式会社製のMirra 3400を用いて、所定の研磨条件で研磨を行った。研磨特性は、8インチウェハーの最外周10mmを除外した37ポイントを測定して平均化し、平均研磨レート(nm/分)を算出した。また、37ポイントの研磨レートの最大値と最小値の差を、平均研磨レートで除した値を面内均一性として算出した。
(欠陥評価)
エンハンス処理として、研磨したウェハーを0.5重量%のふっ酸に10分間浸漬して水洗後、1.0重量%のアンモニア溶液と1.0重量%の過酸化水素水の混合溶液にて洗浄し、水洗乾燥した。洗浄したウェハーについて、KLA-Tencor株式会社製のSP-1を用いて、0.155μm以上のディフェクト数を計数した。
エンハンス処理として、研磨したウェハーを0.5重量%のふっ酸に10分間浸漬して水洗後、1.0重量%のアンモニア溶液と1.0重量%の過酸化水素水の混合溶液にて洗浄し、水洗乾燥した。洗浄したウェハーについて、KLA-Tencor株式会社製のSP-1を用いて、0.155μm以上のディフェクト数を計数した。
(パッド研削速度)
研磨前後の溝深さを株式会社ミツトヨ製デプスゲージ(デジマチックタイプ)を用いて測定し、溝の減少した値を評価した時間で除した値を、パッド研削速度とした。
研磨前後の溝深さを株式会社ミツトヨ製デプスゲージ(デジマチックタイプ)を用いて測定し、溝の減少した値を評価した時間で除した値を、パッド研削速度とした。
<実施例1>
ポリプロピレングリコール30重量部とジフェニルメタンジイソシアネート40重量部と水0.5重量部とトリエチルアミン0.3重量部とシリコーン整泡剤1.7重量部とオクチル酸スズ0.09重量部とをRIM(Reaction Injection Molding)成型機で混合して、金型に吐出して加圧成型を行い、厚み2.6mmの独立気泡の発泡ポリウレタンシート(マイクロゴムA硬度:42度、密度:0.76g/cm3、独立気泡の平均気泡径:34μm)を作製した。
ポリプロピレングリコール30重量部とジフェニルメタンジイソシアネート40重量部と水0.5重量部とトリエチルアミン0.3重量部とシリコーン整泡剤1.7重量部とオクチル酸スズ0.09重量部とをRIM(Reaction Injection Molding)成型機で混合して、金型に吐出して加圧成型を行い、厚み2.6mmの独立気泡の発泡ポリウレタンシート(マイクロゴムA硬度:42度、密度:0.76g/cm3、独立気泡の平均気泡径:34μm)を作製した。
前記発泡ポリウレタンシートを、アゾビスイソブチロニトリル0.2重量部を添加したメチルメタクリレートに60分間浸漬した。次に前記発泡ポリウレタンシートを、ポリビニルアルコール“CP”(重合度:約500、ナカライテスク株式会社製)15重量部、エチルアルコール(試薬特級、片山化学工業株式会社製)35重量部、水50重量部からなる溶液中に浸漬後乾燥することにより、前記発泡ポリウレタンシート表層をポリビニルアルコールで被覆した。
次にポリビニルアルコールで被覆した発泡ポリウレタンシートを、塩化ビニル製ガスケットを介して2枚のガラス板間に挟み込んで、65℃で6時間、120℃で3時間加熱することにより重合硬化させた。ガラス板間から離型し水洗した後、50℃で真空乾燥を行った。このようにして得られた硬質発泡シートを厚み2.00mmにスライス加工することにより研磨層を作製した。研磨層中のメチルメタクリレート含有率は66重量%であった。また研磨層のD硬度は54度、密度は0.81g/cm3、独立気泡の平均気泡径は45μmであった。得られた硬質発泡シートを両面研削して、厚みが2mmの研磨層を作製した。
上記方法により得られた研磨層に、クッション層として日本マタイ株式会社製の熱可塑性ポリウレタンのマイクロゴムA硬度90度の0.3mm品(体積弾性率=65MPa、引っ張り弾性率=4MPa)を、ロールコーターを用いて三井化学ポリウレタン株式会社製MA-6203接着層を介して積層し、さらに裏面に裏面テープとして積水化学工業株式会社製両面テープ5604TDMを貼り合わせた。
図9は、本発明の実施例における実施例1にかかる研磨パッドの構成を示す模式図である。クッション層を積層した積層体を508mmの直径の円に打ち抜いて、研磨層表面に溝ピッチd10,d11を15mm、溝幅1.5mm、溝深さ1.0mmの溝をXY格子状に、研磨パッドのすべての径に対して非対称に形成して研磨パッドとした。研磨面に形成した溝の断面形状は、図3Cに示す溝2dであり、溝幅は図3C中の距離d30に対応する。また、溝深さは、第2溝側面22の長さに対応し、溝底面23に応じた長さを1.0mm、直交部243に応じた長さを0.5mmとした。
実施例1にかかる研磨パッド3cでは、図9に示すように、複数の溝2d(破線)が縁端から中心Oの近傍まで延びて形成されてなる溝群41~44が設けられている。溝群41,43は、溝2dが延びる方向が互いに平行になっており、かつ溝2dの断面形状が、中心Oを通過し、研磨面に直交する平面に対して非対称となっている。溝群42,44は、溝2dが延びる方向が互いに平行になっており、かつ溝2dの断面形状が、中心Oを通過し、研磨面に直交する平面に対して非対称となっている。さらに、溝群41,43の溝2dが延びる方向と、溝群42,44の溝2dが延びる方向とは、直交している。また、溝群41,43の形成領域は、溝2dが延びる方向に直交する方向の距離が、d20となるように溝2dが形成されている。溝群42,44の形成領域は、溝2dが延びる方向に直交する方向の距離が、d21となるように溝2dが形成されている。実施例1において、距離d20,d21は、研磨パッド3cの直径の1/3である。
ここで、回転速度方向Y1に沿って研磨パッド3cが回転する場合において、図9に示す溝群41~44の溝2dにおける矢視A~D方向からみたときの断面形状は、図3Cに示す溝2dにそれぞれ対応する。
なお、実施例1では、図9に示すように、溝2dの配設領域以外の領域において、図3Jに示すような、断面形状が矩形をなす複数の溝2k(実線)が格子状に形成されている。実施例1では、このときの溝底面23および溝側面25の長さを1.0mmとした。
上記方法により得られた研磨パッドを、研磨機(アプライドマテリアルズ株式会社製“MIRRA3400”)の定盤に貼り付けた。酸化膜の8インチウェハーをリテナーリング圧力=55kPa(6psi)、インナーチューブ圧力=28kPa(4psi)、メンブレン圧力=28kPa(4psi)、プラテン回転数=76rpm、研磨ヘッド回転数=75rpm、スラリー(キャボット社製、SS-25)を150mL/分の流量で流し、Saesol製ドレッサーで荷重17.6N(4lbf)、研磨時間1分、研磨開始から30秒間インサイチュードレッシングをして100枚を研磨した。100枚目の酸化膜の平均研磨レートは214nm/分、面内均一性は4.0%と良好であった。
研磨したウェハーについて、前記方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは332個と良好であった。また、研磨中のパッド研削速度は1.25μm/分と良好であった。
<実施例2>
研磨層表面の溝形状を変更した以外は実施例1と同様にして研磨した。図10は、本実施例における実施例2にかかる研磨パッドの構成を示す模式図である。図10に示す研磨パッド3dは、実施例1にかかる研磨パッド3cの溝形状を、図2に示す断面形状をなす溝2a(破線)に変更した。なお、溝幅は図2中の距離d31に対応し、1.0mmとした。また、溝深さは、第2溝側面22の長さに対応し、1.0mmとした。この研磨パッド3dでは、平均研磨レートは201nm/分、面内均一性は6.5%と良好であった。
研磨層表面の溝形状を変更した以外は実施例1と同様にして研磨した。図10は、本実施例における実施例2にかかる研磨パッドの構成を示す模式図である。図10に示す研磨パッド3dは、実施例1にかかる研磨パッド3cの溝形状を、図2に示す断面形状をなす溝2a(破線)に変更した。なお、溝幅は図2中の距離d31に対応し、1.0mmとした。また、溝深さは、第2溝側面22の長さに対応し、1.0mmとした。この研磨パッド3dでは、平均研磨レートは201nm/分、面内均一性は6.5%と良好であった。
研磨したウェハーについて、前記方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは421個と良好であった。また、研磨中のパッド研削速度は1.26μm/分と良好であった。
<実施例3>
研磨層表面の溝形状を変更した以外は実施例1と同様にして研磨した。図11は、本実施例における実施例3にかかる研磨パッドの構成を示す模式図である。図11に示す研磨パッド3eは、実施例1にかかる研磨パッド3cの溝形状を、図2に示す断面形状をなす溝2aに変更するとともに、断面形状が矩形をなす複数の溝2kに代えて図2に示す溝2aを形成するものとした。ここで、溝群41~44に応じた溝2a(破線)以外の溝2a(一点鎖線)は、研磨パッド3eの一方の縁端から他方の縁端まで延びるものとする。なお、溝幅は図2中の距離d31に対応し、1.0mmとした。また、溝深さは、第2溝側面22の長さに対応し、1.0mmとした。この研磨パッド3eでは、平均研磨レートは213nm/分、面内均一性は4.4%と良好であった。
研磨層表面の溝形状を変更した以外は実施例1と同様にして研磨した。図11は、本実施例における実施例3にかかる研磨パッドの構成を示す模式図である。図11に示す研磨パッド3eは、実施例1にかかる研磨パッド3cの溝形状を、図2に示す断面形状をなす溝2aに変更するとともに、断面形状が矩形をなす複数の溝2kに代えて図2に示す溝2aを形成するものとした。ここで、溝群41~44に応じた溝2a(破線)以外の溝2a(一点鎖線)は、研磨パッド3eの一方の縁端から他方の縁端まで延びるものとする。なお、溝幅は図2中の距離d31に対応し、1.0mmとした。また、溝深さは、第2溝側面22の長さに対応し、1.0mmとした。この研磨パッド3eでは、平均研磨レートは213nm/分、面内均一性は4.4%と良好であった。
研磨したウェハーについて、前記方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは278個と良好であった。また、研磨中のパッド研削速度は1.35μm/分と良好であった。
<実施例4>
研磨層表面の溝形状を変更した以外は実施例1と同様にして研磨した。図12は、本実施例における実施例4にかかる研磨パッドの構成を示す模式図である。図12に示す研磨パッド3fでは、実施例3にかかる研磨パッド3eに対し、図2に示す断面形状をなす溝2a(破線、一点鎖線)と、断面形状が矩形をなす複数の溝2k(実線)とを交互に配設した。ここで、溝群41~44に応じた溝以外の溝は、研磨パッド3fの一方の縁端から他方の縁端まで延びるものとする。なお、溝幅は図2中の距離d31および溝底面23の長さに対応し、それぞれ1.0mmとした。また、溝深さは、第2溝側面22および溝側面25の長さに対応し、1.0mmとした。この研磨パッド3fでは、平均研磨レートは209nm/分、面内均一性は6.4%と良好であった。
研磨層表面の溝形状を変更した以外は実施例1と同様にして研磨した。図12は、本実施例における実施例4にかかる研磨パッドの構成を示す模式図である。図12に示す研磨パッド3fでは、実施例3にかかる研磨パッド3eに対し、図2に示す断面形状をなす溝2a(破線、一点鎖線)と、断面形状が矩形をなす複数の溝2k(実線)とを交互に配設した。ここで、溝群41~44に応じた溝以外の溝は、研磨パッド3fの一方の縁端から他方の縁端まで延びるものとする。なお、溝幅は図2中の距離d31および溝底面23の長さに対応し、それぞれ1.0mmとした。また、溝深さは、第2溝側面22および溝側面25の長さに対応し、1.0mmとした。この研磨パッド3fでは、平均研磨レートは209nm/分、面内均一性は6.4%と良好であった。
研磨したウェハーについて、前記方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは290個と良好であった。また、研磨中のパッド研削速度は1.33μm/分と良好であった。
<実施例5>
研磨層表面の溝形状を変更した以外は実施例1と同様にして研磨した。図13は、本実施例における実施例5にかかる研磨パッドの構成を示す模式図である。図13に示す研磨パッド3gでは、実施例1にかかる研磨パッド3cに対し、溝2dの一部を図2に示す断面形状をなす溝2a(破線)に代えて上述した溝群41~44の領域より狭い溝群41a~44aに変更するとともに、残りの溝2dを溝2kに変更した。溝群41a,43aは、溝2aが延びる方向が互いに平行になっており、かつ溝2aの断面形状が、中心Oを通過し、研磨面に直交する平面に対して非対称となっている。溝群42a,44aは、溝2aが延びる方向が互いに平行になっており、かつ溝2aの断面形状が、中心Oを通過し、研磨面に直交する平面に対して非対称となっている。さらに、溝群41a,43aの溝2aが延びる方向と、溝群42a,44aの溝2aが延びる方向とは、直交している。ここで、溝群41a,43aの形成領域は、溝2aが延びる方向に直交する方向の距離が、d22となるように溝2aが形成されている。溝群42a,44aの形成領域は、溝2aが延びる方向に直交する方向の距離が、d23となるように溝2aが形成されている。実施例5において、距離d22,d23は、溝研磨面に形成されたすべての溝の長さの合計に対して11.5%となるように設定した。また、溝ピッチd12,d13は10mmに設定した。なお、溝幅は図2中の距離d31および溝底面23の長さに対応し、それぞれ1.0mmとした。また、溝深さは、第2溝側面22および溝側面25の長さに対応し、1.0mmとした。この研磨パッド3gでは、平均研磨レートは215nm/分、面内均一性は6.1%と良好であった。
研磨層表面の溝形状を変更した以外は実施例1と同様にして研磨した。図13は、本実施例における実施例5にかかる研磨パッドの構成を示す模式図である。図13に示す研磨パッド3gでは、実施例1にかかる研磨パッド3cに対し、溝2dの一部を図2に示す断面形状をなす溝2a(破線)に代えて上述した溝群41~44の領域より狭い溝群41a~44aに変更するとともに、残りの溝2dを溝2kに変更した。溝群41a,43aは、溝2aが延びる方向が互いに平行になっており、かつ溝2aの断面形状が、中心Oを通過し、研磨面に直交する平面に対して非対称となっている。溝群42a,44aは、溝2aが延びる方向が互いに平行になっており、かつ溝2aの断面形状が、中心Oを通過し、研磨面に直交する平面に対して非対称となっている。さらに、溝群41a,43aの溝2aが延びる方向と、溝群42a,44aの溝2aが延びる方向とは、直交している。ここで、溝群41a,43aの形成領域は、溝2aが延びる方向に直交する方向の距離が、d22となるように溝2aが形成されている。溝群42a,44aの形成領域は、溝2aが延びる方向に直交する方向の距離が、d23となるように溝2aが形成されている。実施例5において、距離d22,d23は、溝研磨面に形成されたすべての溝の長さの合計に対して11.5%となるように設定した。また、溝ピッチd12,d13は10mmに設定した。なお、溝幅は図2中の距離d31および溝底面23の長さに対応し、それぞれ1.0mmとした。また、溝深さは、第2溝側面22および溝側面25の長さに対応し、1.0mmとした。この研磨パッド3gでは、平均研磨レートは215nm/分、面内均一性は6.1%と良好であった。
研磨したウェハーについて、前記方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは307個と良好であった。また、研磨中のパッド研削速度は1.11μm/分と良好であった。
<比較例1>
比較例1では、実施例1にかかる研磨パッド3cに対し、溝2dを、断面が矩形をなす溝2kに変更した。溝2kは、溝幅(溝底面23)1.5mm、溝ピッチ(溝2k間の距離)15mm、溝深さ(溝側面25)1.5mmの矩形のみとした以外は実施例1と同様にして研磨した。比較例1にかかる研磨パッドでは、平均研磨レートは180nm/分、面内均一性は12.2%といずれも不良であった。
比較例1では、実施例1にかかる研磨パッド3cに対し、溝2dを、断面が矩形をなす溝2kに変更した。溝2kは、溝幅(溝底面23)1.5mm、溝ピッチ(溝2k間の距離)15mm、溝深さ(溝側面25)1.5mmの矩形のみとした以外は実施例1と同様にして研磨した。比較例1にかかる研磨パッドでは、平均研磨レートは180nm/分、面内均一性は12.2%といずれも不良であった。
研磨したウェハーについて、前記方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは583個と良好であった。また、研磨中のパッド研削速度は1.13μm/分と良好であった。
<比較例2>
比較例2では、実施例1にかかる研磨パッド3cに対し、溝2dを、断面がV字形状をなす溝2(図1参照)に変更した。溝2は、溝幅(図1のd32)3.0mm、溝ピッチ15mm、傾斜角度(θ1)135度の断面形状V字、溝深さ(図1のd33)1.5mmのみとした以外は実施例1と同様にして研磨した。比較例2にかかる研磨パッドでは、平均研磨レートは217nm/分は良好だったが、面内均一性は21.1%と不良であった。
比較例2では、実施例1にかかる研磨パッド3cに対し、溝2dを、断面がV字形状をなす溝2(図1参照)に変更した。溝2は、溝幅(図1のd32)3.0mm、溝ピッチ15mm、傾斜角度(θ1)135度の断面形状V字、溝深さ(図1のd33)1.5mmのみとした以外は実施例1と同様にして研磨した。比較例2にかかる研磨パッドでは、平均研磨レートは217nm/分は良好だったが、面内均一性は21.1%と不良であった。
研磨したウェハーについて、前記方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは297個と非常に良好であった。また、研磨中のパッド研削速度は1.73μm/分と不良であった。
<比較例3>
研磨層表面の溝形状を変更した以外は実施例1と同様にして研磨した。図14Aは、本実施例における比較例3にかかる研磨パッドの構成を示す模式図である。図14Bは、本実施例における比較例3にかかる研磨パッドの溝形状の構成を示す断面図である。図14Aに示す研磨パッド300aでは、研磨面100の中央部で交差するように溝2kを形成するとともに、研磨面100の縁端側に設けられ、図14Bに示す断面形状をなす溝201を形成した。溝2kおよび溝201は、研磨パッド300aの一方の縁端から他方の縁端まで延びるものとする。
研磨層表面の溝形状を変更した以外は実施例1と同様にして研磨した。図14Aは、本実施例における比較例3にかかる研磨パッドの構成を示す模式図である。図14Bは、本実施例における比較例3にかかる研磨パッドの溝形状の構成を示す断面図である。図14Aに示す研磨パッド300aでは、研磨面100の中央部で交差するように溝2kを形成するとともに、研磨面100の縁端側に設けられ、図14Bに示す断面形状をなす溝201を形成した。溝2kおよび溝201は、研磨パッド300aの一方の縁端から他方の縁端まで延びるものとする。
溝201は、研磨面100に対して傾斜した面である溝側面210と、両端で各溝側面210に連なり、研磨面100と略平行な底面を有する凹形状をなす溝底面220と、からなる。すなわち、溝201は、上述した第1溝側面を前後に設け、対称性を有する形状となっている。ここで、溝201の溝ピッチd100および溝ピッチd110は15mmとし、複数の溝201からなり、一端側に設けられる溝群400の配設領域は、距離d200となるように設けられている。複数の溝201からなり、他端側に設けられる溝群410の配設領域は、距離d210となるように設けられている。また、複数の溝201からなり、溝群400および溝群410の溝201と直交する方向に延びる溝201からなる溝群420の配設領域は、距離d220となるように設けられている。このとき、距離d200,d210,d220は、研磨パッド300aの直径の1/3である。
この研磨パッド300aでは、平均研磨レートは179nm/分、面内均一性は18.2%といずれも不良であった。
研磨したウェハーについて、前記方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは414個と良好であった。また、研磨中のパッド研削速度は1.51μm/分と不良であった。
<比較例4>
研磨層表面の溝形状を変更した以外は実施例1と同様にして研磨した。図15は、本実施例における比較例4にかかる研磨パッドの構成を示す模式図である。図15に示す研磨パッド300bでは、実施例1にかかる研磨パッド3cに対し、矢視E~H方向からみた溝2d(点線)の断面形状を、図3Cに示す形状を反転させた形状をなす。すなわち、回転速度方向Y100に対し、前側に第2溝側面22が位置し、後側に第1溝側面24bが位置する。なお、溝2dの断面形状における寸法は、実施例1と同様である。また、複数の溝2dからなる溝群の配設領域の距離d230,d240は、上述した距離d20と同様である。この研磨パッド300bでは、平均研磨レートは185nm/分、面内均一性は15.7%といずれもと不良であった。
研磨層表面の溝形状を変更した以外は実施例1と同様にして研磨した。図15は、本実施例における比較例4にかかる研磨パッドの構成を示す模式図である。図15に示す研磨パッド300bでは、実施例1にかかる研磨パッド3cに対し、矢視E~H方向からみた溝2d(点線)の断面形状を、図3Cに示す形状を反転させた形状をなす。すなわち、回転速度方向Y100に対し、前側に第2溝側面22が位置し、後側に第1溝側面24bが位置する。なお、溝2dの断面形状における寸法は、実施例1と同様である。また、複数の溝2dからなる溝群の配設領域の距離d230,d240は、上述した距離d20と同様である。この研磨パッド300bでは、平均研磨レートは185nm/分、面内均一性は15.7%といずれもと不良であった。
研磨したウェハーについて、前記方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは472個と良好であった。また、研磨中のパッド研削速度は1.28μm/分と良好であった。
<比較例5>
研磨層表面の溝形状を変更した以外は実施例1と同様にして研磨した。図16は、本実施例における比較例5にかかる研磨パッドの構成を示す模式図である。図16に示す研磨パッド300cでは、実施例2にかかる研磨パッド3dに対し、矢視E~H方向からみた溝2a(破線)の断面形状を、図2に示す形状を反転させた形状をなす。すなわち、回転速度方向Y100に対し、前側に第2溝側面22が位置し、後側に第1溝側面21が位置する。なお、溝2aの断面形状における寸法は、実施例2と同様である。この研磨パッド300cでは、平均研磨レートは190nm/分、面内均一性は10.1%といずれも不良であった。
研磨層表面の溝形状を変更した以外は実施例1と同様にして研磨した。図16は、本実施例における比較例5にかかる研磨パッドの構成を示す模式図である。図16に示す研磨パッド300cでは、実施例2にかかる研磨パッド3dに対し、矢視E~H方向からみた溝2a(破線)の断面形状を、図2に示す形状を反転させた形状をなす。すなわち、回転速度方向Y100に対し、前側に第2溝側面22が位置し、後側に第1溝側面21が位置する。なお、溝2aの断面形状における寸法は、実施例2と同様である。この研磨パッド300cでは、平均研磨レートは190nm/分、面内均一性は10.1%といずれも不良であった。
研磨したウェハーについて、前記方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは404個と良好であった。また、研磨中のパッド研削速度は1.25μm/分と良好であった。
<比較例6>
研磨層表面の溝形状を溝ピッチ5mm、研磨面に形成されたすべての溝の長さの合計に対して4.1%に変更した以外は、実施例5と同様にして研磨した。平均研磨レートは180nm/分、面内均一性は11.1%といずれも不良であった。
研磨層表面の溝形状を溝ピッチ5mm、研磨面に形成されたすべての溝の長さの合計に対して4.1%に変更した以外は、実施例5と同様にして研磨した。平均研磨レートは180nm/分、面内均一性は11.1%といずれも不良であった。
研磨したウェハーについて、前記方法により0.155μm以上のディフェクトを計数したところ、ディフェクトは387個と良好であった。また、研磨中のパッド研削速度は1.13μm/分と良好であった。
以上のように、本発明にかかる研磨パッドは、高い研磨レートを保ちながら、パッド寿命の低下を抑制するのに有用である。
1 研磨面
2,2a,2b,2c,2d,2e,2f,2g,2h,2i,2j,2k,200,201 溝
3,3a,3b,3c,3d,3e,3f,3g,300,300a,300b,300c 研磨パッド
20,25 溝側面
21,24,24a,24b,24c 第1溝側面
22 第2溝側面
23,23a,23b,23c,23d 溝底面
30~35,41~44,41a~44a,400,410,420 溝群
231 凹部
232 曲面部
233,244 傾斜部
241,245 第1傾斜部
242,246 第2傾斜部
243 直交部
2,2a,2b,2c,2d,2e,2f,2g,2h,2i,2j,2k,200,201 溝
3,3a,3b,3c,3d,3e,3f,3g,300,300a,300b,300c 研磨パッド
20,25 溝側面
21,24,24a,24b,24c 第1溝側面
22 第2溝側面
23,23a,23b,23c,23d 溝底面
30~35,41~44,41a~44a,400,410,420 溝群
231 凹部
232 曲面部
233,244 傾斜部
241,245 第1傾斜部
242,246 第2傾斜部
243 直交部
Claims (6)
- 少なくとも円状の研磨面を有する化学機械研磨用の研磨パッドであって、
前記研磨面には、非同心円状の複数の溝が形成され、
前記複数の溝は、当該研磨パッドの回転速度方向に対して、前側に位置する第1溝側面、および後側に位置する第2溝側面を有する第1の溝を少なくとも一部に有し、
前記研磨面および該研磨面と連続する前記第1溝側面のなす角度が、105度以上150度以下であって、
前記研磨面および該研磨面と連続する前記第2溝側面のなす角度が、105度未満であり、
前記第1の溝の長さの合計は、前記複数の溝のうち、前記第1の溝以外の溝の長さの合計以上であることを特徴とする研磨パッド。 - 前記第1の溝は、複数設けられ、互いに平行な直線状をなして延び、
前記第1の溝が延びる方向と前記回転速度方向とのなす角度が、30度以上90度以下であることを特徴とする請求項1に記載の研磨パッド。 - 前記第1の溝の前記研磨面に形成される範囲が、当該研磨パッドの径方向に対し、当該研磨パッド半径長さの90%以下の範囲に形成されていることを特徴とする請求項1に記載の研磨パッド。
- 前記第1の溝の長さの合計が、前記複数の溝の長さの合計に対して5%以上90%以下であることを特徴とする請求項1に記載の研磨パッド。
- 前記第1の溝は、前記研磨面に格子状に形成された溝の一部であることを特徴とする請求項1~4のいずれかに記載の研磨パッド。
- 前記第1の溝は、当該研磨パッドの中心を通過し、かつ前記研磨面と直交する平面に対して、非対称に形成されることを特徴とする請求項1に記載の研磨パッド。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-000926 | 2012-01-06 | ||
JP2012000926 | 2012-01-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013103142A1 true WO2013103142A1 (ja) | 2013-07-11 |
Family
ID=48745202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/084179 WO2013103142A1 (ja) | 2012-01-06 | 2012-12-28 | 研磨パッド |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2013103142A1 (ja) |
TW (1) | TW201338917A (ja) |
WO (1) | WO2013103142A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016034689A (ja) * | 2014-08-04 | 2016-03-17 | 日本電気硝子株式会社 | 研磨パッド |
KR20170113203A (ko) * | 2016-03-24 | 2017-10-12 | 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스, 인코포레이티드 | Cmp 연마 패드용 파편-제거 홈 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117794687A (zh) * | 2021-08-04 | 2024-03-29 | 株式会社可乐丽 | 抛光垫 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000354952A (ja) * | 1999-04-05 | 2000-12-26 | Nikon Corp | 研磨部材、研磨方法、研磨装置、半導体デバイス製造方法、及び半導体デバイス |
JP2005529501A (ja) * | 2002-09-13 | 2005-09-29 | インフィネオン テクノロジーズ アクチエンゲゼルシャフト | 多方向使用のための仕上げパッドの新規な設計 |
JP2006187819A (ja) * | 2004-12-29 | 2006-07-20 | Toho Engineering Kk | 研磨用パッド |
JP2010045306A (ja) * | 2008-08-18 | 2010-02-25 | Kuraray Co Ltd | 研磨パッド |
-
2012
- 2012-12-28 WO PCT/JP2012/084179 patent/WO2013103142A1/ja active Application Filing
- 2012-12-28 JP JP2013500699A patent/JPWO2013103142A1/ja active Pending
-
2013
- 2013-01-04 TW TW102100220A patent/TW201338917A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000354952A (ja) * | 1999-04-05 | 2000-12-26 | Nikon Corp | 研磨部材、研磨方法、研磨装置、半導体デバイス製造方法、及び半導体デバイス |
JP2005529501A (ja) * | 2002-09-13 | 2005-09-29 | インフィネオン テクノロジーズ アクチエンゲゼルシャフト | 多方向使用のための仕上げパッドの新規な設計 |
JP2006187819A (ja) * | 2004-12-29 | 2006-07-20 | Toho Engineering Kk | 研磨用パッド |
JP2010045306A (ja) * | 2008-08-18 | 2010-02-25 | Kuraray Co Ltd | 研磨パッド |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016034689A (ja) * | 2014-08-04 | 2016-03-17 | 日本電気硝子株式会社 | 研磨パッド |
KR20170113203A (ko) * | 2016-03-24 | 2017-10-12 | 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스, 인코포레이티드 | Cmp 연마 패드용 파편-제거 홈 |
KR102363154B1 (ko) | 2016-03-24 | 2022-02-15 | 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스, 인코포레이티드 | Cmp 연마 패드용 파편-제거 홈 |
Also Published As
Publication number | Publication date |
---|---|
TW201338917A (zh) | 2013-10-01 |
JPWO2013103142A1 (ja) | 2015-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013039181A1 (ja) | 研磨パッド | |
WO2012111502A1 (ja) | 研磨パッド | |
WO2013011921A1 (ja) | 研磨パッド | |
WO2013039203A1 (ja) | 研磨パッド | |
JP2013018056A (ja) | 研磨パッド | |
JP2006339570A (ja) | 研磨パッドおよび研磨装置 | |
WO2013103142A1 (ja) | 研磨パッド | |
WO2013011922A1 (ja) | 研磨パッド | |
JP2006339573A (ja) | 研磨パッドおよび研磨装置 | |
WO2013129426A1 (ja) | 研磨パッド | |
JP2006035367A (ja) | 研磨パッドおよび研磨装置 | |
JP5292958B2 (ja) | 研磨パッド | |
JP2007105836A (ja) | 研磨パッドおよび研磨装置 | |
JP2015196234A (ja) | 研磨パッド | |
JP2011200984A (ja) | 研磨パッド | |
JP5454153B2 (ja) | 研磨方法および半導体デバイスの製造方法 | |
JP2014188647A (ja) | 研磨パッド | |
JP2007150337A (ja) | 研磨方法 | |
JP2007116194A (ja) | 研磨方法 | |
JP2009147307A (ja) | 研磨方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013500699 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12864391 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12864391 Country of ref document: EP Kind code of ref document: A1 |