CN103525405B - 基于天然高分子的磁性荧光双功能纳米材料及其制备方法 - Google Patents

基于天然高分子的磁性荧光双功能纳米材料及其制备方法 Download PDF

Info

Publication number
CN103525405B
CN103525405B CN201310493518.9A CN201310493518A CN103525405B CN 103525405 B CN103525405 B CN 103525405B CN 201310493518 A CN201310493518 A CN 201310493518A CN 103525405 B CN103525405 B CN 103525405B
Authority
CN
China
Prior art keywords
chitosan
magnetic
nano material
preparation
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310493518.9A
Other languages
English (en)
Other versions
CN103525405A (zh
Inventor
王飞俊
李佳
邵自强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Yezhiyuan New Material Co ltd
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201310493518.9A priority Critical patent/CN103525405B/zh
Publication of CN103525405A publication Critical patent/CN103525405A/zh
Application granted granted Critical
Publication of CN103525405B publication Critical patent/CN103525405B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明涉及核壳结构多功能纳米复合材料,具体涉及一种碳量子点磁性荧光双功能纳米材料及其制备方法。以磁性粒子Fe3O为核,壳聚糖和聚阴离子型纤维素为壳层材料,以碳量子点为荧光材料,通过层层自组装的方法得到。其中碳量子点用天然高分子材料包覆,阻止了碳量子点的游离,提高了稳定性;磁性、荧光强度可通过壳层材料的层数以及碳量子点的加入量来调控。得到的磁性荧光双功能纳米材料在细胞标记与吸收、生物成像、药物探测和疾病诊断、载药等生物医药领域有广阔的应用前景。

Description

基于天然高分子的磁性荧光双功能纳米材料及其制备方法
技术领域
本发明涉及核壳结构多功能纳米复合材料,具体涉及一种基于天然高分子的磁性荧光双功能纳米材料及其制备方法,属于材料技术领域。
背景技术
磁性纳米颗粒由于磁性以及纳米尺度两种特性,在生物医学方面吸引了人们越来越多关注的目光。为了提高磁性纳米颗粒在细胞标记与吸收、生物成像、药物探测和疾病诊断方面的效率,赋予磁性纳米颗粒多种功能变得非常重要和迫切,尤其是将磁性与光学性质的结合。磁性-荧光复合材料已经成为活体中显像的重要工具,他可以通过磁共振成像监测,也可以通过荧光光学成像。
荧光基团与磁性颗粒的结合通常有两种方法:一是将磁性纳米颗粒与荧光基团包裹在同一种介质中,常用的介质是硅系或磷脂质材料,通过这种方法得到的物质表现出了好的生物相容性,磁性以及荧光性质,但是使用这种方法时介质的量难以控制;另一种方法是利用共价键将荧光基团直接接枝在磁性纳米颗粒表面。然而,将荧光基团与铁氧体直接相连会出现荧光淬灭的现象,这主要是由于能量转移造成的。另外,利用这种制备方法很难获得水溶性、生物相容性以及更进一步的生物改性等性能。
解决这个问题,可以通过给铁氧体一个保护外壳从而增加荧光基团与铁氧体的距离,进而降低荧光的淬灭程度。而且,保护层的引入也可以防止铁氧体(Fe3O4)被氧化为低磁性的γ-Fe2O3。保护外层不仅需要能够稳定铁氧体,还需要好的生物相容性。由于硅系外层材料良好的生物相容性,容易制备和修饰磁性颗粒表面的特点,现在得以广泛应用。但是它所带来的生物不可降解、磁性颗粒粒径增大和磁响应降低等缺点制约了它在生物材料上的应用。
荧光素是最常用来与磁性纳米颗粒进行复合的荧光物质,异硫氰酸荧光素(FITC)由于其本身具有肉眼敏感的蓝绿色光而广泛应用于细胞提取、荧光成像等。由于FITC表面的羧基可与氨基反应,从而可以利用化学键合的方法将FITC接枝到磁性纳米颗粒表面,这种方法抑制了FITC的游离。传统量子点,如CdTe等,由于其表面重金属的存在所带来的毒性,制约了它在生物医药方面的应用。而FITC-磁性纳米颗粒经过生物活体的实验,可证明其无毒的特性,这就奠定了它在生物医药方向更深入的应用。对于粒径较小(<150nm)的纳米颗粒,具有可以进入细胞内部的特性,这让这些磁性纳米颗粒在抗癌方向备受瞩目。
发明内容
本发明的目的是为了解决由于现有技术制得的磁性荧光纳米材料生物相容性差、难降解、制备过程复杂难控制,从而导致磁性荧光纳米材料在生物医药领域应用受限的问题,提供一种基于天然高分子的磁性荧光双功能纳米材料及其制备方法。
本发明的目的是通过下述技术方案实现的。
本发明的天然高分子的磁性荧光双功能纳米材料,以磁性粒子Fe3O4为核,壳聚糖和聚阴离子型纤维素为壳层材料,以异硫氰酸荧光素为荧光材料,通过层层自组装的方法得到。
聚阴离子纤维素为羧甲基纤维素钠、纤维素硫酸钠、纤维素羧酸钠、羧酸纤维素、羧甲基纤维素钾、羧甲基纤维素钠钾、纳米纤维素中的一种。
本发明的基于天然高分子的磁性荧光双功能纳米材料的制备方法,具体步骤如下:
步骤一、合成磁性流体纳米Fe3O4
步骤二、壳聚糖-Fe3O4纳米微球的制备
将Fe3O4磁流体与5-13mg/mL壳聚糖(CS)乙酸溶液混合,超声分散均匀;得到A;Fe3O4与CS质量比例为1-1.2:1;同时将液体石蜡与表面活性剂span-80混合,混合比例为18-22:1;得到混合液B;将A加入到混合液B中,常温下充分搅拌后,加入4%-9%的醛类;醛基与壳聚糖的摩尔比为20-2:1;反应结束后用磁铁收集产物;再依次用石油醚、丙酮、蒸馏水充分洗涤,即可得到壳聚糖-Fe3O4纳米微球;
为了减少反应时间,以及得到颗粒形状和粒径更佳的磁性粒子,在醛类充分分散后,再加入碱性溶液调pH至碱性;
所述醛类包括甲醛、乙二醛、戊二醛;
步骤三、壳聚糖-FITC的制备
将壳聚糖溶解于酸性溶液中;将FITC溶于有机溶剂中;将二者混合;避光搅拌至反应结束;加入碱性溶液使沉淀完全,再用乙醇水溶液洗涤沉淀,直至上清液无紫外吸收;得到壳聚糖-FITC;
所述的酸性溶液不能为强酸溶液;所述的酸性溶液包括醋酸溶液、甲酸溶液;
所述的有机溶剂包括甲醇、乙醇。
步骤四、层层自组装制备磁性荧光纳米材料
利用聚阴离子型纤维素为聚阴离子高聚物、壳聚糖为聚阳离子高聚物的特性,通过正负电荷的互相吸引,制备磁性荧光纳米材料。
方法一、将步骤二所得的壳聚糖-Fe3O4纳米微球分散在水中,加入聚阴离子型纤维素水溶液;至二者作用完全即完成一次包覆,得到纳米粒子C;再将纳米粒子C加入到CS溶液,至二者作用完全即完成一次双层的包覆;在加入步骤三所得的壳聚糖-FITC,即得到磁性荧光双功能纳米材料;
聚阴离子型纤维素与壳聚糖的表面电荷比为0.85-1.2:1;
根据磁性和荧光强度的需求,在加入步骤三所得的壳聚糖-FITC前,可重复上述包覆过程若干次;
方法二、将步骤二所得的壳聚糖-Fe3O4纳米微球分散在水中,加入聚阴离子型纤维素水溶液;至二者作用完全即完成一次包覆,得到纳米粒子C;再将纳米粒子C加入到步骤三所得的壳聚糖-FITC溶液,至二者作用完全即完成一次双层的包覆;即得到磁性荧光双功能纳米材料;
聚阴离子型纤维素与壳聚糖的表面电荷比为0.85-1.2:1;
根据磁性和荧光强度的需求,可重复上述包覆过程若干次;
有益效果
1、本发明的基于天然高分子的磁性荧光双功能纳米材料,生物相容性和降解性好,而且原料来源广泛且具有可再生性。聚阴离子型纤维素是以纤维素为基材经过化学改性得到的纤维素衍生物,具有和纤维素一样的生物降解性和良好的生物相容性。纤维素来源于棉花、木材、植物秸秆等,是地球上最丰富的可再生天然多糖。壳聚糖(CS)是甲壳素的脱乙酰化产物,含有大量胺基,是唯一的天然聚阳离子高聚物,在弱酸环境下呈现正电性。同时,壳聚糖具备天然高聚物生物相容性好,可生物降解,无毒等特性。
2、本发明的基于天然高分子的磁性荧光双功能纳米材料,将荧光材料FITC接枝在CS上,避免了体系在载药过程中,荧光部分的游离对人体造成的伤害。
3、本发明的基于天然高分子的磁性荧光双功能纳米材料的制备方法,通过层层自组装技术,依次使用壳聚糖(或壳聚糖-FITC)和聚阴离子型纤维素对磁性纳米颗粒进行包裹,以此来调节荧光材料与磁性纳米颗粒之间的距离以及荧光强度,以获得磁性及荧光性能良好的双功能材料。
4、本发明的基于天然高分子的磁性荧光双功能纳米材料及其制备方法,由于聚阴离子型纤维素和壳聚糖具有生物相容性和降解性好、原料来源广泛且可再生,同时采用了简单、易行且可控制颗粒粒径的层层自组装法,得到的磁性荧光双功能纳米材料在细胞标记与吸收、生物成像、药物探测和疾病诊断、载药等生物医药领域很广阔的应用前景。
附图说明
图1为实施例1的产物形貌,是所得磁性荧光纳米材料的透射电镜图。
图2为实施例1的产物磁滞回线图。
图3为实施例1的产物荧光谱图。
图4为实施例2的产物磁滞回线图。
图5为实施例2的产物荧光谱图。
具体实施方式
以下根据实施例详细地说明本发明,但本发明并不限定于实施例。
实施例1:
基于天然高分子的磁性荧光双功能纳米材料及其制备方法,具体步骤如下:
1)磁性流体纳米Fe3O4的合成
利用共沉淀法,称取1.5gFeCl3·6H2O,0.6gFeSO4·4H2O,溶解于预先经氮气脱气的去离子水中,通入N2保护,加热至70℃,然后快速搅拌、缓慢加入5ml氨水。反应1h后,利用外加磁场将所得沉淀从反应介质中分离出来,并用二次水清洗三次,得到纳米Fe3O4悬浮液,超声15min,得到的黑色溶液即为纳米Fe3O4磁流体。
2)壳聚糖-Fe3O4纳米微球的制备
取0.15gFe3O4磁流体与20mL7.5mg/mL壳聚糖(CS)乙酸溶液混合,超声分散20min。在搅拌下缓慢加入到80mL液体石蜡和4mLspan-80的混合液中,充分搅拌。加入10mL7%戊二醛,在40℃下搅拌1h,用0.1g/LNaOH溶液调PH至9,升温至70℃,继续反应2h,得到的产物用磁铁收集。再依次用石油醚、丙酮、蒸馏水充分洗涤,得到壳聚糖-Fe3O4纳米微球。
3)壳聚糖-FITC的制备
将壳聚糖溶解于0.1mol/L醋酸溶液中,配成1%的溶液,加入1mol/LNaOH溶液调节PH至7.0-7.5。将FITC溶于甲醇,加入到壳聚糖溶液中,室温下避光反应4h。加入NaOH溶液至沉淀完全,离心后用70:30(v:v)乙醇水溶液洗涤沉淀,直至上清液无明显紫外吸收,得到壳聚糖-FITC。
4)层层自组装制备磁性荧光纳米材料
将2)所得的壳聚糖-Fe3O4纳米微球分散在二次水中,加入80mL1g/L的羧甲基纤维素钠水溶液,25℃下恒温震荡30min,将所得微球清洗三次。添加80mLCS醋酸溶液(将壳聚糖溶解于0.1mol/L醋酸溶液中,配成1.5%的溶液),25℃下恒温震荡30min,将所得微球清洗三次即完成一个双层的包覆。重复以上步骤至得到3个双层,最外层采用壳聚糖-FITC的醋酸溶液(将壳聚糖-FITC溶解于0.1mol/L醋酸溶液中,配成1.5%的溶液)。此时即得到的磁性荧光双功能纳米材料。
用TEM测得该磁性荧光双功能纳米材料的粒径为100nm;用磁强计测得其饱和磁强度为18emu/g;用荧光光度计测得其有较强的荧光;
实施例2:
基于天然高分子的磁性荧光双功能纳米材料及其制备方法,具体步骤如下:
1)磁性流体纳米Fe3O4的合成
利用共沉淀法,称取1.3gFeCl3·6H2O,0.5gFeSO4·4H2O,溶解于预先经氮气脱气的去离子水中,通入N2保护,加热至69℃,然后快速搅拌、缓慢加入6mL氨水。反应1h后,利用外加磁场将所得沉淀从反应介质中分离出来,并用二次水清洗三次,得到纳米Fe3O4悬浮液,超声20min,得到的黑色溶液即为纳米Fe3O4磁流体。
2)壳聚糖-Fe3O4纳米微球的制备
取0.15gFe3O4磁流体与12mL12mg/mL壳聚糖(CS)乙酸溶液混合,超声分散15min。在搅拌下缓慢加入到55mL液体石蜡和3mLspan-80的混合液中,充分搅拌。加入10mL9%乙二醛,升温至70℃,反应3h,得到的产物用磁铁收集。再依次用石油醚、丙酮、蒸馏水充分洗涤,得到壳聚糖-Fe3O4纳米微球。
3)壳聚糖-FITC的制备
将壳聚糖溶解于0.1mol/L醋酸溶液中,配成0.8%的溶液,加入1mol/LNaOH溶液调节PH至7.0-7.5。将FITC溶于甲醇,加入到壳聚糖溶液中,室温下避光反应4.5h。加入NaOH溶液至沉淀完全,离心后用70:30(v:v)乙醇水溶液洗涤沉淀,直至上清液无明显紫外吸收,得到壳聚糖-FITC。
4)层层自组装制备磁性荧光纳米材料
将2)所得的壳聚糖-Fe3O4纳米微球分散在二次水中,加入100mL1g/L的纤维素羧酸钠水溶液,27℃下恒温震荡35min,将所得微球清洗三次。添加90mL壳聚糖-FITC的醋酸溶液(将壳聚糖-FITC溶解于0.1mol/L醋酸溶液中,配成1%的溶液),23℃下恒温震荡25min,将所得微球清洗三次即完成一个双层的包覆。重复以上步骤一次即得到2个双层的磁性荧光双功能纳米材料。
用TEM测得该磁性荧光双功能纳米材料的粒径为60nm;用磁强计测得其饱和磁强度为17emu/g;用荧光光度计测得其有较强的荧光;
实施例3:
基于天然高分子的磁性荧光双功能纳米材料及其制备方法,具体步骤如下:
1)磁性流体纳米Fe3O4的合成
利用共沉淀法,称取1.4gFeCl3·6H2O,0.5gFeSO4·4H2O,溶解于预先经氮气脱气的去离子水中,通入N2保护,加热至70℃,然后快速搅拌、缓慢加入6ml氨水。反应1.5h后,利用外加磁场将所得沉淀从反应介质中分离出来,并用二次水清洗三次,得到纳米Fe3O4悬浮液,超声25min,得到的黑色溶液即为纳米Fe3O4磁流体。
2)壳聚糖-Fe3O4纳米微球的制备
取0.13gFe3O4磁流体与24mL5mg/mL壳聚糖(CS)乙酸溶液混合,超声分散20min。在搅拌下缓慢加入到65mL液体石蜡和3mLspan-80的混合液中,充分搅拌。加入12mL4%戊二醛,在30℃下搅拌1h,用0.1g/LNaOH溶液调PH至9,升温至75℃,继续搅拌2h,得到的产物用磁铁收集。再依次用石油醚、丙酮、蒸馏水充分洗涤,得到壳聚糖-Fe3O4纳米微球。
3)壳聚糖-FITC的制备
将壳聚糖溶解于0.15mol/L醋酸溶液中,配成1%的溶液,加入1mol/LNaOH溶液调节PH至7.0-7.5。将FITC溶于甲醇,加入到壳聚糖溶液中,室温下避光反应4.5h。加入NaOH溶液至沉淀完全,离心后用70:30(v:v)乙醇水溶液洗涤沉淀,直至上清液无明显紫外吸收,得到壳聚糖-FITC。
4)层层自组装制备磁性荧光纳米材料
将2)所得的壳聚糖-Fe3O4纳米微球分散在二次水中,加入100mL1g/L的纤维素硫酸钠水溶液,25℃下恒温震荡30min,将所得微球清洗三次。添加90mLCS醋酸溶液(将壳聚糖溶解于0.1mol/L醋酸溶液中,配成1%的溶液),25℃下恒温震荡40min,将所得微球清洗三次即完成一个双层的包覆。重复以上步骤至得到3个双层,最外层采用壳聚糖-FITC的醋酸溶液(将壳聚糖-FITC溶解于0.1mol/L醋酸溶液中,配成1%的溶液)。此时即得到的磁性荧光双功能纳米材料。
用TEM测得该磁性荧光双功能纳米材料的粒径为80nm;用磁强计测得其饱和磁强度为17emu/g;用荧光光度计测得其有较强的荧光;
实施例4:
基于天然高分子的磁性荧光双功能纳米材料及其制备方法,具体步骤如下:
1)磁性流体纳米Fe3O4的合成
利用共沉淀法,称取1.3gFeCl3·6H2O,0.6gFeSO4·4H2O,溶解于预先经氮气脱气的去离子水中,通入N2保护,加热至70℃,然后快速搅拌、缓慢加入4ml氨水。反应1h后,利用外加磁场将所得沉淀从反应介质中分离出来,并用二次水清洗三次,得到纳米Fe3O4悬浮液,超声25min,得到的黑色溶液即为纳米Fe3O4磁流体。
2)壳聚糖-Fe3O4纳米微球的制备
取0.2gFe3O4磁流体与25mL8mg/mL壳聚糖(CS)乙酸溶液混合,超声分散25min。在搅拌下缓慢加入到70mL液体石蜡和4mLspan-80的混合液中,充分搅拌。加入8mL7%戊二醛,升温至60℃,反应5h,得到的产物用磁铁收集。再依次用石油醚、丙酮、蒸馏水充分洗涤,得到壳聚糖-Fe3O4纳米微球。
3)壳聚糖-FITC的制备
将壳聚糖溶解于0.1mol/L醋酸溶液中,配成1.5%的溶液,加入1mol/LNaOH溶液调节PH至7.0-7.5。将FITC溶于甲醇,加入到壳聚糖溶液中,室温下避光反应5h。加入NaOH溶液至沉淀完全,离心后所得固体物质用70:30(v:v)乙醇水溶液洗涤沉淀,直至上清液无明显紫外吸收,得到壳聚糖-FITC。
4)层层自组装制备磁性荧光纳米材料
将2)所得的壳聚糖-Fe3O4纳米微球分散在二次水中,加入70mL1g/L的羧甲基纤维素钾水溶液,25℃下恒温震荡30min,将所得微球清洗三次。添加60mL壳聚糖-FITC醋酸溶液(将壳聚糖-FITC溶解于0.1mol/L醋酸溶液中,配成1%的溶液),25℃下恒温震荡30min,将所得微球清洗三次即完成一个双层的包覆。重复以上步骤一次即得到2个双层的磁性荧光双功能纳米材料。
用TEM测得该磁性荧光双功能纳米材料的粒径为60nm;用磁强计测得其饱和磁强度为18emu/g;用荧光光度计测得其有较强的荧光;
实施例5:
基于天然高分子的磁性荧光双功能纳米材料及其制备方法,具体步骤如下:
1)磁性流体纳米Fe3O4的合成
利用共沉淀法,称取1gFeCl3·6H2O,0.4gFeSO4·4H2O,溶解于预先经氮气脱气的去离子水中,通入N2保护,加热至70℃,然后快速搅拌、缓慢加入3mL氨水。反应70min后,利用外加磁场将所得沉淀从反应介质中分离出来,并用二次水清洗三次,得到纳米Fe3O4悬浮液,超声25min,得到的黑色溶液即为纳米Fe3O4磁流体。
2)壳聚糖-Fe3O4纳米微球的制备
取0.14gFe3O4磁流体与18mL7mg/mL壳聚糖(CS)乙酸溶液混合,超声分散20min。在搅拌下缓慢加入到60mL液体石蜡和3mLspan-80的混合液中,充分搅拌。加入10mL7%戊二醛,在35℃下搅拌1h,用0.1g/LNaOH溶液调PH至9,升温至75℃,继续反应2h,得到的产物用磁铁收集。再依次用石油醚、丙酮、蒸馏水充分洗涤,得到壳聚糖-Fe3O4纳米微球。
3)壳聚糖-FITC的制备
将壳聚糖溶解于0.1mol/L醋酸溶液中,配成1%的溶液,加入1mol/LNaOH溶液调节PH至7.0-7.5。将FITC溶于甲醇,加入到壳聚糖溶液中,室温下避光反应5h。加入NaOH溶液至沉淀完全,离心后用70:30(v:v)乙醇水溶液洗涤沉淀,直至上清液无明显紫外吸收,得到壳聚糖-FITC。
4)层层自组装制备磁性荧光纳米材料
将2)所得的壳聚糖-Fe3O4纳米微球分散在二次水中,加入80mL1g/L的纳米纤维素水溶液,25℃下恒温震荡30min,将所得微球清洗三次。添加80mLCS醋酸溶液(将壳聚糖溶解于0.1mol/L醋酸溶液中,配成2%的溶液),25℃下恒温震荡30min,将所得微球清洗三次即完成一个双层的包覆。重复以上步骤至得到3个双层,最外层采用壳聚糖-FITC的醋酸溶液(将壳聚糖-FITC溶解于0.1mol/L醋酸溶液中,配成2%的溶液)。此时即得到的磁性荧光双功能纳米材料。
用TEM测得该磁性荧光双功能纳米材料的粒径为90nm;用磁强计测得其饱和磁强度为17emu/g;用荧光光度计测得其有较强的荧光;
实施例6:
基于天然高分子的磁性荧光双功能纳米材料及其制备方法,具体步骤如下:
1)磁性流体纳米Fe3O4的合成
利用共沉淀法,称取1.1gFeCl3·6H2O,0.45gFeSO4·4H2O,溶解于预先经氮气脱气的去离子水中,通入N2保护,加热至70℃,然后快速搅拌、缓慢加入4ml氨水。反应1h后,利用外加磁场将所得沉淀从反应介质中分离出来,并用二次水清洗三次,得到纳米Fe3O4悬浮液,超声20min,得到的黑色溶液即为纳米Fe3O4磁流体。
2)壳聚糖-Fe3O4纳米微球的制备
取0.15gFe3O4磁流体与18mL8mg/mL壳聚糖(CS)乙酸溶液混合,超声分散25min。在搅拌下缓慢加入到85mL液体石蜡和4.2mLspan-80的混合液中,充分搅拌。加入8mL6%戊二醛,在40℃下搅拌1h,用0.1g/LNaOH溶液调PH至9,升温至70℃,继续反应80min,得到的产物用磁铁收集。再依次用石油醚、丙酮、蒸馏水充分洗涤,得到壳聚糖-Fe3O4纳米微球。
3)壳聚糖-FITC的制备
将壳聚糖溶解于0.12mol/L醋酸溶液中,配成1%的溶液,加入1mol/LNaOH溶液调节PH至7.0-7.5。将FITC溶于甲醇,加入到壳聚糖溶液中,室温下避光反应4.5h。加入NaOH溶液至沉淀完全,离心后用70:30(v:v)乙醇水溶液洗涤沉淀,直至上清液无明显紫外吸收,得到壳聚糖-FITC。
4)层层自组装制备磁性荧光纳米材料
将2)所得的壳聚糖-Fe3O4纳米微球分散在二次水中,加入85mL1g/L的羧甲基纤维素钠钾水溶液,26℃下恒温震荡30min,将所得微球清洗三次。添加100mL壳聚糖-FITC醋酸溶液(将壳聚糖-FITC溶解于0.1mol/L醋酸溶液中,配成1%的溶液),26℃下恒温震荡40min,将所得微球清洗三次即完成一个双层的包覆。重复以上步骤一次即得到2个双层的磁性荧光双功能纳米材料。
用TEM测得该磁性荧光双功能纳米材料的粒径为50nm;用磁强计测得其饱和磁强度为19emu/g;用荧光光度计测得其有较强的荧光。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.基于天然高分子的磁性荧光双功能纳米材料,其特征在于:以磁性粒子Fe3O4为核,壳聚糖和聚阴离子型纤维素为壳层材料,壳聚糖和聚阴离子型纤维素为壳层材料,通过层层自组装技术,依次使用壳聚糖或壳聚糖-FITC和聚阴离子型纤维素对磁性粒子进行包裹。
2.如权利要求1所述的基于天然高分子的磁性荧光双功能纳米材料,其特征在于:聚阴离子纤维素为羧甲基纤维素钠、纤维素硫酸钠、纤维素羧酸钠、羧酸纤维素、羧甲基纤维素钾、羧甲基纤维素钠钾中的一种。
3.基于天然高分子的磁性荧光双功能纳米材料的制备方法,其特征在于:具体步骤如下:
步骤一、合成磁性流体纳米Fe3O4
步骤二、壳聚糖-Fe3O4纳米微球的制备
将Fe3O4磁流体与5-13mg/mL壳聚糖CS乙酸溶液混合,超声分散均匀;得到A;Fe3O4与CS质量比例为1-1.2:1;同时将液体石蜡与表面活性剂span-80混合,混合比例为18-22:1;得到混合液B;将A加入到混合液B中,常温下充分搅拌后,加入4%-9%的醛类;醛基与壳聚糖的摩尔比为20-2:1;反应结束后用磁铁收集产物;再依次用石油醚、丙酮、蒸馏水充分洗涤,即可得到壳聚糖-Fe3O4纳米微球;
步骤三、壳聚糖-异硫氰酸荧光素FITC的制备
将壳聚糖溶解于酸性溶液中;将FITC溶于有机溶剂中;将二者混合;避光搅拌至反应结束;加入碱性溶液使沉淀完全,再用乙醇水溶液洗涤沉淀,直至上清液无紫外吸收;得到壳聚糖-FITC;
步骤四、层层自组装制备磁性荧光纳米材料
将步骤二所得的壳聚糖-Fe3O4纳米微球分散在水中,加入聚阴离子型纤维素水溶液;至二者作用完全即完成一次包覆,得到纳米粒子C;再将纳米粒子C加入到CS溶液或步骤三得到的壳聚糖-FITC,至二者作用完全即完成一次双层的包覆,重复上述包覆过程若干次,即得到磁性荧光双功能纳米材料。
4.如权利要求3所述的基于天然高分子的磁性荧光双功能纳米材料的制备方法,其特征在于:所述步骤二中为了减少反应时间,以及得到颗粒形状和粒径更佳的磁性粒子,在醛类充分分散后,再加入碱性溶液调pH至碱性。
5.如权利要求3所述的基于天然高分子的磁性荧光双功能纳米材料的制备方法,其特征在于:所述步骤二中的醛类包括甲醛、乙二醛、戊二醛。
6.如权利要求3所述的基于天然高分子的磁性荧光双功能纳米材料的制备方法,其特征在于:步骤三所述的酸性溶液不能为强酸溶液;所述的酸性溶液包括醋酸溶液、甲酸溶液。
7.如权利要求3所述的基于天然高分子的磁性荧光双功能纳米材料的制备方法,其特征在于:步骤三所述的有机溶剂包括甲醇、乙醇。
8.如权利要求3所述的基于天然高分子的磁性荧光双功能纳米材料的制备方法,其特征在于:步骤四中所述聚阴离子型纤维素与壳聚糖的表面电荷比为0.85-1.2:1。
9.如权利要求3所述的基于天然高分子的磁性荧光双功能纳米材料的制备方法,其特征在于:步骤四中根据磁性和荧光强度的需求,在加入步骤三所得的壳聚糖-FITC前,可重复上述包覆过程若干次。
CN201310493518.9A 2013-10-21 2013-10-21 基于天然高分子的磁性荧光双功能纳米材料及其制备方法 Active CN103525405B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310493518.9A CN103525405B (zh) 2013-10-21 2013-10-21 基于天然高分子的磁性荧光双功能纳米材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310493518.9A CN103525405B (zh) 2013-10-21 2013-10-21 基于天然高分子的磁性荧光双功能纳米材料及其制备方法

Publications (2)

Publication Number Publication Date
CN103525405A CN103525405A (zh) 2014-01-22
CN103525405B true CN103525405B (zh) 2015-02-18

Family

ID=49927766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310493518.9A Active CN103525405B (zh) 2013-10-21 2013-10-21 基于天然高分子的磁性荧光双功能纳米材料及其制备方法

Country Status (1)

Country Link
CN (1) CN103525405B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527640A (zh) * 2018-05-25 2019-12-03 中国农业科学院北京畜牧兽医研究所 一种基于纤维素化磁性纳米颗粒富集和分离厌氧纤维降解菌的方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106833613B (zh) * 2014-07-02 2019-02-12 济南大学 一种磁性荧光双功能纳米材料的制备
CN104745193B (zh) * 2015-02-13 2016-10-05 中南大学 一种荧光磁性纳米复合材料及其制备方法
CN104940958B (zh) * 2015-05-19 2018-04-06 中南大学 一种荧光磁性纳米靶向药物及其制备方法
CN105181662B (zh) * 2015-08-24 2018-04-03 西北大学 一种定性检测负载在多糖微球中功能纳米颗粒分布的方法
CN105251420B (zh) * 2015-09-08 2017-07-11 哈尔滨工程大学 一种多功能复合微球的制备方法
CN105845827B (zh) * 2016-04-01 2018-09-14 桂林理工大学 一种无衬底PbS/CH3NH3PbX3核壳纳米材料的制备方法
CN107118113B (zh) * 2017-06-09 2019-03-19 郑州轻工业学院 一种水溶性季铵阳离子荧光碳点的制备方法
CN107384370A (zh) * 2017-07-21 2017-11-24 浙江理工大学 一种包埋有基于甘蔗合成的碳量子点的纳米微粒的制备方法
CN108165518A (zh) * 2018-02-12 2018-06-15 山东建筑大学 一种二维/三维细胞培养支架材料
CN108389677A (zh) * 2018-04-27 2018-08-10 熊振 一种新型水基磁性液体的制备方法
CN108682530A (zh) * 2018-04-27 2018-10-19 熊振 一种水基磁性液体及其制备方法
CN109913200A (zh) * 2019-03-28 2019-06-21 汤新红 一种具有磁性和荧光双重功能的纳米材料及其制备方法
CN112768706B (zh) * 2019-11-05 2022-01-28 中国科学院大连化学物理研究所 一种核壳催化剂及其制备方法与在可充电锌空电池中的应用
CN112245409B (zh) * 2020-10-23 2022-03-15 安徽大学 一种植物蛋白-熊去氧胆酸缓释纳米粒复合微囊及其制备方法
CN113634240B (zh) * 2021-08-26 2023-10-27 宏葵生物(中国)股份有限公司 荧光磁性复合纳米纤维、其制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1559656A (zh) * 2004-02-19 2005-01-05 上海交通大学 磁性微粒与量子点的核-壳式纳米复合粒子的制备方法
CN1718592A (zh) * 2005-07-21 2006-01-11 浙江大学 荧光标记疏水改性壳寡糖聚合物及制备方法和应用
CN101953817A (zh) * 2010-09-20 2011-01-26 同济大学 一种载油溶性物质的微胶囊及其制备方法
CN102120168A (zh) * 2010-12-07 2011-07-13 复旦大学 多功能核壳结构荧光编码磁性微球及其制备方法
CN102335575A (zh) * 2010-07-14 2012-02-01 中国科学院化学研究所 一种层层组装的微胶囊及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8557290B2 (en) * 2008-03-14 2013-10-15 Northwestern University Multifunction nanoconjugates for imaging applications and targeted treatment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1559656A (zh) * 2004-02-19 2005-01-05 上海交通大学 磁性微粒与量子点的核-壳式纳米复合粒子的制备方法
CN1718592A (zh) * 2005-07-21 2006-01-11 浙江大学 荧光标记疏水改性壳寡糖聚合物及制备方法和应用
CN102335575A (zh) * 2010-07-14 2012-02-01 中国科学院化学研究所 一种层层组装的微胶囊及其制备方法
CN101953817A (zh) * 2010-09-20 2011-01-26 同济大学 一种载油溶性物质的微胶囊及其制备方法
CN102120168A (zh) * 2010-12-07 2011-07-13 复旦大学 多功能核壳结构荧光编码磁性微球及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527640A (zh) * 2018-05-25 2019-12-03 中国农业科学院北京畜牧兽医研究所 一种基于纤维素化磁性纳米颗粒富集和分离厌氧纤维降解菌的方法

Also Published As

Publication number Publication date
CN103525405A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
CN103525405B (zh) 基于天然高分子的磁性荧光双功能纳米材料及其制备方法
CN103525414B (zh) 碳量子点磁性荧光双功能纳米材料及其制备方法
Stanisz et al. Recent advances in the fabrication and application of biopolymer-based micro-and nanostructures: A comprehensive review
Syamchand et al. Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging
Sounderya et al. Use of core/shell structured nanoparticles for biomedical applications
CN101323022B (zh) 一种金磁核壳纳米粒子的制备方法
US20170226474A1 (en) Ph sensitive metal and nanoparticle and preparation method
CN102020258B (zh) 一种磁性荧光羟基磷灰石纳米复合结构的制备方法
CN101608020A (zh) 用水热法制备得到的磁性Fe3O4聚合物亚微米球及用途
CN105936820A (zh) 一种水溶性生物相容性荧光磁性纳米团簇及其制备方法
CN101694467A (zh) 一种表面增强拉曼散射探针的制备方法
CN104844839A (zh) 一种磁性荧光复合纳米颗粒的制备方法
CN102127586A (zh) 一种磁性荧光双功能纳米生物探针及其制备方法
CN101485981A (zh) 一种无机抗菌复合材料的制备方法
CN110496970A (zh) 一种复合纳米材料、其制备方法及其应用
CN106913885A (zh) 一种磁性纳米粒子及其制备方法和应用
CN100469854C (zh) 一种磁性荧光纳米微球及其制法和应用
CN103110535B (zh) TiO2-HA核壳结构防晒颗粒、其制备方法及应用
Breijaert et al. Self-assembly of ferria–nanocellulose composite fibres
CN101440279A (zh) 复合型硅壳结构的荧光纳米粒子及其制备方法
CN103303981A (zh) 一种四氧化三铁纳米粒子及其制备方法和用途
CN107224588B (zh) 一种具有磁-pH值双响应的药物载体的制备方法
CN103520741A (zh) 一种靶向核磁造影剂制备方法
Yetim et al. Magnetic and structural characterization of inorganic/organic coated Fe3O4 nanoparticles
CN103074066A (zh) 介孔直接包覆的荧光多功能纳米生物探针的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230728

Address after: 052200 Jinzhou circular economy industrial park, Shijiazhuang, Hebei

Patentee after: Hebei Yezhiyuan New Material Co.,Ltd.

Address before: 100081 No. 5 South Main Street, Haidian District, Beijing, Zhongguancun

Patentee before: BEIJING INSTITUTE OF TECHNOLOGY