CN112018033B - 一种外延薄膜晶圆级剥离方法及其装置 - Google Patents

一种外延薄膜晶圆级剥离方法及其装置 Download PDF

Info

Publication number
CN112018033B
CN112018033B CN202010815225.8A CN202010815225A CN112018033B CN 112018033 B CN112018033 B CN 112018033B CN 202010815225 A CN202010815225 A CN 202010815225A CN 112018033 B CN112018033 B CN 112018033B
Authority
CN
China
Prior art keywords
layer
epitaxial
substrate
wafer
stripping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010815225.8A
Other languages
English (en)
Other versions
CN112018033A (zh
Inventor
王幸福
董建奇
姜健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202010815225.8A priority Critical patent/CN112018033B/zh
Publication of CN112018033A publication Critical patent/CN112018033A/zh
Application granted granted Critical
Publication of CN112018033B publication Critical patent/CN112018033B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • H01L21/7813Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate leaving a reusable substrate, e.g. epitaxial lift off
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1628Solid materials characterised by a semiconducting matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/3013AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及外延薄膜晶圆级剥离方法及其装置,其包括使用外延方法外延生长未掺杂氮化镓层、重掺杂氮化镓牺牲层和目标层,结合特定方式的电化学剥离方法实现了晶圆级外延薄膜的完整剥离,并且脱离后的外延衬底能够循环使用,有效地降低氮化物的生长成本,实现绿色外延。使用该电化学剥离的方式,将外延薄膜完整剥离并能够转移至目标衬底上,既可实现Si基集成电路、柔性器件等的制备,又可以释放其生长过程中产生的固有内应力,提高器件整体的性能与用途。本发明的剥离方法操作简单,具有较高的可重复性,制备成本低,在氮化物光电器件的研制方面有着广泛的应用前景。

Description

一种外延薄膜晶圆级剥离方法及其装置
技术领域
本发明涉及薄膜电化学剥离领域,具体涉及一种外延薄膜晶圆级剥离方法及其装置。
背景技术
三五族氮化物作为第三代半导体材料的代表,具有较为突出的优势:禁带宽度大,耐高温、抗辐射、物理和化学性质稳定等,引起了广泛的研究与关注。比如:AlGaN/AlN/GaN由于存在较大的自发极化,会在异质结内表面形成二维电子气(2DEG),从而被广泛的应用于制备高电子迁移率晶体管;InGaN/GaN由于其量子阱较高的发光效率,而被广泛的应用于光激发二极管以及激光器的制备。
由于三五族氮化物具有优越的化学稳定性,因此无法使用传统的化学腐蚀法进行剥离。电化学剥离方法,利用外延层之间的导电性差异,可以实现氮化物外延薄膜的剥离。然而,对于氮化物外延薄膜的晶圆级完整剥离,仍然存在无法攻克的难关。
在异质外延生长过程中,由于衬底与氮化物之间的晶格失配、热失配等问题,在生长过程中会引入大量的缺陷与内应力,严重限制了氮化物光电器件的发展;然而,同质外延生长也面临着制备成本过高、实验周期过长等问题。
发明内容
针对现有技术中存在的技术问题,本发明的首要目的是提供一种外延薄膜晶圆级剥离方法及其装置。
为了达到上述目的,本发明至少采用如下技术方案:
本发明还提供一种外延薄膜晶圆级剥离方法,其包括以下步骤:
在衬底上依次外延生长未掺杂GaN层、重掺杂GaN牺牲层以及目标层形成外延片;在所述目标层表面的边缘处设置预定区域的遮蔽层;在设置有遮蔽层的目标层表面依次设置剥离层和支撑层;去除所述遮蔽层暴露预定区域的目标层;在预定区域的目标层表面沉积电极层;将所述外延片以一定的倾斜角度放置于流动的电解液中,电化学腐蚀重掺杂GaN牺牲层,释放所述目标层和所述衬底;去除所述剥离层和支撑层获得晶圆级目标层。
本发明还提供一种外延薄膜晶圆级剥离方法,其包括以下步骤:
在衬底上依次外延生长未掺杂GaN层、重掺杂GaN牺牲层以及目标层形成外延片;在所述目标层表面的边缘处设置预定区域的遮蔽层;在设置有遮蔽层的目标层表面依次设置剥离层和支撑层;去除所述遮蔽层暴露预定区域的目标层;刻蚀所述目标层至所述牺牲层;在所述牺牲层表面沉积电极层;将所述外延片以一定的倾斜角度放置于流动的电解液中,电化学腐蚀重掺杂GaN牺牲层,释放所述目标层和所述衬底;去除所述剥离层和支撑层获得晶圆级目标层。
进一步的,所述重掺杂牺牲层的厚度为0.5~1.5μm,其掺杂浓度为1.0×1019cm-3至1.0×1019cm-3;所述未掺杂GaN层的厚度为300~600nm。
进一步的,所述电解液是浓度范围为0.1~3.0M的草酸溶液,所述电化学腐蚀的电压为15至20V,腐蚀时间为8至9h;所述剥离层选用光刻胶,所述支撑层选用室温硅胶,优选RTV硅胶。
进一步的,所述电极层采用磁控溅射法沉积,所述电极层的材料选用Ag;沉积电极层之后,电化学腐蚀之前,还包括在60℃下干燥所述外延片12h。
进一步的,将释放后的目标层浸入丙酮溶液中去除光刻胶层和RTV硅胶层;所述边缘处优选衬底的参考边处;所述衬底选自蓝宝石衬底、硅衬底或氮化镓衬底。
本发明还提供一种晶圆级外延薄膜,所述晶圆级外延薄膜采用上述剥离方法获得,所述外延薄膜的面积大小与其外延生长衬底相当。
本发明还提供一种衬底,其通过采用上述剥离方法获得的衬底经清洗后获得。
本发明还提供一种用于外延薄膜晶圆级剥离的装置,其包括,反应电解池和与其连通的储液池,所述反应电解池具有电极棒,所述电极棒的倾斜角度可调,其中表面层叠有外延叠层的外延片固定于所述电极棒的一端;
所述反应电解池具有进液口和排液口,反应电解池通过进液口连通至储液池,所述进液口的位置高于所述排液口;
在电解反应过程中,电解液沿所述反应电解池的进液口向所述出液口流动,所述电极棒保持所述外延片沿电解液的流动方向倾斜。
进一步的,所述外延片固定于所述电极棒时,外延叠层一侧朝向电解液的流动方向或其相反方向。
与现有技术相比,本发明至少具有如下有益效果:
本发明通过将电化学腐蚀与外延生长技术相结合,利用硅胶的支撑作用,以及特殊电化学方式的腐蚀加速作用,将外延薄膜从原始衬底上整体剥离,实现了晶圆级外延薄膜的转移,且脱离后的原始衬底能够循环再使用,节有效地降低了生长成本,实现绿色外延。使用该电化学剥离的方式,将外延薄膜完整剥离并能够转移至目标衬底上,既可实现Si基集成电路、柔性器件等的制备,又可以释放其生长过程中产生的固有内应力,提高器件整体的性能与用途。同时,由于目标层的外延结构可以根据实际的需要来设计,不受该剥离方法的影响,极大的提高了该剥离方法的应用范围,以及结构的可控性。本发明有效地降低了氮化物外延生长的成本,解决了氮化物外延薄膜晶圆级剥离的难题,提高了外延结构转移的效率,且操作简单,重复性高,在氮化物光电器件的研制方面具有广泛的应用前景。
附图说明
图1是本发明实施例中外延生长后的外延片结构示意图。
图2是本发明实施例中设置了剥离层和支撑层的外延片结构示意图。
图3是本发明实施例中设置了电极层的外延片结构示意图。
图4是本发明剥离装置的示意图。
图5是本发明晶圆级外延薄膜剥离示意图。
图6是本发明剥离后的外延薄膜转移至目标衬底的示意图。
具体实施方式
接下来将结合本发明的附图对本发明实施例中的技术方案进行清楚、完整地描述,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其它实施例,均属于本发明保护的范围。
下面来对本发明做进一步详细的说明。本发明提供一种外延薄膜晶圆级剥离方法,该剥离方法解决了氮化物外延薄膜晶圆级剥离的难题,提高了氮化物外延结构转移的效率,且剥离后获得的外延衬底能够重复利用,有效降低了外延生长的成本,该方法操作简单,重复性高,在氮化物光电器件的研制方面具有广泛的应用前景。本发明的外延薄膜晶圆级剥离方法包括以下步骤。
选用外延衬底,并对选用的衬底按照标准清洗工艺进行清洗干燥。外延衬底可以选择蓝宝石衬底、硅衬底、氮化镓衬底等适合外延生长的衬底。在该实施例中,外延衬底选用GaN衬底,以减少外延结构与衬底之间的晶格失配、热失配等问题。
将清洗后的GaN衬底载入金属有机化学气相沉积系统(MOCVD)反应室。外延生长如图1的结构,在GaN衬底的表面依次外延生长未掺杂GaN层1(即成核层)、重掺杂GaN牺牲层2(牺牲层)和目标层3形成外延片,目标层3为外延层,优选地,是包含氮化物的外延层。其中,成核层的厚度为300nm至600nm,牺牲层的厚度为0.5μm至1.5μm,其掺杂浓度为1.0×1019cm-3至1.5×1019cm-3,掺杂元素为Si。
目标层的结构可以根据实际生产工艺的需要设计。在该实施例中,目标层的结构为AlGaN/AlN/GaN,其中AlGaN层的厚度为20nm至30nm,AlN层的厚度为1nm至3nm,GaN层的厚度为500nm至900nm。
在目标层表面的边缘处设置预定区域,在该预定区域上设置遮蔽层,优选地,该预定区域选择靠近外延衬底参考边的位置区域,如图3示,该预定区域即为后续电极层的位置区域,为了避免电极层区域被剥离层和支撑层覆盖,此处使用生料带遮盖电极层区域,遮蔽层不限于生料带的使用。
之后在外延片的表面依次设置剥离层和支撑层,剥离层可以是光刻胶,支撑层可以是硅胶,优选RTV硅胶。该实施例中,在目标层3的表面旋涂光刻胶层4和RTV硅胶层5,如图2所示,其中RTV硅胶层起到了支撑作用,解决了氮化物外延膜在剥离过程中破碎的问题;光刻胶层的作用,是为了氮化物薄膜剥离之后可以使用丙酮去掉光刻胶层以及RTV硅胶层。
去除遮蔽层暴露目标层的预定区域,之后进行磁控溅射在该预定区域沉积电极层,如图3示,电极层的位置在靠近衬底的参考边处。电极选用金属Ag。在一替代方案中,去除遮蔽层暴露目标层的预定区域之后,采用刻蚀工艺,沿该预定区域刻蚀目标层至牺牲层露出,之后进行磁控溅射在露出的牺牲层上沉积电极层,电极层的位置在靠近衬底的参考边处。之后将设置过电极层的外延片放置在真空干燥箱中,在60℃下干燥12h,使RTV硅胶层充分固化成型。
将干燥后的外延片放置于电解池中进行电化学腐蚀,电解池中的阳极固定外延片,并与外延片上的电极层接触,阴极为箔片电极。电化学腐蚀的过程中,电解池中的电解液保持流动,调整外延片的角度,使外延片倾斜,以确保晶圆级外延叠层即时与衬底分离并悬浮于液面上方,如图5所示。该实施例中,电解液为0.3M的草酸,腐蚀电压为20V,腐蚀时间为8至9h。
将电化学腐蚀之后的外延叠层放置在丙酮溶液中,去除光刻胶以及RTV硅胶,并使用去离子水冲洗,去除溶液残留。
将清洗之后的外延叠层转移至目标衬底上,如图6所示,目标衬底可以是Si衬底、Cu箔、柔性PET衬底等。该实施例中选用等离子体处理过的PET柔性衬底,等离子体处理的目的,是为了增加衬底的亲水性,更有利于转移剥离之后的外延叠层。使用电化学剥离的方式,将外延薄膜完整的转移至目标衬底上,即可实现Si基集成电路、柔性器件等的制备,又可以释放其生长过程中产生的固有内应力,提高器件整体的性能与用途。
采用本发明的剥离方法获得与外延衬底的面积大小相当的外延薄膜叠层,该实施例中,获得的剥离后外延薄膜的尺寸为2英寸。
剥离了外延叠层的原衬底按照晶片的标准清洗方法进行清洗干燥之后,可以重复再外延生长,实现了衬底的循环使用,节约了成本。
由此可见本发明的剥离方法实现了外延薄膜晶圆级剥离及其生长衬底的循环利用。该方法将MOCVD外延生长技术与电化学腐蚀技术相结合,使得氮化物外延薄膜可以完整的从外延衬底上剥离,能够实现2英寸的大面积且连续的晶圆级剥离,剥离后的衬底,仍可以循环利用。该方法有效地降低了外延生长的成本,解决了外延薄膜晶圆级剥离的难题,提高了外延结构转移的效率,且操作简单,重复性高,在氮化物光电器件的研制方面具有广泛的应用前景。
为了使本发明的目的和方案更为清楚,本发明还提供了适用于该剥离方法剥离装置,如图4所示,该剥离装置适用于外延薄膜晶圆级剥离,上述外延薄膜晶圆级剥离时,将上述外延片放置于该剥离装置中实现。该剥离装置包括反应电解池、储液池以及支架。储液池与反应电解池连通。
反应电解池具有电极棒,电极棒用作反应电解池的阳极和阴极。支架上设置有连接杆,连接杆的一端固定于支架上,另一端固定电极棒,通过调节连接杆在支架上的固定高度来调节电极棒的高度,固定方式可选用夹持固定方式。具体的电极棒的高度可以根据电解质液面的高度调节待腐蚀外延片的高度;电极棒的倾斜角度在0~180°的范围内可调,连接杆与电极棒连接的一端选用夹持旋转方式(未图示)实现电极棒的倾斜旋转。电解时,外延片固定于电极棒的另一端,置于电解液中,具体的电极棒可通过夹持固定于外延片的电极层处。
反应电解池具有进液口和排液口,排液口在图4中未示出,进液口的位置高于排液口。反应电解池的进液口通过排液管连通至储液池。排液管上安装有限流阀(未示出),通过限流阀可以调节流入反应电解池的溶液的流量大小。
电解时,调节电极棒的倾斜角度,使得外延片具有一倾斜角度。在电解反应过程中,电解液沿反应电解池的进液口向出液口流动,电极棒保持外延片沿电解液的流动方向倾斜。在一具体实施方式中,外延片固定于电极棒时,位于外延片上的外延叠层一侧朝向电解液的流动方向,或者朝向与电解液流动方向的相反方向。电解反应时,该倾斜方式的设置能够确保剥离后的晶圆级外延薄膜即时与衬底分离并悬浮于液面上方,如图5示,外延片的倾斜方向与电解液的流向一致,反应电解池中的电解液从进液口一侧流向出液口一侧,进而带动了外延薄膜与衬底的分离,有利于保持外延薄膜的完整性。同时持续流动的电解液可以不断替换电解池中已经反应过的电解液,保持电化学腐蚀的速率。
由此可见在本发明提供的外延叠层基础上,采用该特定的电化学腐蚀方式解决了晶圆级外延薄膜剥离的难题,节省了成本,实现绿色外延,提高了外延结构转移的效率。该剥离装置结构简单,可操作性好,在氮化物光电器件的研制方面具有广泛的应用前景。
以上实例是对本发明的优选实施方式,但是本发明并不局限于所述的实例,对于本领域的技术人员和科研人员,可以在尊重本发明的发明精神前提下,做出等同改进和替换,这些等同改进和替换均包含在本申请专利要求所限定的范围内。

Claims (11)

1.一种外延薄膜晶圆级剥离方法,其特征在于,其包括以下步骤:
在衬底上依次外延生长未掺杂GaN层、重掺杂GaN牺牲层以及目标层形成外延片;
在所述目标层表面的边缘处设置预定区域的遮蔽层;
在设置有遮蔽层的目标层表面依次设置剥离层和支撑层;
去除所述遮蔽层暴露预定区域的目标层;
在预定区域的目标层表面沉积电极层;
将所述外延片以一定的倾斜角度放置于流动的电解液中,电化学腐蚀重掺杂GaN牺牲层,释放所述目标层和所述衬底;
去除所述剥离层和支撑层获得晶圆级目标层;
其中,所述边缘处选用所述衬底的参考边处。
2.一种外延薄膜晶圆级剥离方法,其特征在于,其包括以下步骤:
在衬底上依次外延生长未掺杂GaN层、重掺杂GaN牺牲层以及目标层形成外延片;
在所述目标层表面的边缘处设置预定区域的遮蔽层;
在设置有遮蔽层的目标层表面依次设置剥离层和支撑层;
去除所述遮蔽层暴露预定区域的目标层;
刻蚀所述目标层至所述牺牲层;
在所述牺牲层表面沉积电极层;
将所述外延片以一定的倾斜角度放置于流动的电解液中,电化学腐蚀重掺杂GaN牺牲层,释放所述目标层和所述衬底;
去除所述剥离层和支撑层获得晶圆级目标层;
其中,所述边缘处选用所述衬底的参考边处。
3.根据权利要求1或2的所述剥离方法,其特征在于,所述重掺杂GaN牺牲层的厚度为0.5~1.5μm,其掺杂浓度为1.0×1019cm-3至1.0×1019cm-3;所述未掺杂GaN层的厚度为300~600nm。
4.根据权利要求3的所述剥离方法,其特征在于,所述电解液是浓度范围为0.1~3.0M的草酸溶液,所述电化学腐蚀的电压为15至20V,腐蚀时间为8至9h;所述剥离层选用光刻胶,所述支撑层选用室温硅胶。
5.根据权利要求3的所述剥离方法,其特征在于,所述电极层采用磁控溅射法沉积,所述电极层的材料选用Ag;沉积电极层之后,电化学腐蚀之前,还包括在60℃下干燥所述外延片12h。
6.根据权利要求4的所述剥离方法,其特征在于,所述室温硅胶选用RTV硅胶。
7.根据权利要求6的所述剥离方法,其特征在于,将释放后的目标层浸入丙酮溶液中去除光刻胶层和RTV硅胶层;所述衬底选自蓝宝石衬底、硅衬底或氮化镓衬底。
8.晶圆级外延薄膜,其特征在于,所述晶圆级外延薄膜采用权利要求1至7任一项的所述剥离方法获得,所述外延薄膜的面积大小与其外延生长衬底相当。
9.一种衬底,其特征在于,其通过采用权利要求1至7任一项的所述剥离方法获得的衬底经清洗后获得。
10.一种用于外延薄膜晶圆级剥离的装置,其包括,反应电解池和与其连通的储液池,
所述反应电解池具有电极棒,所述电极棒的倾斜角度可调,其中表面层叠有外延叠层的外延片固定于所述电极棒的一端;
所述反应电解池具有进液口和排液口,反应电解池通过进液口连通至储液池,所述进液口的位置高于所述排液口;
在电解反应过程中,电解液沿所述反应电解池的进液口向所述排液口流动,所述电极棒保持所述外延片沿电解液的流动方向倾斜。
11.根据权利要求10的所述装置,其特征在于,所述外延片固定于所述电极棒时,外延叠层一侧朝向电解液的流动方向或其相反方向。
CN202010815225.8A 2020-08-13 2020-08-13 一种外延薄膜晶圆级剥离方法及其装置 Active CN112018033B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010815225.8A CN112018033B (zh) 2020-08-13 2020-08-13 一种外延薄膜晶圆级剥离方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010815225.8A CN112018033B (zh) 2020-08-13 2020-08-13 一种外延薄膜晶圆级剥离方法及其装置

Publications (2)

Publication Number Publication Date
CN112018033A CN112018033A (zh) 2020-12-01
CN112018033B true CN112018033B (zh) 2022-05-31

Family

ID=73504393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010815225.8A Active CN112018033B (zh) 2020-08-13 2020-08-13 一种外延薄膜晶圆级剥离方法及其装置

Country Status (1)

Country Link
CN (1) CN112018033B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112992737B (zh) * 2021-02-08 2023-03-10 广东省科学院半导体研究所 晶圆级芯片的可转移结构及其转移方法
CN113078054B (zh) * 2021-03-25 2024-06-18 中国科学院上海微系统与信息技术研究所 一种电极层的制备方法及半导体结构
CN113130662A (zh) * 2021-04-20 2021-07-16 华南师范大学 一种射频阵列薄膜器件及其制备、键合和集成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110067022A (zh) * 2019-03-20 2019-07-30 华南师范大学 一种单晶GaN纳米线及其制备方法
CN110085518A (zh) * 2019-05-06 2019-08-02 南京邮电大学 一种选择性电化学方法剥离的可转移GaN薄膜及其器件的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1073665A (en) * 1965-07-15 1967-06-28 David J Evans Res Ltd Improvements in electrolytic apparatus
JP4144797B2 (ja) * 2003-07-17 2008-09-03 旭平硝子加工株式会社 ガラス基板から金属薄膜を剥離するシステム
SG171762A1 (en) * 2008-11-19 2011-07-28 Agency Science Tech & Res Method of at least partially releasing an epitaxial layer
KR20130059026A (ko) * 2011-11-28 2013-06-05 서울옵토디바이스주식회사 에피층을 성장 기판으로부터 분리하는 방법
WO2014200827A1 (en) * 2013-06-13 2014-12-18 Yan Ye Methods and apparatuses for delaminating process pieces
JP5887385B2 (ja) * 2014-07-25 2016-03-16 シャープ株式会社 電解装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110067022A (zh) * 2019-03-20 2019-07-30 华南师范大学 一种单晶GaN纳米线及其制备方法
CN110085518A (zh) * 2019-05-06 2019-08-02 南京邮电大学 一种选择性电化学方法剥离的可转移GaN薄膜及其器件的制备方法

Also Published As

Publication number Publication date
CN112018033A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
CN112018033B (zh) 一种外延薄膜晶圆级剥离方法及其装置
US7470989B2 (en) Technique for perfecting the active regions of wide bandgap semiconductor nitride devices
US7635638B2 (en) Compound semiconductor device epitaxial growth substrate, semiconductor device, and manufacturing method thereof
CN103545239B (zh) 一种基于薄膜型的外延片剥离工艺
Youtsey et al. Wafer‐scale epitaxial lift‐off of GaN using bandgap‐selective photoenhanced wet etching
CN112133761B (zh) 一种基于GaN的横向结势垒肖特基二极管及其制备方法
JPH10270669A (ja) 半導体基材の製造方法
CN109638126B (zh) 一种氮化铝模板、深紫外发光二极管外延片及其制备方法
KR101455724B1 (ko) 실리콘 기판을 재활용한 고효율 iii-v 태양전지와 광전소자 및 그의 제조방법
CN111081531B (zh) 外延层剥离方法
CN108878604A (zh) 一种垂直结构发光二极管芯片的制作方法
CN114203329A (zh) GaN基肖特基二极管、β核电池及其制备方法
CN110504299A (zh) 基于图形化再生长的GaN凹槽阳极肖特基二极管制备方法
CN210805810U (zh) 一种硅基氮化镓外延结构
JP3647176B2 (ja) 半導体基材及び太陽電池の製造方法及びその製造装置
CN110067022B (zh) 一种单晶GaN纳米线及其制备方法
CN110491973A (zh) 基于SiC图形衬底的极性c面GaN薄膜及其制备方法
Sharma et al. Novel Epitaxial Lift-Off for Flexible, Inexpensive GaAs Solar Cells
CN113871473A (zh) 一种控制范德瓦耳斯外延与远程外延生长模式的装置及方法
CN115148591A (zh) 基于恒温电解液振荡的电化学剥离GaN衬底的方法
CN111333058A (zh) 单层石墨烯的双面掺杂及多层石墨烯的双侧掺杂方法
McClure et al. Gallium Arsenide Solar Cells Grown on Polycrystalline Germanium Substrates by Aluminum-Induced Crystallization
Horng et al. High separation rate of epitaxial lift-off using hydrophilic solvent for III–V solar cell and reusable applications
EP2728629A2 (en) Hetero-Substrate, Nitride-Based Semiconductor Light Emitting Device, and Method for Manufacturing the same
CN118553684A (zh) 一种利用电化学刻蚀快速剥离GaN厚膜方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant