CN103512878B - 基于GO和GQDs之间ECL-RET作用的传感器制备方法及激酶检测应用 - Google Patents

基于GO和GQDs之间ECL-RET作用的传感器制备方法及激酶检测应用 Download PDF

Info

Publication number
CN103512878B
CN103512878B CN201310356006.8A CN201310356006A CN103512878B CN 103512878 B CN103512878 B CN 103512878B CN 201310356006 A CN201310356006 A CN 201310356006A CN 103512878 B CN103512878 B CN 103512878B
Authority
CN
China
Prior art keywords
ecl
gqds
solution
concentration
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310356006.8A
Other languages
English (en)
Other versions
CN103512878A (zh
Inventor
邱建丁
向彩云
梁汝萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201310356006.8A priority Critical patent/CN103512878B/zh
Publication of CN103512878A publication Critical patent/CN103512878A/zh
Application granted granted Critical
Publication of CN103512878B publication Critical patent/CN103512878B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于GO和GQDs之间ECL-RET作用的传感器制备方法及激酶检测应用,属于电致化学发光领域;它先将壳聚糖滴涂于电极表面,通过共价作用先后将石墨烯量子点和多肽组装到电极表面;在蛋白激酶和三磷酸腺苷的作用下,多肽发生磷酸化,通过抗原-抗体之间的特异性识别作用,磷酸化抗体共轭的氧化石墨烯被组装到多肽的磷酸化丝氨酸位点上,拉近了氧化石墨烯和石墨烯量子点之间的距离,使得石墨烯量子点的电致化学发光被猝灭。蛋白激酶的浓度越大,多肽修饰电极表面产生的磷酸化位点越多,组装于传感界面的氧化石墨烯就越多,对石墨烯量子点的电致化学发光猝灭效应越强,实现了对蛋白质激酶的高灵敏检测。

Description

基于GO和GQDs之间ECL-RET作用的传感器制备方法及激酶检测应用
技术领域
本发明涉及电致化学发光领域,尤其涉及一种基于GO和GQDs之间ECL-RET作用的传感器制备方法及激酶检测应用。
背景技术
石墨烯是一种二维自由态原子晶体,它是构筑维富勒烯、一维碳纳米管、三维体相石墨等sp2杂化碳的基本结构单元,自2004年首次报道以来,引起了国内外研究者们的极大关注。石墨烯优良的电化学、力学和热力学性质,使得其广泛应用于聚合物材料、传感器、与能量相关的材料和场效应晶体管等研究。然而,石墨烯是一种零带隙材料,很难观察到其发光现象。因此,运用各种方式处理石墨烯的带隙并拓展其发光应用,引起了科学家极大的研究兴趣,如,通过掺杂打开石墨烯的带隙,通过部分还原和表面钝化利用氧化石墨烯(GO),将石墨烯材料腐蚀切割成石墨烯量子点(GQDs)以诱导其光致发光(PL)等。尤其是新发现的GQDs,为电致化学发光(ECL)研究和应用提供了良好材料。然而,迄今为止,GQDs在ECL方面的研究应用非常少。
发明内容
本发明的目的在于提供了一种基于GO和GQDs之间ECL-RET作用的传感器制备方法及激酶检测应用,它制备的传感器具有检测灵敏、选择性好和稳定性好的优点。
本发明是这样来实现的,一种基于氧化石墨烯和石墨烯量子点之间电致化学发光能量转移(ECL-RET)作用的传感器制备方法,其特征在于所述制备方法包括以下步骤:
(1)采用Hummers方法制备GO:将1.0 g石墨和1.0 g NaNO3加入到46 mL的质量百分浓度为98%的H2SO4中,冰浴下缓慢加入6.0 g KMnO4,于35℃水浴中搅拌1 h,加入80 mL超纯水,继续搅拌30 min,再加入200 mL超纯水后,逐滴加入6 mL的质量百分浓度为30%的H2O2,室温下反应1 h;将产物趁热过滤并用超纯水清洗至滤液为中性,将产物分散到500 mL超纯水中,超声处理2 h,即制得均匀分散的GO;
(2)利用水热法制备GQDs:将干燥的GO置于管式炉中,在N2保护的条件下,以5℃/min的升温速率加热到200℃并保持2 h,得到石墨烯片;将0.05 g石墨烯片加入到体积比为1:3的浓硫酸:浓硝酸的混合溶液中超声17 h,加入250 mL超纯水稀释;用0.22μm微孔滤膜过滤,将收集的滤饼悬浮在40 mL超纯水中,用NaOH调节溶液pH为8后,转移入反应釜中于200℃反应12 h,冷却到室温;用0.22μm的微孔滤膜过滤除去大体积的石墨烯片,得到的棕色滤液即为GQDs溶液;所述的浓硫酸的质量百分浓度为98%,浓硝酸的质量百分浓度为68%;
(3)羧基化GQDs的制备:将0.05 g的NaOH和0.1 g的氯乙酸钠加入到20 mL的GQDs溶液中,超声反应3 h,用盐酸调节溶液pH为中性,即得到羧基化的GQDs;
(4)抗磷酸化丝氨酸抗体氧化石墨烯(Ab-GO)复合物的制备:将200μL、1 mg/mL的GO和200μL、5 μg/mL的抗磷酸化丝氨酸抗体(Ab)混合,室温条件下反应12 h;将产物在10000 rpm下离心30 min,用超纯水清洗3次,将产物重悬于10 mM、pH 7.4的磷酸盐(PBS)缓冲溶液中,4℃下保存;
(5)ECL传感器的制备:玻碳电极先在粒径为1.0,0.3,0.05μm的α-Al2O3糊中抛光,再用乙醇和水超声清洗1 min。将10 μL、质量百分浓度为0.5%的壳聚糖溶液滴涂到玻碳电极表面并晾干后,将电极浸入到含有5 mM的N-乙基-N’-1-(3-二甲氨基丙基)碳二亚胺盐酸盐(EDC)的羧基化GQDs溶液中,室温下孵化5 h;用10 mM、pH 7.4的PBS缓冲溶液清洗后,将电极插入到含有5 mM的EDC、8 mM的N-羟基琥珀酰亚胺(NHS)和50 μM的多肽溶液中反应3 h;再将电极插入到含有蛋白激酶(CK2)和三磷酸腺苷(ATP)的三羟甲基氨基甲烷盐酸盐(Tris)缓冲溶液中反应2 h,使多肽发生磷酸化;将磷酸化多肽修饰电极在Ab-GO复合物溶液中孵化1 h,即制得ECL传感器;上述步骤中,所述的壳聚糖溶液的配制方法为将壳聚糖加入到质量百分比为1%的醋酸溶液中并超声溶解。所述的Tris缓冲溶液的浓度为20 mM,pH为7.4,包含20 mM的MgCl2
激酶检测应用是指传感器对蛋白激酶活性及其抑制剂的检测:随着CK2浓度的增加,多肽修饰电极表面产生的磷酸化位点越多,组装到GQDs修饰电极表面的GO就越多,在含有0.1 M Na2S2O8和0.1 M KCl的PBS缓冲溶液中,电极表面捕获的GO对GQDs的电致化学发光产生的猝灭效应越强,使得ECL信号逐渐下降,CK2浓度在0.01-5 U/mL范围内与ECL信号呈线性关系,对CK2的检测限为0.023 U/mL;ECL强度随着CK2抑制剂浓度的增大而增强,当鞣花酸浓度为0.15μM时,ECL信号达到最大,计算得到的鞣花酸的半抑制浓度为0.043μM。所述的PBS缓冲溶液的浓度为0.1 M,pH为7.4。
本发明的技术效果是:本发明利用GO与GQDs之间的电致化学发光能量转移,使得GO对GQDs的电致化学发光产生猝灭,构建了一种用于对蛋白激酶活性及其抑制剂检测的ECL生物传感器,此传感器具有高灵敏度、检测限低和稳定性好等特点。
附图说明
图1是ECL生物传感器检测CK2活性和抑制剂的原理图。
图2是(A)GO和(B)GQDs的透射电微镜图;(C)(a) GO、(b) GQDs和(c) GQDs-COOH的FTIR图;(D) GQDs-COOH的(a)紫外吸收光谱和(b)荧光光谱,内插图为GQDs (1, 2)和GQD-COOH (3, 4)在可见光(1, 3)和紫外光(2, 4)下的对比图。
图3是(a)玻碳电极,(b) CS、(c) GQDs/CS、(d)多肽/GQDs/CS修饰电极以及电极(d)在(e)磷酸化前和(f)磷酸化后在含0.1 M Na2S2O8和0.1 M KCl的PBS (0.1 M,pH 7.4)中的ECL强度-电位图。扫描速率为100 mV/s,光电倍增管的电位为800 V。
图4是(a)玻碳电极,(b) CS、(c) GQDs/CS、(d)多肽/GQDs/CS、(e)磷酸化多肽/GQDs/CS和(f) GO-Ab/磷酸化多肽/GQDs/CS修饰玻碳电极在含有5 mM的[Fe(CN)6]3-/4-和0.1 M的KCl的PBS溶液中的循环伏安和交流阻抗。扫描速率为100 mV/s,频率范围为0.1-105 Hz和扰动电压为5 mV。
图5是(a) CS、(b) GQDs/CS、(c)多肽/GQDs/CS和(d) GO-Ab/磷酸化多肽/GQDs/CS修饰电极的AFM图。
图6是不同浓度CK2的(A)ECL强度-时间曲线和(B)标准曲线。曲线a-j为0,0.1,0.5,2,5,7,10,20 U/mL的CK2。其他条件与图3相同。
图7是(A)ECL强度与鞣花酸浓度的关系图。(B)传感器对鞣花酸、DRB、大黄素和槲皮素的选择性。其他条件与图3相同。
具体实施方式
下面结合附图和具体实施例对本发明作进一步阐述,本发明并不限于此。
实施例1
(1)采用Hummers方法制备GO:将1.0 g石墨和1.0 g NaNO3加入到46 mL的质量百分浓度为98%的H2SO4中,冰浴下缓慢加入6.0 g KMnO4,于35℃水浴中搅拌1 h,加入80 mL超纯水,继续搅拌30 min,再加入200 mL超纯水后,逐滴加入6 mL的质量百分浓度为30%的H2O2,室温下反应1 h;将产物趁热过滤并用超纯水清洗至滤液为中性,将产物分散到500 mL超纯水中,超声处理2 h,即制得均匀分散的GO;
(2)利用水热法制备GQDs:将干燥的GO置于管式炉中,在N2保护的条件下,以5℃/min的升温速率加热到200℃并保持2 h,得到石墨烯片;将0.05 g石墨烯片加入到体积比为1:3的浓硫酸:浓硝酸的混合溶液中超声17 h,其中浓硫酸的质量百分浓度为98%,浓硝酸的质量百分浓度为68%;然后加入250 mL超纯水稀释;用0.22μm微孔滤膜过滤,将收集的滤饼悬浮在40 mL超纯水中,用NaOH调节溶液pH为8后,转移入反应釜中于200℃反应12 h,冷却到室温;用0.22μm的微孔滤膜过滤除去大体积的石墨烯片,得到的棕色滤液即为GQDs溶液;
(3)羧基化GQDs的制备:将0.05 g的NaOH和0.1 g的氯乙酸钠加入到20 mL的GQDs溶液中,超声反应3 h,用盐酸调节溶液pH为中性,即得到羧基化的GQDs;
(4)抗磷酸化丝氨酸抗体氧化石墨烯(Ab-GO)复合物的制备:将200μL、1 mg/mL的GO和200μL、5μg/mL的抗磷酸化丝氨酸抗体(Ab)混合,室温条件下反应12 h;将产物在10000 rpm下离心30 min,用超纯水清洗3次,将产物重悬于10 mM、pH 7.4的PBS缓冲溶液中,4℃下保存;
采用透射电镜(TEM)对GO和GQDs合成进行表征。由图可见,GO以单层或者2层形式存在,表面有皱褶(图2A);当采用水热合成法处理GO后,获得了均匀分散且粒径为3-5 nm的GQDs(图2B)。
采用傅里叶红外光谱(FTIR)对制备的GO和GQDs进行表征(图2C)。曲线a在3440 cm-1(υ-OH)、1640 cm-1(υC=O)、1380 cm-1(υO-H)、1240 cm-1(υC-O/COOH)和1052 cm-1(υC-O-C)处呈现出GO的特征吸收峰,表明成功制备了GO。与GO相比,GQDs在1240 cm-1处C-O/COOH的伸缩振动减弱,而在1052 cm-1处环氧基团的伸缩振动消失(曲线b),表明GO在热还原过程中,边缘和基底的含氧基团被破坏,除去了桥梁氧原子,被切割为小片的GQDs。为了将GQDs通过酰胺反应组装到壳聚糖修饰电极表面,采用氯乙酸钠对GQDs进行羧基化,由曲线c可见,在1725cm?1、1240 cm?1和1052 cm?1处的吸收峰增强,表明采用本方法成功将GQDs羧基化,制备了GQDs-COOH。
采用紫外-可见吸收光谱(UV-vis)对GQD-COOH的形成进行表征(图2D)。曲线a在310 nm处呈现出GQDs的微弱肩峰;采用光致发光法(PL)对GQDs和GQDs-COOH的光学性质进行了表征(图2D)。在310 nm激发下,GQDs(曲线b)和GQDs-COOH(曲线c)在450 nm处均出现一个强吸收峰。而且,GQDs(1)和GQDs-COOH(3)在可见光下均为黄色溶液,在365 nm紫外灯的照射下,GQDs(2)和GQDs-COOH(4)均发出强烈的蓝光,表明羧基化之后没有改变GQDs的光学性质。
实施例2
ECL生物传感器的制备过程
(1)玻碳电极的预处理:玻碳电极在修饰之前,先在粒径为1.0,0.3,0.05μm的α-Al2O3糊中抛光,再用乙醇和水超声清洗1 min;
(2)ECL生物传感器的制备过程如图1所示。将10 μL、质量百分浓度为0.5%的壳聚糖溶液滴涂到玻碳电极表面并晾干后,将电极浸入到含有5 mM的EDC的GQDs-COOH溶液中,室温下孵化5 h;用10 mM、pH 7.4的PBS缓冲溶液清洗后,将电极插入到含有5 mM的EDC、8 mM的NHS和50 μM的多肽溶液中反应3 h;再将电极插入到含有CK2和ATP的Tris缓冲溶液中反应2 h,使多肽发生磷酸化;将磷酸化多肽修饰电极在Ab-GO溶液中孵化1 h,即制得ECL传感器;
图3为不同修饰电极在的ECL强度-电位图。裸电极(曲线a)和壳聚糖修饰电极(曲线b)的ECL强度很低;当将GQDs组装到电极表面后,在-1.6 V处的ECL响应迅速增大(曲线c);将多肽共价结合到GQDs/CS电极表面后,GQDs的ECL响应稍有下降(曲线d),这可能是由于多肽增大了电极表面的电阻,从而降低了Na2S2O8和GQDs的ECL反应速率;当没有CK2存在时,电极表面的多肽不发生磷酸化,不能将Ab-GO捕获到电极表面,因而,ECL响应仅稍有下降(曲线e);当向溶液中加入5 U/mL CK2和50μM ATP后,电极表面的多肽发生磷酸化,在抗原-抗体的特异性识别作用下,Ab-GO被组装到电极表面,从而拉近了GO和GQDs之间的距离,GO与GQDs之间发生ECL-RET作用,导致GQDs的ECL响应大大降低(曲线f)。
采用电化学交流阻抗法对传感器的制备过程进行表征(图4)。裸玻碳电极的电子传递阻力(Ret)很低(曲线a);当将壳聚糖修饰到电极表面后,电极的Ret增大(曲线b);将GQDs键合到电极表面后, Ret增加为605 Ω(曲线c),这是由于GQDs带负电,静电排斥溶液中的Fe(CN)6]3?/4?向电极表面传递;当将多肽修饰到电极表面后,Ret增大为725 Ω(曲线d);当CK2和ATP将电极表面修饰的多肽发生磷酸化之后,Ret继续增大(曲线e);当通过抗原-抗体的特异性作用将Ab-GO组装到磷酸化多肽修饰电极表面之后,Ret进一步增大(曲线f)。以上结果表明,采用本方法成功实现了Ab-GO在电极表面的组装。
采用原子力显微镜(AFM)对生物传感器的构建过程进行了表征(图5)。壳聚糖修饰玻碳基底表面较为光滑(图5A);当将GQDs-COOH共价键合到玻碳基底表面后,AFM图中出现了高度约2 nm的小突起(图5B),表明GQDs成功修饰到玻碳基底表面;将多肽共价组装到GQDs修饰玻碳基底表面时,AFM图中出现均匀的高度约6 nm的突起(图5C),表明多肽成功组装到了玻碳基底表面;当将Ab-GO进一步捕获到玻碳基底表面时,AFM图中突起的高度增加至约30 nm(图5D),表明GO-Ab成功组装到了基底表面。
实施例3
ECL生物传感器用于检测CK2
在最优实验条件下,利用GO与GQDs之间的ECL-RET作用构建的ECL生物传感器检测CK2活性。由图6A可见,随着CK2浓度的增大,GQDs的ECL信号逐渐下降,当CK2浓度为30 U/mL时,ECL强度达到最大。图6B为CK2检测的标准曲线,CK2浓度为0.05-5 U/mL时,CK2浓度与ECL信号呈良好的线性关系,线性方程为I = 1621.6 - 142.7c(I为ECL强度,c为CK2浓度),检测限为0.023 U/mL。本方法比采用电化学法和荧光法的检测限低且线性范围宽,表明本发明提出的ECL传感器能高灵敏检测激酶活性。
在含有0.1 M Na2S2O8和0.1 M KCl的PBS (0.1 M,pH 7.4)溶液中,将组装了Ab-GO的玻碳电极在电位范围为0到-1.6 V (vs Ag/AgCl)、扫描速率为100 mV/s条件下连续扫描,扫描22圈后GQDs的ECL信号仍然非常稳定,相对标准偏差为0.97%,表明传感器具有良好的电位循环稳定性。对ECL传感器的重现性和再现性进行了考察。在CK2浓度为2.5 U/mL时,测量10次ECL响应以评估生物传感器的批内分析精确度,批间分析精确度用制备的10根电极测量CK2,批内分析和批间分析的偏差系数分别为6.7%和8.1%。以上结果表明,本发明设计的ECL生物传感器具有良好的稳定性、重现性和再现性。
实施例4
ECL生物传感器用于对CK2抑制剂的筛选
本研究以鞣花酸为例对CK2的抑制剂进行筛选研究(图7)。GQDs的ECL信号随着鞣花酸浓度的增加而增强,当鞣花酸浓度为0.15μM时,ECL信号达到最大,鞣花酸对CK2的半抑制浓度为0.043μM。还考察了另外三种非CK2特异性抑制剂如5,6-二氯-l-β-D-呋喃核糖基苯丙咪唑(DRB)、大黄素和槲皮素对CK2活性的影响。由图7B可见,鞣花酸对CK2的抑制效果最强,表明本发明构建的生物传感器对CK2抑制剂具有良好的选择性。

Claims (6)

1.基于GO和GQDs之间ECL-RET作用的传感器制备方法,其特征在于所述制备方法包括以下步骤:
(1)采用Hummers方法制备氧化石墨烯:将1.0 g石墨和1.0 g NaNO3加入到46 mL的质量百分浓度为98%的H2SO4中,冰浴下缓慢加入6.0 g KMnO4,于35 ℃水浴中搅拌1 h,加入80 mL超纯水,继续搅拌30 min,再加入200 mL超纯水后,逐滴加入6 mL的质量百分浓度为30%的H2O2,室温下反应1 h;将产物趁热过滤并用超纯水清洗至滤液为中性,将产物分散到500 mL超纯水中,超声处理2 h,即制得均匀分散的氧化石墨烯;
(2)利用水热法制备石墨烯量子点:将干燥的氧化石墨烯置于管式炉中,在N2保护的条件下,以5 ℃/min的升温速率加热到200 ℃并保持2 h,得到石墨烯片;将0.05 g石墨烯片加入到体积比为1:3的浓硫酸:浓硝酸的混合溶液中超声17 h,加入250 mL超纯水稀释;用0.22 μm微孔滤膜过滤,将收集的滤饼悬浮在40 mL超纯水中,用NaOH调节溶液pH为8后,转移入反应釜中于200 ℃反应12 h,冷却到室温;用0.22 μm的微孔滤膜过滤除去大体积的石墨烯片,得到的棕色滤液即为石墨烯量子点溶液;
(3)羧基化石墨烯量子点的制备:将0.05 g的NaOH和0.1 g的氯乙酸钠加入到20 mL的石墨烯量子点溶液中,超声反应3 h,用盐酸调节溶液pH为中性,即得到羧基化的石墨烯量子点;
(4)抗磷酸化丝氨酸抗体氧化石墨烯复合物的制备:将200 μL、1 mg/mL的氧化石墨烯和200 μL、5 μg/mL的抗磷酸化丝氨酸抗体混合,室温条件下反应12 h;将产物在10000 rpm下离心30 min,用超纯水清洗3次,将产物重悬于10 mM、pH 7.4的磷酸盐缓冲溶液中,4 oC下保存;
(5)ECL传感器的制备:玻碳电极先在粒径为1.0,0.3,0.05 μm的α-Al2O3糊中抛光,再用乙醇和水超声清洗1 min;将10 μL、质量百分浓度为0.5%的壳聚糖溶液滴涂到玻碳电极表面并晾干后,将电极浸入到含有5 mM的N-乙基-N’-1-(3-二甲氨基丙基)碳二亚胺盐酸盐的羧基化石墨烯量子点溶液中,室温下孵化5 h;用10 mM、pH 7.4的磷酸盐缓冲溶液清洗后,将电极插入到含有5 mM的N-乙基-N’-1-(3-二甲氨基丙基)碳二亚胺盐酸盐、8 mM的N-羟基琥珀酰亚胺和50 μM的多肽溶液中反应3 h;再将电极插入到含有蛋白激酶和三磷酸腺苷的三羟甲基氨基甲烷盐酸盐缓冲溶液中反应2 h,使多肽发生磷酸化;将磷酸化多肽修饰电极在抗磷酸化丝氨酸抗体氧化石墨烯复合物溶液中孵化1 h,即制得ECL传感器。
2.根据权利要求1所述的基于GO和GQDs之间ECL-RET作用的传感器制备方法,其特征在于步骤(2)中,所述的浓硫酸的质量百分浓度为98%,浓硝酸的质量百分浓度为68%。
3.根据权利要求1所述的基于GO和GQDs之间ECL-RET作用的传感器制备方法,其特征在于步骤(5)中,所述的壳聚糖溶液的配制方法为将壳聚糖加入到质量百分比为1%的醋酸溶液中并超声溶解。
4.根据权利要求1所述的基于GO和GQDs之间ECL-RET作用的传感器制备方法,其特征在于步骤(5)中,所述的三羟甲基氨基甲烷盐酸盐缓冲溶液的浓度为20 mM,pH为7.4,包含20 mM的MgCl2
5.如权利要求1-4中的任一项所述基于GO和GQDs之间ECL-RET作用的传感器制备方法所制备的传感器在蛋白激酶活性及其抑制剂的检测中的应用,其特征在于,随着蛋白激酶浓度的增加,多肽修饰电极表面产生的磷酸化位点越多,组装到石墨烯量子点修饰电极表面的氧化石墨烯就越多,在含有0.1 M Na2S2O8和0.1 M KCl的磷酸盐缓冲溶液中,电极表面捕获的氧化石墨烯对石墨烯量子点的电致化学发光产生的猝灭效应越强,使得电致化学发光信号逐渐下降,蛋白激酶的浓度在0.01-5U/mL范围内与电致化学发光信号呈线性关系,检测限为0.023 U/mL;电致化学发光强度随着蛋白激酶抑制剂浓度的增加而增强,当鞣花酸浓度为0.15μM时,电致发光信号达到最大,计算得到的鞣花酸的半抑制浓度为0.043 μM。
6.根据权利要求5所述的传感器在蛋白激酶活性及其抑制剂的检测中的应用,其特征在于所述的含有0.1 M Na2S2O8和0.1 M KCl的磷酸盐缓冲溶的浓度为0.1 M,pH为7.4。
CN201310356006.8A 2013-08-16 2013-08-16 基于GO和GQDs之间ECL-RET作用的传感器制备方法及激酶检测应用 Expired - Fee Related CN103512878B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310356006.8A CN103512878B (zh) 2013-08-16 2013-08-16 基于GO和GQDs之间ECL-RET作用的传感器制备方法及激酶检测应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310356006.8A CN103512878B (zh) 2013-08-16 2013-08-16 基于GO和GQDs之间ECL-RET作用的传感器制备方法及激酶检测应用

Publications (2)

Publication Number Publication Date
CN103512878A CN103512878A (zh) 2014-01-15
CN103512878B true CN103512878B (zh) 2015-05-20

Family

ID=49895941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310356006.8A Expired - Fee Related CN103512878B (zh) 2013-08-16 2013-08-16 基于GO和GQDs之间ECL-RET作用的传感器制备方法及激酶检测应用

Country Status (1)

Country Link
CN (1) CN103512878B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048957B (zh) * 2014-05-14 2017-06-30 南昌大学 基于石墨烯量子点的类过氧化物酶催化特性的葡萄糖检测方法
CN104181136B (zh) * 2014-08-25 2017-03-29 广西师范大学 一种测定甲醛的共振瑞利散射能量转移光谱法
CN104316514B (zh) * 2014-11-07 2017-01-25 中国科学技术大学 一种双功能化氧化石墨烯复合材料、其制备方法和用途
CN105668551A (zh) * 2014-11-20 2016-06-15 重庆领先新材料有限公司 一种低成本荧光石墨烯材料及其制备方法
CN104777157B (zh) * 2015-04-02 2018-08-24 西南大学 一种无酶ecl葡萄糖传感器
CN105738345B (zh) * 2016-02-29 2018-08-17 南昌大学 基于g-C3N4电致化学发光增强效应的蛋白激酶活性检测方法
CN107304047B (zh) * 2016-04-21 2020-05-26 常州二维碳素科技股份有限公司 一种多层石墨烯的分散方法
CN105938095B (zh) * 2016-05-09 2018-11-13 青岛大学 基于激子-等离子激元能量相互作用检测蛋白激酶的传感器及其制备方法、应用
CN108333152B (zh) * 2017-01-19 2020-12-22 中国科学院烟台海岸带研究所 基于基因重组藻蓝蛋白mac和氧化石墨烯量子点的生物素化抗体传感器及其制备方法
CN106986936A (zh) * 2017-03-23 2017-07-28 安徽师范大学 UCNPs‑Ab1和GNRs‑Ab2及其制备方法、甲胎蛋白的检测方法
CN109060778A (zh) * 2018-07-13 2018-12-21 天津理工大学 一种基于石墨烯量子点的电化学发光检测丁基羟基茴香醚的方法
US11320424B2 (en) * 2018-07-13 2022-05-03 3M Innovative Properties Company Specific binding chemiluminescent assay
CN109738405B (zh) * 2019-01-03 2021-03-30 中南民族大学 一种定量测定黄酮类化合物的方法
CN110564807B (zh) * 2019-08-08 2021-07-09 南京工业大学 一种基于氧化石墨烯蔗糖生物传感器的传感电极制备方法
CN111261914B (zh) * 2020-01-20 2023-06-09 青岛大学 一种氧化石墨烯聚合物复合质子交换膜及制备方法和应用
CN113092565B (zh) * 2021-03-29 2021-12-14 南昌大学 一种基于电致化学发光效应的亚砷酸根检测方法
CN113686942B (zh) * 2021-08-20 2024-03-19 山东得和明兴生物科技有限公司 一种基于电致化学发光检测胶质芽孢杆菌的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101995402A (zh) * 2010-10-15 2011-03-30 济南大学 检测痕量农药残留物的电致化学发光传感器的制备及应用
CN102226779A (zh) * 2011-03-28 2011-10-26 中国人民解放军第三军医大学第三附属医院 一种电化学免疫检测方法
US8377700B2 (en) * 2009-02-26 2013-02-19 Massachusetts Institute Of Technology Systems and methods using photoluminescent nanostructure based hydrogels
CN102944596A (zh) * 2012-11-09 2013-02-27 常州大学 石墨烯修饰玻碳电极的制备方法及其应用
CN103228669A (zh) * 2010-09-27 2013-07-31 国立大学法人京都大学 基于荧光共振能量转移的原理的单分子型fret生物传感器接头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8377700B2 (en) * 2009-02-26 2013-02-19 Massachusetts Institute Of Technology Systems and methods using photoluminescent nanostructure based hydrogels
CN103228669A (zh) * 2010-09-27 2013-07-31 国立大学法人京都大学 基于荧光共振能量转移的原理的单分子型fret生物传感器接头
CN101995402A (zh) * 2010-10-15 2011-03-30 济南大学 检测痕量农药残留物的电致化学发光传感器的制备及应用
CN102226779A (zh) * 2011-03-28 2011-10-26 中国人民解放军第三军医大学第三附属医院 一种电化学免疫检测方法
CN102944596A (zh) * 2012-11-09 2013-02-27 常州大学 石墨烯修饰玻碳电极的制备方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Highly Sensitive Electrogenerated Chemiluminescence Biosensor in Profiling Protein Kinase Activity and Inhibition Using Gold Nanoparticle as Signal Transduction Probes;Shoujiang Xu et al.;《Anal. Chem.》;20101105;第82卷(第22期);第9566–9572页 *
Nanomaterial-based chemiluminescence resonance energy transfer: A strategy to develop new analytical methods;Xiangyi Huang et al;《Trends in Analytical Chemistry》;20121231;第40卷;第71-89页 *
Nanomaterial-based tools for protein kinase bioanalysis;Juanjuan Lu et al.;《Biosensors and Bioelectronics》;20130327;第47卷;第271–277页 *

Also Published As

Publication number Publication date
CN103512878A (zh) 2014-01-15

Similar Documents

Publication Publication Date Title
CN103512878B (zh) 基于GO和GQDs之间ECL-RET作用的传感器制备方法及激酶检测应用
Lv et al. Carbon dots/g-C3N4 nanoheterostructures-based signal-generation tags for photoelectrochemical immunoassay of cancer biomarkers coupling with copper nanoclusters
Zhu et al. Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review
Hu et al. Characterization and analytical separation of fluorescent carbon nanodots
Kasry et al. Highly efficient fluorescence quenching with graphene
Li et al. Cathodic electrochemiluminescence immunosensor based on nanocomposites of semiconductor carboxylated g-C3N4 and graphene for the ultrasensitive detection of squamous cell carcinoma antigen
Li et al. Efficient enhancement of electrochemiluminescence from tin disulfide quantum dots by hollow titanium dioxide spherical shell for highly sensitive detection of chloramphenicol
Kim et al. Host–guest sensing by calixarenes on the surfaces
Niu et al. Controllable electrochemical/electroanalytical approach to generate nitrogen-doped carbon quantum dots from varied amino acids: pinpointing the utmost quantum yield and the versatile photoluminescent and electrochemiluminescent applications
Liu et al. Anodic electrochemiluminescence of graphitic-phase C3N4 nanosheets for sensitive biosensing
Xu et al. Fabrication of carbon quantum dots and their application for efficient detecting Ru (bpy) 32+ in the solution
Yu et al. Full-spectrum responsive photoelectrochemical immunoassay based on β-In2S3@ carbon dot nanoflowers
Li et al. A room-temperature phosphorescence sensor for the detection of alkaline phosphatase activity based on Mn-doped ZnS quantum dots
Zhou et al. Strong electrochemiluminescent interactions between carbon nitride nanosheet–reduced graphene oxide nanohybrids and folic acid, and ultrasensitive sensing for folic acid
Ahmed et al. Optoelectronic fowl adenovirus detection based on local electric field enhancement on graphene quantum dots and gold nanobundle hybrid
CN106087242A (zh) 一种钙钛矿量子点复合纤维膜、制备方法及其用于荧光检测的应用
Wang et al. Biosynthesized quantum dot for facile and ultrasensitive electrochemical and electrochemiluminescence immunoassay
Cao et al. Cathodic electrochemiluminescence behaviour of MoS 2 quantum dots and its biosensing of microRNA-21
Zhang et al. Fluorescence resonance energy transfer between NaYF4: Yb, Tm upconversion nanoparticles and gold nanorods: Near-infrared responsive biosensor for streptavidin
Shen et al. Competitive displacement triggering DBP photoelectrochemical aptasensor via cetyltrimethylammonium bromide bridging aptamer and perovskite
Liang et al. A novel surface modification strategy of CdTe/CdS QDs and its application for sensitive detection of ct-DNA
Li et al. A novel immunosensor for squamous cell carcinoma antigen determination based on CdTe@ Carbon dots nanocomposite electrochemiluminescence resonance energy transfer
Yang et al. Investigation of the surface confinement effect of copper nanoclusters: construction of an ultrasensitive fluorescence turn-on bio-enzyme sensing platform
Zhao et al. A novel ECL sensor for determination of carcinoembryonic antigen using reduced graphene Oxide-BaYF5: Yb, Er upconversion nanocomposites and gold nanoparticles
Buiculescu et al. Controlling carbon nanodot fluorescence for optical biosensing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150520

Termination date: 20190816

CF01 Termination of patent right due to non-payment of annual fee