CN107731972A - 一种长条阵列式纳米发光二极管及其制备方法 - Google Patents

一种长条阵列式纳米发光二极管及其制备方法 Download PDF

Info

Publication number
CN107731972A
CN107731972A CN201711005694.8A CN201711005694A CN107731972A CN 107731972 A CN107731972 A CN 107731972A CN 201711005694 A CN201711005694 A CN 201711005694A CN 107731972 A CN107731972 A CN 107731972A
Authority
CN
China
Prior art keywords
luminescent diode
nano luminescent
nano
led monomers
gan layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711005694.8A
Other languages
English (en)
Inventor
杨为家
吴质朴
何畏
陈强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGMEN AOLUNDE PHOTOELECTRIC Co Ltd
Wuyi University
Original Assignee
JIANGMEN AOLUNDE PHOTOELECTRIC Co Ltd
Wuyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGMEN AOLUNDE PHOTOELECTRIC Co Ltd, Wuyi University filed Critical JIANGMEN AOLUNDE PHOTOELECTRIC Co Ltd
Priority to CN201711005694.8A priority Critical patent/CN107731972A/zh
Publication of CN107731972A publication Critical patent/CN107731972A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0075Processes relating to semiconductor body packages relating to heat extraction or cooling elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了一种长条阵列式纳米发光二极管及其制备方法,在制作过程中在掩膜板上预留激光轨道,能够避免了激光裂片处理时对纳米发光二极管的性能造成影响,提高了产品的优良率;另外,利用Ag纳米粒子的局域表面等离子体增强效应以及良好的散热效果,将由Ag纳米粒子均匀分布形成的Ag金属膜层应用在纳米发光二极管的结构上,不仅增强了纳米发光二极管的散热性能,保证在大电流下高效稳定地工作,提高了纳米发光二极管的使用寿命,而且由于Ag纳米粒子的局域表面等离子体增强效应,能够大幅度提高发光二极管的出光效率。

Description

一种长条阵列式纳米发光二极管及其制备方法
技术领域
本发明涉及纳米LED领域,特别是一种长条阵列式纳米发光二极管及其制备方法。
背景技术
目前,发光二极管(LED)具有体积小、发光效率高、节能、环保等优点,目前已经在照明和显示领域占据主导地位,它已经成为21世纪照明和显示领域的发展趋势。随着社会和科技的发展进步,人们对LED的要求越来越高,特别是大功率、高光效的LED受到了人们的青睐。为了实现大功率、高光效的纳米发光二极管,需要在散热和出光效率方面对纳米发光二极管进行优化改进。
发明内容
为解决上述问题,本发明的目的在于提供一种长条阵列式纳米发光二极管及其制备方法,能够优化纳米发光二极管的出光效率和散热性能。
本发明解决其问题所采用的技术方案是:
一种长条阵列式纳米发光二极管的制备方法,其特征在于,包括以下步骤:
S1:制作长条阵列式纳米发光二极管所需要的掩膜板;
S2:在衬底上设置LED外延片;
S3:进行光刻处理,从而获得长条阵列式纳米发光二极管的图案;
S4:进行刻蚀处理,从而初步获得长条阵列式纳米发光二极管原型;
S5:在长条阵列式纳米发光二极管原型的表面镀制SiO2膜层;
S6:在SiO2膜层表面镀制Ag金属材料,然后进行退火处理,促使上述Ag金属材料在SiO2膜层表面生成由Ag纳米粒子均匀分布形成的Ag金属膜层;
S7:设置电极位置并进行套刻处理,除去电极位置的SiO2膜层和Ag金属膜层;
S8:制备电极;
S9:进行激光裂片处理。
进一步地,所述步骤S1中掩膜板预留了便于进行分割的激光轨道,所述的激光轨道的形状为环形或者同心矩形。
进一步地,所述步骤S6中退火处理时的温度为750-950℃,退火时间为0.5-5分钟。
一种纳米发光二极管,其特征在于:包括衬底、纳米LED单体、SiO2膜层和由Ag纳米粒子均匀分布形成的Ag金属膜层,所述纳米LED单体设置在衬底上,所述SiO2膜层和Ag金属膜层依次设置在纳米LED单体的四周侧面上。
进一步地,包括一个以上纳米LED单体,所述纳米LED单体在衬底上呈阵列式排列。
进一步地,所述纳米LED单体由上至下依次为P-GaN层、量子阱和N-GaN层,所述所有纳米LED单体的N-GaN层之间相互连接。
进一步地,所述纳米LED单体由上至下依次为N-GaN层、量子阱和P-GaN层,所述所有纳米LED单体的P-GaN层之间相互连接。
进一步地,还包括ITO薄膜,所述所有纳米LED单体的上方还通过ITO薄膜连接。
进一步地,所述Ag金属膜层的厚度为2-20nm。
进一步地,所述纳米LED单体为长条型纳米LED单体,所述长条型纳米LED单体的宽度为50-950nm,所述并列的两个长条型纳米LED单体的间距为300-2000nm。
本发明的有益效果是:本发明采用的一种长条阵列式纳米发光二极管及其制备方法,将由Ag纳米粒子均匀分布形成的Ag金属膜层应用在纳米发光二极管的结构上,不仅增强了纳米发光二极管的散热性能,保证在大电流下高效稳定地工作,提高了纳米发光二极管的使用寿命,而且由于Ag纳米粒子的局域表面等离子体增强效应,能够大幅度提高发光二极管的出光效率。
附图说明
下面结合附图和实例对本发明作进一步说明。
图1是本发明一种长条阵列式纳米发光二极管的制备方法的具体流程图;
图2是本发明一种长条阵列式纳米发光二极管的侧面剖视图;
图3是本发明一种长条阵列式纳米发光二极管的俯视图。
具体实施方式
参照图1,本发明的一种长条阵列式纳米发光二极管的制备方法的具体流程图,包括以下步骤:
S1:制作长条阵列式纳米发光二极管所需要的掩膜板;由于纳米发光二极管的阵列式排列,因此要根据长条型纳米LED单体的长度和宽度以及并列的每两个长条型纳米LED单体的间距来制作相应的掩膜板,并且为了避免在步骤S9激光裂片处理过程中对纳米发光二极管造成损伤,导致纳米发光二极管的性能下降,所以所述掩膜板还预留了便于进行分割的激光轨道,所述激光轨道的形状可以任意设置,所述激光轨道的形状可以为环形或者同心矩形。
S2:在衬底上设置LED外延片;采用MOCVD技术在蓝宝石衬底100上依次生长出N-GaN层210、InGaN/GaN量子阱220和P-GaN层230,或者依次生长出P-GaN层230、InGaN/GaN量子阱220和N-GaN层210,获得高质量的LED外延层。所述MOCVD是指在气相外延生长的基础上发展起来的一种新型气相外延生长技术。所述MOCVD是以Ⅲ族、Ⅱ族元素的有机化学物和Ⅴ、Ⅵ族元素的氢化物等作为晶体生长源材料,以热分解反应方式在衬底100上进行气相外延,生长各种Ⅲ-Ⅴ族、Ⅱ-Ⅵ族化合物半导体以及它们的多元固溶体的薄层单晶材料。衬底100采用蓝宝石材料制作而成,通常,GaN基材料和外延层主要生长在蓝宝石衬底100上。蓝宝石衬底100的生产技术成熟,器件质量较好,且蓝宝石的化学稳定性较好,对光吸收小,能够运用在高温生长过程中,另外,蓝宝石的机械强度高,易于处理和清洗。
S3:进行光刻处理,从而获得长条阵列式纳米发光二极管的图案;在LED外延片上涂覆一层光刻胶,利用掩膜板和光刻机光刻出长条阵列式纳米发光二极管的图案形状。所述光刻技术是指在光照作用下,借助光刻胶将掩膜板上的图案转移至基片上的技术,光刻是平面型晶体管和集成电路生产中的一个主要工艺,是对半导体晶片表面的掩蔽物进行开孔,以便进行杂质的定域扩散的一种加工技术。
S4:进行刻蚀处理,从而初步获得长条阵列式纳米发光二极管原型;所述刻蚀就是用化学的、物理的或者同时使用化学和物理的方法,有选择地没有被抗蚀剂掩蔽的那一部分薄膜层除去,从而在薄膜上得到和抗蚀剂膜上完全一致的图形。所述刻蚀技术包括干法刻蚀和湿法刻蚀,所述干法刻蚀是用等离子体进行薄膜刻蚀的技术,所述湿法刻蚀是将刻蚀材料浸泡在腐蚀液内进行腐蚀的技术。当N-GaN层210、InGaN/GaN量子阱220和P-GaN层230依次生在在衬底100上时,刻蚀至N-GaN层210中的一定高度,使所有纳米LED单体的N-GaN层210之间形成公共连接。当P-GaN层230、InGaN/GaN量子阱220和N-GaN层210依次生在在衬底100上时,刻蚀至P-GaN层230中的一定高度,使所有纳米LED单体的P-GaN层230之间形成公共连接。
S5:在长条阵列式纳米发光二极管原型的表面镀制SiO2膜层;在长条阵列式纳米发光二极管原型表面,采用PECVD镀制SiO2膜层300。所述PECVD是指等离子体增强化学的气相沉积法,是通过借助微波或者射频等使含有薄膜组成原子的气体,在局部形成等离子体,而等离子体化学活性很强,很容易发生反应,在基片上沉积出所期望的薄膜。
S6:在SiO2膜层上镀制Ag金属材料,然后进行退火处理,促使上述Ag金属材料在SiO2膜层表面生成由Ag纳米粒子均匀分布形成的Ag金属膜层;采用电子束蒸发法在在SiO2膜层300上蒸镀Ag金属材料,然后在退火炉中快速升温至750-950℃,接着进行快速退火降温0.5-5分钟,从而促使Ag金属材料在SiO2膜层300上生成由Ag纳米粒子400均匀分布形成的Ag金属膜层,所述Ag金属膜层的厚度为2-20nm。
S7:设置电极位置并进行套刻处理,除去电极位置的SiO2膜层和Ag金属膜层;由于需要电极进行导通电流,因此需要确定电极的位置以及对该位置进行套刻处理,除去影响电流导通的SiO2膜层和Ag金属膜层。
S8:制备电极;当N-GaN层210、InGaN/GaN量子阱220和P-GaN层230依次生在在衬底100上时,所有纳米LED单体的N-GaN层210之间形成公共连接,需要在公共的N-GaN层210上制备n电极,以及需要用ITO薄膜将所有的P-GaN层230实现公共连接,并在ITO薄膜上制备p电极。当P-GaN层230、InGaN/GaN量子阱220和N-GaN层210依次生在在衬底100上时,所有纳米LED单体的P-GaN层230之间形成公共连接,需要在公共的P-GaN层230上制备p电极,以及需要用ITO薄膜将所有的N-GaN层210实现公共连接,并在ITO薄膜上制备n电极。所述ITO薄膜是一种半导体材料,具有高的导电率、高的可见光透过率、高的机械硬度和良好的化学稳定性。
S9:进行激光裂片处理。根据预留的激光划片所走的激光轨道进行激光裂片处理,从而避免了在激光裂片处理时激光划片对长条阵列式纳米发光二极管造成损伤,避免了对纳米发光二极管的性能造成影响,提高了长条阵列式纳米发光二极管的优良率。
参照图2和图3,本发明一种长条阵列式纳米发光二极管的侧面剖视图和俯视图。一种长条阵列式纳米发光二极管包括了衬底100、多个长条型纳米LED单体、SiO2膜层300和由Ag纳米粒子400均匀分布形成的Ag金属膜层,所述长条型纳米LED单体设置在衬底100上,所述SiO2膜层300和Ag金属膜层依次设置在长条型纳米LED单体的四周侧面上。所述呈阵列式排列的多个长条型纳米LED单体由上至下依次为P-GaN层230、InGaN/GaN量子阱220和N-GaN层210,所述所有的N-GaN层210之间相互连接,另外,所有的P-GaN层230通过ITO薄膜500实现相互连接。所述长条型纳米LED单体的宽度为50-950nm,并列的两个长条型纳米LED单体的间距为300-2000nm。另外,所述Ag金属膜层的厚度为2-20nm。由于Ag纳米粒子400具有局域表面等离子体增强效应,可以大幅度提高纳米发光二极管的出光效率,另外,Ag纳米粒子400具有良好的散热性能,能够有利于纳米发光二极管进行散热,能够实现大功率LED。因此,应用Ag纳米粒子400至纳米发光二极管结构中,能够对纳米发光二极管的性能进行优化。另外,其中N-GaN层210和P-GaN层230的位置可以相互对调。
以上所述,只是本发明的较佳实施例而已,本发明并不局限于上述实施方式,只要其以相同的手段达到本发明的技术效果,都应属于本发明的保护范围。

Claims (10)

1.一种长条阵列式纳米发光二极管的制备方法,其特征在于,包括以下步骤:
S1:制作长条阵列式纳米发光二极管所需要的掩膜板;
S2:在衬底上设置LED外延片;
S3:进行光刻处理,从而获得长条阵列式纳米发光二极管的图案;
S4:进行刻蚀处理,从而初步获得长条阵列式纳米发光二极管原型;
S5:在长条阵列式纳米发光二极管原型的表面镀制SiO2膜层;
S6:在SiO2膜层表面镀制Ag金属材料,然后进行退火处理,促使上述Ag金属材料在SiO2膜层表面生成由Ag纳米粒子均匀分布形成的Ag金属膜层;
S7:设置电极位置并进行套刻处理,除去电极位置的SiO2膜层和Ag金属膜层;
S8:制备电极;
S9:进行激光裂片处理。
2.根据权利要求1所述的一种长条阵列式纳米发光二极管的制备方法,其特征在于:所述步骤S1中掩膜板预留了便于进行分割的激光轨道,所述的激光轨道的形状为环形或者同心矩形。
3.根据权利要求1所述的一种长条阵列式纳米发光二极管的制备方法,其特征在于:所述步骤S6中退火处理时的温度为750-950℃,退火时间为0.5-5分钟。
4.一种纳米发光二极管,其特征在于:包括衬底、纳米LED单体、SiO2膜层和由Ag纳米粒子均匀分布形成的Ag金属膜层,所述纳米LED单体设置在衬底上,所述SiO2膜层和Ag金属膜层依次设置在纳米LED单体的四周侧面上。
5.根据权利要求4所述的一种纳米发光二极管,其特征在于:包括一个以上纳米LED单体,所述纳米LED单体在衬底上呈阵列式排列。
6.根据权利要求5所述的一种纳米发光二极管,其特征在于:所述纳米LED单体由上至下依次为P-GaN层、量子阱和N-GaN层,所述所有纳米LED单体的N-GaN层之间相互连接。
7.根据权利要求5所述的一种纳米发光二极管,其特征在于:所述纳米LED单体由上至下依次为N-GaN层、量子阱和P-GaN层,所述所有纳米LED单体的P-GaN层之间相互连接。
8.根据权利要求5所述的一种纳米发光二极管,其特征在于:还包括ITO薄膜,所述所有纳米LED单体的上方还通过ITO薄膜连接。
9.根据权利要求4所述的一种纳米发光二极管,其特征在于:所述Ag金属膜层的厚度为2-20nm。
10.根据权利要求4所述的一种纳米发光二极管,其特征在于:所述纳米LED单体为长条型纳米LED单体,所述长条型纳米LED单体的宽度为50-950nm,所述并列的两个长条型纳米LED单体的间距为300-2000nm。
CN201711005694.8A 2017-10-24 2017-10-24 一种长条阵列式纳米发光二极管及其制备方法 Pending CN107731972A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711005694.8A CN107731972A (zh) 2017-10-24 2017-10-24 一种长条阵列式纳米发光二极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711005694.8A CN107731972A (zh) 2017-10-24 2017-10-24 一种长条阵列式纳米发光二极管及其制备方法

Publications (1)

Publication Number Publication Date
CN107731972A true CN107731972A (zh) 2018-02-23

Family

ID=61213479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711005694.8A Pending CN107731972A (zh) 2017-10-24 2017-10-24 一种长条阵列式纳米发光二极管及其制备方法

Country Status (1)

Country Link
CN (1) CN107731972A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108133993A (zh) * 2018-01-30 2018-06-08 广东工业大学 一种紫外led垂直芯片结构
CN113302756A (zh) * 2019-01-15 2021-08-24 三星显示有限公司 发光元件和包括发光元件的显示装置
CN114051660A (zh) * 2019-07-02 2022-02-15 三星显示有限公司 发光元件、发光元件的制造方法以及显示装置
CN114300594A (zh) * 2021-12-28 2022-04-08 福州大学 适用于近眼显示设备的高效率NanoLED结构及其制作方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040008962A (ko) * 2002-07-20 2004-01-31 주식회사 비첼 고휘도 질화물 마이크로 발광 다이오드 및 그 제조방법
US20050194598A1 (en) * 2004-02-13 2005-09-08 Hwa-Mok Kim Super bright light emitting diode of nanorod array structure having InGaN quantum well and method for manufacturing the same
CN101552312A (zh) * 2009-05-12 2009-10-07 上海蓝光科技有限公司 一种发光二极管芯片制作方法
WO2010092362A2 (en) * 2009-02-16 2010-08-19 University Of Southampton An optical device
US20120132888A1 (en) * 2010-11-26 2012-05-31 Seoul Opto Device Co., Ltd. Light emitting device and method of fabricating the same
US20120273749A1 (en) * 2011-04-26 2012-11-01 Taiwan Semiconductor Manufacturing Company, Ltd. Method and structure for led with nano-patterned substrate
CN102820390A (zh) * 2011-06-09 2012-12-12 奇力光电科技股份有限公司 发光二极管结构及其制造方法
CN103119732A (zh) * 2010-07-26 2013-05-22 塞伦光子学有限公司 一种制造发光器件的方法
US20130128362A1 (en) * 2010-07-30 2013-05-23 Gwangju Institute Of Science And Technology Micro/nano combined structure, manufacturing method of micro/nano combined structure, and manufacturing method of an optical device having a micro/nano combined structure integrated therewith
CN103515489A (zh) * 2012-06-28 2014-01-15 上海蓝光科技有限公司 一种发光二极管的制造方法
CN103560183A (zh) * 2013-11-08 2014-02-05 华灿光电(苏州)有限公司 高光效发光二极管芯片及其制备方法
CN103996767A (zh) * 2014-04-21 2014-08-20 中国科学院半导体研究所 表面等离激元增强型硅纳米线电致发光器件及其制作方法
CN104051587A (zh) * 2014-06-19 2014-09-17 中国科学院半导体研究所 表面等离激元增强GaN基纳米孔LED的制备方法
US20160118540A1 (en) * 2014-10-28 2016-04-28 Tianjin Sanan Optoelectronics Co., Ltd. Light-Emitting Diode
CN205645854U (zh) * 2016-04-25 2016-10-12 厦门乾照光电股份有限公司 一种垂直结构发光二极管
CN106449902A (zh) * 2016-09-13 2017-02-22 广东技术师范学院 在发光二极管芯片的量子阱附近制备纳米金属结构的方法
WO2017127958A1 (zh) * 2016-01-29 2017-08-03 姜全忠 光泵浦发光器件及单片集成光泵浦发光器件的制备方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040008962A (ko) * 2002-07-20 2004-01-31 주식회사 비첼 고휘도 질화물 마이크로 발광 다이오드 및 그 제조방법
US20050194598A1 (en) * 2004-02-13 2005-09-08 Hwa-Mok Kim Super bright light emitting diode of nanorod array structure having InGaN quantum well and method for manufacturing the same
WO2010092362A2 (en) * 2009-02-16 2010-08-19 University Of Southampton An optical device
CN101552312A (zh) * 2009-05-12 2009-10-07 上海蓝光科技有限公司 一种发光二极管芯片制作方法
CN103119732A (zh) * 2010-07-26 2013-05-22 塞伦光子学有限公司 一种制造发光器件的方法
US20130128362A1 (en) * 2010-07-30 2013-05-23 Gwangju Institute Of Science And Technology Micro/nano combined structure, manufacturing method of micro/nano combined structure, and manufacturing method of an optical device having a micro/nano combined structure integrated therewith
US20120132888A1 (en) * 2010-11-26 2012-05-31 Seoul Opto Device Co., Ltd. Light emitting device and method of fabricating the same
US20120273749A1 (en) * 2011-04-26 2012-11-01 Taiwan Semiconductor Manufacturing Company, Ltd. Method and structure for led with nano-patterned substrate
CN102820390A (zh) * 2011-06-09 2012-12-12 奇力光电科技股份有限公司 发光二极管结构及其制造方法
CN103515489A (zh) * 2012-06-28 2014-01-15 上海蓝光科技有限公司 一种发光二极管的制造方法
CN103560183A (zh) * 2013-11-08 2014-02-05 华灿光电(苏州)有限公司 高光效发光二极管芯片及其制备方法
CN103996767A (zh) * 2014-04-21 2014-08-20 中国科学院半导体研究所 表面等离激元增强型硅纳米线电致发光器件及其制作方法
CN104051587A (zh) * 2014-06-19 2014-09-17 中国科学院半导体研究所 表面等离激元增强GaN基纳米孔LED的制备方法
US20160118540A1 (en) * 2014-10-28 2016-04-28 Tianjin Sanan Optoelectronics Co., Ltd. Light-Emitting Diode
WO2017127958A1 (zh) * 2016-01-29 2017-08-03 姜全忠 光泵浦发光器件及单片集成光泵浦发光器件的制备方法
CN205645854U (zh) * 2016-04-25 2016-10-12 厦门乾照光电股份有限公司 一种垂直结构发光二极管
CN106449902A (zh) * 2016-09-13 2017-02-22 广东技术师范学院 在发光二极管芯片的量子阱附近制备纳米金属结构的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108133993A (zh) * 2018-01-30 2018-06-08 广东工业大学 一种紫外led垂直芯片结构
CN113302756A (zh) * 2019-01-15 2021-08-24 三星显示有限公司 发光元件和包括发光元件的显示装置
EP3913695A4 (en) * 2019-01-15 2023-01-11 Samsung Display Co., Ltd. ELECTROLUMINESCENT ELEMENT AND DISPLAY DEVICE COMPRISING IT
CN114051660A (zh) * 2019-07-02 2022-02-15 三星显示有限公司 发光元件、发光元件的制造方法以及显示装置
EP3996157A4 (en) * 2019-07-02 2023-07-26 Samsung Display Co., Ltd. ELECTROLUMINESCENT ELEMENT, METHOD FOR MANUFACTURING IT AND DISPLAY DEVICE
CN114300594A (zh) * 2021-12-28 2022-04-08 福州大学 适用于近眼显示设备的高效率NanoLED结构及其制作方法
CN114300594B (zh) * 2021-12-28 2023-09-29 福州大学 适用于近眼显示设备的高效率NanoLED结构及其制作方法

Similar Documents

Publication Publication Date Title
US11495585B2 (en) Nanoscale LED electrode assembly having improved electrical contact and manufacturing method thereof
US9947845B2 (en) Method of fabricating light emitting diode and light emitting diode manufactured thereby
KR100921457B1 (ko) 수직 구조의 발광 다이오드 및 그 제조방법
CN107731972A (zh) 一种长条阵列式纳米发光二极管及其制备方法
CN102064088B (zh) 一种干法刻蚀与湿法腐蚀混合制备蓝宝石图形衬底的方法
CN105190914B (zh) 用于在Ⅲ族氮化物基发光二极管上沉积外延ZnO的工艺及包括外延ZnO的发光二极管
US10573777B2 (en) Vertical structure nonpolar LED chip on lithium gallate substrate and preparation method therefor
CN101814564B (zh) 氮化物外延生长的纳米图形衬底制备方法
TWI419354B (zh) Iii族氮化物半導體發光元件及其製造方法
CN107658371B (zh) 基于激光直写的Micro-LED的制造方法
CN102856446B (zh) 具有纳米结构的磊晶基板及发光二极管的制作方法
US20140306255A1 (en) Light emitting diode
CN102169930A (zh) 一种金属纳米颗粒辅助实现发光二极管表面粗化的方法
CN104241465A (zh) 一种纳米粗化复合图形化的蓝宝石衬底及制备方法
CN104218134B (zh) 一种具有特殊粗化形貌的led垂直芯片结构及其制备方法
CN109904285A (zh) 一种发光二极管芯片及其制造方法
CN207338379U (zh) 一种纳米发光二极管
CN101807648B (zh) 引入式粗化氮极性面氮化镓基发光二极管及其制作方法
CN104952987B (zh) 发光二极管
CN107123705B (zh) 一种发光二极管的制备方法
CN103137816A (zh) 发光二极管
CN107425095A (zh) 一种使用Ni纳米模板制备多波段发光的InGaN/GaN量子阱结构的方法
CN103137797A (zh) 发光二极管的制备方法
JP2011109061A (ja) 垂直型発光ダイオードの製造方法
TW201349564A (zh) 發光元件的形成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination