JP2010272672A - 誘電体分離型半導体集積装置、及び半導体集積装置の製造方法 - Google Patents

誘電体分離型半導体集積装置、及び半導体集積装置の製造方法 Download PDF

Info

Publication number
JP2010272672A
JP2010272672A JP2009122911A JP2009122911A JP2010272672A JP 2010272672 A JP2010272672 A JP 2010272672A JP 2009122911 A JP2009122911 A JP 2009122911A JP 2009122911 A JP2009122911 A JP 2009122911A JP 2010272672 A JP2010272672 A JP 2010272672A
Authority
JP
Japan
Prior art keywords
oxide film
layer
integrated device
semiconductor integrated
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009122911A
Other languages
English (en)
Inventor
Tokuo Watanabe
篤雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009122911A priority Critical patent/JP2010272672A/ja
Publication of JP2010272672A publication Critical patent/JP2010272672A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

【課題】微細なMOS素子と共存する。
【解決手段】支持基板5と、埋込シリコン酸化膜6と、第1高濃度不純物層9及び低不純物濃度層とからなる活性層15、とで構成されるSOI基板を適用した誘電体分離型半導体集積装置10において、高耐圧半導体素子形成領域を囲んで形成される素子分離領域は、多重溝100と、多重溝の側壁に設けた第1酸化膜105と、第1酸化膜と隣接して多重溝側壁に沿って形成された第2高濃度不純物層110と、第2高濃度不純物層の略上部にLOCOS酸化膜50を介して配設された低抵抗層P2と、前記低抵抗層に積層された第2酸化膜70,75,80と、を備えて構成され、低抵抗層は、第2高濃度不純物層、あるいはドレイン電極と略同電位であり、第2酸化膜の表面でエミッタ電極が前記高耐圧半導体素子形成領域から隣接領域へ引き出されている。
【選択図】図2

Description

本発明は、高耐圧な誘電体分離型半導体集積装置、及び半導体集積装置の製造方法に関し、特に、高耐圧半導体素子と低耐圧半導体素子との双方を同一チップ内で集積させてモータをドライブする電力半導体を制御する半導体集積装置に用いて好適なものである。
電動機(モータ)を駆動する駆動回路は、FET(Field effect transistor)やIGBT(Insulated Gate Bipolar Transistor)等の複数の電力半導体装置を備える電力変換器と、この電力変換器を制御する半導体制御回路とを備えて構成される。半導体制御回路は、高耐圧素子、大電力出力回路、及び低耐電圧のロジック回路が集積されて構成されている。また、半導体制御回路と電力半導体装置とが集積される製品もある。このような高耐圧半導体集積装置は、素子間の電気的分離が不可欠であり、数百ボルトの電気的分離が必要な高耐圧分離構造と5V〜15V程度の信号電圧を分離できればよい低電圧の分離構造とが共存する。
ここで、前記の高耐圧半導体集積装置においてその構成素子の一つである高耐圧MOS(Metal Oxide Semiconductor)半導体集積装置の例として特許文献1に開示されている縦断面図を図19に示す。
図19において、高耐圧MOS半導体集積装置は、シリコン支持基板5、第1シリコン酸化膜(埋込シリコン酸化膜6)、及び低不純物濃度のシリコン活性層15からなる半導体基板を基本構造としている。MOSの各機能領域は、シリコン活性層15に形成される。シリコン活性層15の領域内にn型の高不純物濃度のソース領域12、ゲート電極2、n型の高不純物濃度のドレイン領域32、p型不純物濃度領域でn型のチャネルが形成されるpチャネル領域13、等の機能領域が形成される。これらの機能領域を取り囲むように、第2シリコン酸化膜105、多結晶シリコン104、n型高濃度不純物層110、及び第1シリコン酸化膜(埋込シリコン酸化膜6)と、これに隣接して積層された高濃度不純物層9とからなる誘電体分離領域が形成され、前記機能領域を周囲の半導体領域から電気的に絶縁分離する。ここで、酸化膜50の上に配置された多結晶シリコン201はゲート電極2と同一部材で構成され配線として機能している。
特開2007−242977号公報
しかしながら、特許文献1に記載の高耐圧MOS半導体集積装置は、多結晶シリコンのゲート電極2、及び多結晶シリコン201の下に配置されるシリコン酸化膜50を厚く形成しなければ高耐圧素子として機能しない。この点について以下に説明する。
高耐圧MOS構造の場合、ドレイン領域32は、低不純物濃度のn型シリコン活性層15とその周囲を囲むn型高濃度不純物層9,110とを備えて構成される。
型高濃度不純物層9,110は空乏化しないため、高耐圧MOS半導体集積装置が阻止状態にあるときは各素子領域の中で最も高い電位になる。一方、シリコン酸化膜50を介してその表面に配設されている多結晶シリコン201は、グランド電位から高電位までそれぞれの電位で動作する。特に、グランド電位で動作する場合には、シリコン酸化膜50に印加される電圧が最大となる。しかも、この場合、多結晶シリコン201の下層がドレイン領域となっているため多結晶シリコン201の電位によって、ドレイン領域での電位分布が著しく影響を受け、電界集中が起き易い。高耐圧MOS半導体集積装置は、このような電圧印加状態でも必要な絶縁耐圧が確保できることや、素子のドレイン領域での電界強度がシリコンのアバランシェ電界強度以下であることが達成された場合のみ安定な阻止状態が確保できる。このためには、高耐圧MOS半導体集積装置は、シリコン酸化膜50は十分な厚さを有する必要がある。一例として素子の定格阻止電圧が500Vとした場合、その膜厚は少なくとも3μm以上必要であることが分かっている。
しかし、多結晶シリコン201、多結晶シリコンのゲート電極2の下層に配設されるシリコン酸化膜50の厚さが数μmと厚い場合、以下に述べる重大な欠点を有する。この点を説明する。ここで、段差量tpは、図中に示す量であり、多結晶シリコンのゲート電極2、及び多結晶シリコン201が配置される面において最下面と最上面との高さの相違量として定義される。
図19の従来構造の場合では、段差量tpはシリコン主表面と酸化膜50の上面51との高さの相違量とほぼ一致する。実際の素子ではゲート酸化膜を介して多結晶シリコンゲート電極が設置されるが、一般にゲート酸化膜は薄く70nm以下である。このため、μmオーダに対して無視できる厚さである以後の記述においても、特にことわらないかぎりゲート酸化膜の厚さの絶縁耐圧への寄与は無いものとしてその厚みは言及しないこととする。
段差量tpは、500Vクラスの高耐圧素子の場合、酸化膜50の厚さが3μm以上となるため、その1/2にあたる1.5μm以上となる。
段差量tpは、多結晶シリコンゲート電極をフォトリソ技術で加工形成するときの限界寸法値を決定する重要な因子であり、上記の1.5μmの段差の場合では、ゲートの最小加工寸法はせいぜい3μm程度である。このように、図19の従来構造では、酸化膜が厚く、段差量tpが大きいため多結晶シリコンのゲート電極の寸法を小さくできない欠点を有している。以上述べたように、多結晶シリコンのゲート電極の加工形成時において大きな段差の発生を解決しなければ高耐圧素子と微細なMOS素子とが共存する半導体装置を提供することができない。
そこで、本発明は、微細なMOS素子と共存できる高耐圧な誘電体分離型半導体集積装置、及び集積装置の製造方法を提供することを目的とする。
前記目的を達成するため、本発明の誘電体分離型半導体集積装置は、支持基板(5)と、この支持基板に積層された埋込シリコン酸化膜(6)と、この埋込シリコン酸化膜に積層された一方導電型の第1高濃度不純物層(9)とこの第1高濃度不純物層に積層された低不純物濃度層とからなる活性層(15)、とで構成されるSOI基板を適用した誘電体分離型半導体集積装置において、高耐圧半導体素子形成領域を囲んで形成される素子分離領域は、少なくとも略垂直で前記埋込シリコン酸化膜まで達する多重溝(100)と、前記多重溝の側壁に設けた第1酸化膜(105)と、前記第1酸化膜と隣接して多重溝側壁に沿って形成され、前記第1高濃度不純物層まで達する一方導電型の第2高濃度不純物層(110)と、前記第2高濃度不純物層の略上部にLOCOS酸化膜(50)を介して配設された低抵抗層(P2)と、前記低抵抗層に積層された第2酸化膜(70,75,80)と、を備えて構成され、前記低抵抗層は、前記第2高濃度不純物層、あるいは高耐圧素子の最も高い電位となる電極、ドレイン電極、又はコレクタ電極と略同電位であり、前記第2酸化膜(70,75,80)の表面で、ソース電極、ゲート電極、又はエミッタ電極が前記高耐圧半導体素子形成領域から隣接領域へ引き出されていることを特徴とする。ここで、かっこ内の数字は例示である。
これによれば、LOCOS(Local Oxidation of Silicon)酸化膜に配設されている低抵抗層が、第2高濃度不純物層、あるいは高耐圧素子の最も高い電位となる電極、ドレイン電極、又はコレクタ電極と略同電位に維持されているので、LOCOS酸化膜に対するソース電極、ゲート電極、又はエミッタ電極の電位の影響が低減する。
また、低抵抗層を用いることなく、LOCOS酸化膜をソース電極、ゲート電極、又はエミッタ電極の近傍領域の酸化膜よりも厚く形成することにより、ゲート電極の段差量を小さくすることができる。
本発明は、微細なMOS素子と共存できる高耐圧で高信頼な誘電体分離型半導体集積装置、及び半導体集積装置の製造方法を提供することができる。
本発明の一実施形態である半導体集積装置を用いたモータドライブシステムのブロック図である。 本発明の第1実施形態に係る半導体集積装置の縦断面図である。 等電位線を説明するための図である。 本発明の第1実施形態に係る半導体集積装置について電界緩和効果を示す図である。 本発明の第1実施形態に係る半導体集積装置の阻止特性を示す図である。 本発明の第1実施形態に係る半導体集積装置の平面図である。 本発明の第2実施形態に係る半導体集積装置の縦断面図である。 本発明の第2実施形態に係る半導体集積装置の平面図である。 本発明の第3実施形態に係る半導体集積装置の縦断面図である。 本発明の第3実施形態に係る半導体集積装置の製造工程を示すフローチャートである。 本発明の第3実施形態に係る半導体集積装置の製造工程を示す断面図である。 本発明の第3実施形態に係る半導体集積装置の製造工程を示す断面図である。 本発明の第3実施形態に係る半導体集積装置の製造工程を示す断面図である。 本発明の第4実施形態に係る半導体集積装置の縦断面図である。 本発明の第3実施形態に係る半導体集積装置の製造工程を示す断面図である。 本発明の第3実施形態に係る半導体集積装置の製造工程を示す断面図である。 本発明の第3実施形態に係る半導体集積装置の製造工程を示す断面図である。 本発明の第5実施例に係る半導体集積装置の縦断面図である。 従来技術の半導体集積装置の縦断面図である。
(第1実施形態)
以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図、前記した従来技術を説明するための全図において、同一、又は類似の部分には原則として同一、又は類似の符号を付し、その繰り返しの説明は省略する。
図1に、本発明の第1実施形態である誘電体分離型半導体集積装置を用いたモータ制御システムを示す。
図1は、誘電体分離型半導体装置(半導体集積装置)を用いたモータドライブシステムの構成図である。モータドライブシステム1000は、モータ300を駆動する6個のIGBT(Insulated Gate Bipolar Transistor)と逆並列接続された6個の転流ダイオードから構成されるU相,V相,W相の3相のIGBTインバータ400と、IGBTインバータ400を制御する半導体集積装置10とを備える。なお、IGBTインバータ400には、直流電源が接続される。
誘電体分離型の半導体集積装置10は、U相,V相,W相の上駆動回路501,502,503と、各相の下アーム駆動回路504,505,506と、各駆動回路を最適に制御する制御ロジック600と、それぞれの回路部に供給する電源700とを含む。さらにU相上駆動回路501は、IGBTのゲート制御信号を与えるドライバ素子(上アームドライブ回路515)と、これを制御する信号を与えるロジック514と、上駆動回路501,502,503では高電圧状態で駆動信号を伝達するために高耐圧のMOSトランジスタ(図示せず)からなるレベルシフト回路513とを備える。上アームは高電圧状態がそれぞれ3相が独立して制御されるため独立して構成されている。
なお、点線で図示するように、モータ300の容量によってはIGBTと転流ダイオードからなる3相インバータ回路まで同一のウエハ内に集積される場合もある。このような半導体集積装置10cでは、上アームのIGBTと下アームのIGBTとを別々の電位で動作させるために、ゲート駆動回路がそれぞれ電位的に分離されて動作する必要がある。そのためには制御信号をつくる低耐圧の制御ロジック600の性能が要求され、高速、多機能性を実現するためゲート長が1.3μmから0.6μmまでの微細なCMOS回路で構成されている。
図2は、本発明に係る半導体集積装置の縦断面図である。この半導体集積装置10は、各素子の機能領域を埋込シリコン酸化膜6やシリコン酸化膜105が囲んでおり、直流的には電気的に絶縁された誘電体分離型の半導体集積装置である。この半導体集積装置10は、高耐圧素子としてIGBT30が形成され、微細なMOS素子としてnMOS90が形成され、IGBT30とnMOS90との間が素子分離領域200で分離されている。
図2では、IGBT30とnMOS90とが表記の都合上、接近して記載されている。しかしながら、実際の誘電体分離型の半導体集積装置ではこのような配置は少なく、図2は高耐圧素子と低耐圧の微細なMOS素子とが集積されていることを分り易く示す便宜上の理由からこのように断面を記載している。
基板は、SOI構造の基板であり、n型シリコン活性層15、埋込シリコン酸化膜6、及びシリコン支持基板5を備えて構成される。n型シリコン活性層15は、低不純物濃度のn型シリコン層とその底面に一方導電型のn型高濃度不純物層9のシリコン層(第1高濃度不純物層)とを備えて構成されている。n型シリコン活性層15は、厚さが30μmから70μmである。
型シリコン活性層15の主表面から埋込シリコン酸化膜6に達する略垂直な分離溝100が形成される。この溝は、閉ループの平面形状であり、内側と外側とを絶縁分離する機能を有する。分離溝100の両側の側壁に沿って、第2高濃度不純物層としてのn型高濃度不純物層110が形成される。閉ループのn型高濃度不純物層110とn型高濃度不純物層9とでn型シリコン活性層15を箱状に包囲する。また、分離溝100が多重に形成されて多重溝を構成する。
さらに、分離溝100の側壁には、n型高濃度不純物層110と隣接して全面にほぼ均一の厚さでシリコン酸化膜105が形成されている。分離溝100のうちシリコン酸化膜105に挟まれた空隙領域には多結晶シリコン104が充填されて素子分離領域200を構成する。分離溝100の側壁に形成されたシリコン酸化膜105は、n-型シリコン活性層15の主表面まで延在しており、LOCOSプロセスで形成されたシリコン酸化膜50が素子分離領域200の上面領域を覆っている。本実施形態では、分離溝100を所定の間隔で形成した2重構造である。
素子分離領域200で囲まれたn型シリコン活性層15は、エミッタ,ゲート,及びコレクタの各領域が形成されてIGBT素子としての機能を実現する。エミッタは、リング状のn+型エミッタ層1である。n+型シリコン層1を囲んでp型チャネル層20が形成されチャネル領域となる。チャネル領域のシリコン表面にはp+型シリコン層21が形成され、n+型エミッタ層1とp+型シリコン層21とにオーミック接続されたエミッタ電極M11が形成される。p型のチャネル層20の表面にはゲート酸化膜を介して多結晶シリコン層からなるゲート電極2が形成される。ゲート電極2はさらにオーミック接続された金属電極M12に接続される。
エミッタに対向して所定の間隔を経てコレクタ領域が形成される。コレクタ領域は、p+型コレクタ層3と、p+型コレクタ層3からのホールの注入量を制御するn型バッファ層4とを備えて構成される。さらに、コレクタ領域は、電界緩和の目的で比較的不純物濃度が低く、拡散深さの大きなn型電界緩和層40が形成されている。p+型コレクタ層3にオーミック接続されたコレクタ電極M13が形成される。ここで、各電極M11、M12、M13、M14は1層目の金属電極であり、これらはさらに2層目の電極M21、M22、M23、及び3層目の電極M31、M22、M33へと接続されている。ただし、電極M22,M32は、その記載を省略している。1層目の電極M11、M12、M13の下層、及び貫通部の周囲にはシリコン酸化膜からなる第1層間絶縁膜70が形成され、1層目の電極と2層目の電極との間には第2のシリコン酸化膜からなる第2層間絶縁膜75が形成され、さらに、2層目の電極と3層目の電極との間には第3のシリコン酸化膜からなる第3層間絶縁膜80がそれぞれ形成されている。このように金属電極が多層で構成される構造は多層配線構造とよばれ高集積な半導体集積装置では一般に適用される技術である。なお、層間絶縁膜70,75,80を合わせて、第2酸化膜を形成する。
一方、図2において、高耐圧IGBT30の領域の右側に配置された素子は、ゲート電極2の長さが0.8μmの微細なnMOS90である。nMOS90は、p型のシリコン層をp型ウエル22として微細なゲート電極2の両側にn型のシリコン層からなるソース−ドレイン領域42とソース−ドレイン領域であるn型低不純物濃度層422とが形成され、さらにソース−ドレイン領域42とオーミックコンタクトされた1層目の金属電極のソース−ドレイン電極M14がそれぞれ形成される。これらの電極は最終的には3層目の電極に接続されているがここでは図示されていない。また、微細なnMOSもそれらが形成されている領域の所定領域をある程度の範囲でまとめ、その範囲の領域全体が素子分離領域200で囲まれている。
本実施形態において、エミッタ電極M31はIGBT30のコレクタ領域の上を通り素子分離領域200を横切ってコレクタ領域から外の領域へ引き出されている(図2参照)。一方、素子分離領域200を越えるエミッタ電極M31の下層ではゲート電極2と同一部材の多結晶シリコンからなる低抵抗層P2がシリコン酸化膜50を介して配置されている。ここで、低抵抗層P2は、分離溝100の側壁に設けられたn型高濃度不純物層110の略上部を覆う配置で形成されるが、n型電界緩和層40とはオーバラップさせないことが好ましい。これは、n型電界緩和層40の電界緩和効果を弱めないためである。さらに、この低抵抗層P2は、コレクタ電極M33と同電位にバイアスされていることが特徴である。以下、本実施形態での新規な電界緩和効果の特徴を記す。
高耐圧のIGBT30のコレクタとエミッタとの間に順方向阻止電圧が印加された状態を考える。このとき阻止電圧は、100Vから1000Vまでの範囲を対象とする。低不純物濃度層(n型シリコン活性層15)の空乏層は、Pチャネル層20側からn型コレクタ領域(n型シリコン活性層15)へ広がって行き電界緩和が充分達成できればn型高濃度不純物層110まで延びることになる。ここで、図3を用いて、エミッタ電極M31が隣接領域まで引き出されているコレクタ表面近傍での空乏層の広がりを考える。図3の説明図において、実線Aは本実施形態の等電位線を示し、破線Bはエミッタ電極M31が隣接領域まで引き出されていない場合を示し、一点鎖線Cはエミッタ電極M31が隣接領域まで引き出されているが、低抵抗層が存在していない場合を示している。また、この説明図においては、エミッタ側に引き延ばした低抵抗層P3を本実施形態の低抵抗層P2の代わりに用いて、破線A,Cの差異を際立たせている。
破線Bの等電位線のときは、エミッタ電極M31が半導体集積装置10の表面に対して略鉛直方向を向いているが、破線A,Cの等電位線は、エミッタ電極M31や低抵抗層P3に沿うように延長され、平坦化されている。また、破線Cの等電位線は、低抵抗層P3が無いので、n型高濃度不純物層110に沿って立ち上がるが、実線Aの等電位線は低抵抗層P3の表面に沿っており、より平坦化されている。
言い換えれば、空乏層は、エミッタ電極M31の低電位に圧迫されるため、コレクタ深さ方向の広がりより大きな横広がりを示し、しかもn型電界緩和層40で抑制されながらn型高濃度不純物層110へ広がることになる。
型高濃度不純物層110の近傍では、低抵抗層P2がコレクタ電極M33と同電位でシリコン酸化膜50とを介して配置されるため、この高電位の抑制を受ける。つまり、空乏層の広がりに抑制効果が働くことで等電位分布線の平坦化が発生して電界強度を低減する新規な効果が現れる。
これにより、半導体集積装置10は、シリコン酸化膜50を薄くすることができ、段差を少なくすることができる。これにより、多結晶シリコンのゲート電極2を小さく形成することができる。
また、シリコン酸化膜50は、LOCOSプロセスで形成されるLOCOS酸化膜とする。LOCOS酸化膜はせいぜい0.8μm以下の厚さとし、多結晶シリコンのゲート電極が配置される面において最下面と最上面との高さの相違量である段差量を少なくして、ゲート電極の寸法を小さくできるようにしている。
図4は、本実施形態のIGBT素子構造について、図2の矢印で示すシリコンとシリコン酸化膜との界面でのエミッタからコレクタまでの間について、阻止状態の表面電界強度を数値解析した結果である。縦軸は電界強度(V/cm)を示し、横軸はSi表面でのエミッタからコレクタまでの距離を示す。比較例は、低抵抗層P2の無い構造である。低抵抗層P2を設けた本実施形態の素子構造では高濃度不純物層のあるコレクタ端で電界強度が低減していることがわかる。
図5は、本実施形態の効果を確認するために試作したIGBTトランジスタの阻止状態でのコレクタ電圧とコレクタ電流との関係を示した特性図である。図5(a)の横軸は、コレクタ電極に印加したコレクタ電圧(V)を示し、縦軸はそのときのコレクタ電流(A)を示す。比較例として、本実施形態の特徴構成である低抵抗層P2が無い場合のIGBT素子の特性を示す。また、エミッタ電極が隣接領域に引き出される場合(図5(b)参照)、その下の酸化膜の厚さが薄い場合と厚い場合とについての特性も示す。
酸化膜の厚い4.5μmの場合で比較例の構造と本実施形態の構造(本願構造A)とを比較すると、コレクタ電流が急増する電圧、つまりアバランシェ電圧が約50Vも増加する。一方、比較例の構造と同じアバランシェ電圧で要求仕様を充たす場合では薄い4.1μmの酸化膜(本願構造B)でも達成できることもわかる。酸化膜を薄くできることは、配線層数を少なくできるため素子製造プロセスの低コスト化に効果がある、さらに層間膜を薄くできるので層間膜を介した配線の接続が容易になり多層配線構造の高信頼度化が達成できる、など顕著な効果を示す。
図6は、本実施形態の半導体集積装置10についてのIGBT素子部のみの平面図である。図6は、エミッタ電極M31,コレクタ電極M33、ゲート電極2、低抵抗層P2、及び分離溝100のパターンを示し、その他の領域は図示されていない。図2の縦断面図はこの平面図でA−Aに沿った断面の模式図である。低抵抗層P2は、コレクタ電極M33と図中Ba,Bbで示す部分とでコンタクト穴を介してオーミック接続され、低抵抗層P2にコレクタ電位が与えられるようになっている。また、図2は、IGBT素子領域が2重の分離溝100で囲まれている場合を示しているが、3重、4重など多重の分離溝100で囲まれてもよい。多重の分離溝100で囲む場合は、素子分離能力は強固になるが、その半面、分離面積が増すので設計的な妥協点を設定する必要がある。
また、低抵抗層P2は、分離溝100を越えて隣接する外の領域まで配置されないことが重要である。低抵抗層P2の下に介在するシリコン酸化膜は薄いので高い電圧を保持できないからである。
(第2実施形態)
次に、本発明の第2実施形態に係る半導体集積装置について説明する。
図7は、本発明の第2実施形態に係る誘電体分離型の半導体集積装置の縦断面図である。第2実施形態に係る半導体集積装置10aは、IGBTのコレクタ領域のさらにその外側に素子分離領域を設け、コレクタ領域であるn型シリコン活性層15を取り囲むように隣接シリコン領域150を設けている。
さらに、この隣接シリコン領域150ではコレクタ電極M33、及び低抵抗層P2とがそれぞれオーミック接続され、上記の3者がすべて同じコレクタ電極M33の電位にバイアスされている。但し、この部分は図示されていない。この構造において、半導体集積装置10aは、隣接領域へ引き出されているエミッタ電極M31と低抵抗層P2とが上下で重なって形成されていることを特徴とする。隣接シリコン領域150は、誘電体分離構造で直流的に絶縁されているためコレクタ領域内での空乏層から電位の影響を受けることを防止することができる。このため、隣接シリコン領域150は、安定してコレクタ電極M33と同電位性を保持することができる。低抵抗層P2もこの隣接シリコン領域150が設置されていることで容易に電位を受けることができる。しかも、電位の安定性も保証できるなど優れた効果を有する。
図8は、本実施形態の半導体集積装置10aであって、IGBT素子部のみ示した平面図である。図8は、エミッタ電極M31,コレクタ電極M33、ゲート電極2、低抵抗層P2、及び分離溝100のパターンを示しており、その他の領域は図示されていない。本平面図では説明を分り易くするため2本で示されている分離溝のそれぞれを100−1、100−2と区別して示す。分離溝100−1と100−2との間は、隣接シリコン領域150が形成されており、コレクタ電極M33が図中Ca,Cbで示す部分でシリコン層とオーミック接続され、隣接シリコン領域150をバイアスするようになっている。同時に本実施形態ではこのCa,Cb部分で低抵抗層P2も隣接シリコン領域150とオーミック接続されてコレクタ電極M33の電位にバイアスされる。但し、低抵抗層P2はこのCa、Cb部分以外でバイアスされることもあり、どこでバイアス箇所を設定するかはその他の電極パターンを考慮して適正な場所を決めるのが好ましい。
(第3実施形態)
次に、本発明の第3実施形態に係る半導体集積装置について説明する。
図9は、本発明の第3実施形態に係る誘電体分離型の半導体集積装置、特に、IGBT素子の縦断面図である。半導体集積装置10bでは種類の異なる半導体素子がオンチップで集積されるが、その中でとくにIGBT素子など高耐圧素子においてそれらの素子分離領域200が形成されている領域でのシリコン表面の選択酸化膜55がその他の領域(ソース電極、ゲート電極、又はエミッタ電極の近傍領域)のシリコン酸化膜51(=105)より厚く形成されていることが特徴である。しかも、素子分離領域200での厚い選択酸化膜55と、その他の領域での薄いシリコン酸化膜51との境界において、多結晶シリコンが成膜される上部の表面ではほぼ段差がない状態で形成されている。下部(基板側)のn型シリコン活性層15とシリコン酸化膜51との界面側での段差はとくに言及しない。これは多結晶シリコンが配置される上部側(電極側)での段差が、ゲート電極2の微細加工に多大なる影響を及ぼすからである。本実施形態では、少なくとも酸化膜の上面側での段差が0.3μm以下に制御されなければならない。
また、図9は、低抵抗層P2が素子分離領域200に配置された実施形態を示すが、本実施形態のように表面の選択酸化膜55が十分な厚さを有し、絶縁耐圧を高くすることができる場合には、エミッタ電極M31が引き出されている領域で低抵抗層P2を配置する必要はない。すなわち、ゲート電極2の近傍の酸化膜を薄くすることができるので、ゲート電極2の段差が小さくなり、ゲート電極2を大きくすることができるからである。
(製造方法)
図10は、本発明の第3実施形態に係る半導体集積装置の製造方法の概要を示すフローチャートである。以下、適宜図9の縦断面図を参照して説明する。
製造者は、シリコン支持基板5の表面に、埋込シリコン酸化膜6、及び一方導電型のシリコン活性層15が積層されたSOI基板を準備する(S1)。
次に、製造者は、シリコン活性層15の主表面に厚い選択酸化膜55を形成し(S2)、この酸化膜を化学研磨法により平坦化する(S3)。次に、製造者は、酸化膜と多結晶シリコンとレジスト材料とからなる3層膜を用いてn型シリコン活性層15の主表面から埋込シリコン酸化膜6に達する略垂直なシリコン溝(分離溝100)を形成し(S4)、この分離溝100の側壁に一方導電型の不純物を気相拡散してn型高濃度不純物層9を形成し(S5)、シリコン溝100の側壁とn型シリコン活性層15の所定の主表面を同時に選択酸化し(S6)、分離溝100の隙間を多結晶シリコンで充填すると共に、選択酸化した膜を介して低抵抗層P2を形成する(S7)。
さらに、製造者は、ゲート酸化膜、ゲート電極、チャネル層、エミッタ層、層間絶縁層、エミッタ電極M31、及びコレクタ電極M33を形成し、このコレクタ電極M33を隣接領域に引き出すと共に、低抵抗層P2とコレクタ電極M33とを接続し(S8)、製造工程が終了する。
図11乃至図16は、本発明の第3実施形態の半導体集積装置の製造方法を具体的に説明するための工程断面図である。
図11(a)において、シリコン支持基板5の一方の面に、埋込シリコン酸化膜6とn型シリコンの高濃度不純物層9とn型シリコン活性層15とがこの順番で積層されたSOI基板を準備する。
図11(b)において、n型シリコン活性層15の主表面に薄い(50nm〜150nmの範囲が好ましい。)熱酸化膜61を形成したのち、所定の領域にイオン注入法と熱処理によるドライブ法とによりn型電界緩和層40を選択的に形成する。引き続きCVD(Chemical Vapor Deposition)法によりシリコン窒化膜62を形成したのち、ドライエッチング法によりシリコン窒化膜62を厚い酸化膜を形成する領域のみ選択的に除去する。
図12(a)において、製造者は、シリコン窒化膜62をマスクとして、水素と酸素の燃焼により生成した水蒸気によるスチーム酸化法を用いて厚い選択酸化膜55(2.0μm〜3.0μmの範囲が好ましい)を選択的に形成する。この選択酸化膜55を形成することにより略膜厚の半分に当る1μmから1.5μmまでの段差が生ずることになる。
図12(b)において、製造者は、少なくとも選択酸化膜55の段差以上の膜厚でしかも可能な限り平坦性を達成できる平坦化膜550を成膜する。この一例としてホトレジストのような有機系材を回転塗布する方法が簡便である。その他として、CVD酸化膜を成膜する方法も一つである。このようにして、製造者は、選択酸化膜55が形成されずに窪んでいる領域をホトレジスト材あるいは酸化膜で埋めて段差の補償を行う。
図13(a)において、ウエハ表面を化学研磨法、いわゆるCMP(Chemical Mechanical Polishing)法により均一速度でエッチングしてウエハ全面に平坦化処理を達成する。このときシリコン窒化膜62をCMPのエッチングストッパとして利用するのが好ましい。これにより、半導体集積装置10bは、ウエハ表面の段差が少なくとも0.3μm以下の優れた平坦性を達成することができる。
図13(b)において、製造者は、エッチングストッパで露出したシリコン窒化膜62をホトレジストとドライエッチング法とにより所定形状に加工形成する。なお、シリコン窒化膜62の代わりに新たにシリコン窒化膜を成膜し直して所定形状に加工形成する方法でもよい。
図14(a)において、製造者は、CVD法によりシリコン酸化膜(CVD酸化膜63)、多結晶シリコン膜64、シリコン酸化膜65を順次積層して成膜する。次に、製造者は、最上層のCVD酸化膜65をホトレジスト法により所定領域で開口する。このとき、開口幅は1μmから2.5μmである。
次に、製造者は、CVD酸化膜65をマスクとして下層の多結晶シリコン膜64を開口してCVD酸化膜65の溝の形状を多結晶シリコン膜64へ転写させる。
図14(b)において、製造者は、多結晶シリコン膜64をエッチングマスクとして、その下層にあるCVD酸化膜63と1μm以上の厚い選択酸化膜55とをドライエッチングする。これは、酸化膜のドライエッチングでは多結晶シリコンとの選択比を高くとれるため、ホトレジストのようなエッチングマスク材では不可能な厚い酸化膜にも細い開口溝66を垂直形状で形成することができる。
図15(a)において、製造者は、高密度のプラズマを発生するドライエッチング装置を用いて開口溝66からシリコンを垂直に加工して、シリコン溝である分離溝100を形成する。このとき、分離溝100は、埋込シリコン酸化膜6まで達する垂直形状で加工される必要がある。本実施形態では、この分離溝100は、溝幅が1.5μm〜2.5μmに形成され、深さが30μm〜80μmの範囲に形成されている。分離溝100を加工するとき表面の多結晶シリコン膜64(図14(a))もエッチング除去されるため、分離溝100の加工時のエッチングマスクとしてはCVD酸化膜63がその機能を果たす。
図15(b)において、製造者は、高アスペクトで深い分離溝100の開口部からアンチモン、リン、砒素等のn型不純物を分離溝100の側壁に気相拡散させてn型高濃度不純物層110を形成する。一方、シリコン表面では分離溝100を加工するときのエッチングマスクとして用いたCVD酸化膜63が被覆されているためn型不純物の拡散を防止することができる。
分離溝100を加工するとき、わずかの量であるがCVD酸化膜63もエッチングされる。このため、分離溝100の加工終了後の時点では、ある程度の膜厚が残存できるように分離溝100の加工時に選択性が確保できるドライエッチング条件とする必要がある。本実施形態では、n型不純物の気相拡散前では少なくとも500nm以上の膜厚を確保できるようにCVD酸化膜63の成膜厚さ、分離溝100の加工時のシリコンとの選択比を調整している。
図16(a)において、製造者は、CVD酸化膜63を希フッ酸溶液でエッチング除去する。
図16(b)において、製造者は、スチーム酸化法により分離溝100の側壁にシリコン酸化膜105を形成する。このとき、半導体集積装置10bは、シリコン表面にも同じ膜厚の酸化膜51が選択的に形成され表面での素子分離領域を形成する。
ただし、このシリコン酸化膜105は、1μm以下の膜厚とすることが好ましい。これよりも厚い酸化膜ではシリコン表面で発生する段差が大きくなり、この工程の後で実行される多結晶シリコンのゲート電極の微細加工を損なうことになるからである。つまり段差が増大することにより段差部でのレジスト膜厚差が起こりレジスト膜内での干渉効果に違いができて寸法変動が大きくなる。また、段差部での反射波による寸法変動(ハレーション効果)などが顕著になり1μm以下でのゲート長の寸法制御ができなくなる問題が発生する。
次に、通常の素子形成工程であるゲート酸化、ゲート電極形成、チャネル領域形成、ソースとドレインの形成、多層電極形成工程を経て半導体集積素子が完成する。
(第4実施形態)
次に、本発明の第4実施形態に係る半導体集積装置について説明する。
図17は、本発明の第4実施形態に係る半導体集積装置の縦断面図を示す。第4実施形態に係る半導体集積装置は、多層配線構造にプラグ技術を適用することで配線層数が少なくできることを特徴とする。
配線層数が少ないほど低コストかつ高信頼度のプロセスである。ここでプラグ技術とは、下層(例えば、1層目エミッタ電極M11)の配線と上層(2層目エミッタ電極M21)の配線とを接続するコンタクト穴をタングステン等の被覆性の優れた金属部材MP1で充填させる技術を意味する。接続穴にプラグ金属MP1を充填する方法は、CMP法が一般に用いられる。このプラグ技術によれば下層と上層との間の第1層間絶縁膜70の厚みを増すことができる。
非プラグ技術の場合では、上層の電極で接続穴を充填することになる。層間絶縁膜が厚く接続穴が深いほど接続穴の中に上層の電極が被覆しづらくなり下層電極とのオーミック接続が困難になる。このため層間絶縁膜を厚くすることができず、所定の高耐圧を持たせるために必要な層間絶縁膜の厚さを確保するには配線の層数を増加させることになる。この結果、プロセスコストの増加、及び信頼度低下の問題が発生するが、プラグ技術では配線間の層間絶縁膜を厚くしても接続性の問題は発生しない。本実施形態は、電極層数がプラグ技術により他の実施形態より1層少ない2層(M11、M21等)で所定の高耐圧素子が得られるので低コストプロセスとなる。
(第5実施形態)
次に、本発明の第5実施形態に係る半導体集積装置について説明する。
図18には、本発明の第5実施形態に係る半導体集積装置の縦断面図を示す。第5実施形態に係る半導体集積装置は、高耐圧素子がIGBTである点で前記各実施形態と共通するが、素子分離方式が前記各実施形態と異なりpn接合で分離されている方式であることが特徴である。つまり、SOI基板ではなくp型シリコン基板の中に高耐圧素子、低耐圧素子を集積化した半導体集積素子である点が特徴である。具体的にこの点を説明する。p型シリコン基板の上に、低濃度コレクタとしてのn型シリコン活性層15をエピタキシャル成長させる。次に、このn型シリコン活性層15を囲むp型拡散層202を形成してpn接合方式の素子分離構造が実現される。一般に、SOI基板と深い分離溝100とを用いて素子分離する誘電体分離方式は、集積度と素子分離での信頼性とで優れた性能を有するが、コストの面でのオーバヘッドが高く場合によってはpn接合分離方式がコスト面で優れていることもある。
本実施形態の場合、p基板はグランド電位に固定されるので低抵抗層P2の配置には以下の点を考慮する必要がある。低抵抗層P2はp型拡散層5,202とは平面的にオーバラップされないように配置し、n型電界緩和層40と素子分離層のp型拡散層202との間に配置させる必要がある。これは低抵抗層P2がコレクタ電位にバイアスされ高電位となり、グランド電位となるp型拡散層202との間に高電圧が印加されるので比較的薄い選択酸化膜のみでしか介在できない構造では、絶縁破壊が起きないように平面的に配慮しなければならないからである。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種種変更可能であることはいうまでもない。
例えば、前記した各実施形態では、高耐圧素子としてIGBTと微細nMOSについてのみ示されているが、その他の高耐圧NMOS、高耐圧PMOSさらに抵抗素子、ダイオード素子、バイポーラ素子、等などについても本実施形態で示した半導体集積装置構造を適用できることは言うまでもない。
また、前記各実施形態は、高耐圧素子としてIGBTに適用したため、低抵抗膜P2をコレクタ電極に接続し、エミッタ電極を隣接領域に引き出したが、パワーMOSFETに適用して、高耐圧素子の最も高い電位となる電極、ドレイン電極、又はコレクタ電極を低抵抗膜P2に接続し、ソース電極、ゲート電極、又はエミッタ電極を隣接領域に引き出してもよい。
1 n型エミッタ層
2 ゲート電極(多結晶シリコン層)
3 p型コレクタ層
4 n型バッファ層
5 シリコン支持基板
6 埋込シリコン酸化膜
9 n型高濃度不純物層(第1高濃度不純物層)
110 n型高濃度不純物層(第2高濃度不純物層)
10,10a,10b 半導体集積装置
15 n型シリコン活性層(コレクタ領域、シリコン活性層)
20 p型チャネル層
21 p型シリコン層
22 p型ウエル
30 IGBT
40 n型電界緩和層
42 ソース−ドレイン領域
50 シリコン酸化膜(LOCOS酸化膜)
51 シリコン酸化膜(LOCOS酸化膜)
52 上面
55 選択酸化膜(LOCOS酸化膜)
61 熱酸化膜
62 シリコン窒化膜
63 シリコン酸化膜(CVD酸化膜)
64 多結晶シリコン膜
65 シリコン酸化膜(CVD酸化膜)
66 開口溝
70 第1層間絶縁膜(第2酸化膜)
75 第2層間絶縁膜(第2酸化膜)
80 第3層間絶縁膜(第2酸化膜)
90 nMOS
100,100−1,100−2 分離溝(シリコン溝、多重溝)
104 多結晶シリコン
105 シリコン酸化膜
110 n高濃度不純物層
150 隣接シリコン領域
200 素子分離領域
201 多結晶シリコン
202 p型拡散層
300 モータ
400 IGBTインバータ
422 n型低不純物濃度層
501 U相上駆動回路
502 V相上駆動回路
503 W相上駆動回路
504 U相下駆動回路
505 V相下駆動回路
506 W相下駆動回路
550 平坦化膜
600 制御ロジック
700 電源
1000 モータドライブシステム
M13 1層目のコレクタ電極
M23 2層目のコレクタ電極
M33 3層目のコレクタ電極
M11 1層目のエミッタ電極
M21 2層目のエミッタ電極
M31 3層目のエミッタ電極
P2,P3 低抵抗層
MP1,MP2 プラグ

Claims (8)

  1. 支持基板と、この支持基板に積層された埋込シリコン酸化膜と、この埋込シリコン酸化膜に積層された一方導電型の第1高濃度不純物層とこの第1高濃度不純物層に積層された低不純物濃度層とからなる活性層、とで構成されるSOI基板を適用した誘電体分離型半導体集積装置において、
    高耐圧半導体素子形成領域を囲んで形成される素子分離領域は、
    少なくとも略垂直で前記埋込シリコン酸化膜まで達する多重溝と、
    前記多重溝の側壁に設けた第1酸化膜と、
    前記第1酸化膜と隣接して多重溝側壁に沿って形成され、前記第1高濃度不純物層まで達する一方導電型の第2高濃度不純物層と、
    前記第2高濃度不純物層の略上部にLOCOS酸化膜を介して配設された低抵抗層と、
    前記低抵抗層に積層された第2酸化膜と、を備えて構成され、
    前記低抵抗層は、前記第2高濃度不純物層、あるいは高耐圧素子の最も高い電位となる電極、ドレイン電極、又はコレクタ電極と略同電位であり、
    前記第2酸化膜の表面で、ソース電極、ゲート電極、又はエミッタ電極が前記高耐圧半導体素子形成領域から隣接領域へ引き出されていることを特徴とする誘電体分離型半導体集積装置。
  2. 前記LOCOS酸化膜は、前記ソース電極、前記ゲート電極、又は前記エミッタ電極の近傍領域の酸化膜よりも厚く形成されていることを特徴とする請求項1に記載の誘電体分離型半導体集積装置。
  3. 前記低抵抗層の表面層に設けた所定膜厚の酸化膜は、3MV/cm以下の電界強度であることを特徴とする請求項1又は請求項2に記載の誘電体分離型半導体集積装置。
  4. 支持基板と、この支持基板に積層された埋込シリコン酸化膜と、この埋込シリコン酸化膜に積層された一方導電型の第1高濃度不純物層と低不純物濃度層とからなる活性層、とで構成されるSOI基板を適用した誘電体分離型半導体集積装置において、
    高耐圧半導体素子形成領域を囲んで形成される素子分離領域は、
    少なくとも略垂直で前記埋込シリコン酸化膜まで達する多重溝と、
    前記多重溝の側壁に設けた第1酸化膜と、
    前記酸化膜と隣接して多重溝側壁に沿って形成され、前記第1高濃度不純物層まで達する一方導電型の第2高濃度不純物層と、
    前記第2高濃度不純物層の略上部に、前記ソース電極、前記ゲート電極、又は前記エミッタ電極の近傍領域の酸化膜よりも厚く形成されたLOCOS酸化膜と、
    前記低濃度不純物層、及び前記LOCOS酸化膜に積層された第2酸化膜と、を備えて構成され、
    前記第2酸化膜の表面で、ソース電極、ゲート電極、又はエミッタ電極が前記高耐圧半導体素子形成領域から隣接領域へ引き出されていることを特徴とする誘電体分離型半導体集積装置。
  5. 前記低抵抗層の上部に設けた所定膜厚の酸化膜は、多層配線の層間膜を少なくとも3層積層させて形成されたことを特徴とする請求項1乃至請求項4の何れか1項に記載の誘電体分離型半導体集積装置。
  6. 前記活性層は、厚さが30μmから70μmまでであり、
    オンチップで形成される低耐圧のMOSトランジスタはゲート長が1.3μmから0.6μmまでのCMOSトランジスタであることを特徴とする請求項1乃至請求項5の何れか1項に記載の誘電体分離型半導体集積装置。
  7. 一方導電型の第1高濃度不純物層を備える支持基板と、この支持基板に積層された低不純物濃度の低濃度コレクタ層と、この低濃度コレクタ層を囲んで形成される反対導電型の拡散層とを備えて構成される誘電体分離型半導体集積装置において、
    前記低濃度コレクタ層、及び前記反対導電型の拡散層の表面に形成されたLOCOS酸化膜と、
    前記LOCOS酸化膜の表面に前記低濃度コレクタ層と略同電位の低抵抗層と、前記LOCOS酸化膜の表面で、ソース電極、ゲート電極、又はエミッタ電極が前記高耐圧半導体素子形成領域から隣接領域へ引き出されていることを特徴とする誘電体分離型半導体集積装置。
  8. シリコン支持基板の表面にシリコン酸化膜、及び一方導電型のシリコン活性層が積層されたSOI基板を準備する工程と、
    前記シリコン活性層の主表面に選択酸化膜を形成する工程と、
    前記選択酸化膜を平坦化する工程と、
    酸化膜と多結晶シリコンとレジスト材料とからなる3層膜を用いて前記シリコン活性層の主表面からシリコン酸化膜に達する略垂直な溝を形成する工程と、
    前記溝の側壁に一方導電型の不純物を気相拡散して高濃度不純物層を形成する工程と、
    前記側壁と前記シリコン活性層の所定の主表面を同時に選択酸化する工程と、
    多結晶シリコンで前記溝の隙間を充填すると共に、前記選択酸化した膜を介して低抵抗層を形成する工程と、
    ゲート酸化膜、ゲート電極、チャネル層、エミッタ層、層間絶縁膜、エミッタ電極、及びコレクタ電極を形成すると共に、このコレクタ電極を隣接領域に引き出し、前記低抵抗層とコレクタ電極とを接続する工程とを備えることを特徴とする半導体集積装置の製造方法。
JP2009122911A 2009-05-21 2009-05-21 誘電体分離型半導体集積装置、及び半導体集積装置の製造方法 Pending JP2010272672A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009122911A JP2010272672A (ja) 2009-05-21 2009-05-21 誘電体分離型半導体集積装置、及び半導体集積装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009122911A JP2010272672A (ja) 2009-05-21 2009-05-21 誘電体分離型半導体集積装置、及び半導体集積装置の製造方法

Publications (1)

Publication Number Publication Date
JP2010272672A true JP2010272672A (ja) 2010-12-02

Family

ID=43420472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009122911A Pending JP2010272672A (ja) 2009-05-21 2009-05-21 誘電体分離型半導体集積装置、及び半導体集積装置の製造方法

Country Status (1)

Country Link
JP (1) JP2010272672A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456798A (zh) * 2012-06-05 2013-12-18 上海华虹Nec电子有限公司 Tvs器件及制造方法
CN113488467A (zh) * 2020-07-02 2021-10-08 长江存储科技有限责任公司 一种半导体器件及其制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456798A (zh) * 2012-06-05 2013-12-18 上海华虹Nec电子有限公司 Tvs器件及制造方法
CN113488467A (zh) * 2020-07-02 2021-10-08 长江存储科技有限责任公司 一种半导体器件及其制作方法

Similar Documents

Publication Publication Date Title
JP4979309B2 (ja) 電力用半導体装置
US8502308B2 (en) Semiconductor device with a trench isolation and method of manufacturing trenches in a semiconductor body
US9362371B2 (en) Method for producing a controllable semiconductor component having a plurality of trenches
JP5670669B2 (ja) 半導体装置およびその製造方法
JP2011066067A (ja) 半導体装置およびその製造方法
JP2005026664A (ja) 半導体装置およびその製造方法
JP5205660B2 (ja) 半導体装置
JP4618629B2 (ja) 誘電体分離型半導体装置
TWI612665B (zh) 半導體裝置及半導體裝置之製造方法
WO2015008444A1 (ja) 半導体装置
US20130175614A1 (en) Semiconductor devices and methods of fabricating the same
JP2012238741A (ja) 半導体装置及びその製造方法
JP4415808B2 (ja) 半導体装置およびその製造方法
JP2010272672A (ja) 誘電体分離型半導体集積装置、及び半導体集積装置の製造方法
JP2017011311A (ja) 半導体装置およびその製造方法
JP5132481B2 (ja) 半導体集積回路装置
JP2006269964A (ja) 半導体装置とその製造方法
JP5466577B2 (ja) 半導体装置およびその製造方法
JP4571108B2 (ja) 誘電体分離型半導体装置及びその製造方法
EP2105962A2 (en) Semiconductor device and production method thereof
JP5120418B2 (ja) 半導体装置
JP4696640B2 (ja) 半導体装置の製造方法
KR20190128374A (ko) 반도체 장치 및 그 제조 방법
JP5961295B2 (ja) 半導体装置および半導体装置の製造方法
CN104078342B (zh) 沟槽电极布置