CN105738345B - 基于g-C3N4电致化学发光增强效应的蛋白激酶活性检测方法 - Google Patents

基于g-C3N4电致化学发光增强效应的蛋白激酶活性检测方法 Download PDF

Info

Publication number
CN105738345B
CN105738345B CN201610107201.0A CN201610107201A CN105738345B CN 105738345 B CN105738345 B CN 105738345B CN 201610107201 A CN201610107201 A CN 201610107201A CN 105738345 B CN105738345 B CN 105738345B
Authority
CN
China
Prior art keywords
protein kinase
polypeptide
electrogenerated chemiluminescence
solution
kinase activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610107201.0A
Other languages
English (en)
Other versions
CN105738345A (zh
Inventor
梁汝萍
李颖
邱建丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201610107201.0A priority Critical patent/CN105738345B/zh
Publication of CN105738345A publication Critical patent/CN105738345A/zh
Application granted granted Critical
Publication of CN105738345B publication Critical patent/CN105738345B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于g‑C3N4电致化学发光增强效应的蛋白激酶活性检测方法,属于电致化学发光技术领域。先将多肽组装到g‑C3N4修饰电极表面,在蛋白激酶和巯基三磷酸腺苷的作用下,多肽发生巯基磷酸化,进而通过金‑硫键作用将金纳米簇捕获到多肽的巯基磷酸化位点上,使得g‑C3N4的电致化学发光信号增强。g‑C3N4电致化学发光信号的增强程度与蛋白激酶的浓度呈正相关,据此可实现蛋白激酶活性的灵敏性检测。

Description

基于g-C3N4电致化学发光增强效应的蛋白激酶活性检测方法
技术领域
本发明涉及一种基于g-C3N4电致化学发光增强效应的蛋白激酶活性检测方法,属于电致化学发光技术领域。
背景技术
蛋白激酶又称蛋白质磷酸化酶,是催化蛋白质或多肽发生磷酸化的重要物质。在真核细胞中,蛋白激酶调控多种细胞信号转导,如基质的修饰活动等。蛋白激酶同样控制很多其他的细胞过程,包括:细胞的新陈代谢、细胞转录、细胞周期进程、细胞骨架重排及细胞运动等。蛋白激酶A(PKA)催化的磷酸化过程在调节细胞生物过程中起到非常重要的作用,PKA活性的过表达与很多疾病及癌症有密切关系。因此,构建操作简单、灵敏的激酶活性检测方法不仅可以为癌症早期诊断提供信息,还能在抗癌药物研发中起到重要作用。
碳氮化合物因其在光学、力学等方面的优异性能而受到各国科学家的关注。其中,类石墨烯氮化碳(g-C3N4)室温下非常稳定,具有无毒和光响应等性质。g-C3N4还具有电致化学发光(ECL)和荧光(PL)特性,ECL过程是在电极表面发生电子转移形成激发态诱导发光,ECL与PL相比,背景干扰低、灵敏度高且操作简单。
金属纳米簇是由几到几十个半径小于其电子费米波长的金属原子构成的新型纳米发光材料。金属纳米簇的性质介于孤立的原子与纳米粒子之间。以牛血清白蛋白(BSA)为模板在碱性溶液中制备金纳米簇(Au NCs),将金属纳米簇与重要生物活动有效联系起来,为金属纳米簇在生物及医理药理学等重要领域的应用提供了重要帮助。
发明内容
本发明的目的在于提供一种基于g-C3N4电致化学发光增强效应的蛋白激酶活性检测方法,该方法在高灵敏和选择性激酶活性及其抑制剂分析中具有良好的应用前景。
本发明是这样实现的。基于g-C3N4电致化学发光增强效应的蛋白激酶活性检测方法,其特征在于,将多肽/g-C3N4修饰电极浸入含有蛋白激酶和巯基三磷酸腺苷的三羟甲基氨基甲烷盐酸盐缓冲溶液中,使多肽发生磷酸化,将磷酸化多肽修饰电极浸入金纳米簇溶液中孵育;随着蛋白激酶浓度的增加,组装到电极表面的金纳米簇增多,金纳米簇对g-C3N4的电致化学发光增强效应越强,蛋白激酶浓度与g-C3N4的电致化学发光增强的程度呈正相关,据此实现对蛋白激酶活性的检测;g-C3N4的电致化学发光强度随着蛋白激酶抑制剂浓度的增加而降低,据此关系计算出鞣花酸的半抑制浓度,用于评价抑制剂的抑制效果。
本发明中,多肽/g-C3N4修饰电极按以下方法制备:
(1)g-C3N4的制备:将2.0 g二氰胺置于管式炉中,以3°C/min的升温速率加热到550°C并保持4 h,得到C3N4;将0.5 g的C3N4加入到50 mL 5 M的硝酸溶液中加热回流24 h,冷却至室温后,离心,用二次水洗涤至上清液pH为7,收集上清液即为g-C3N4溶液。
(2)金纳米簇的制备:在37°C剧烈搅拌下,将3 mL 10mM 氯金酸溶液快速加入到3mL 50 mg/mL牛血清白蛋白溶液中,5 min后逐滴加入0.3 mL1 M NaOH,混合溶液在37°C下孵育12 h,用超滤管提纯,收集管内产物即为金纳米簇溶液。
(3)制备多肽/g-C3N4修饰电极:将10 μLg-C3N4溶液滴涂到玻碳电极表面并晾干,再滴涂10 μL壳聚糖溶液,晾干后将电极浸入含5 mM N-乙基-N’-1-(3-二甲氨基丙基)碳二亚胺盐酸盐、8 mM N-羟基琥珀酰亚胺和120 μM多肽的HEPES缓冲溶液中反应过夜,制成多肽/g-C3N4修饰电极。
上述方法中,所述的壳聚糖溶液的质量百分浓度为0.2%,配制方法为将壳聚糖加入到质量百分浓度为1%的醋酸溶液中超声溶解;所述的三羟甲基氨基甲烷盐酸盐缓冲溶液的浓度为20 mM,pH为7.4,含20 mM的MgCl2
本发明的技术效果是:本发明利用蛋白激酶对多肽磷酸化的催化作用,将巯基三磷酸腺苷的巯基磷酸根转移到多肽/g-C3N4修饰电极表面,再通过金-硫键作用将Au NCs捕获到多肽的巯基磷酸化位点上,使得g-C3N4的ECL信号增强,g-C3N4的ECL信号增强程度与蛋白激酶的浓度呈正相关。据此,利用Au NCs对g-C3N4的ECL信号增强效应,构建了一种新型ECL方法用于蛋白激酶活性及其抑制剂分析,该方法具有灵敏度高、稳定性和选择性好等特点。
附图说明
图1是ECL生物传感器用于检测PKA活性的实验原理图。
图2是(a, c)g-C3N4和(b, d)Au NCs的(a, b)紫外-可见吸收光谱及(c, d)荧光光谱;内插图为(1, 3)g-C3N4和(2, 4)Au NCs在(1, 2)可见光和(3, 4)紫外光下的照片。
图3是(a)裸电极,(b)g-C3N4、(c)CS/g-C3N4、(d) BSA/多肽/CS/g-C3N4、(e)BSA/磷酸化多肽/CS/g-C3N4和(f)是Au NCs/BSA/磷酸化多肽/CS/g-C3N4修饰电极的(A)交流阻抗图和(B)循环伏安图。
图4是(a)裸电极,(b)g-C3N4、(c)CS/g-C3N4、(d)多肽/CS/g-C3N4、(e) BSA/多肽/CS/g-C3N4、(f)BSA/磷酸化多肽/CS/g-C3N4修饰电极和(g)Au NCs/BSA/磷酸化多肽/CS/g-C3N4修饰电极在含10mM Na2S2O8和0.1 M KCl的PBS (0.1 M,pH 7.4)中的ECL图。扫描速率为100 mV/s,光电倍增管电压为700 V。
图5是ECL强度-时间图,PKA浓度分别为0、0.02、0.05、0.1、0.2、0.5、1、2、5、10、20、30和50 U/mL。内插图是标准曲线。
图6是不同浓度鞣花酸的ECL强度-时间图,内插图是ECL强度-浓度曲线。
具体实施方式
下面结合附图和具体实施例对本发明作进一步阐述,本发明并不限于此。
实施例1
(1)g-C3N4的制备:将2.0 g二氰胺置于管式炉中,以3°C/min的升温速率加热到550°C并保持4 h,得到C3N4;将0.5 g的C3N4加入到50 mL 5 M的硝酸溶液中加热回流24 h,冷却至室温后,离心,用二次水洗涤至上清液pH为7,收集上清液即为g-C3N4溶液。
(2)金纳米簇的制备:在37°C剧烈搅拌下,将3 mL 10mM 氯金酸溶液快速加入到3mL 50 mg/mL牛血清白蛋白溶液中,5 min后逐滴加入0.3 mL1 M NaOH,混合溶液在37°C下孵育12 h,用超滤管提纯,收集管内产物即为金纳米簇溶液。
运用紫外-可见吸收光谱和荧光光谱对g-C3N4和Au NCs进行表征(图2)。g-C3N4溶液在可见光和紫外光下分别呈现乳白色(瓶1)和蓝色(瓶3),在315 nm处出现了紫外特征吸收峰(图2中a),荧光发射峰位于440 nm(图2中c)。Au NCs溶液在可见光和紫外光下分别呈现深棕色(瓶2)和红色(瓶4),在500 nm处出现了一个宽的紫外特征吸收峰(图2中b),荧光发射峰位于630 nm(图2中d)。
实施例2
玻碳电极先用粒径为1.0、0.3、0.05 µm的α-Al2O3糊在麂皮上抛光,再用硝酸溶液、乙醇和超纯水分别清洗。将10 μLg-C3N4溶液滴涂到玻碳电极表面并晾干,再滴涂10 μL壳聚糖(CS)溶液,晾干后将电极浸入含5 mM N-乙基-N’-1-(3-二甲氨基丙基)碳二亚胺盐酸盐、8 mM N-羟基琥珀酰亚胺和120 μM多肽的HEPES缓冲溶液中反应过夜;将电极浸入含PKA和巯基三磷酸腺苷(ATP-s)的三羟甲基氨基甲烷盐酸盐缓冲溶液中反应100 min,用二次水清洗后,将电极置于Au NCs溶液中孵育2.5 h。电极的组装过程如图1所示。
运用电化学交流阻抗法和循环伏安法对ECL传感器的制备过程进行表征。由图3A可见,裸玻碳电极的电子传递电阻(Ret)很小(曲线a);当将g-C3N4修饰到电极表面后,Ret值增大(曲线b);壳聚糖的非导电性进一步增大了Ret(曲线c);当多肽和BSA修饰到电极表面后,Ret值显著增大(曲线d);在PKA和ATP-s的作用下多肽发生磷酸化,电极的电阻值进一步增大,表明ATP-s的巯基磷酸根成功地转移到多肽上(曲线e);通过金-硫键将Au NCs捕获到电极上,Ret值继续增大(曲线f),这可能是由于Au NCs表面包覆的BSA阻碍了[Fe(CN)6]3−/4−向电极表面的传递。电极修饰过程的循环伏安表征结果(图3B)与交流阻抗相一致。
图4为电极组装过程的ECL强度-时间图。在10mM Na2S2O8的共反应剂中,裸电极的ECL强度很低(曲线a);当g-C3N4组装到电极表面后,产生强的ECL响应(曲线b);将CS、多肽和BSA逐步组装到g-C3N4修饰电极表面并在20 U/mL PKA和100µM ATP-s溶液中使多肽发生磷酸化反应,g-C3N4的ECL响应逐步减小(曲线c-f);当通过金-硫键将Au NCs组装到修饰电极表面后,g-C3N4的ECL信号显著增强(曲线g)。
实施例3
基于g-C3N4的ECL增强效应检测PKA活性
由图5可见,随着PKA浓度的增大,g-C3N4的ECL信号逐渐增强,当PKA浓度为20 U/mL时,ECL强度值基本达到稳定。内插图为PKA检测的标准曲线,PKA浓度在0.02-20 U/mL范围内与ECL信号呈线性,检测限为0.005 U/mL。本方法比采用电化学和荧光法检测PKA的检测限低且线性范围宽,表明本发明提出的基于g-C3N4的ECL增强效应检测蛋白激酶活性的方法能实现PKA活性的高灵敏检测。
实施例4
以鞣花酸为例对PKA的抑制剂进行筛选研究。由图6可见,g-C3N4的ECL信号随鞣花酸浓度的增加而降低,当鞣花酸浓度为7 µM时,ECL信号达到最小,鞣花酸对PKA的半抑制浓度为3.3 µM。另外两种非PKA特异性抑制剂如槲皮素和5,6-二氯-l-β-D-呋喃核糖基苯丙咪唑则对g-C3N4的ECL信号几乎没有影响,以上结果表明,鞣花酸对PKA的抑制效果最强。

Claims (4)

1.基于g-C3N4电致化学发光增强效应的蛋白激酶活性检测方法,其特征在于,将多肽/g-C3N4修饰电极浸入含有蛋白激酶和巯基三磷酸腺苷的三羟甲基氨基甲烷盐酸盐缓冲溶液中,使多肽发生磷酸化,将磷酸化多肽修饰电极浸入金纳米簇溶液中孵育;随着蛋白激酶浓度的增加,组装到电极表面的金纳米簇增多,金纳米簇对g-C3N4的电致化学发光增强效应越强,蛋白激酶浓度与g-C3N4的电致化学发光增强的程度呈正相关,据此实现对蛋白激酶活性的检测;g-C3N4的电致化学发光强度随着蛋白激酶抑制剂浓度的增加而降低,据此关系计算出蛋白激酶抑制剂的半抑制浓度,用于评价蛋白激酶抑制剂的抑制效果。
2.如权利要求1所述基于g-C3N4电致化学发光增强效应的蛋白激酶活性检测方法,其特征在于,多肽/g-C3N4修饰电极按下述步骤制备:
(1)g-C3N4的制备:将2.0 g二氰胺置于管式炉中,以3°C/min的升温速率加热到550°C并保持4 h,得到C3N4;将0.5 g的C3N4加入到50 mL 5 M的硝酸溶液中加热回流24 h,冷却至室温后,离心,用二次水洗涤至上清液pH为7,收集上清液即为g-C3N4溶液;
(2)金纳米簇的制备:在37°C剧烈搅拌下,将3 mL 10mM 氯金酸溶液快速加入到3 mL50 mg/mL牛血清白蛋白溶液中,5 min后逐滴加入0.3 mL1 M NaOH,混合溶液在37°C下孵育12 h,用超滤管提纯,收集管内产物即为金纳米簇溶液;
(3)制备多肽/g-C3N4修饰电极:将10 μLg-C3N4溶液滴涂到玻碳电极表面并晾干,再滴涂10 μL壳聚糖溶液,晾干后将电极浸入含5 mM N-乙基-N’-1-(3-二甲氨基丙基)碳二亚胺盐酸盐、8 mM N-羟基琥珀酰亚胺和120 μM多肽的HEPES缓冲溶液中反应过夜,制成多肽/g-C3N4修饰电极。
3.如权利要求2所述的基于g-C3N4电致化学发光增强效应的蛋白激酶活性检测方法,其特征在于步骤(3)中,所述的壳聚糖溶液的质量百分浓度为0.2%,配制方法为将壳聚糖加入到质量百分浓度为1%的醋酸溶液中超声溶解。
4.如权利要求1所述的基于g-C3N4电致化学发光增强效应的蛋白激酶活性检测方法,其特征在于,所述的三羟甲基氨基甲烷盐酸盐缓冲溶液的浓度为20 mM,pH为7.4,含20 mM的MgCl2
CN201610107201.0A 2016-02-29 2016-02-29 基于g-C3N4电致化学发光增强效应的蛋白激酶活性检测方法 Expired - Fee Related CN105738345B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610107201.0A CN105738345B (zh) 2016-02-29 2016-02-29 基于g-C3N4电致化学发光增强效应的蛋白激酶活性检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610107201.0A CN105738345B (zh) 2016-02-29 2016-02-29 基于g-C3N4电致化学发光增强效应的蛋白激酶活性检测方法

Publications (2)

Publication Number Publication Date
CN105738345A CN105738345A (zh) 2016-07-06
CN105738345B true CN105738345B (zh) 2018-08-17

Family

ID=56248638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610107201.0A Expired - Fee Related CN105738345B (zh) 2016-02-29 2016-02-29 基于g-C3N4电致化学发光增强效应的蛋白激酶活性检测方法

Country Status (1)

Country Link
CN (1) CN105738345B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106542509B (zh) * 2016-10-19 2019-01-25 张家港市东大工业技术研究院 一种高效制备类石墨烯氮化碳的方法
CN106706607B (zh) * 2017-02-07 2019-03-29 福建医科大学 高量子产率电致化学发光金纳米团簇探针及其制备方法
CN107287291B (zh) * 2017-06-02 2021-01-05 华南师范大学 一种基于g-C3N4与CdTe/CdS量子点相互作用的双标记核酸检测方法
CN108519412B (zh) * 2018-03-06 2020-10-23 南昌大学 基于g-C3N4的电致化学发光传感器构建方法及应用
CN108802134B (zh) * 2018-06-19 2020-06-09 南昌大学 基于双猝灭效应的双波长比率电致化学发光法检测As(III)
CN108828030B (zh) * 2018-06-19 2020-04-03 南昌大学 基于AuNPs增强Na2S2O8/O2的ECL效应的蛋白激酶检测方法
CN109142293A (zh) * 2018-07-27 2019-01-04 福州大学 一种基于氮化碳解吸附作用的荧光传感器及其制备和应用
CN109668864A (zh) * 2018-12-14 2019-04-23 福建中医药大学 氮化碳纳米片耦合适配体传感的赭曲霉毒素a荧光检测方法
CN110280777B (zh) * 2019-07-02 2022-02-22 青岛科技大学 一种多肽序列合成荧光金纳米簇的方法
CN111272742B (zh) * 2020-03-06 2022-11-08 安徽大学 基于金属有机凝胶复合材料和金属有机框架的电致化学发光传感器及其制备和检测方法
CN114235922A (zh) * 2020-09-09 2022-03-25 中国科学院大连化学物理研究所 一种利用功能纳米通道实时监测磷酸化的方法
CN112782155B (zh) * 2020-12-04 2022-06-28 北京交通大学 电致化学发光黄曲霉毒素生物传感器的制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472052A (zh) * 2013-07-02 2013-12-25 南昌大学 一种多功能纳米探针GOx/Au NPs/DNA的制备方法及其激酶检测应用
CN103512878A (zh) * 2013-08-16 2014-01-15 南昌大学 基于GO和GQDs之间ECL-RET作用的传感器制备方法及激酶检测应用
CN103940808A (zh) * 2014-04-30 2014-07-23 青岛大学 一种双信号放大电化学发光生物传感器的制备方法及应用
CN104777157A (zh) * 2015-04-02 2015-07-15 西南大学 一种无酶ecl葡萄糖传感器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE393934T1 (de) * 1999-11-19 2008-05-15 Univ British Columbia Vorrichtung, verfahren, media und signale zur identifizierung von assoziierten zellsignalisierungsproteinen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472052A (zh) * 2013-07-02 2013-12-25 南昌大学 一种多功能纳米探针GOx/Au NPs/DNA的制备方法及其激酶检测应用
CN103512878A (zh) * 2013-08-16 2014-01-15 南昌大学 基于GO和GQDs之间ECL-RET作用的传感器制备方法及激酶检测应用
CN103940808A (zh) * 2014-04-30 2014-07-23 青岛大学 一种双信号放大电化学发光生物传感器的制备方法及应用
CN104777157A (zh) * 2015-04-02 2015-07-15 西南大学 一种无酶ecl葡萄糖传感器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Gold nanoclusters-based dual-emission ratiometric fluorescenceprobe for monitoring protein kinase;kinaseWei Song.et al;《Sensors and Actuators B: Chemical》;20151202;第226卷;第144-150页 *
Highly Sensitive Electrogenerated Chemiluminescence Biosensor in Profiling Protein Kinase Activity and Inhibition Using Gold Nanoparticle as Signal Transduction Probes;Shoujiang Xu.et al;《Anal Chem》;20101026;第82卷(第22期);第9566-9572页 *
Multiple signalamplification electrogeneratedchemiluminescence biosensors for sensitive protein kinase activity analysis and inhibition;Zonghua Wang.et al;《Biosensors andBioelectronics》;20150207;第68卷;第771-776页 *

Also Published As

Publication number Publication date
CN105738345A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
CN105738345B (zh) 基于g-C3N4电致化学发光增强效应的蛋白激酶活性检测方法
CN102362182B (zh) N-(4-氨基丁基)-n-乙基异鲁米诺功能化纳米金及其制备方法和应用
CN103116023B (zh) 用于检测肿瘤标志物的电化学发光免疫传感器及其制备方法和应用
Wang et al. Multiple signal amplification electrogenerated chemiluminescence biosensors for sensitive protein kinase activity analysis and inhibition
JPH01500146A (ja) エレクトロ化学ルミネセンスアツセイ
He et al. Aptamer based voltammetric patulin assay based on the use of ZnO nanorods
CN106568936B (zh) 基于多功能化二硫化钼的miRNA-21电化学发光免疫传感器的制备方法及其应用
CN108287187A (zh) 一种电化学发光传感器
CN106066324B (zh) 一种电致化学发光生物传感器标记物的制备方法
WO2018054391A1 (zh) 一种细胞内atp的圆二色光谱实时检测方法
Sha et al. Enzyme-free ECL immunesensor based on PbS nanocrystals for highly sensitive detection of alpha fetoprotein
CN104655855A (zh) 基于多功能化氮化碳材料的肿瘤标志物电化学发光免疫传感器的制备方法及其应用
Ji et al. TiO 2-assisted silver enhanced biosensor for kinase activity profiling
CN110554027A (zh) 一种基于氧化铁阵列共反应促进金纳米簇电致发光响应的免疫传感器的制备方法及应用
Chen et al. A sensitive detection method of carcinoembryonic antigen based on dsDNA-templated copper nanoparticles
CN103940808B (zh) 一种双信号放大电化学发光生物传感器的制备方法及应用
JPH02501749A (ja) 電気化学的ルミネッセンス性レニウム モイエティ及びそれらの使用方法
Chang et al. Electrochemical detection of kinase by converting homogeneous analysis into heterogeneous assay through avidin-biotin interaction
Xu et al. A DNA-based electrochemical strategy for label-free monitoring the activity and inhibition of protein kinase
Zhang et al. An electrochemiluminescence biosensor for the detection of soybean agglutinin based on carboxylated graphitic carbon nitride as luminophore
CN110006971B (zh) 一种双通道输出检测食源性致病菌的适体传感器的制备方法及其应用
CN108841828B (zh) 一种特异性识别妥布霉素的单链dna适配体及其应用
CN114636746A (zh) 一种检测Pb2+的羧基配体诱导的湮灭型比率电化学发光适配体传感方法
Geng et al. Research progress on preparation methods and sensing applications of molecularly imprinted polymer-aptamer dual recognition elements
Tran et al. Simple Label‐Free Electrochemical Immunosensor in a Microchamber for Detecting Newcastle Disease Virus

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180817