CN103619778A - 陶瓷颗粒混合物,以及从这种混合物制备陶瓷部件的方法 - Google Patents

陶瓷颗粒混合物,以及从这种混合物制备陶瓷部件的方法 Download PDF

Info

Publication number
CN103619778A
CN103619778A CN201280030007.7A CN201280030007A CN103619778A CN 103619778 A CN103619778 A CN 103619778A CN 201280030007 A CN201280030007 A CN 201280030007A CN 103619778 A CN103619778 A CN 103619778A
Authority
CN
China
Prior art keywords
ceramic
mixture
particle
green
inorganic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280030007.7A
Other languages
English (en)
Other versions
CN103619778B (zh
Inventor
F·佩迪特
V·拉多特
C·奥特
E·朱斯特
F·坎比尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ott Co., Ltd.
Original Assignee
Ct De Rech de l Ind Belge de la Ceramique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ct De Rech de l Ind Belge de la Ceramique filed Critical Ct De Rech de l Ind Belge de la Ceramique
Publication of CN103619778A publication Critical patent/CN103619778A/zh
Application granted granted Critical
Publication of CN103619778B publication Critical patent/CN103619778B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/355Texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/12Apparatus or processes for treating or working the shaped or preshaped articles for removing parts of the articles by cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • B28B17/0036Cutting means, e.g. water jets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/481Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing silicon, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • C04B2235/945Products containing grooves, cuts, recesses or protusions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Laser Beam Processing (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

本发明涉及陶瓷颗粒混合物,所述陶瓷颗粒混合物按重量计主要包含陶瓷材料制成的可烧结颗粒和至少一种添加剂的颗粒,所述至少一种添加剂是分散态吸收性无机固体材料,所述分散态吸收性无机固体材料对预定波长发射的激光束有比吸收度,所述比吸收度高于所述陶瓷混合物的其他组分的吸收度,并且在激光束存在下,所述分散态吸收性无机固体材料迅速降解,并放出气体,所述添加剂存在的比例是小于干重的5%。本发明也涉及从这种混合物生产的陶瓷部件。

Description

陶瓷颗粒混合物,以及从这种混合物制备陶瓷部件的方法
本发明涉及陶瓷颗粒混合物,所述陶瓷颗粒混合物按重量计主要包含陶瓷材料制成的可烧结颗粒和至少一种添加剂的颗粒,所述至少一种添加剂中的至少一种是无机固体材料。本发明也涉及基于这种陶瓷颗粒混合物的、处于生坯状态或者处于烧结状态的陶瓷坯件和陶瓷部件,以及从这种陶瓷混合物制备陶瓷部件的方法。
通过侵蚀的激光加工方法由Pham D.T.等描述在Laser milling(激光铣削),Proclnstn Mech Engrs,卷216,B部分:J.Engineering Manufacture(工程加工杂志),第657-667页(2002)。就加工而言,激光辐射通常在非常短的时期内递送到减损维度(reduced dimension)的表面。这造成了极高的峰值功率密度(1012W/m2),这造成了经辐照材料中的一系列的转变。
能以这种方法获得所述材料的熔融和蒸发,这造成局部的加工微腔。逐渐造成了一系列的这种空腔(特别是由于检流计的偏转器(deflector)或电动轴的移动),使其可构建表面的形貌并且逐步重新生成复杂的形状。然而,这种名为“激光铣削”的为人所熟知的方法有很多缺点:
-为了使所述方法有效,所述材料对激光束波长必需有吸收性,这需要激光源适应要加工的材料。
-加工时间会非常长久(数十小时),并且对于小体积或有限体积的消除材料(例如数十mm3)也是如此。
-部件中光束产生的热造成了"热影响区域",在所述区域对所述材料的性质造成局部损坏(形成玻璃相、开裂、生成不需要的新相等)。这方面对于陶瓷材料特别重要,认为所述陶瓷材料非常脆弱,并且例如生成裂纹对其机械稳定性方面而言特别有害。
由于这些局限,这种方法经常只用于生产单个组分并且是非常小的数量(压制模具、构建模具等)。
在专利申请WO2006/079459中,描述了一种从材料流或例如激光的能量流来加工生坯体的方法。提出的加工是在生坯陶瓷或由通过有机粘合剂粘合把颗粒组装在一起构成的金属部件上进行的。生坯部件的成形是由传统粉末冶金法进行,所述方法也由陶瓷技师使用并且在文献中有广泛记载(压制、挤压等)。粘合剂的掺入(incorporation)同样为现有技术已知,这能提高颗粒组装的内聚性。通过由于能量流或材料流对生坯物体的连续切割或“剪接"来获得现有技术文献中所述的加工。
专利申请DE19501279公开了使用UV脉冲激光以获得材料的选择性消除。
然而,这个文件强调了这个技术仅可能将材料少量除去,这是由于快速形成熔融材料层,所述熔融材料层再沉积在表面上。为了适应这个缺点,这个文件提供了液体存在下加工表面的方案,从而避免了这种除去的材料再沉积下来。
在A.Kruusing,Underwater and water-assisted laser processing(水下和水辅助的激光加工):第1部分-general features,steam cleaning and shock processing(常见特性、蒸气清洁和冲击加工)Optics and Lasers in Engineering(光学和激光工程)41(2004),第307-327页中,也描述了在液体膜(经常是水)存在下使用激光表面加工。激光辐射期间,所述液体膜在局部剧烈受热,并且爆炸性地蒸发,从材料表面喷出矿渣和熔融颗粒。
在国际专利申请WO2010/055277中,将液体介质中的加工原理应用到生坯陶瓷或金属组分的示例中。所述加工在(由有机粘合剂粘合在一起的)金属或陶瓷的颗粒组装部件上进行,所述颗粒组装部件浸没在液体(水或醇)中,和/或其表面喷洒上这种液体。需要可变化的浸没时期(半小时到24小时),从而使得所述液体通过开放孔隙侵入到生坯部件的核。
激光辐射期间,在生坯材料的表面,对所述材料中包含的液体发生了非常快速的加热。所述液体的极快蒸发(“爆炸性蒸发”)造成所述生坯部件结构的局部爆破。某些陶瓷材料(氧化铝和滑石)上成功实施了所述方法,但是不能用于加工例如堇青石。作者指出不是所有的陶瓷都适合这种类型的加工。另外,由于所述部件的分散加热会很快造成不希望的液体蒸发,所以加工深度仍然比较小(通常小于1mm)。持续这种加工需要把所述部件的重复地(renewed)浸没,或者将所述液体持续喷洒到要加工的表面。使用所述方法似乎特别繁琐,因为有至少三个原因:
溶剂的快速蒸发把加工深度限定在mm的程度。对某些陶瓷材料不能应用所述方法。因为由于所用液体会自然蒸发,应该避免中间存储,所以需要在组分出现后立即加工。
专利申请US2010/0032417中提到了就用于微电子装置中的“焊接垫”的脱模/清洁或者打孔而言,通过UV激光(波长小于400nm)进行生坯加工。一个实施方式提供了加工方法,所述方法通过使生坯团块(mass)中存在的有机粘合剂爆炸性蒸发来进行。高温下有机蒸气快速膨胀,并且通过材料出坯来把生坯材料局部降解。在这个文件中,能生坯加工的有机相是陶瓷技师熟知的粘合剂,所述粘合剂能确保颗粒相互之间的内聚性,并且增加所述部件的机械抗性。
在J.Gurauskis等,Laser drilling of Ni-YSZ Cements(Ni-YSZ水泥的激光打孔),Journal of the European Ceramic Society(欧洲陶瓷协会杂志)28(2008),第2673-2680页,作者详细描述了生坯陶瓷部件的激光穿孔的过程。陶瓷材料的颗粒吸收了激光辐射,造成其温度的快速升高。然后热转移到所述有机粘合剂,所述粘合剂热解,生成气体喷射。气体爆炸将处理位点周围的材料带走。
在Kamran Imen等,Pulse CO2Laser Drilling of Green Alumina Ceramic(生坯氧化铝陶瓷的脉冲CO2激光打孔),IEEE Transactions on Advanced Packaging(IEEE先进封装学报),卷22,第4期,1999年11月中描述了相似的方法。此处在压力下接受激光辐射。
现有技术的这个检测显示了在由陶瓷颗粒混合物成形的生坯陶瓷部件的激光辐射的作用下,侵蚀造成的加工方法的情况中,总是出现陶瓷材料颗粒的快速加热。为了蒸发液体相(同时试图保护陶瓷材料免于过度加热),或者为了对所述陶瓷颗粒粘合在一起的有机粘合剂以气体喷射的形式进行热解,使用这种加热是有优势的。
所述陶瓷材料并不特别适合于吸收波长200nm-3μm的激光辐射。在这种波长范围内所述陶瓷材料(特别是氧化物类型)的吸收度通常比较普通(mediocre)。因此在这个范围内发射的任何激光辐射必需充分强力并持久,从而从所述陶瓷材料吸收的能量向液体相或向粘合剂的热量转移会产生这些相的爆炸性蒸发,并且撕裂材料。这造成了在控制不良的方法中有发生陶瓷颗粒的部分熔融的风险(这应该避免)和所述加工方法中的某些延缓。另外,在使用有机粘合剂聚合物的情况中,后者的缺点是热影响区域中不可控的蠕变和熔解。另外,在延伸超出3μm的波长范围(远红外)中,陶瓷材料的吸收度以及所述粘合剂的吸收度或所述液体相的吸收度要更高地多,这造成所述两种材料的合并加热,以及产生上述缺点。
也已知包含大量的结合的造孔(porogenic)剂的陶瓷混合物,其中之一可以由碳制成。这些混合物被成形并且焙烧,特别是为了生成处理车废气的多孔系统(见US2007/0006561),并且其没有经过任何由激光处理进行的生坯加工。
本发明的目的是开发陶瓷颗粒混合物,所述混合物能对简单形状的陶瓷部件进行生坯加工,使其形成复杂形状。这种加工应该非常灵活(flexible)并且非常快速地进行,没有现有技术中处理的缺点。
根据本发明,通过使用例如开始时所述的陶瓷颗粒混合物能解决这些问题。在这种混合物中,所述无机固体材料对在预定波长发射预定能量流的激光辐射有吸收性,并且在这种预定波长下,所述无机固体材料的比吸收度(specific absorptivity)高于所述陶瓷混合物其他组分的比吸收度,并且所述陶瓷混合物包含小于干混合物的5重量%且大于0重量%的分散状态的吸收性无机固体材料颗粒,所述吸收性无机固体材料颗粒在所述激光辐射存在下能够迅速降解,并放出气体。
因此在将这种陶瓷颗粒混合物接受上述激光辐射的情况下,所述混合物并非是能直接吸收或优先吸收所述能量流的陶瓷材料的可烧结颗粒,而是能直接吸收或优先吸收所述能量流的矿物添加剂颗粒,所述矿物添加剂颗粒下文称为分散态吸收性固体材料(法文缩写MSDA)。由所述激光辐射接触的这些颗粒能在极短时间(特别是短于1微秒)内以气体形式降解。特别地,纳秒类型的脉冲激光(脉冲持续低于150ns)非常适合于这个目的,所述纳秒类型的脉冲激光在1μm附近发射并且有平均功率(通常平均功率5-100W)。因此,避免了陶瓷材料周围(即使是局部)的任何不合时宜加热的风险,并且所述加工时间会是非常短暂的。
吸收系数A或吸收度是决定电磁辐射和受其影响的表面之间相关作用的基本特性。用下式表示:
A=1-R
其中,R是受辐射材料表面的反射率。
这个无单位量取决于入射辐射的波长。其在0(没有吸收)到1(完全吸收)之间。(见:Ready J.F.(编),LIA handbook of laser materials processing(LIA激光材料加工手册),Laser Institute of America(美国激光研究所),木兰出版公司(Magnolia PublishingInc.),2001,以及Oliveira C.等,Etude de l'absorption du rayonnement IR en vue dutraitement laser d'alliages ferreux(对用于铁合金激光处理的辐射IR的吸收性的研究),J.Phys.III France(法国),2(1992),2203-2223)。
通过掺入质量分数小于干混合物5重量%的MSDA,从而确保两个目标:如上述的有效加工,以及尽可能地将要加工的部件完全致密化,优选是100%的理论密度。
优选,如本发明的陶瓷颗粒混合物中,相对于其他组分,分散态吸收性无机固体材料有激光辐射的吸收度差异,所述差异大于0.2,优选等于或大于0.4,优选等于或大于0.5。优选,所述分散态吸收性固体材料是非粘性(non-binding)的材料。应该注意到本发明所述的陶瓷颗粒混合物能包含对陶瓷材料颗粒而言作为另一种添加剂的至少一种粘合剂。可以考虑本领域已知的任何类型的粘合剂,特别是无机粘合剂,其可以是分布在陶瓷材料的可烧结颗粒之间的、本身具有粘性的颗粒的形式,或者是这些颗粒的涂层的形式。根据本发明掺入到所述混合物的有机粘合剂的含量优选小于干混合物的5重量%,特别小于3重量%。
根据本发明的一个实施方式,所述分散态吸收性固体材料在没有热压力和/或光学压力的条件下是稳定的。因此所述陶瓷颗粒混合物能在正常条件下存储而没有问题,特别是在环境温度和没有接受激光辐射的条件下。其能是粉末形式,优选完全干的粉末,或者是液体悬浮液介质中的颗粒悬浮液形式,所述液体悬浮液介质是例如水性介质(如水)。优选MSDA在高于400℃的受控制的热条件下可以全部降解。因此在对由陶瓷颗粒混合物成形的陶瓷部件进行生坯加工之后,在烧结所述部件的步骤之前,可将任何痕量的所述分散态吸收性无机固体材料全部除去。
根据本发明,所述分散态吸收性无机固体材料可以全部或至少部分是碳。优选碳可以选自石墨、无烟煤、炭黑、活性炭、碳纳米管、石墨烯箔和其混合物。也可以考虑充满碳分散体的有机相,例如石墨或炭黑。
就生坯陶瓷部件加工而选择的MSDA是碳及其衍生物。碳在可用于现代激光源的宽范围频率(特别是200nm-3μm)内有高吸收系数或高吸收度。在脉冲模式中辐射,碳剧烈降解,并放出气体,其使得生坯材料周围的结构发生爆炸,造成陶瓷材料的颗粒出坯。由于其使得所述生坯材料具备极好的均匀性,优选微米或亚微米大小(d90<5μm,优选<1μm)的碳分散体。通常,不考虑分散的MSDA的性质,其粒度越小,所述生坯材料可以达到的均匀性就越小并且越好。有更小粒度的分散体时,有效生坯加工所需的碳的数量也更小。
碳的优点是在延伸的波长范围(从UV到远IR)内能极好地吸收激光能量,并且因此与纳秒类型脉冲激光的加工兼容,所述纳秒类型脉冲激光例如准分子、Nd:YAG、Nd:YVO4或者纤维激光等。在200nm-3μm的波长范围内,碳的吸收系数值超过值0.7。
优选所述陶瓷材料的可烧结颗粒全部或至少部分是氧化物类型的陶瓷材料。特别地,可以列举出的陶瓷材料有氧化铝、锆石、二氧化硅、氧化镁、氧化锌、氧化钛、混合的氧化物如PZT、钛酸钡、硅酸盐、羟基磷灰石、磷酸三钙及其混合物。
优选所述陶瓷材料的可烧结材料的粒度可以是微米或亚微米的级别。
根据本发明,掺入到所述陶瓷颗粒混合物的MSDA质量分数可以优选是干混合物的1重量%-3重量%之间。
本发明也涉及基于本发明的陶瓷颗粒混合物的生坯状态加工的陶瓷坯件和陶瓷部件。其也涉及根据本发明将生坯状态加工的陶瓷部件进行烧结之后,获得的经烧结的陶瓷部件。本发明也涉及根据本发明,从陶瓷颗粒混合物中制备生坯状态和经烧结状态的陶瓷部件的方法。
根据本发明加工的陶瓷部件可以特别是某种组件,所述组件用于电子、电机械器件、生物医药领域(假牙、骨替代品等)、制备挤压模头、珠宝、精密机械、过滤、催化支持物等。
根据本发明,这种方法包含使用陶瓷颗粒混合物,根据本发明所述陶瓷颗粒混合物按重量计主要包含陶瓷材料的可烧结颗粒和至少一种添加剂的颗粒,所述至少一种添加剂中的至少一种是无机固体材料。
在根据本发明的所述方法中,所述无机固体材料对在预定波长发射预定能量流的激光辐射是有吸收性,并且在这种波长下,所述无机固体材料的比吸收度(specificabsorptivity)高于所述陶瓷混合物其他组分的比吸收度,并且所述陶瓷混合物包含小于干混合物的5重量%且大于0重量%的分散状态的吸收性无机固体材料颗粒。根据本发明所述的方法还包括:
-由所述陶瓷混合物经生坯成形获得干的生坯陶瓷坯件,
-对所述生坯陶瓷坯件进行生坯加工,所述生坯加工通过将所述陶瓷材料接受在预定波长发射预定能量流的所述脉冲激光辐射来除去所述陶瓷材料来进行,和
-在接受这种激光辐射期间,选择性地使得分散态的吸收性固体材料颗粒吸收激光辐射能量,所述分散态的吸收性固体材料颗粒迅速降解并放出气体,所述生坯陶瓷坯件的陶瓷材料发生局部脱位,脱位的陶瓷材料出坯,由此获得经加工的生坯状态的陶瓷部件。
为了生成所述陶瓷颗粒混合物,其组分,和因而其必要的陶瓷材料颗粒和分散态吸收性无机固体材料能通过干法混合,所述方法生成干粉末。也能通过液体方法使其混合,所述液体方法通过将组分置于悬浮液中进行。在这个情况中,能考虑使用已知方式在成形前将悬浮液中的混合物干燥从而同样获得用于成形的干粉末,所述方式例如在烘箱中、炉子中、通过冷冻干燥或雾化。
优选,所述生坯成形通过本领域技术人员已知的技术(例如挤压、浇铸或压制)来实现。在挤压或浇铸的情况中,以糊料或悬浮液的形式使用陶瓷混合物,并且在这个情况中,在成形后进行上述干燥步骤。在所有情况中,获得用于加工的干生坯陶瓷坯件。在将这种干生坯陶瓷坯件成形之后,所述生坯团块(mass)能易于通过激光来加工。所述激光辐射是脉冲的,并且可以来自UV、IR或可见光范围内的任何合适的激光源发射。优选激光辐射的波长是200nm-3μm,特别是900nm-1100nm。优选提供的脉冲持续时间小于150ns。当在氧化气氛存在下进行加工时,接受激光辐射的所述分散态吸收性固体材料能以气体形式受到氧化。在特定优选的方式中,可以在环境压力、在空气中进行加工。
所述方法也可以包括生坯加工之后,将所述生坯加工的陶瓷部件的陶瓷材料颗粒进行烧结。烧结温度取决于陶瓷材料颗粒的特性。
可以优选考虑在烧结之前,在这种材料的降解温度,通过对其施加热力将分散态吸收性固体材料从经生坯加工的陶瓷部件中除去。这种情况下,所述经烧结的陶瓷部件完全避免了MSDA,这与根据现有技术的经烧结的陶瓷部件相似,但是没有显示后者的缺点,例如微裂纹、玻璃材料的沉积等。现在在以下非限制性的实施例帮助下更详细地描述本发明。
附图2和5显示了根据本发明加工的烧结前的部件,图1、4和6显示了根据本发明加工的烧结后的部件,以及图3显示了没有MSDA的生坯加工部件。
实施例1
通过Nd:YVO4激光生坯加工细氧化铝
称量限定量的氧化铝(来自派奇尼公司(Pechiney)的P172SB)(100g),并且置于中性pH的去矿物质水的悬浮液中(100g)。把1质量%的聚乙二醇PEG加入到所述悬浮液中(如1g),从而作为有机粘合剂。把23.5g的胶体石墨的水性悬浮液(导电敷层(Aquadag)18%-艾奇逊工业有限公司(Acheson Industries Ltd))加入到氧化铝颗粒的悬浮液中,把所有成分混合30分钟,然后通过冷冻干燥或旋转蒸发仪进行干燥。因此,获得的干混合物包含相对于混合物总重量的4.2重量%的石墨。所述石墨颗粒的粒度d90<5μm,并且所述氧化铝颗粒的粒度是d50=0.4μm。
因此获得的混合粉末通过单轴压制(40MPa用于25mm直径的片状物(tablet)),然后通过均衡压坯后(170MPa,2分钟)成形。
获得的片状物形式的生坯坯件然后在环境压力下通过激光进行加工,所述激光来自Trumark市售标记站(Trumpf),所述标记站装配有由Q-Switch提供的20W标称功率的固体Nd:YVO4激光,这使得激光能以脉冲模式工作,所述激光具有移动表格XY和检流计头,使得光束扫描(sweep)要加工的表面。163mm焦距的光学器件能获得45μm的点。根据参数研究获得的最优激光参数是标称功率的40%-80%、40-80kHz的工作频率、100-6000mm/s的扫描速度、1-5μs的脉冲间隔和8-17ns的脉冲持续时间。根据例如格式为.dxf的CAD文件进行加工。
所述激光发射的辐射波长是1.06μm。在这个波长下,氧化铝的吸收度是约0.1,而碳的吸收度高达约0.9。
图1显示烧结后获得的结果,揭示了加工中能精细打孔网格的可能性(孔直径100μm,间隔60μm),所述网格能以1mm等级的深度进行,也揭示了非常深的加工的可能性,所述深度容易超过5mm。加工深度中确定的唯一的局限是孔宽度/深度的纵横比,其就使用的聚集光学器件而言接近1/10。记录的除去材料的速率是每分钟10-100mm3的级别。加工的生坯部件然后在空气中按照下面两个步骤进行热处理:第一个步骤涉及全部除去所述部件中残留的碳;第二个步骤涉及烧结氧化铝。热处理循环包括在600℃(上升速率5℃/分钟)下1小时的阶段,然后是在1550℃(上升速率5℃/分钟)下1小时的阶段,和最后降低到环境温度(以5℃/分钟),这使得能获得极好的致密部件,避免了可见的缺陷(孔或裂纹)。在扫描电子显微镜下观察到的经加工的表面显示了没有裂纹、没有孔隙、也没有任何再沉积的熔融材料层。
在用这种氧化铝对有或没有MSDA的生坯坯件进行类似的比较测试。根据本发明加工的生坯坯件示于图2。其空腔边缘干净,并且所述空腔的底部极为清洁。所述坯件的浅灰色是由存在作为MSDA的石墨造成。在将所述石墨烧结和降解之后,所述部件的颜色会与图1坯件获得的颜色一致。没有MSDA的生坯坯件揭示了实现生坯加工(见图3)的可能性。然而,然后需要的峰值功率要高于对有MSDA的生坯加工提供的峰值功率(通常>标称功率的60-80%)。另外,除去材料的速率比存在MSDA下获得的速率低得多(最小降低到1/3)。同样,能加工的深度明显下降,并且无法超过2mm:在光束提供的能量的作用下,氧化铝颗粒很快开始烧结,或甚至熔融,这中止了生坯加工过程。有光束辐射的区域中的氧化铝颗粒发生浅表蒸发,造成压力使得所述结构局部爆炸,这解释了没有MSDA情况下的生坯加工情况。
实施例2
通过Nd:YVO4激光生坯加工细锆石
与前一实施例使用的氧化铝P172不同,对压制的锆石片状物进行生坯加工的测试(东曹公司(Tosoh)Y-TZP)揭示了没有MSDA而进行加工的可能性。
通过掺入石墨类型的MSDA来加工锆石。
实现生坯加工的配方与氧化铝类似:100g锆石(d50=200nm)分散在100g去矿物质水中,所述水预先溶解了1g的PEG2000。然后14g导电敷层(d90<5μm)加入到悬浮液中,再将全部混合物在研磨介质存在下均化30分钟。所述悬浮液然后通过冷冻干燥或者旋转蒸发仪干燥,产生相对于干混合物2.4重量%的碳。所得的粉末在40MPa单轴压力下,以25mm直径的片状物形式压制,然后所述片状物在175MPa下均衡压坯。
所得的生坯片状物然后通过激光加工,所述激光来自前面实施例中相同的标记站。根据参数研究获得的最优激光参数与氧化铝相似,其为标称功率的40%-80%、40-80kHz的工作频率、100-6000mm/s的扫描速度、1-5μs的脉冲间隔和8-17ns的脉冲持续时间。根据例如格式为.dxf的CAD文件进行加工。
在波长1.06μm的激光辐射下,锆石的吸收度是0.2,同时石墨的吸收度是0.9的级别。
再次,能记录下非常高的除去材料的速率(>50mm3/分钟),深度为数个mm。
同样,在这个情况中,注意到除了加工区域的纵横比之外,没有明显的关于深度的局限。施行了数种加工模式,涉及到生成精细和/或粗糙的细节。证明了所述加工精度是焦距处激光束大小的级别。
在空气中消除残留的碳和经加工部件的自然烧结之后,没有注意到明显的缺陷。。
在扫描电子显微镜下观察到的经加工的表面显示了没有裂纹、没有孔隙、也没有任何再沉积的熔融材料层。
某些未处理的片状物在空气中存储数天,然后加工。注意到加工中其表现与初始片状物相同-这证明了所述片状物没有老化。另一方面,就长时间存储压制部件而言,所述部件可以置于有干燥剂的气密空间中,从而避免其受到环境空气的湿润。
实施例3
通过3D激光生坯加工细氧化铝
根据实施例1中所示方法,制备来自派奇尼公司(Pechiney)的细氧化铝P172SB的混合粉末,所述粉末包含10体积%(或约4重量%)的碳(导电敷层)。25mm直径的片状物通过加载40MPa的单轴压力来压制。这些片状物然后用纳秒类型的脉冲Nd:YAG激光进行处理,所述激光设置有检流计头和5个电动轴(3个笛卡尔(cartesian)轴和2个可旋转轴)。将辐射微涡轮的CAD方案(plan)进行修改,并且所述对象通过使用实施例1详述的参数进行微加工来再生产。各涡轮叶片相继由所述片状物的连续旋转来生成。在这个示例中,微涡轮的加工时间是20分钟的级别。根据实施例1的方法来实现消除石墨和烧结对象。
所得结果示于图4,图4显示了消除MSDA和烧结之后,经加工的微涡轮。所得对象没有明显的缺陷(裂纹、孔隙等),并且烧结之后的部件是完全致密的。
实施例4
3D生坯激光加工锆石
根据实施例2的方法获得的压制片状物逐层地进行加工,各层对应特定的加工方案。图5显示的金字塔形状的加工花费了20分钟。在字母Z和E下面方尖碑形状(obelisk)顶部的截面是50μm级别,勉强多于焦距处光束的大小。
图6显示了消除MSDA和烧结之后,经加工的片状物。可以看到,烧结之后,注意到所述部件没有几何结构扭曲。所述经加工的金字塔以及方尖碑形状(obelisk)保持完整,并且没有明显的缺陷。
应该理解本发明不以任何方式限制上述实施方式,并且在所附权利要求范围内可以进行修改。

Claims (27)

1.一种陶瓷颗粒混合物,所述陶瓷颗粒混合物按重量计主要包含陶瓷材料的可烧结颗粒和至少一种添加剂的颗粒,所述至少一种添加剂中的至少一种是无机固体材料,其特征在于,对在预定波长发射预定能量流的激光辐射有吸收性,并且在这种预定波长下其比吸收度高于所述陶瓷混合物其他组分的比吸收度,并且所述陶瓷混合物包含小于干混合物的5重量%且大于0重量%的处于分散状态下的所述吸收性无机固体材料颗粒,所述吸收性无机固体材料颗粒在所述激光辐射的存在下能够迅速降解,并放出气体。
2.如权利要求1所述的陶瓷颗粒混合物,其特征在于,相对于其他组分,所述分散态吸收性无机固体材料有激光辐射的吸收度差异,所述差异大于0.2,优选等于或大于0.4,优选等于或大于0.5。
3.如权利要求1或2所述的陶瓷混合物,其特征在于,所述分散态吸收性无机固体材料是非粘性的材料。
4.如权利要求1-3中任一项所述的陶瓷混合物,其特征在于,所述分散态吸收性无机固体材料在没有热压力和/或光学压力的条件下是稳定的。
5.如权利要求1-4中任一项所述的陶瓷混合物,其特征在于,所述分散态吸收性无机固体材料在高于400℃的受控制的热条件下可全部降解的。
6.如权利要求1-5中任一项所述的陶瓷混合物,其特征在于,所述陶瓷混合物包含的其他添加剂是至少一种陶瓷材料颗粒的粘合剂,其比例是小于干混合物的5重量%且大于0重量%。
7.如权利要求1-6中任一项所述的陶瓷混合物,其特征在于,所述分散态吸收性无机固体材料至少部分是碳。
8.如权利要求7所述的陶瓷混合物,其特征在于,所使用的碳优先选自石墨、无烟煤、炭黑、活性炭、碳纳米管、石墨烯箔及其混合物。
9.如权利要求1-8中任一项所述的陶瓷混合物,其特征在于,所述陶瓷材料的可烧结颗粒至少部分是氧化物类型的陶瓷材料。
10.如权利要求1-9中任一项所述的陶瓷混合物,其特征在于,所述陶瓷材料选自氧化铝、锆石、二氧化硅、氧化镁、氧化锌、氧化钛、混合的氧化物、钛酸钡、硅酸盐、羟基磷灰石、磷酸三钙及其混合物。
11.如权利要求1-10中任一项所述的陶瓷混合物,其特征在于,所述陶瓷混合物是粉末形式。
12.如权利要求1-10中任一项所述的陶瓷混合物,其特征在于,所述陶瓷混合物是所述颗粒在液体悬浮液介质中的悬浮液形式。
13.如权利要求1-12中任一项所述的陶瓷混合物,其特征在于,所述分散态吸收性无机固体材料颗粒的d90粒度小于5μm。
14.如权利要求1-13中任一项所述的陶瓷混合物,其特征在于,所述陶瓷材料颗粒的粒度是微米或亚微米。
15.经成形的生坯状态的陶瓷坯件,所述陶瓷坯件是基于如权利要求1-14中任一项所述的陶瓷混合物。
16.经加工的生坯状态的陶瓷坯件,所述陶瓷坯件是基于如权利要求1-14中任一项所述的陶瓷混合物。
17.经加工的陶瓷部件,所述陶瓷部件是如权利要求16所述的陶瓷部件的经烧结的状态。
18.一种制造陶瓷部件的方法,所述方法包括以下步骤:
-使用陶瓷颗粒混合物,所述陶瓷颗粒混合物按重量计主要包含陶瓷材料的可烧结颗粒和至少一种添加剂的颗粒,所述至少一种添加剂中的至少一种是无机固体材料,
其特征在于,所述无机固体材料对在预定波长发射预定能量流的激光辐射有吸收性,并且在所述波长下,所述无机固体材料的比吸收度高于所述陶瓷混合物其他组分的比吸收度,以及所述陶瓷混合物包含小于干混合物的5重量%且大于0重量%的处于分散状态下的所述吸收性无机固体材料颗粒,并且所述方法还包括
-由所述陶瓷混合物经生坯成形获得干的生坯陶瓷坯件,
-对所述生坯陶瓷坯件进行生坯加工,所述生坯加工通过将所述陶瓷材料接受脉冲激光辐射来除去所述陶瓷材料来进行,所述脉冲激光辐射在预定波长发射预定能量流,和
-在接受所述激光辐射期间,选择性地使得分散态的吸收性固体材料颗粒吸收激光辐射能量,所述分散态的吸收性固体材料颗粒迅速降解并放出气体,陶瓷材料从生坯陶瓷坯件发生局部脱位,脱位的陶瓷材料出胚,由此获得经加工的生坯状态的陶瓷部件。
19.如权利要求18所述的方法,其特征在于,所述组分的颗粒通过干法混合,形成粉末。
20.如权利要求18所述的方法,其特征在于,所述方法包括将所述组分的颗粒置于液体悬浮液介质中,形成悬浮液。
21.如权利要求18-20中任一项所述的方法,其特征在于,所述生坯成形是通过对使用的陶瓷混合物挤压、浇铸或压制来实现。
22.如权利要求18-21中任一项所述的方法,其特征在于,所述脉冲激光辐射的波长是200nm-3μm。
23.如权利要求22所述的方法,其特征在于,所述脉冲激光辐射的波长是900nm-1100nm。
24.如权利要求18-23中任一项所述的方法,其特征在于,所述脉冲激光辐射的脉冲持续时间小于150ns。
25.如权利要求18-24中任一项所述的方法,其特征在于,所述方法还包括在生坯加工之后,对经生坯加工的陶瓷部件的陶瓷材料颗粒进行烧结。
26.如权利要求25所述的方法,其特征在于,所述方法包括烧结之前,在分散态吸收性固体材料的降解温度,通过对其施加热力将分散态吸收性固体材料从经生坯加工的陶瓷部件中除去。
27.如权利要求18-26中任一项所述的方法,其特征在于,所述生坯加工在环境压力、在空气下进行。
CN201280030007.7A 2011-06-01 2012-05-31 陶瓷颗粒混合物,以及从这种混合物制备陶瓷部件的方法 Active CN103619778B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11168493.2 2011-06-01
EP11168493 2011-06-01
PCT/EP2012/060261 WO2012164025A1 (fr) 2011-06-01 2012-05-31 Mélange céramique de particules et procédé de fabrication de pièces céramiques à partir d'un tel mélange

Publications (2)

Publication Number Publication Date
CN103619778A true CN103619778A (zh) 2014-03-05
CN103619778B CN103619778B (zh) 2016-06-15

Family

ID=44872649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280030007.7A Active CN103619778B (zh) 2011-06-01 2012-05-31 陶瓷颗粒混合物,以及从这种混合物制备陶瓷部件的方法

Country Status (14)

Country Link
US (1) US9115034B2 (zh)
EP (1) EP2714621B8 (zh)
JP (1) JP6149332B2 (zh)
KR (1) KR101935446B1 (zh)
CN (1) CN103619778B (zh)
AU (1) AU2012264687B2 (zh)
BR (1) BR112013030870A2 (zh)
CA (1) CA2837659A1 (zh)
CH (1) CH706791B1 (zh)
EA (1) EA024987B8 (zh)
IL (1) IL229731A0 (zh)
MX (1) MX2013014073A (zh)
WO (1) WO2012164025A1 (zh)
ZA (1) ZA201309615B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190161A (zh) * 2014-09-12 2014-12-10 济南圣泉倍进陶瓷过滤器有限公司 包含石墨烯的熔融金属用陶瓷过滤器
CN107000249A (zh) * 2014-10-20 2017-08-01 知识产权控股有限责任公司 陶瓷预制件和方法
CN110357612A (zh) * 2019-07-30 2019-10-22 华东师范大学重庆研究院 一种石墨烯-ccto基陶瓷复合介电材料的制备方法
US10830296B2 (en) 2017-04-21 2020-11-10 Intellectual Property Holdings, Llc Ceramic preform and method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2784045A1 (en) 2013-03-29 2014-10-01 Osseomatrix Selective laser sintering/melting process
EP3100992A1 (en) * 2015-06-02 2016-12-07 Eoswiss Engineering Sarl Method of producing a light conversion object
JP6956489B2 (ja) * 2016-02-05 2021-11-02 一般財団法人ファインセラミックスセンター 焼結方法及び焼結物の製造方法
US11027454B2 (en) 2016-02-05 2021-06-08 Japan Fine Ceramics Center Method for producing ceramic sintered body, and method and device for producing ceramic molded body
KR20190136648A (ko) 2018-05-31 2019-12-10 비에스티 (주) 세라믹 소성체의 제조방법.
US11453618B2 (en) * 2018-11-06 2022-09-27 Utility Global, Inc. Ceramic sintering
CN109665825A (zh) * 2018-12-29 2019-04-23 厦门凯纳石墨烯技术股份有限公司 一种石墨烯复合氧化硅及其制备方法
CN110590382A (zh) * 2019-10-16 2019-12-20 林宗立 双镭射烧结陶瓷材料的方法及其烧结设备
CN113248234B (zh) * 2020-03-09 2022-05-13 西北工业大学 一种共晶陶瓷涂层及其制备方法
FR3130275B1 (fr) 2021-12-10 2024-04-05 Office National Detudes Rech Aerospatiales Procede de fabrication additive de piece ceramique oxyde
CN116854462B (zh) * 2023-07-27 2024-05-24 东莞市伟杰顺华触控技术有限公司 一种热敏电阻材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101045634A (zh) * 2006-03-31 2007-10-03 揖斐电株式会社 蜂窝结构体及其制造方法
CN101213156A (zh) * 2005-05-31 2008-07-02 康宁股份有限公司 包含成孔剂组合的形成钛酸铝陶瓷的批料混合物和生坯,以及它们的制造和烧制方法
CN101696114A (zh) * 2009-10-23 2010-04-21 中钢集团洛阳耐火材料研究院有限公司 轻质多孔油气井压裂支撑剂的制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964579A (ja) * 1982-10-05 1984-04-12 日産自動車株式会社 粉末成形体の加工方法
US4650619A (en) * 1983-12-29 1987-03-17 Toshiba Ceramics Co., Ltd. Method of machining a ceramic member
US5147830A (en) * 1989-10-23 1992-09-15 Magneco/Metrel, Inc. Composition and method for manufacturing steel-containment equipment
US5286685A (en) * 1990-10-24 1994-02-15 Savoie Refractaires Refractory materials consisting of grains bonded by a binding phase based on aluminum nitride containing boron nitride and/or graphite particles and process for their production
JPH0674808B2 (ja) * 1990-11-30 1994-09-21 株式会社荏原製作所 セラミックス製動圧軸受の溝加工方法
JP2881542B2 (ja) * 1993-09-30 1999-04-12 太陽誘電株式会社 レーザ加工用セラミックグリーンシート及び積層セラミック電子部品の製造方法
JP3486666B2 (ja) * 1994-02-17 2004-01-13 独立行政法人産業技術総合研究所 セラミックスの加工方法
DE19501279A1 (de) 1995-01-18 1996-07-25 Blz Gmbh Verfahren zur abtragenden Bearbeitung von Werkstücken mit Laserstrahlung
JP2000289016A (ja) * 1999-04-08 2000-10-17 Murata Mfg Co Ltd セラミックグリーンシートの加工方法
US20070241303A1 (en) * 1999-08-31 2007-10-18 General Electric Company Thermally conductive composition and method for preparing the same
US20060163774A1 (en) * 2005-01-25 2006-07-27 Norbert Abels Methods for shaping green bodies and articles made by such methods
AU2006208555B2 (en) 2005-01-25 2011-11-03 Ormco Corporation Methods for shaping green bodies and articles made by such methods
JP4404862B2 (ja) * 2006-02-06 2010-01-27 中央精機株式会社 複合材用プリフォーム及びその製造方法
US7605343B2 (en) 2006-05-24 2009-10-20 Electro Scientific Industries, Inc. Micromachining with short-pulsed, solid-state UV laser
US7713897B2 (en) * 2007-02-27 2010-05-11 Corning Incorporated Ceramic materials for 4-way and NOx adsorber and method for making same
US20110215076A1 (en) 2008-11-13 2011-09-08 Qinetiq Limited Laser ablation technique
JP5409117B2 (ja) * 2009-05-26 2014-02-05 京セラ株式会社 セラミックグリーンシートおよびセラミック多層基板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101213156A (zh) * 2005-05-31 2008-07-02 康宁股份有限公司 包含成孔剂组合的形成钛酸铝陶瓷的批料混合物和生坯,以及它们的制造和烧制方法
CN101045634A (zh) * 2006-03-31 2007-10-03 揖斐电株式会社 蜂窝结构体及其制造方法
CN101696114A (zh) * 2009-10-23 2010-04-21 中钢集团洛阳耐火材料研究院有限公司 轻质多孔油气井压裂支撑剂的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190161A (zh) * 2014-09-12 2014-12-10 济南圣泉倍进陶瓷过滤器有限公司 包含石墨烯的熔融金属用陶瓷过滤器
CN104190161B (zh) * 2014-09-12 2016-05-25 济南圣泉倍进陶瓷过滤器有限公司 包含石墨烯的熔融金属用陶瓷过滤器
CN107000249A (zh) * 2014-10-20 2017-08-01 知识产权控股有限责任公司 陶瓷预制件和方法
US10830296B2 (en) 2017-04-21 2020-11-10 Intellectual Property Holdings, Llc Ceramic preform and method
CN110357612A (zh) * 2019-07-30 2019-10-22 华东师范大学重庆研究院 一种石墨烯-ccto基陶瓷复合介电材料的制备方法

Also Published As

Publication number Publication date
US20140179511A1 (en) 2014-06-26
WO2012164025A1 (fr) 2012-12-06
EA024987B1 (ru) 2016-11-30
AU2012264687B2 (en) 2016-05-26
EA201391654A1 (ru) 2014-03-31
CN103619778B (zh) 2016-06-15
IL229731A0 (en) 2014-01-30
CA2837659A1 (en) 2012-12-06
EP2714621B1 (fr) 2018-11-14
BR112013030870A2 (pt) 2017-02-21
ZA201309615B (en) 2015-04-29
JP6149332B2 (ja) 2017-06-21
EA024987B8 (ru) 2017-03-31
KR20140046422A (ko) 2014-04-18
EP2714621B8 (fr) 2019-03-06
CH706791B1 (fr) 2016-10-31
US9115034B2 (en) 2015-08-25
MX2013014073A (es) 2014-03-21
AU2012264687A1 (en) 2014-01-16
JP2014516000A (ja) 2014-07-07
EP2714621A1 (fr) 2014-04-09
NZ618857A (en) 2016-03-31
KR101935446B1 (ko) 2019-01-04

Similar Documents

Publication Publication Date Title
CN103619778B (zh) 陶瓷颗粒混合物,以及从这种混合物制备陶瓷部件的方法
US9186742B2 (en) Microwave brazing process and assemblies and materials therefor
US6919103B2 (en) Surface protection of porous ceramic bodies
WO2016207241A1 (de) Verfahren zur laserinduziert additiven erzeugung eines grünkörpers mittels schlickerguss
US20100119706A1 (en) Method for the production of an abradable coating
CN113165207B (zh) 陶瓷制品的制造方法及陶瓷制品
CN115724663A (zh) 一种全3d打印碳化硅陶瓷光学部件及其制备方法
CN108290216A (zh) 3d打印用粉末及3d打印方法
TWI546272B (zh) 陶瓷粉體與其形成方法及雷射燒結成型方法
CN111689764B (zh) 一种低成本激光选区熔化用陶瓷粉末制备及其离焦成形方法
EP4112585A1 (en) Method for manufacturing sintered body
KR20170130567A (ko) Max 상으로부터 부품을 제조하는 방법
FR3051186A1 (fr) Procede de fabrication d&#39;une poudre metal-ceramique appropriee pour la fabrication d&#39;une piece de ceramique dure et procede de fabrication correspondant
Kasai et al. Laser‐sintered barium titanate
JP2013001614A (ja) 多孔質発熱体
JP6956489B2 (ja) 焼結方法及び焼結物の製造方法
NZ618857B2 (en) Ceramic particle mixture, and method for manufacturing ceramic parts from such a mixture
JP2021070607A (ja) セラミックス焼結体の製造方法
Zhang et al. Picosecond laser machining of deep holes in silicon infiltrated silicon carbide ceramics
Ivanov et al. Determination of the optimal mode of laser melting with surface morphology analysis and identification of microstructural defects for created SLM 3D printing parts made of alumina and zirconia stabilized by Yttria
Lee et al. Ceramic to metal joining by using 1064 nm pulsed and CW laser energy source
Shukla et al. Advances in Laser Surface Treatment of Engineering Ceramics
US20220219230A1 (en) Powder for laser sintering, and use
CN108285320B (zh) 一种用于3d打印的自发热固化陶瓷浆料及其制备方法
CN117548691A (zh) 一种增材制造多孔材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: FIB KNOWLEDGE SERVICES CO., LTD.

Free format text: FORMER OWNER: CENTRE DE RECHERCHE DE L'INDUSTRIE BELGE DE LA CERAMIQUE

Effective date: 20140707

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20140707

Address after: Luxemburg Luxemburg

Applicant after: FIB Knowledge Service Co., Ltd.

Address before: Mons, Belgium

Applicant before: CT DE RECH DE L IND BELGE DE LA CERAMIQUE

C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20170324

Address after: Mons, Belgium

Patentee after: Industrial Research Center of Belgian ceramics

Address before: Luxemburg Luxemburg

Patentee before: FIB Knowledge Service Co., Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20181112

Address after: Framery, Belgium

Patentee after: Ott Co., Ltd.

Address before: Mons, Belgium

Patentee before: Industrial Research Center of Belgian ceramics