CN103579614B - 原位合成的Fe-Fe3O4复合的锂离子电池负极材料的制备方法 - Google Patents

原位合成的Fe-Fe3O4复合的锂离子电池负极材料的制备方法 Download PDF

Info

Publication number
CN103579614B
CN103579614B CN201310563669.7A CN201310563669A CN103579614B CN 103579614 B CN103579614 B CN 103579614B CN 201310563669 A CN201310563669 A CN 201310563669A CN 103579614 B CN103579614 B CN 103579614B
Authority
CN
China
Prior art keywords
electrode
lithium ion
ion battery
preparation
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310563669.7A
Other languages
English (en)
Other versions
CN103579614A (zh
Inventor
曹殿学
杨帆
程魁
肖雪
王贵领
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanhai Innovation And Development Base Of Sanya Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201310563669.7A priority Critical patent/CN103579614B/zh
Publication of CN103579614A publication Critical patent/CN103579614A/zh
Application granted granted Critical
Publication of CN103579614B publication Critical patent/CN103579614B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供的是原位合成的Fe-Fe3O4复合的锂离子电池负极材料的制备方法。以具有三维立体开放结构的纳米阵列(CTiO2、CTiC等纳米线阵列)为基体,以Fe盐溶液为沉积母液,利用恒电流、恒电势、循环伏安、以及脉冲方波伏安等电沉积技术,将金属Fe薄膜沉积在的基体上,然后将其放入生长溶液中进行原位生长一段时间,最后通过在空气中煅烧形成Fe-Fe3O4复合的锂离子电池负极材料。本发明能制备出比容量高、倍率性能大、循环性能好的锂离子电池负极。由于电极的结构是三维立体结构可以使活性物质充分与电解液接触,有效地增加了电子/离子的传递。

Description

原位合成的Fe-Fe3O4复合的锂离子电池负极材料的制备方法
技术领域
本发明涉及的是一种锂离子电池负极材料的制备方法。
背景技术
随着全球经济的快速发展,化石燃料的耗尽以及越来越严重的环境问题,对于有效,清洁和可持续发展的清洁能源越来越为迫切。近年来,锂离子(Lithium ion battery)吸引了大量的关注,主要是由于他们的高功率密度大,生命周期长,能够弥补传统介电电容器(具有高功率输出)容量小和电池、燃料电池(具有高能量储存)功率密度低的缺点。一般来讲,锂离子电池的负极材料是近年研究的热点,也是影响锂离子电池发展的重要因素。锂离子电池负极材料应具有的基本条件,主要有以下方面:(1)锂在该材料的嵌入电位比较低,尽可能接近金属锂的电位;(2)嵌入化合物具有较好的电子导电率和离子导电率,锂离子在材料内部以及表面的扩散速率均较大;(3)该材料能与电解液具有比较好的兼容性,同时在表面形成稳定的固体电解质膜(SEI膜,Solid Electrolyte Interface);(4)在锂离子的嵌入与脱出中,主体材料的体积和结构变化均比较小,同时锂离子的嵌入与脱出容量比较大;(5)该材料价廉,对环境无污染。传统的锂离子电池电极的制备方法,是将活性物质粉末与粘结剂混合成糊状,然后涂覆在基体上(铝箔、铜箔),这种方法制备的电极由于粘结剂的存在会导致较低的导电性,而且部分活性物质不能与电解液接触从而成为“死面积”。为了解决这个问题,近年来,具有三维立体结构的纳米材料作为锂离子电池的电极引起了广泛的研究。这种结构的电极可以使活性物质充分的接触电解液,并且一些特殊的纳米形貌也可以增加电极表面积,从而促进电荷的传递,利于能量的储存。目前处于研究中的负极材料主要有:碳材料、过渡金属氧化物、硅基材料、锡基材料等。在这些可以应用的锂离子电池负极的材料中,金属氧化物(如Co3O4、MnO2、NiO、Fe3O4等)由于比传统的含碳材料具有较高的比容量(是碳材料的2-3倍)得到了广泛的研究。在这些金属氧化物中,以Fe3O4为负极材料的锂离子电池理论比容量可以达到926mA hg-1,并且其低毒,贮量丰富,与其他含有钒,钴或者铁的材料相比具有较高的安全性。它的密度为5.17g cm-3,远远高于碳材料(2.268g cm-3),这就意味着它的体积能量密度是碳材料的很多倍。可参阅A.Hu,X.Chen,Y.Tang,Q.Tang,L.Yang,S.Zhang,Self-assembly of Fe3O4nanorods on graphene for lithium ion batteries with high rate capacity and cycle stability.Electrochemistry Communication,28(2013)139-142.以及M.Zhang,X.Yin,Z.Du,S.Liu,L.Chen,Q.Li,H.Jin,K.Peng,T.Wang,Fe3O4dendrites reduced by carbon-coatings as high reversible capacity anodes for lithium ion batteries,Solid State Sciences,12(2010) 2024-2029。
发明内容
本发明的目的在于提供一种容量高、倍率性能大、循环性能好的原位合成的Fe-Fe3O4复合的锂离子电池负极材料的制备方法。
本发明的目的是这样实现的:
(1)将Fe的盐与三乙醇胺充分溶解在超纯水中,磁力搅拌15min,使Fe2+在溶液中的浓度为0.05mol·L-1~0.5mol·L-1,三乙醇胺在溶液中的浓度为0.1mol·L-1~2.0mol·L-1
(2)以CTiO2或CTiC纳米线阵列为工作电极(代表“包覆”),铂电极为对电极,饱和甘汞电极为参比电极组成三电极体系;恒电流电沉积,电流为-0.005A cm-2~-2.5A cm-2;恒电势电沉积电压为-0.01V~-3V;脉冲电势电沉积上限电压为0V~1V,下限电压为-0.5~5V,频率为10Hz~100Hz;电沉积时间为5min~20min;
(3)将沉积好金属Fe膜的工作电极放入以乙醇-水为混合溶剂,草酸为溶质的溶液中进行原位生长,其中乙醇与水的体积比为95:5、7:3或1:1,草酸的浓度为0.1mol·L-1~1.0mol·L-1,生长时间为1h~5h,生长温度为25℃~45℃;
(4)最后将步骤(3)所制备的电极在空气中煅烧,煅烧温度为250℃~400℃,煅烧时间为1h~5h。
所述的Fe的盐为FeSO4、FeCl2或Fe(NO3)2
本发明是以具有三维立体开放结构的纳米阵列(CTiO2、CTiC等纳米线阵列;代表''包覆'')为基体,以Fe盐溶液为沉积母液,利用恒电流、恒电势、循环伏安、以及脉冲方波伏安等电沉积技术,将金属Fe薄膜沉积在的基体上,然后将其放入生长溶液中进行原位生长一段时间,最后通过在空气中煅烧形成Fe-Fe3O4复合的锂离子电池负极材料。
本发明的优点是:基体采用具有三维立体结构的纳米阵列(CTiO2、CTiC等纳米线阵列),将Fe-Fe3O4通过原位技术直接生长在基体上,制备出比容量高、倍率性能大、循环性能好的锂离子电池负极。由于电极的结构是三维立体结构可以使活性物质充分与电解液接触,有效地增加了电子/离子的传递。此外,由于制备方法简单,可操作性强,且原料来源广泛,可广泛地应用于锂离子电池负极材料的制备。
附图说明
图1给出的是按照本发明具体实施例1的方法制备的Fe-Fe3O4/CTiC电极的不同倍率性能曲线。
图2给出的是按照本发明具体实施例1制备的Fe-Fe3O4/CTiC电极的循环稳定性图。
具体实施方式
为了更好地说明本发明的效果,下面以具体实例加以说明。
实施例1
将CTiC纳米线阵列作为基体在0.25mol L-1FeSO4+70mL L-1triethanolamine沉积液中,恒定电流-0.010A cm-2,沉积10min,得到金属Fe膜。在含有0.3mol L-1H2C2O4,5%H2O的混合溶液中浸泡3h,浸泡温度为45℃。然后将制备的样品放入马弗炉中,空气中煅烧2h,煅烧温度为400℃,得到最终的Fe-Fe3O4/CTiC电极。组装成扣式锂离子电池进行倍率性能测试。结果表明,在1C充放电电流下,比容量高达1080mAh g-1
实施例2
将CTiO2纳米线阵列作为基体在0.1mol L-1FeSO4+35mL L-1triethanolamine沉积液中,恒定电压-1V,沉积5min,得到金属Fe膜。在含有0.3mol L-1H2C2O4,50%H2O的混合溶液中浸泡1.5h,浸泡温度为25℃。然后将制备的样品放入马弗炉中,空气中煅烧3h,煅烧温度为350℃,得到最终的Fe-Fe3O4/CTiO2电极。组装成扣式锂离子电池进行倍率性能测试。结果表明,在2C充放电电流下,比容量可达780mAh g-1
实施例3
将CTiC纳米线阵列作为基体在0.5mol L-1FeSO4+70mL L-1triethanolamine沉积液中,恒定电压-0.2V,沉积15min,得到金属Fe膜。在含有0.5mol L-1H2C2O4,70%H2O的混合溶液中浸泡2h,浸泡温度为35℃。然后将制备的样品放入马弗炉中,空气中煅烧2h,煅烧温度为400℃,得到最终的Fe-Fe3O4/CTiC电极。组装成扣式锂离子电池进行倍率性能测试。结果表明,在5C充放电电流下,比容量高达540mAh g-1
实施例4
将CTiO2纳米线阵列作为基体在0.6mol L-1MnSO4+70mL L-1triethanolamine沉积液中,进行脉冲电压电沉积,其中上限电压为0V,下限电压为-1V,频率为100Hz,沉积20min,得到金属Fe膜。在含有0.7mol L-1H2C2O4,10%H2O的混合溶液中浸泡2.5h,浸泡温度为45℃。然后将制备的样品放入马弗炉中,空气中煅烧2h,煅烧温度为400℃,得到最终的Fe-Fe3O4/CTiO2电极。组装成扣式锂离子电池进行倍率性能测试。结果表明,在1C充放电电流下,比容量高达840mAh g-1

Claims (2)

1.一种原位合成的Fe-Fe3O4复合的锂离子电池负极材料的制备方法,其特征是:
(1)将Fe的盐与三乙醇胺充分溶解在超纯水中,磁力搅拌15min,使Fe2+在溶液中的浓度为0.05mol·L-1~0.5mol·L-1,三乙醇胺在溶液中的浓度为0.1mol·L-1~2.0mol·L-1
(2)以C包覆TiO2或C包覆TiC纳米线阵列为工作电极,铂电极为对电极,饱和甘汞电极为参比电极组成三电极体系;采用下列方式之一进行电沉积,恒电流电沉积,电流为-0.005A cm-2~-2.5A cm-2;恒电势电沉积电压为-0.01V~-3V;脉冲电势电沉积上限电压为0V,下限电压为-1V,频率为10Hz~100Hz;电沉积时间为5min~20min;
(3)将沉积好金属Fe膜的工作电极放入以乙醇-水为混合溶剂,草酸为溶质的溶液中进行原位生长,其中乙醇与水的体积比为95:5、7:3或1:1,草酸的浓度为0.1mol·L-1~1.0mol·L-1,生长时间为1h~5h,生长温度为25℃~45℃;
(4)最后将步骤(3)所制备的电极在空气中煅烧,煅烧温度为250℃~400℃,煅烧时间为1h~5h。
2.根据权利要求1所述的原位合成的Fe-Fe3O4复合的锂离子电池负极材料的制备方法,其特征是:所述的Fe的盐为FeSO4、FeCl2或Fe(NO3)2
CN201310563669.7A 2013-11-14 2013-11-14 原位合成的Fe-Fe3O4复合的锂离子电池负极材料的制备方法 Expired - Fee Related CN103579614B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310563669.7A CN103579614B (zh) 2013-11-14 2013-11-14 原位合成的Fe-Fe3O4复合的锂离子电池负极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310563669.7A CN103579614B (zh) 2013-11-14 2013-11-14 原位合成的Fe-Fe3O4复合的锂离子电池负极材料的制备方法

Publications (2)

Publication Number Publication Date
CN103579614A CN103579614A (zh) 2014-02-12
CN103579614B true CN103579614B (zh) 2015-06-17

Family

ID=50050926

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310563669.7A Expired - Fee Related CN103579614B (zh) 2013-11-14 2013-11-14 原位合成的Fe-Fe3O4复合的锂离子电池负极材料的制备方法

Country Status (1)

Country Link
CN (1) CN103579614B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244435A (zh) * 2018-11-19 2019-01-18 肇庆市华师大光电产业研究院 一种锂硫电池正极材料、制备方法及应用
CN110492087A (zh) * 2019-09-10 2019-11-22 中南大学 一种原位包覆锂离子电池正极材料的改性方法
CN111733430B (zh) * 2020-07-31 2022-08-05 北京化工大学 一种Fe-Fe3O4复合阳极及其电解制备高铁酸盐的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101280442A (zh) * 2008-05-26 2008-10-08 武汉理工大学 一种调制结构的一维Fe3O4纳米针材料的制备方法
CN101645505A (zh) * 2008-11-03 2010-02-10 成都和能科技有限公司 高容量铁电极材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101280442A (zh) * 2008-05-26 2008-10-08 武汉理工大学 一种调制结构的一维Fe3O4纳米针材料的制备方法
CN101645505A (zh) * 2008-11-03 2010-02-10 成都和能科技有限公司 高容量铁电极材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Magnetic structure of Fe-Fe oxide nanoparticles made by electrodeposition ";Santosh Kumar et al;《International Journal of Engineering,Science and Technology》;20101231;第2卷;全文 *

Also Published As

Publication number Publication date
CN103579614A (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
CN103928672B (zh) 一种锂离子电池用正极活性物质及其制备方法
CN109728291A (zh) 一种高比能锂金属电池
CN102055012B (zh) 一种锂离子电池及其制备方法
CN107732248A (zh) 锂离子电池负极的mof材料及其应用
CN102916195B (zh) 一种石墨烯包覆氧化铜复合负极材料及其制备方法
CN106252663B (zh) 金属有机骨架材料CuBDC纳米片及其制备方法和应用
CN107293733A (zh) 一种双离子电池
CN102931403B (zh) 一种磷酸钛镁在可充镁电池正极材料中的应用方法
CN104538207A (zh) 铌酸钛/碳纳米管复合材料的制备方法及以该材料为负极的锂离子电容器
WO2020114050A1 (zh) 金属锂支撑体及其制备方法与应用
Deng et al. Self-supported Ni3S2/NiCo2O4 core-shell flakes-arrays on Ni foam for enhanced charge storage properties
CN103094627A (zh) 电池
CN105489841A (zh) 一种用于锂离子电池电极片预掺杂锂的方法
CN103956483A (zh) 钴酸锌/氧化镍核壳纳米线阵列的制备方法和应用
CN106129361B (zh) 一种锂离子电池负极活性材料及制备方法
Tan et al. Fabrication of an all-solid-state Zn-air battery using electroplated Zn on carbon paper and KOH-ZrO2 solid electrolyte
CN103094583A (zh) 电池及电池集流体的处理方法
CN105489949B (zh) 一种基于嵌钠正极材料的混合水溶液电池制备方法
CN103346027B (zh) 一种基于纳米多孔钛骨架的超级电容器材料的制备工艺
CN109713295A (zh) 一种钾离子电池正极材料的制备方法和应用
CN103579614B (zh) 原位合成的Fe-Fe3O4复合的锂离子电池负极材料的制备方法
CN103515109A (zh) 碳包覆二氧化钛负载镍和氧化镍复合材料的超级电容器电极材料的制备方法
CN109698303A (zh) 一种电子导电材料及其制备和在锂硫电池涂层隔膜中的应用
CN109037595A (zh) 锂负极保护层及其制备方法和应用
Liu et al. A zn ion hybrid capacitor with enhanced energy density for anode-free

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201126

Address after: Area A129, 4th floor, building 4, Baitai Industrial Park, Yazhou Bay science and Technology City, Yazhou District, Sanya City, Hainan Province, 572024

Patentee after: Nanhai innovation and development base of Sanya Harbin Engineering University

Address before: 150001 Heilongjiang, Nangang District, Nantong street,, Harbin Engineering University, Department of Intellectual Property Office

Patentee before: HARBIN ENGINEERING University

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150617

Termination date: 20211114

CF01 Termination of patent right due to non-payment of annual fee