CN103456798B - Tvs器件及制造方法 - Google Patents

Tvs器件及制造方法 Download PDF

Info

Publication number
CN103456798B
CN103456798B CN201210182968.1A CN201210182968A CN103456798B CN 103456798 B CN103456798 B CN 103456798B CN 201210182968 A CN201210182968 A CN 201210182968A CN 103456798 B CN103456798 B CN 103456798B
Authority
CN
China
Prior art keywords
type
heavily doped
epitaxial loayer
buried regions
tvs device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210182968.1A
Other languages
English (en)
Other versions
CN103456798A (zh
Inventor
石晶
刘冬华
钱文生
胡君
段文婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN201210182968.1A priority Critical patent/CN103456798B/zh
Publication of CN103456798A publication Critical patent/CN103456798A/zh
Application granted granted Critical
Publication of CN103456798B publication Critical patent/CN103456798B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了一种TVS器件,该器件弃用扩散隔离,而采用高掺杂浓度的低阻衬底,在低阻衬底上方淀积低掺杂浓度的外延层以降低TVS器件的电容,衬底上方通过铟注入制作P型埋层,有效减轻了硼杂质扩散带来的问题。再进行一次低掺杂浓度外延淀积后制作N型埋层,两层埋层均作重掺杂,利用两种不同类型埋层的掺杂浓度来调节TVS的箝位电压,在有源区两侧采用扩散隔离,并由此连接埋层引出电极。本发明还公开了所述TVS器件的制造方法。

Description

TVS器件及制造方法
技术领域
本发明涉及半导体制造领域,特别是指一种TVS器件,本发明还涉及所述TVS器件的制造方法。
背景技术
电压及电流的瞬态干扰是造成电子电路及设备损坏的主要原因,常给人们带来无法估量的损失。这些干扰通常来自于电力设备的起停操作、交流电网的不稳定、雷击干扰及静电放电等。一种高效能的电路保护器件TVS的出现使瞬态干扰得到了有效抑制。TVS(Transient Voltage Suppressor)或称瞬变电压抑制二极管是在稳压管工艺基础上发展起来的一种新产品,TVS和齐纳稳压管都能用作稳压,但是齐纳击穿电流更小,大于10V的稳压只有1mA,相对来说TVS要比齐纳二极管击穿电流要大不少。其电路符号和普通稳压二极管相同,外形也与普通二极管无异,当TVS管两端经受瞬间的高能量冲击时,它能以极高的速度(最高达1x10-12秒)使其阻抗骤然降低,同时吸收一个大电流,将其两端间的电压箝位在一个预定的数值上,从而确保后面的电路元件免受瞬态高能量的冲击而损坏。目前广泛用于手机,LCD模组,及一些比较精密的手持设备。特别是出口欧洲的产品一般都要加,作为静电防护的主要手段之一。
TVS在规定的反向应用条件下,当电路中由于雷电、各种电器干扰出现大幅度的瞬态干扰电压或脉冲电流时,它在极短的时间内(最高可达到1×10-12秒)迅速转入反向导通状态,并将电路的电压箝位在所要求的安全数值上,从而有效的保护电子线路中精密元器件免受损坏。TVS能承受的瞬时脉冲功率可达上千瓦,其箝位时间仅为1ps。箝位时间与TVS电容相关,电容量是由TVS雪崩结截面决定的,这是在特定的1MHz频率下测得的。电容的大小与TVS的电流承受能力成正比,电容太大将使信号衰减。因此,电容是数据接口电路选用TVS的重要参数。
发明内容
本发明所要解决的技术问题是提供一种TVS器件,其具有较低的电容密度。
本发明所要解决的另一技术问题是提供所述的TVS器件的制造方法。
为解决上述问题,本发明所述的TVS器件,是在P型低阻衬底上具有一层P型埋层,埋层上具有P型外延层。
在所述P型外延层中,具有N型隔离阱和P型隔离阱呈水平排布。
所述N型隔离阱中,从下至上依次为重掺杂N型埋层、N型外延层及重掺杂P型区,所述重掺杂N型埋层与衬底上的P型埋层接触。
所述P型隔离阱中,从下至上依次为P型外延层及重掺杂N型区,P型外延层与衬底上的P型埋层接触。
在所述P型外延层之上具有两接触孔,分别连接到重掺杂P型区及重掺杂N型区,金属连线分别连接接触孔引出电极。
本发明所述的TVS器件的制造方法,其工艺包含以下几步:
第1步,在P型衬底上通过离子注入形成重掺杂P型埋层。
第2步,在重掺杂P型埋层上方淀积一层轻掺杂N型外延层。
第3步,在N型外延层中进行离子注入形成重掺杂N型埋层。
第4步,在N型外延层上淀积一层轻掺杂N型外延层。
第5步,在N型埋层两端进行N型隔离阱注入形成隔离阱区域。
第6步,采用热推进形成最终N型隔离阱,并使埋层中杂质向上扩散形成P型外延层及N型外延层。
第7步,进行离子注入及热推进工艺形成P型隔离阱。
第8步,在N型外延层中进行P型杂质注入形成重掺杂P型区,在P型外延层中进行N型杂质注入形成重掺杂N型区。
第9步,通过接触孔工艺及金属连线工艺将重掺杂P型区及重掺杂N型区引出形成两个电极。
进一步地,所述第1步中P型衬底为电阻率范围在0.007~0.013Ω·cm的高掺杂低阻衬底,P型埋层为注入铟离子形成,注入剂量为1x1015~5x1016cm-2,以调整齐纳管的击穿电压。
进一步地,所述第2步中N型外延层的掺杂浓度小于1x1014cm-3
进一步地,所述第3步中重掺杂N型埋层的离子注入杂质为磷和砷或者磷和锑,注入的剂量为1x1015~5x1016cm-2,注入的能量为20~200keV。
进一步地,所述第4步中N型外延层采用轻磷掺杂,杂质分布均匀且浓度小于1x1014cm-3
进一步地,所述第7步中P型杂质注入到外延层中的剂量为1x1014~5x1016cm-2,并利用高温快速热退火进行激活和扩散。
本发明TVS器件及制造方法,不使用扩散隔离,低掺杂的外延层降低了TVS器件的电容,P型埋层采用铟注入,有效减轻了硼杂质扩散带来的问题,使TVS器件具有较低的电容密度。
附图说明
图1是本发明TVS结构图;
图2是本发明的杂质分布图;
图3是工艺第1步完成图;
图4是工艺第2步完成图;
图5是工艺第3步完成图;
图6是工艺第4步完成图;
图7是工艺第5步完成图;
图8是工艺第6步完成图;
图9是工艺第7步完成图;
图10是工艺第8步完成图;
图11是工艺流程图。
附图标记说明
101是P型衬底,102是P型埋层,103是N型埋层,104是N型外延,105是N型隔离阱,106是P型外延层,107是P型隔离阱,108是重掺杂P型区,109是重掺杂N型区,110是接触孔,111是金属连线,112,113是轻掺杂N型外延。
具体实施方式
本发明TVS器件的结构如图1所示,在P型低阻衬底101上具有一层P型埋层102,埋层上具有P型外延层106(此处需要说明的是其最初形成的外延是为轻掺杂的N型外延层,后经P型埋层102热处理向上扩散后反型变为P型,具体请参考工艺说明部分)。
在P型外延层106中,具有N型隔离阱105和P型隔离阱107呈水平排布。
所述N型隔离阱105中,从下至上依次为重掺杂N型埋层103、N型外延层104及重掺杂P型区108,所述重掺杂N型埋层108与衬底101上的P型埋层102接触,金属连线111通过一接触孔110连接到重掺杂P型区108引出形成电极。
所述P型隔离阱107中,从下至上依次为P型外延层106及重掺杂N型区109,P型外延层106与衬底101上的P型埋层102接触,金属连线111通过另一接触孔110连接到重掺杂N型区109引出形成另一电极。
本发明所述的TVS器件的制造方法,包含如下的工艺步骤:
第1步:在电阻率范围0.007~0.013Ω·cm的P型低阻衬底101上通过高剂量的铟离子注入形成重掺杂P型埋层102,重掺杂P型埋层102的铟注入的剂量范围为1x1015~5x1016cm-2,注入能量范围10~200keV,形成如图3所示。
第2步:重掺杂P型埋层102注入后淀积一层N型轻掺杂外延层112,如图4所示。
第3步:采用高剂量的离子注入在此N型外延层112中注入形成重掺杂N型埋层103,如图5所示,离子注入杂质为磷和砷或者磷和锑,注入的能量为20~200keV,注入的剂量为1x1015~5x1016cm-2。埋层103的注入剂量由瞬态电压抑制器的箝位电压决定。
第4步:如图6所示,重掺杂N型埋层103上方淀积轻掺杂N型外延层113,N型外延层113采用轻磷掺杂,杂质分布均匀且浓度小于1x1014cm-3。N型外延层113的厚度由上方二极管的电容决定。
第5步:如图7所示,在N型埋层103两端的N型外延112及113中进行一道高剂量(1x1014~1x1016cm-2)的N型隔离阱注入形成隔离阱区域105。
第6步:通过20~120min,1100-1200℃的热推进过程最终形成N型隔离阱105并使得埋层103中杂质向上扩散形成N型外延层104,埋层102中的杂质向上扩散形成P型外延层106,即第5步中存在的N型外延层114和115由于杂质的扩散进入而反型成为P型外延106,如图8所示。
第7步:通过高剂量(1x1014~5x1016cm-2)的P型隔离阱注入以及热过程推进形成P型隔离阱区域107,如图9所示。
第8步:在隔离区107形成之后,分别在N型外延层104和隔离区107中的P型外延层106中进行一道高剂量(1x1014~1x1016cm-2)、低能量(小于15keV)的P型和N型杂质注入用以形成重掺杂P型区108和重掺杂N型区109,如图10所示。
第9步:通过传统的接触孔工艺形成接触孔110连接,接触孔110和金属线111引出电极,最终完成图请再次参考图1。
以上即为本发明TVS器件及制造方法的说明,弃用扩散隔离,而采用高掺杂浓度的低阻衬底(本发明的所有附图均未显示衬底电极的引出)。在低阻衬底101上方淀积低掺杂浓度的外延层以降低TVS器件的电容。衬底101上方通过铟注入制作P型埋层102,再进行一次低掺杂浓度外延淀积后制作N型埋层103,利用两种不同类型埋层的掺杂浓度来调节瞬态电压抑制器的箝位电压,在埋层上方淀积低掺杂浓度的外延层以降低TVS器件的电容。采用扩散隔离,并由此连接埋层引出电极。N型埋层103采用磷和砷的掺杂方式,其中砷杂质浓度与P埋层杂质浓度决定了齐纳二极管的击穿电压,为获得合适的击穿电压,P型埋层往往采用重硼掺杂。如图2所示,为杂质分布图。为了抑制硼的向上扩散,使得N型埋层103上方外延层保持N型,要N型埋层103掺杂的磷杂质浓度不能过低,但表面磷杂质掺杂的提高会造成瞬态电压抑制器的电容升高。本发明所涉及的P型埋层102中采用铟杂质注入,有效减轻了硼杂质扩散带来的问题。
以上仅为本发明的优选实施例,并不用于限定本发明。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种TVS器件,其特征在于:在P型低阻衬底上具有一层P型埋层,埋层上具有P型外延层;
在所述P型外延层中,具有N型隔离阱和P型隔离阱呈水平排布;
所述N型隔离阱中,从下至上依次为重掺杂N型埋层、N型外延层及重掺杂P型区,所述重掺杂N型埋层与衬底上的P型埋层接触;
所述P型隔离阱中,从下至上依次为P型外延层及重掺杂N型区,P型外延层与衬底上的P型埋层接触;
P型外延层之上具有两接触孔,分别连接到重掺杂P型区及重掺杂N型区,金属连线分别连接接触孔引出电极。
2.如权利要求1所述的TVS器件的制造方法,其特征在于:包含如下工艺步骤:
第1步,在P型衬底上通过离子注入形成重掺杂P型埋层;
第2步,在重掺杂P型埋层上方淀积一层轻掺杂N型外延层;
第3步,在N型外延层中进行离子注入形成重掺杂N型埋层;
第4步,在N型外延层上淀积一层轻掺杂N型外延层;
第5步,在N型埋层两端进行N型隔离阱注入形成隔离阱区域;
第6步,采用热推进形成最终N型隔离阱,并使埋层中杂质向上扩散形成P型外延层及N型外延层;
第7步,进行离子注入及热推进工艺形成P型隔离阱;
第8步,在N型外延层中进行P型杂质注入形成重掺杂P型区,在P型外延层中进行N型杂质注入形成重掺杂N型区;
第9步,通过接触孔工艺及金属连线工艺将重掺杂P型区及重掺杂N型区引出形成两端的电极。
3.如权利要求2所述的TVS器件的制造方法,其特征在于:所述第1步中P型衬底为电阻率范围在0.007~0.013Ω·cm的高掺杂低阻衬底,P型埋层为注入铟离子形成,注入剂量为1x1015~5x1016cm-2,以调整齐纳管的击穿电压。
4.如权利要求2所述的TVS器件的制造方法,其特征在于:所述第2步中N型外延层的掺杂浓度小于1x1014cm-3
5.如权利要求2所述的TVS器件的制造方法,其特征在于:所述第3步中重掺杂N型埋层的离子注入杂质为磷和砷或者磷和锑,注入的剂量为1x1015~5x1016cm-2,注入的能量为20~200keV。
6.如权利要求2所述的TVS器件的制造方法,其特征在于:所述第4步中N型外延层采用轻磷掺杂,杂质分布均匀且浓度小于1x1014cm-3
7.如权利要求2所述的TVS器件的制造方法,其特征在于:所述第7步中P型杂质注入到外延层中的剂量为1x1015~5x1016cm-2,并利用高温快速热退火进行激活和扩散。
CN201210182968.1A 2012-06-05 2012-06-05 Tvs器件及制造方法 Active CN103456798B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210182968.1A CN103456798B (zh) 2012-06-05 2012-06-05 Tvs器件及制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210182968.1A CN103456798B (zh) 2012-06-05 2012-06-05 Tvs器件及制造方法

Publications (2)

Publication Number Publication Date
CN103456798A CN103456798A (zh) 2013-12-18
CN103456798B true CN103456798B (zh) 2015-10-14

Family

ID=49738967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210182968.1A Active CN103456798B (zh) 2012-06-05 2012-06-05 Tvs器件及制造方法

Country Status (1)

Country Link
CN (1) CN103456798B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103972305B (zh) * 2014-04-18 2017-01-11 苏州固锝电子股份有限公司 用于低压瞬态电压抑制二极管芯片的制造方法
CN107527907B (zh) * 2017-08-31 2024-04-09 北京燕东微电子有限公司 瞬态电压抑制器及其制造方法
CN107706229B (zh) * 2017-08-31 2024-04-09 北京燕东微电子有限公司 瞬态电压抑制器及其制造方法
CN109755111B (zh) * 2017-11-01 2021-04-20 天津环鑫科技发展有限公司 一种采用印刷工艺制作双向tvs芯片的方法
CN108198849B (zh) * 2017-11-24 2021-07-13 南京矽力微电子技术有限公司 一种齐纳二极管及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853853A (zh) * 2009-03-31 2010-10-06 万国半导体有限公司 带有低电容和正向电压降以及耗尽的半导体控制整流器作为控向二极管的瞬态电压抑制器
CN102306649A (zh) * 2011-08-24 2012-01-04 浙江大学 一种双向双通道的瞬态电压抑制器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3547884B2 (ja) * 1995-12-30 2004-07-28 三菱電機株式会社 半導体装置及びその製造方法
US7989923B2 (en) * 2008-12-23 2011-08-02 Amazing Microelectronic Corp. Bi-directional transient voltage suppression device and forming method thereof
JP2010272672A (ja) * 2009-05-21 2010-12-02 Hitachi Ltd 誘電体分離型半導体集積装置、及び半導体集積装置の製造方法
US8501580B2 (en) * 2010-02-26 2013-08-06 Jerry Hu Process of fabricating semiconductor device with low capacitance for high-frequency circuit protection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853853A (zh) * 2009-03-31 2010-10-06 万国半导体有限公司 带有低电容和正向电压降以及耗尽的半导体控制整流器作为控向二极管的瞬态电压抑制器
CN102306649A (zh) * 2011-08-24 2012-01-04 浙江大学 一种双向双通道的瞬态电压抑制器

Also Published As

Publication number Publication date
CN103456798A (zh) 2013-12-18

Similar Documents

Publication Publication Date Title
CN103456798B (zh) Tvs器件及制造方法
US7989923B2 (en) Bi-directional transient voltage suppression device and forming method thereof
CN102856318B (zh) 单向瞬态电压抑制器
CN102592995B (zh) 齐纳二极管的制造方法
CN101425519A (zh) 制造在绝缘物上硅层中的瞬时电压抑制器
CN104733454A (zh) 用于保护射频和微波集成电路的装置与方法
CN103456797B (zh) Tvs器件及制造方法
CN103579366B (zh) Tvs器件及制造方法
CN103367393B (zh) 瞬态电压抑制器件及制造工艺方法
CN104409454A (zh) 一种nldmos防静电保护管
CN103426879B (zh) 瞬态电压抑制器及其制造方法
CN107919355B (zh) 超低残压低容瞬态电压抑制器及其制造方法
CN204348725U (zh) 一种单通道低电容瞬态电压抑制器件
CN103474346B (zh) 瞬变电压抑制二极管pn结的实现方法
CN106129125B (zh) 三端自带防护功能的横向恒流器件及其制造方法
CN206877995U (zh) 一种过压保护设备
CN101523606B (zh) 高击穿电压二极管及其形成方法
CN105679836A (zh) 一种超低电容tvs二极管结构及其制备方法
CN106409826A (zh) 瞬态电压抑制器及其制造方法
CN205582945U (zh) 一种超低电容tvs二极管
CN106816463A (zh) 一种终端结构、半导体器件及其制备方法
CN207068852U (zh) 瞬态电压抑制器
CN103426877B (zh) 一种瞬态电压抑制器及其制造方法
CN204720449U (zh) 电压浪涌保护器件
KR101323143B1 (ko) 정전기 보호용 반도체 소자의 제조방법과 그 방법에 의하여 제조되는 정전기 보호용 반도체 소자

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SHANGHAI HUAHONG GRACE SEMICONDUCTOR MANUFACTURING

Free format text: FORMER OWNER: HUAHONG NEC ELECTRONICS CO LTD, SHANGHAI

Effective date: 20140114

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 201206 PUDONG NEW AREA, SHANGHAI TO: 201203 PUDONG NEW AREA, SHANGHAI

TA01 Transfer of patent application right

Effective date of registration: 20140114

Address after: 201203 Shanghai city Zuchongzhi road Pudong New Area Zhangjiang hi tech Park No. 1399

Applicant after: Shanghai Huahong Grace Semiconductor Manufacturing Corporation

Address before: 201206, Shanghai, Pudong New Area, Sichuan Road, No. 1188 Bridge

Applicant before: Shanghai Huahong NEC Electronics Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant