CN103508732A - 一种低温度系数晶界层陶瓷电容器介质及其制备方法 - Google Patents

一种低温度系数晶界层陶瓷电容器介质及其制备方法 Download PDF

Info

Publication number
CN103508732A
CN103508732A CN201310463141.2A CN201310463141A CN103508732A CN 103508732 A CN103508732 A CN 103508732A CN 201310463141 A CN201310463141 A CN 201310463141A CN 103508732 A CN103508732 A CN 103508732A
Authority
CN
China
Prior art keywords
sio
temperature coefficient
glass powder
linbo
srtio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310463141.2A
Other languages
English (en)
Other versions
CN103508732B (zh
Inventor
高春华
黄新友
李军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201310463141.2A priority Critical patent/CN103508732B/zh
Publication of CN103508732A publication Critical patent/CN103508732A/zh
Application granted granted Critical
Publication of CN103508732B publication Critical patent/CN103508732B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

本发明涉及无机非金属材料技术领域,特指一种低温度系数晶界层陶瓷电容器介质及其制备方法,介质配方组成包括(重量百分比):SrTiO388-96%,LiNbO30.1-4%,Dy2O30.05-4%,SiO2-B2O3-Li2O玻璃粉0.03-3.0%,CuO0.1-4%,SiO20.01~1%,MnO20.03-2.0%;其中SrTiO3、LiNbO3、SiO2-B2O3-Li2O玻璃粉分别是采用常规的化学原料以固相法合成。本发明采用常规的陶瓷电容器介质制备方法和一次烧结工艺方法,利用电容器陶瓷普通化学原料,制备得到无铅、无镉的低温度系数晶界层陶瓷电容器介质,还能降低电容器陶瓷的烧结温度,该介质适合于制备单片陶瓷电容器和单层片式陶瓷电容器。

Description

一种低温度系数晶界层陶瓷电容器介质及其制备方法
技术领域
本发明涉及无机非金属材料技术领域,特指一种低温度系数晶界层陶瓷电容器介质及其制备方法,它采用常规的陶瓷电容器介质制备方法和一次烧结工艺方法,利用电容器陶瓷普通化学原料,制备得到无铅、无镉的低温度系数晶界层陶瓷电容器介质,还能降低电容器陶瓷的烧结温度,该介质适合于制备单片陶瓷电容器和单层片式陶瓷电容器,能大大降低陶瓷电容器的成本,该介质介电常数高,容易实现陶瓷电容器的小型化,同时能提高耐电压以扩大晶界层陶瓷电容器的应用范围,并且在制备和使用过程中不污染环境。 
背景技术
 随着表面安装技术的迅速发展与普及, 表面安装元件( SMC) 在电子设备中的占有率稳步提高;1997 年, 世界发达国家电子元器件片式化率已达70%以上, 全世界平均40%以上;2000 年, 全世界电子元器件片式化率达70%,2002 年, 片式化率已经超过85%;特别是为适应信息领域和航空航天等国防尖端领域对小型多功能电子装置日益紧迫的需求,顺应通信与信息终端的便携化、小型化与多功能化发展潮流,片式电子元件进入了全面发展的新时期;单层片式半导体陶瓷材料分为表面层型和晶界层型两类,其特点是体积小、容量大,此外, 晶界层半导体陶瓷材料还具有温度特性好、频率特性好、工作频率高等优点;目前在全球范围内,只有AVX、JOHANSON 等不到十家公司能提供单层片式半导体陶瓷材料,全球对单层片式半导体陶瓷材料元件的市场总需求高达45 亿只/ 年;为适应电子元器件微型化、轻型化、复合化、高频化和高性能化的日益迫切要求, 半导体陶瓷材料在小型化, 高介电常数化, 高精度化和高频化方面得到迅速发展, 单层片式半导体陶瓷材料为发展的趋势;一般单片晶界层陶瓷电容器介质和单层片式晶界层陶瓷电容器介质的烧结温度为1350~1430℃,同时存在如下问题:要么耐压较低,要么温度系数较大,要么介电常数较低,烧结工艺基本上都是采用二次烧结方法,即:先高温还原,然后涂覆绝缘氧化物在中温进行氧化热处理,工艺较复杂,成本较高;有些采用涂覆法,工艺较复杂,原料较昂贵,成本也较高;而本发明的晶界层陶瓷电容器介质烧结温度为1250℃左右,同时采用一次烧结工艺,这样能大大降低晶界层陶瓷电容器的成本,同时本专利电容器陶瓷介质不含铅和镉,电容器陶瓷在制备和使用过程中不污染环境;另外,本发明的电容器陶瓷的介电常数高,这样会提高陶瓷电容器的容量并且小型化,符合陶瓷电容器的发展趋势, 同样也会降低陶瓷电容器的成本,本发明的晶界层陶瓷电容器介质耐电压高、低温度系数,容温特性符合X7R的要求等有利于扩大晶界层陶瓷电容器的使用范围和安全性。 
发明内容
本发明的目的是提供一种低温度系数晶界层陶瓷电容器介质。 
本发明的目的是这样来实现的: 
低温度系数晶界层陶瓷电容器介质配方组成包括(重量百分比):SrTiO88-96%,LiNbO0.1-4%,Dy2O0.05-4%,SiO2-B2O3-Li2O玻璃粉0.03-3.0%,CuO 0.1-4%,SiO20.01~1%,MnO20.03-2.0%;其中SrTiO3、LiNbO3、SiO2-B2O3-Li2O玻璃粉分别是采用常规的化学原料以固相法合成。     
   本发明的介质中所用的SrTiO3是采用如下工艺制备的:将常规的化学原料SrCO3和 TiO2按1:1摩尔比配料,研磨混合均匀后放入氧化铝坩埚内于1250℃~1280℃保温120分钟,固相反应合成SrTiO3,冷却后研磨过200目筛,备用。
本发明的介质中所用的LiNbO3是采用如下工艺制备的:将常规的化学原料Li2CO3和Nb2O5按1:1摩尔比配料,研磨混合均匀后放入氧化铝坩埚内于700℃保温120分钟,固相反应合成LiNbO3,冷却后研磨过200目筛,备用。 
本发明的介质中所用的SiO2-B2O3-Li2O玻璃粉是采用如下工艺制备的:将常规的化学原料SiO2和B2O3和Li2CO3按1:0.5:0.5摩尔比配料,研磨混合均匀后放入氧化铝坩埚内于650℃保温120分钟,然后在水中淬冷,冷却后得到SiO2-B2O3-Li2O玻璃粉,研磨过200目筛,备用。 
本发明采用如下的陶瓷介质制备工艺:首先采用常规的化学原料用固相法分别合成SrTiO3、LiNbO3、SiO2-B2O3-Li2O玻璃粉,然后按配方配料将配合料球磨粉碎混合,进行烘干后,加入粘合剂造粒,再压制成生坯片,先在氮气中于1250℃保温3小时烧结还原,然后冷却到900-950℃于空气中保温2小时处理,最后随炉冷却,获得晶界层陶瓷电容器介质,在介质上被电极即成。 
所述介质耐电压较高,直流耐电压为2.1-2.6kV/mm;介电常数高,为60103-61515;介质损耗为72-98×10-4;电容温度变化率小,符合X7R特性的要求;绝缘电阻为60-65×1010Ω·cm。 
上述陶瓷介质的配方最好采用下列二种方案(重量百分比): 
   SrTiO89-95%, LiNbO0.15-2.8%,Dy2O0.1-3.0%,SiO2-B2O3-Li2O玻璃粉0.03-3.0%,CuO 0.1-2.6%,SiO20.05~0.8%,MnO20.03-1.8%;
   SrTiO89-93%, LiNbO0.2-2.6%,Dy2O0.08-2.5%,SiO2-B2O3-Li2O玻璃粉0.05-2.5%,CuO 0.1-2.0%,SiO20.09~0.6%,MnO20.06-1.5%。
本发明与现有技术相比,具有如下优点: 
1、本专利的介质采用如下的一次烧结工艺:先在氮气中于1250℃保温3小时烧结还原,然后冷却到900-950℃于空气中保温2小时处理,最后随炉冷却,这样能大大降低陶瓷电容器的成本,本专利的介质组分中不含铅和镉,对环境无污染。
2、本介质的介电常数高,为60000以上;耐电压高,直流耐电压可达2kV/mm以上;介质损耗小,小于1.0%,本介质的介电常数高,能实现陶瓷电容器的小型化和大容量,同样能降低成本。
3、本介质的温度系数低,电容温度变化率小,符合X7R特性的要求,介质损耗小于1.0%,使用过程中性能稳定性好,安全性高。 
4、主要原料采用陶瓷电容器级纯原料即可制造出本发明的陶瓷介质。 
5、本介质采用常规的固相法陶瓷电容器介质制备工艺和一次还原氧化烧结工艺即可进行制备。 
具体实施方式
   现在结合实施例对本发明作进一步的描述。表1给出本发明的实施例共4个试样的配方。 
   本发明的实施例共4个试样的配方的主要原料采用陶瓷电容器级纯原料,在制备时首先采用常规的化学原料用固相法分别合成SrTiO3、LiNbO3、SiO2-B2O3-Li2O玻璃粉,然后按上述配方配料,将配好的料用蒸馏水或去离子水采用行星球磨机球磨混合,料:球:水=1:3:(0.6~1.0)(质量比),球磨4~8小时后,烘干得干粉料,在干粉料中加入占其重量8~10%的浓度为10%的聚乙烯醇溶液,进行造粒,混研后过40目筛,再在20~30Mpa压力下进行干压成生坯片,先在氮气中于1250℃保温3小时烧结还原,然后冷却到900-950℃于空气中保温2小时处理,最后随炉冷却,再在780~800℃下保温15分钟进行烧银,形成银电极,再焊引线,进行包封,即得晶界层陶瓷电容器,测试其介电性能。 
上述各配方试样的介电性能列于表2,从表2可以看出所制备的电容器陶瓷耐电压较高,直流耐电压可达2kV/mm以上;介电常数高,为60000以上;介质损耗小于1.0 %;电容温度变化率小,符合X7R特性的要求。 
表1 本发明的实施例共4个试样的配方(重量百分比) 
Figure 492108DEST_PATH_IMAGE001
表2  本发明的实施例各配方试样的介电性能
   
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种低温度系数晶界层陶瓷电容器介质,其特征在于所述介质组成按照重量百分比计算为:SrTiO88-96%,LiNbO0.1-4%,Dy2O0.05-4%,SiO2-B2O3-Li2O玻璃粉0.03-3.0%,CuO 0.1-4%,SiO20.01~1%,MnO20.03-2.0%;其中SrTiO3、LiNbO3、SiO2-B2O3-Li2O玻璃粉分别是采用常规的化学原料以固相法合成。
2.如权利要求1所述的 一种低温度系数晶界层陶瓷电容器介质,其特征在于:所述介质耐电压较高,直流耐电压为2.1-2.6kV/mm;介电常数高,为60103-61515;介质损耗为72-98×10-4;电容温度变化率小,符合X7R特性的要求;绝缘电阻为60-65×1010Ω·cm。
3. 如权利要求1所述的 一种低温度系数晶界层陶瓷电容器介质,其特征在于:所述的SrTiO3是采用如下工艺制备的:将常规的化学原料SrCO3和 TiO2按1:1摩尔比配料,研磨混合均匀后放入氧化铝坩埚内于1250℃~1280℃保温120分钟,固相反应合成SrTiO3,冷却后研磨过200目筛,备用。
4.如权利要求1所述的 一种低温度系数晶界层陶瓷电容器介质,其特征在于:所述的LiNbO3是采用如下工艺制备的:将常规的化学原料Li2CO3和Nb2O5按1:1摩尔比配料,研磨混合均匀后放入氧化铝坩埚内于700℃保温120分钟,固相反应合成LiNbO3,冷却后研磨过200目筛,备用。
5.如权利要求1所述的 一种低温度系数晶界层陶瓷电容器介质,其特征在于:所述的SiO2-B2O3-Li2O玻璃粉是采用如下工艺制备的:将常规的化学原料SiO2和B2O3和Li2CO3按1:0.5:0.5摩尔比配料,研磨混合均匀后放入氧化铝坩埚内于650℃保温120分钟,然后在水中淬冷,冷却后得到SiO2-B2O3-Li2O玻璃粉,研磨过200目筛,备用。
6.如权利要求1所述的 一种低温度系数晶界层陶瓷电容器介质,其特征在于所述介质组成按照重量百分比计算为:SrTiO89-95%, LiNbO0.15-2.8%,Dy2O0.1-3.0%,SiO2-B2O3-Li2O玻璃粉0.03-3.0%,CuO 0.1-2.6%,SiO20.05~0.8%,MnO20.03-1.8%。
7.   如权利要求1所述的 一种低温度系数晶界层陶瓷电容器介质,其特征在于所述介质组成按照重量百分比计算为:SrTiO89-93%, LiNbO0.2-2.6%,Dy2O0.08-2.5%,SiO2-B2O3-Li2O玻璃粉0.05-2.5%,CuO 0.1-2.0%,SiO20.09~0.6%,MnO20.06-1.5%。
8.如权利要求1所述的 一种低温度系数晶界层陶瓷电容器介质的制备,其特征在于包括如下步骤:首先采用常规的化学原料用固相法分别合成SrTiO3、LiNbO3、SiO2-B2O3-Li2O玻璃粉,然后按配方配料,将配好的料用蒸馏水或去离子水采用行星球磨机球磨混合,料:球:水=1:3:(0.6~1.0)(质量比),球磨4~8小时后,烘干得干粉料,在干粉料中加入占其重量8~10%的浓度为10wt%的聚乙烯醇溶液,进行造粒,混研后过40目筛,再在20~30Mpa压力下进行干压成生坯片,先在氮气中于1250℃保温3小时烧结还原,然后冷却到900-950℃于空气中保温2小时处理,最后随炉冷却,再在780~800℃下保温15分钟进行烧银,形成银电极,再焊引线,进行包封,即得晶界层陶瓷电容器。
CN201310463141.2A 2013-10-08 2013-10-08 一种低温度系数晶界层陶瓷电容器介质及其制备方法 Expired - Fee Related CN103508732B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310463141.2A CN103508732B (zh) 2013-10-08 2013-10-08 一种低温度系数晶界层陶瓷电容器介质及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310463141.2A CN103508732B (zh) 2013-10-08 2013-10-08 一种低温度系数晶界层陶瓷电容器介质及其制备方法

Publications (2)

Publication Number Publication Date
CN103508732A true CN103508732A (zh) 2014-01-15
CN103508732B CN103508732B (zh) 2015-02-04

Family

ID=49892223

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310463141.2A Expired - Fee Related CN103508732B (zh) 2013-10-08 2013-10-08 一种低温度系数晶界层陶瓷电容器介质及其制备方法

Country Status (1)

Country Link
CN (1) CN103508732B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105084892A (zh) * 2015-08-11 2015-11-25 电子科技大学 高介单层微型陶瓷电容器基片材料及其制备方法
CN105272362A (zh) * 2015-11-10 2016-01-27 电子科技大学 晶界层半导体陶瓷片氧化剂涂覆料及其制备方法
CN106587996A (zh) * 2016-11-14 2017-04-26 江苏大学 一种高频晶界层陶瓷电容器介质
CN108191428A (zh) * 2018-02-02 2018-06-22 天津大学 一种制备SrTiO3基巨介电常数介质陶瓷材料的方法
CN114334444A (zh) * 2021-12-31 2022-04-12 广东芯晟电子科技有限公司 一种单层陶瓷电容器晶界层半导体陶瓷材料及其制备
CN114334444B (zh) * 2021-12-31 2024-06-04 广东芯晟电子科技有限公司 一种单层陶瓷电容器晶界层半导体陶瓷材料及其制备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070197371A1 (en) * 2006-02-17 2007-08-23 Asustek Computer Inc. Dielectric glass-ceramic composition, dielectric glass-ceramic substrate and manufacturing method thereof
CN101100375A (zh) * 2007-07-26 2008-01-09 同济大学 Ba(1-x)SrxTiO3-Zn2TiO4两相复合陶瓷材料及其制备方法
CN101131894A (zh) * 2007-09-26 2008-02-27 江苏大学 一种高压陶瓷电容器介质
US20100271749A1 (en) * 2009-04-22 2010-10-28 Samsung Electro-Mechanics Co., Ltd. Dielectric body and method for production thereof
CN102649642A (zh) * 2011-02-24 2012-08-29 株式会社村田制作所 晶界绝缘型半导体陶瓷、半导体陶瓷电容器以及半导体陶瓷电容器的制造方法
JP5018202B2 (ja) * 2006-06-22 2012-09-05 川崎化成工業株式会社 新規な1,4−ビス(2−(メタ)アクリロイルオキシアルコキシ)ナフタレン化合物、その製造方法、およびその用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070197371A1 (en) * 2006-02-17 2007-08-23 Asustek Computer Inc. Dielectric glass-ceramic composition, dielectric glass-ceramic substrate and manufacturing method thereof
JP5018202B2 (ja) * 2006-06-22 2012-09-05 川崎化成工業株式会社 新規な1,4−ビス(2−(メタ)アクリロイルオキシアルコキシ)ナフタレン化合物、その製造方法、およびその用途
CN101100375A (zh) * 2007-07-26 2008-01-09 同济大学 Ba(1-x)SrxTiO3-Zn2TiO4两相复合陶瓷材料及其制备方法
CN101131894A (zh) * 2007-09-26 2008-02-27 江苏大学 一种高压陶瓷电容器介质
US20100271749A1 (en) * 2009-04-22 2010-10-28 Samsung Electro-Mechanics Co., Ltd. Dielectric body and method for production thereof
CN102649642A (zh) * 2011-02-24 2012-08-29 株式会社村田制作所 晶界绝缘型半导体陶瓷、半导体陶瓷电容器以及半导体陶瓷电容器的制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUANG XINYOU.ETAL.: "Properties of La2O3 -Doped PNSZT Piezoelectric Ceramics Having Tetragonal and Rhombohedra1 Coexistent Phases", 《JOURNAL OF RARE EARTHS》, vol. 24, 31 December 2006 (2006-12-31), pages 255 - 258, XP022933811, DOI: doi:10.1016/S1002-0721(07)60374-3 *
黄新友等: "Dy2O3 掺杂(Ba, Sr) TiO3 基电容器陶瓷的研究", 《仪器仪表学报》, vol. 26, no. 11, 30 November 2005 (2005-11-30) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105084892A (zh) * 2015-08-11 2015-11-25 电子科技大学 高介单层微型陶瓷电容器基片材料及其制备方法
CN105084892B (zh) * 2015-08-11 2017-09-01 电子科技大学 高介单层微型陶瓷电容器基片材料及其制备方法
CN105272362A (zh) * 2015-11-10 2016-01-27 电子科技大学 晶界层半导体陶瓷片氧化剂涂覆料及其制备方法
CN105272362B (zh) * 2015-11-10 2017-06-30 电子科技大学 晶界层半导体陶瓷片氧化剂涂覆料及其制备方法
CN106587996A (zh) * 2016-11-14 2017-04-26 江苏大学 一种高频晶界层陶瓷电容器介质
CN106587996B (zh) * 2016-11-14 2020-03-31 江苏大学 一种高频晶界层陶瓷电容器介质
CN108191428A (zh) * 2018-02-02 2018-06-22 天津大学 一种制备SrTiO3基巨介电常数介质陶瓷材料的方法
CN114334444A (zh) * 2021-12-31 2022-04-12 广东芯晟电子科技有限公司 一种单层陶瓷电容器晶界层半导体陶瓷材料及其制备
CN114334444B (zh) * 2021-12-31 2024-06-04 广东芯晟电子科技有限公司 一种单层陶瓷电容器晶界层半导体陶瓷材料及其制备

Also Published As

Publication number Publication date
CN103508732B (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
CN103664163B (zh) 一种高介晶界层陶瓷电容器介质及其制备方法
CN101386534B (zh) 一种中低温烧结高压陶瓷电容器介质
CN103508730B (zh) 一种低温烧结的巨介陶瓷电容器介质及其制备方法
CN100393666C (zh) 环保低温烧结微波介质陶瓷材料及其制备方法
CN103408301B (zh) 一种超高压陶瓷电容器介质及其制备方法
CN107986774B (zh) 低温烧结高介电常数微波介质陶瓷材料及其制备方法
CN102176374B (zh) 一种低温烧结的高压陶瓷电容器介质
CN101362647A (zh) 锂基低温烧结微波介质陶瓷材料及其制备
CN103508732B (zh) 一种低温度系数晶界层陶瓷电容器介质及其制备方法
CN105777109A (zh) 一种低温烧结的巨介陶瓷电容器介质及其制备方法
CN103524127B (zh) 一种高频晶界层陶瓷电容器介质及其制备方法
CN103408302B (zh) 一种高介高温度稳定陶瓷电容器介质及其制备方法
CN100359612C (zh) 一种中低温烧结高压陶瓷电容器介质
CN102515755B (zh) 一种具有高储能密度的锆酸铅基反铁电厚膜及制备方法
CN106747417B (zh) 一种ltcc低频介质陶瓷电容器材料及其制备方法
CN103113100B (zh) 一种高温度稳定陶瓷电容器介质
CN103351161A (zh) 一种低温烧结高压陶瓷电容器介质
CN106587989B (zh) 一种高介电性能晶界层陶瓷电容器介质
CN102568821B (zh) 一种高介电高压陶瓷电容器介质
CN100427430C (zh) 片式电容器用介质陶瓷材料及其制备方法
CN103539446B (zh) 一种巨介陶瓷电容器介质及其制备方法
CN102219506A (zh) 稀土Nd和SiO2掺杂SrTiO3基介质陶瓷及其制备方法
CN102557672B (zh) 一种添加物及其降低钛酸钡锶电容器陶瓷烧结温度的用途
CN106587996B (zh) 一种高频晶界层陶瓷电容器介质
CN105294101A (zh) 一种高温度稳定型陶瓷电容器用介质材料及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150204

Termination date: 20181008