CN103545239B - 一种基于薄膜型的外延片剥离工艺 - Google Patents

一种基于薄膜型的外延片剥离工艺 Download PDF

Info

Publication number
CN103545239B
CN103545239B CN201310421391.XA CN201310421391A CN103545239B CN 103545239 B CN103545239 B CN 103545239B CN 201310421391 A CN201310421391 A CN 201310421391A CN 103545239 B CN103545239 B CN 103545239B
Authority
CN
China
Prior art keywords
layer
epitaxial
metal
substrate
stripped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310421391.XA
Other languages
English (en)
Other versions
CN103545239A (zh
Inventor
冯巍
郭帅
张�杰
蒋建
杜全刚
陈依新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinlei semiconductor technology (Suzhou) Co.,Ltd.
Original Assignee
New Bright Semiconductor Technology (suzhou) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Bright Semiconductor Technology (suzhou) Co Ltd filed Critical New Bright Semiconductor Technology (suzhou) Co Ltd
Priority to CN201310421391.XA priority Critical patent/CN103545239B/zh
Publication of CN103545239A publication Critical patent/CN103545239A/zh
Application granted granted Critical
Publication of CN103545239B publication Critical patent/CN103545239B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • H01L21/7813Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate leaving a reusable substrate, e.g. epitaxial lift off
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66242Heterojunction transistors [HBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/6631Bipolar junction transistors [BJT] with an active layer made of a group 13/15 material
    • H01L29/66318Heterojunction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

一种基于薄膜型的外延片剥离工艺属于半导体器件制造领域。先在衬底(600)上依次外延生长缓冲层(500)、牺牲层(400)和待剥离外延层(300),再利用溅射或者电子束蒸发制备金属种子层(200),然后电镀制备具有内部应力的金属支撑层(100)。在腐蚀牺牲层(400)进行ELO工艺过程中,金属支撑层由于内部应力作用,带动外延层一起向背离衬底的方向卷曲,从而形成有效的腐蚀通道,增大剥离速率,实现对2寸以及更大尺寸外延片的剥离。在外延层完全脱离衬底后,由于金属支撑层的支撑作用,可以防止外延薄膜破裂,同时方便对其进行移动和后续工艺操作。本发明可以同时对多个外延片进行剥离,外延剥离后留下的衬底在进行表面清洁处理后可重复使用,减少污染。

Description

一种基于薄膜型的外延片剥离工艺
技术领域
一种基于薄膜型的外延片剥离(ELO,Epitaxial lift-off)工艺,属于半导体器件制造领域,涉及一种新型的半导体薄膜剥离结构及剥离工艺。
背景技术
对于常规的半导体器件,器件工作区主要集中在表面几个甚至十几个微米以内的范围,而为了保证制造半导体器件过程中的可操作性,制备器件的晶圆衬底厚度通常为约300μm至约700μm。对于某些结构的发光二极管(LED)、半导体激光器及其他器件,为了减少能量损耗及增加器件导热性能,通常还要在器件制备完成前将衬底研磨减薄至100μm以下。而经过机械研磨后晶圆衬底厚度的均匀性很难达到很高的要求。为了减少对晶圆衬底的浪费,减少对环境的污染,降低成本,从上世纪80年代开始至今,逐渐开发出了一种外延片剥离技术,该技术可以将器件工作区从衬底上剥离下来,制备成薄膜器件,同时剥离后的衬底可以重复被使用。
目前,对于光伏器件、LED、半导体激光器以及其它电子器件的制备过程中,为了获得性能良好的薄膜器件,通常采用在衬底材料上先外延生长牺牲层后,再外延生长器件结构,然后通过刻蚀去除牺牲层,从而获得完整的半导体薄膜。这种用于制备半导体薄膜器件的技术被称为外延片剥离(ELO)工艺,剥离获得的半导体薄膜称为ELO膜。
在ELO工艺中,牺牲层一般非常薄(5nm~100nm),通常采用化学湿法腐蚀的方法进行去除。在进行腐蚀的过程中,随着化学反应的进行,腐蚀液和牺牲层界面间逐渐形成了非常窄的腐蚀通道。由于该通道的尺寸限制,新鲜的腐蚀液逐渐很难到达腐蚀界面,同时反应的生成物也很难被及时移除,从而腐蚀速率随之降低,直至停止。为了提高反应腐蚀速率,增大可剥离外延片的尺寸,其中一个行之有效的方法就是随着剥离的进行,使边界附近已经与衬底脱离的ELO膜反生几何形变,增大腐蚀液和牺牲层间腐蚀通道的几何尺寸,从而促进腐蚀的进行。通常采用的方法是使ELO膜向背离衬底的方向卷曲。
由于ELO膜通常非常薄(1μm~10μm),并且常常含有脆性材料,非常容易破碎,因此在剥离过程中,ELO膜很容易产生裂纹,同时剥离后很难直接对ELO膜进行移动和其他工艺操作。因此,可以通过在剥离前对ELO膜表面添加支撑层来保证ELO膜的完整性和可操作性。
目前对于ELO膜的剥离,可以将黑胶粘附在膜层表面,黑胶既可以作为支撑层材料,同时在特定工艺下,黑胶可以产生压缩应力,从而带动ELO膜发生卷曲。但是该方法由于黑胶材料本身的应力限制,通常只能够剥离尺寸较小的ELO膜,很难实现对于2寸甚至更大尺寸外延片的剥离。除此以外,可以通过在膜层表面粘附软性支撑层,如塑料材料、聚合物材料等,再利用机械外力使支撑材料发生弯曲,从而带动ELO膜形变。还可以通过在膜层表面电镀磁性材料,再通过外加磁场使支撑层形变。然而,后两种方法尽管可以剥离大面积外延片,但是在一定的成本控制下,很难实现多片同时剥离,从而很难应用于生产中。
发明内容
本发明的目的就是要开发一种既可以对2寸及更大尺寸外延片进行剥离,又可以在较低的成本下实现多片同时剥离的ELO方法,使其可以应用于大批量生产中。
本发明中采用具有内应力的金属支撑层材料,依靠在ELO过程中金属支撑层材料卷曲带动外延层形变,促进对牺牲层的腐蚀,实现ELO膜的剥离。将多片带有支撑层材料的外延片一起放置于片槽Cassette中,可以实现多片外延片的同时批量剥离。
一种基于薄膜型的外延片剥离工艺,其特征在于:工艺中涉及器件结构从上至下依次为金属支撑层100、金属种子层200、待剥离外延层300、牺牲层400、缓冲层500、衬底600,金属支撑层100利用电镀工艺制备,电镀金属是铜、镍、铬、金、锡、银或锌,镀层是一种或者多种金属,或者是一层或者多层金属;
电镀过程分两步进行,首先在低电流密度条件下进行电镀,再在高电流密度条件下进行电镀;低电流密度范围是2mA/cm2至15mA/cm2,电镀厚度为5μm-30μm;高电流密度范围是80mA/cm2至160mA/cm2,电镀厚度为5μm-30μm;。
该方法应用于2寸、4寸以及6寸外延片进行外延剥离工艺。
腐蚀剥离溶液采用HF溶液,质量浓度采用5%至30%,温度为20℃至65℃。将多个外延片700放置于一个Cassette800中进行同时剥离。
本发明中待剥离器件组成部分包括:从上而下依次为金属支撑层100、金属种子层200、待剥离外延层300、牺牲层400、缓冲层500、衬底600。由于各层之间粘附紧密,并且金属支撑层100具有内应力,可以在对牺牲层400的腐蚀过程中带动金属种子层200和待剥离外延层300向背离衬底600的方向卷曲。
本发明中,首先利用金属氧化物化学气相沉积MOCVD或者分子束外延MBE依次在衬底600上外延生长缓冲层500、牺牲层400、待剥离外延层300,再利用溅射或者电子束蒸发生长金属种子层200,最后利用电镀工艺生长金属支撑层100。金属种子层200中金属的选取由待剥离外延层300的表面材料而定,该金属层需与掺杂的外延层表面形成良好的欧姆接触。金属支撑层100是利用电镀工艺在金属种子层200上制备获得,该支撑层具有内部应力。
本发明中,金属支撑层100的电镀金属可以是铜、镍、铬、金、锡、银、锌,镀层可以是一种或者多种金属,也可以是一层或者多层金属。通过设计电镀工艺,可以调节金属支撑层100的内应力属性及大小,从而实现调节金属支撑层100在自由状态下的卷曲方向和卷曲后的曲率半径。
本发明中,金属支撑层100的厚度可以从约10μm至约60μm,例如20μm。
本发明中,利用电镀的金属支撑层100可以向背离衬底600方向卷曲的特性来实现ELO工艺。由于各层之间粘附紧密,在ELO工艺中,在金属支撑层100的内应力作用下,带动外延片边界处已经与衬底600分离的ELO膜产生有效卷曲,增大腐蚀液与未腐蚀的牺牲层间腐蚀通道的尺寸,从而有效提高腐蚀牺牲层的速率。同时,金属支撑层100为ELO膜提供了良好的支撑作用,有效防止ELO膜的破裂,方便移动ELO膜和对ELO膜进行后续工艺操作。
本发明中的ELO工艺可以应用于2寸、4寸以及6寸外延片的外延剥离,并且可剥离外延片尺寸不局限于此。
本发明中对多片外延片进行同时剥离时,可以将多片已电镀外延片700间隔放置于Cassette800中,再将Cassette800连同外延片700一起放置于腐蚀液中进行腐蚀剥离。
本发明的主要优越性:
1、ELO膜的金属支撑层100采用电镀工艺制备。在半导体制造领域中,电镀金属工艺已经非常成熟,电镀层的粘附性非常好,并且成本低廉。对于2寸及更大尺寸外延片的电镀,电镀金属层厚度的可控性强,并且厚度均匀性能够达到很高的要求。
2、通过优化设计金属支撑层100的电镀工艺中电流密度大小和厚度,可以有效调节金属支撑层100的内应力大小,以满足ELO工艺对于待剥离外延层300卷曲曲率的需求。电镀中电流密度的调节操作简单,厚度由电镀时间控制。与传统黑胶ELO工艺相比,大大增加了可剥离外延片尺寸,目前已经实现了对4寸外延片和6寸外延片的ELO剥离,可剥离外延片尺寸并不局限于此。
3、采用金属支撑层100的内应力作用于待剥离外延层300的剥离过程中,从而替代了传统ELO工艺中所需的机械外力或者外界磁场力,从而简化了剥离装置,降低了生产成本。
4、金属种子层200和待剥离外延层300间形成良好的欧姆接触,并且金属支撑层100也为金属材料,因此在对ELO膜完成器件工艺操作后,即可将金属支撑层100作为器件电极,而无需去除支撑层后重新制备电极。
5、采用多个外延片700以Cassette800为单元进行同时剥离的方法,大大提高了ELO膜的生产效率。
附图说明
图1:电镀完成后的待剥离外延片结构示意图
图2:电镀金属支撑层100在自由状态下的卷曲形貌示意图
图3:ELO过程示意图,随着牺牲层400的腐蚀,金属支撑层100、金属种子层200和待剥离外延层300向背离衬底600的方向卷曲
图4:剥离后粘附有金属支撑层100和金属种子层200的ELO膜示意图
图5:多片外延片700在Cassette800中同时腐蚀示意图
图6:异质结双极晶体管ELO工艺结构示意图
图7:太阳能电池ELO工艺结构示意图
图8:发光二极管LEDELO工艺结构示意图
具体实施方式
实施例1
如图6所示,以GaAs基异质结双极晶体管HBT的ELO技术为例。该待剥离器件由以下部分组成:金属支撑层100,金属种子层200,n-GaAs帽层301,n-AlGaAs发射极302,p-GaAs基极303,n型低掺杂GaAs集电极304,AlGaAs牺牲层400,n-GaAs缓冲层500,n-GaAs衬底600。具体制备及剥离过程如下:
1.在n型GaAs600衬底上用MOCVD依次外延n-GaAs缓冲层500,AlGaAs牺牲层400,n型低掺杂GaAs集电极304,p-GaAs基极303,n-AlGaAs发射极302,n-GaAs帽层301;
2.在帽层301上溅射一层AuGeNi金属层200,并退火合金;
3.在AuGeNi层200上电镀具有内应力的金属支撑层100。例如电镀厚度为20μm的铜金属层,采用酸式电镀铜工艺,依次用低电流密度如,电流密度4mA/cm2,电镀铜厚度10μm和高电流密度如,电流密度150mA/cm2,电镀铜厚度10μm进行电镀;
4.将电镀后的HBT外延片放置于Cassette中,并浸没于HF溶液中腐蚀牺牲层400,溶液浓度为20%;温度为60℃。对于4寸外延片,经过约40小时后即可完全剥离。
实施例2
如图7所示,以GaAs基太阳能电池的ELO技术为例。该待剥离器件由以下部分组成:金属支撑层100,金属种子层200,InGaAs基吸收区311,GaAs基吸收区312,AlGaInP基吸收区313,AlGaAs牺牲层400,GaAs缓冲层500,GaAs衬底600。具体制备及剥离过程如下:
1.在GaAs600衬底上用MOCVD依次外延GaAs缓冲层500,AlGaAs牺牲层400,AlGaInP基吸收区313,GaAs基吸收区312,InGaAs基吸收区311;
2.在InGaAs基吸收区311表面溅射欧姆接触金属层,并退火合金;
3.再电镀具有内应力的金属支撑层100。例如电镀厚度为10μm的镍金属层,先采用氨基磺酸镍电镀镍工艺在电流密度10mA/cm2条件下,电镀镍厚度5μm,再采用瓦特镍电镀工艺在电流密度100mA/cm2条件下,电镀镍厚度5μm;
4.将电镀后的太阳能电池外延片放置于Cassette中,并浸没于HF溶液中腐蚀牺牲层400,溶液浓度30%;温度60℃。对于4寸外延片,经过约65小时后即可完全剥离。
实施例3
如图8所示,以AlGaInP基LED的ELO技术为例。该待剥离器件由以下部分组成:
金属支撑层100,金属种子层200,p型电流扩展层321,p型限制层322,多量子阱发光区323,n型限制层324,AlGaAs牺牲层400,GaAs缓冲层500,GaAs衬底600。
具体制备及剥离过程如下:
1.在GaAs600衬底上用MOCVD依次外延GaAs缓冲层500,AlGaAs牺牲层400,n型限制层324,多量子阱发光区323,p型限制层322,p型电流扩展层321;
2.在p型电流扩展层321表面溅射AuZnAu金属层,并退火合金;
3.再电镀具有内应力的金属支撑层100。例如电镀总厚度为15μm的镍铜复合金属层,先采用氨基磺酸镍电镀镍工艺在电流密度10mA/cm2条件下,电镀镍厚度5μm,再采用酸式电镀铜工艺在电流密度150mA/cm2条件下,电镀铜厚度10μm;
4.将电镀后的LED外延片放置于Cassette中,并浸没于HF溶液中腐蚀牺牲层400,溶液浓度5%;温度可以为20℃。对于4寸外延片,经过约50小时后即可完全剥离。

Claims (2)

1.一种基于薄膜型的外延片剥离工艺,其特征在于:工艺中涉及器件结构从上至下依次为金属支撑层(100)、金属种子层(200)、待剥离外延层(300)、牺牲层(400)、缓冲层(500)、衬底(600),金属支撑层(100)利用电镀工艺制备,电镀金属是铜、镍、铬、金、锡、银或锌,镀层是一种或者多种金属,或者是一层或者多层金属;
并且金属支撑层具有内应力,在对牺牲层的腐蚀过程中带动金属种子层和待剥离外延层向背离衬底的方向卷曲;增大腐蚀液与未腐蚀的牺牲层间腐蚀通道的尺寸,提高腐蚀牺牲层的速率;
电镀过程分两步进行,首先在低电流密度条件下进行电镀,再在高电流密度条件下进行电镀;低电流密度范围是2mA/cm2至15mA/cm2,电镀厚度为5μm-30μm;高电流密度范围是80mA/cm2至160mA/cm2,电镀厚度为5μm-30μm;腐蚀剥离溶液采用HF溶液,质量浓度采用5%至30%,温度为20℃至65℃。
2.根据权利要求1所述的一种基于薄膜型的外延片剥离工艺,其特征在于,该方法应用于2寸、4寸或6寸外延片进行外延剥离工艺。
CN201310421391.XA 2013-09-17 2013-09-17 一种基于薄膜型的外延片剥离工艺 Active CN103545239B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310421391.XA CN103545239B (zh) 2013-09-17 2013-09-17 一种基于薄膜型的外延片剥离工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310421391.XA CN103545239B (zh) 2013-09-17 2013-09-17 一种基于薄膜型的外延片剥离工艺

Publications (2)

Publication Number Publication Date
CN103545239A CN103545239A (zh) 2014-01-29
CN103545239B true CN103545239B (zh) 2017-01-11

Family

ID=49968577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310421391.XA Active CN103545239B (zh) 2013-09-17 2013-09-17 一种基于薄膜型的外延片剥离工艺

Country Status (1)

Country Link
CN (1) CN103545239B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104217929A (zh) * 2014-10-11 2014-12-17 王金 一种外延片及其加工方法
CN104332542B (zh) * 2014-10-17 2017-04-26 厦门乾照光电股份有限公司 一种衬底可重复利用的外延结构制作方法
CN104591079B (zh) * 2014-12-04 2019-11-12 复旦大学 一种微米管道的加工方法
CN105470115B (zh) * 2015-12-08 2018-10-23 中国电子科技集团公司第十八研究所 一种将砷化镓外延层转移至金属柔性衬底的方法
CN106876254B (zh) * 2017-03-14 2019-05-28 京东方科技集团股份有限公司 阵列基板、显示装置、薄膜晶体管及膜层图形的制备方法
CN107424944B (zh) * 2017-06-28 2022-09-06 紫石能源有限公司 一种外延层剥离装置及剥离方法
CN108054226A (zh) * 2017-12-22 2018-05-18 苏州佳亿达电器有限公司 一种低工艺成本的薄膜太阳能电池柔性金属箔衬底
CN111211177A (zh) * 2018-11-22 2020-05-29 东泰高科装备科技有限公司 一种砷化镓电池外延结构及其制备方法
CN110676205B (zh) * 2019-09-17 2023-01-06 中国电子科技集团公司第十一研究所 芯片的衬底的多次使用方法及红外探测器
CN111180536B (zh) * 2020-01-03 2021-04-09 福州京东方光电科技有限公司 光电传感单元及其制备方法和光电传感器
CN113948593B (zh) * 2021-09-23 2022-09-09 中山德华芯片技术有限公司 一种太阳能电池背金结构及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1272684A (zh) * 1999-02-02 2000-11-08 佳能株式会社 衬底及其制造方法
WO2005014895A1 (en) * 2003-07-24 2005-02-17 S.O.I.Tec Silicon On Insulator Technologies A method of fabricating an epitaxially grown layer
CN102067335A (zh) * 2008-08-22 2011-05-18 晶能光电(江西)有限公司 一种在复合衬底上制备InGaAlN发光器件的方法
CN103137793A (zh) * 2011-11-25 2013-06-05 同方光电科技有限公司 一种采用多层介质膜反射的垂直结构发光二极管制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1272684A (zh) * 1999-02-02 2000-11-08 佳能株式会社 衬底及其制造方法
WO2005014895A1 (en) * 2003-07-24 2005-02-17 S.O.I.Tec Silicon On Insulator Technologies A method of fabricating an epitaxially grown layer
CN102067335A (zh) * 2008-08-22 2011-05-18 晶能光电(江西)有限公司 一种在复合衬底上制备InGaAlN发光器件的方法
CN103137793A (zh) * 2011-11-25 2013-06-05 同方光电科技有限公司 一种采用多层介质膜反射的垂直结构发光二极管制作方法

Also Published As

Publication number Publication date
CN103545239A (zh) 2014-01-29

Similar Documents

Publication Publication Date Title
CN103545239B (zh) 一种基于薄膜型的外延片剥离工艺
JP5576272B2 (ja) Iii−v化合物薄膜太陽電池
CN110783170B (zh) 一种半导体薄膜剥离及转移衬底的方法
CN103578978B (zh) 一种基于硅基键合材料的高压快恢复二极管制造方法
JP6640355B2 (ja) 2接合型薄膜ソーラーセルアセンブリおよびその製造方法
CN103633200B (zh) 利用硅衬底制备垂直结构氮化镓基发光二极管器件的方法
CN104409593B (zh) 一种制作氮化物外延层、衬底与器件晶圆的方法
CN112018033B (zh) 一种外延薄膜晶圆级剥离方法及其装置
CN107507892A (zh) 一种高发光效率的垂直结构led芯片及其制备方法
JP4518886B2 (ja) 半導体素子の製造方法
WO2015196767A1 (zh) 四结太阳能电池的制备方法
CN110620167B (zh) 一种基于大面积衬底剥离的深紫外led及其制备方法
CN108878604A (zh) 一种垂直结构发光二极管芯片的制作方法
CN102334203B (zh) 发光器件的制造方法
CN103066179B (zh) 蓝宝石衬底可自剥离的氮化镓薄膜制备用外延结构及方法
CN107731972A (zh) 一种长条阵列式纳米发光二极管及其制备方法
CN104465899A (zh) 一种led垂直结构的制备方法
CN101764174A (zh) 聚光多结砷化镓太阳电池的制造方法
CN106409958B (zh) 基于石墨衬底的倒装三结太阳电池及其制备方法
CN204118109U (zh) 一种新型复合透明电极的led芯片
CN102738292A (zh) 多结叠层电池及其制备方法
Chen et al. Fabrication of dicing-free vertical-structured high-power GaN-based light-emitting diodes with selective nickel electroplating and patterned laser liftoff techniques
CN106784108B (zh) 一种双结薄膜太阳能电池组件及其制作方法
CN110634992B (zh) 用于薄膜砷化镓太阳电池复合结构材料衬底的制备方法
CN207217574U (zh) 一种高发光效率的垂直结构led芯片

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: No.28 factory building, supporting industrial park, export processing zone, NO.666, Jianlin Road, high tech Zone, Suzhou City, Jiangsu Province

Patentee after: Xinlei semiconductor technology (Suzhou) Co.,Ltd.

Address before: 215151 plant D-1, export processing zone, No. 20, Datong Road, high tech Zone, Suzhou, Jiangsu Province

Patentee before: EPI SOLUTION TECHNOLOGY CO.,LTD.