CN1034455C - 生长激光二极管中量子阱的分子束外延系统的操作方法 - Google Patents

生长激光二极管中量子阱的分子束外延系统的操作方法 Download PDF

Info

Publication number
CN1034455C
CN1034455C CN93105939A CN93105939A CN1034455C CN 1034455 C CN1034455 C CN 1034455C CN 93105939 A CN93105939 A CN 93105939A CN 93105939 A CN93105939 A CN 93105939A CN 1034455 C CN1034455 C CN 1034455C
Authority
CN
China
Prior art keywords
layer
growth
substrate
quantum well
family
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN93105939A
Other languages
English (en)
Other versions
CN1081027A (zh
Inventor
程华
詹姆斯·M·德普伊特
迈克尔·A·哈泽
邱军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Publication of CN1081027A publication Critical patent/CN1081027A/zh
Application granted granted Critical
Publication of CN1034455C publication Critical patent/CN1034455C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/347Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIBVI compounds, e.g. ZnCdSe- laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02474Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02477Selenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/0248Tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/0256Selenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02562Tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0083Processes for devices with an active region comprising only II-VI compounds
    • H01L33/0087Processes for devices with an active region comprising only II-VI compounds with a substrate not being a II-VI compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3403Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3403Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
    • H01S5/3406Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation including strain compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/342Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers containing short period superlattices [SPS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Led Devices (AREA)

Abstract

用原子层外延(ALE)和/或迁移增强外延(MEE)生长II-VI族激光二极管的高效率量子阱的方法。激光二极管衬底和初始生长层在MBE生长室内被加热至小于或等于约200℃的温度。Cd、Zn和Se被交替注入生长室以生长短周期应变层超晶格(SPSLS)量子阱层,其中包含重迭的Cd、Zn和Se单原子层。量子阱层用式[(CdSe)m(ZnSe)n]p表述,其中m、n和p为整数。

Description

生长激光二极管中量子阱的分子束外延系统的操作方法
本发明涉及II-VI族激光二极管量子阱层的分子束外延方法的改进。
由明尼苏达波尔街的3M公司开创的研究以公布世界上第一只用II-VI族半导体材料制造的激光二极管而达到顶峰。这些器件发射蓝绿谱段的490nm的相干辐射。这一结果在Haase等的题为“短波长II-VI族激光二极管”一文中得到一般性地披露。文章载于Conference Pro.for Gollium Arsenide and RelatedCompounds,1991,Institute of Physics Conference Series,No120,pp916。
上述激光二极管的光产生层(有源层)包含用常规分子束外延(MBE)技术生长的应变CdxZn1-xSe单量子阱。遗憾的是,随机的合金,CdZnSe的组分和厚度很难用这一工艺控制,发光效率也相对较差,这些特性限制了器件的总效率。
很明显,需要继续改进激光二极管。为了广泛扩大商业上的生命力,该器件必须能够在室温下有效地产生高强度光束,为使激光二极管具有这些特性,也需要相应的制作技术。
本发明是操作MBE系统的一种改进方法。该系统具有一个生长室和至少一种II族及至少一种VI族元素源,使它可以在II-VI族化合物半导体电发光器件,例如激光二极管,的半导体基体上生长量子阱有源层。II-VI族半导体器件的衬底和初始生长层在MBE生长室中加热,将II族和VI族元素交替注入生长室,至少生长两层II族元素和VI族元素的重迭的单原子层。在一个具体的设备中,器件的衬底和初始生长层被加热至大约150℃,而将Cd、Zn、Se交替注入生长室,产生一激光二极管的有原层该层包含以式〔(CdSe)1(ZnSe)23表示的CdSeZnSe短周期应变层超晶格(SPSLS)量子阱层。用这种技术制作的激光二极管显示了比前面所述的器件更大的室温光荧光和电荧光强度,并能在较低的阈值电流下工作。
图1是一个本发明II-VI族半导体激光二极管的结构剖面图(无尺寸标度)。
图2的曲线表示图1所示激光二极管的光学模的损耗因子(α)和强度半极大值全宽度(FWHM)的乘积与光导层厚度的函数关系。
图3表示一个可用于按照本发明制作激光二极管的MBE系统。
图4是图1所示的量子阱层的详细剖面图。
图5是快门的开关顺序曲线,图3所示的MBE系统按此顺序操作,制作本发明的激光二极管有源层。
图6是用本发明制作的激光二极管量子阱层剖面的高分辨率透射电镜显微照片。
一个根据本发明的半导体激光器10(即电发光器件)示于图1。激光二极管10包括一短周期应变层超晶格(SPSLS)量子阱层12,该层被由N型ZnSe光导层14和P型ZnSe光导层16所形成的ZnSe PN结所包围。正如以下更详尽描述的,量子阱层12是用原子层外延(ALE)和/或迁移增强外延(MEE)方法生长的高效有源层。激光二极管10被制造在N型GaAs衬底18上,在衬底18和光导层14之间夹有一个N型ZnSe欧姆接触层19。P型ZnSe欧姆接触层20迭加在P型光导层16上。聚酰亚胺绝缘层22覆盖接触层20的表面,并与光导层16相对。
P型欧姆接触层20的电接触用Au电极24制作,Au电极形成在绝缘层22的开孔条中。一薄的Ti层26和最终的Au层28附加在绝缘层22上,便于导线的键合。与激光二极管10的底面的电接触由衬底18与N型欧姆接触层19相对的表面上的In电极30形成。
在样品激光二极管10中,光导层14和接触层19都用Cl(氯)做N型掺杂。光导层16和欧姆接触层20都用N(氮)做P型掺杂。下光导层14掺杂的净施主浓度为1×1017cm-3,上光导层16掺杂的净受主浓度为2×1017cm-3。详品器件的欧姆接触层19和20均淀积至0.1μm的厚度。下接触层19的N型掺杂净施主浓度为1×1018cm-3,上接触层20的P型掺杂净受主浓度为1×1018cm-3
量子阱有源层12中产生的光被导入光导层14和16,二者仅被GaAs衬底和Au电极所包封。在激光二极管10中,在设有II-VI族半导体包层的情况下得到优良的光限制和足够低的光损耗。用计算机模拟来选择光导层14、16的适当厚度,该模拟处理考虑了光导层14和16形成的ZnSe波导以及GaAs衬底18和Au电极24的复折射率。此模拟方法是人所共知的,例如可参考M.R.Ramdas等题为“吸收和开槽平面波导分析:一种独特的方法”一文,见Optics letters,Vol.14,P376(1989)和文中的文献索引。
图2的曲线表示所要求的光学模的损耗因子α和FWHM的乘积与ZnSe层14及16厚度的函数关系。为了使器件的阈值电流密度最小化,这个积也应最小化。使用这一设计原则及图2提供的信息,样品激光器的波导层总厚度(即光导层14和16的厚度之和)近似为3.5μm。在本实施例中,n型光导层14厚2.0μm,P型光导层16厚1.5μm。来自自由载流子吸收及散射的损耗估计为8cm-1。量子阱层12对器件的损耗和光限制特性只有较小的影响,在上述设计程序中将其忽略。这一理论认为总波导层厚度小于2.0μm将导致衬底18和电极24中过量的吸收损耗。对于2.5μm的厚度,衬底和电极的吸收损耗为11.7cm-1。另一方面,光学模的FWHM几乎精确地为波导层厚度的一半。因此,当厚度大于6μm时,光限制是如此之差,以至于单量子阱层12不能提供足够的增益来克服损耗。最大模增益反比于波导模的FWHM。对于6μm的波导,FWHM约为3μm,而单量子阱的模增益可估计为12cm-1。可参考有关文献,N.K.Dutta,Appl.phys,Lett.,Vol.53,P.72(Nov.1982)。
图3表示用于制作上述样品激光二极管10的MBE系统。这个系统包括一个生长室,并附带有高能电子枪58、荧光屏60、一个衬底加热器90和流量监视器62。象54这样的生长室是为人熟知的,并在市场上可得到。
样品激光二极管10制作在(100)晶体取向、Si掺杂的N+GaAs衬底18上。这种衬底片市场上有售。衬底18在放入生长室54之前先用常规方法或其它熟悉的技术清洁及制备。然后用In焊在钼的样品块上(图3未标出)。
生长室54包括一个Zn源喷射小室70和1个热解Se源喷射小室72,Cd源喷射小室76和一个标准Se(即原始的Se6)喷射小室79。如图所示,热解Se喷射小室包括一个体蒸发器84和高温热解区82,并提供热解Se源(包括Se2和其它少于6个原子的Se分子)。制作样品激光器的体蒸发器和热解区属常规设计,其细节及功用见cheng等题为“用热解Se的ZnSe的分子束外延生长”,J.Vac,Sci,Technol,B8,181(1990),Cl源喷射小室78使用ZnCl2为原材料,提供Cl的N型掺杂。P型掺杂由氮自由基源80提供。自由基源通过泄漏阀88与超纯N2气源86相连。制作激光二极管10用的自由基源80可在市场上从英国的牛津应用有限分司购得(Model No MPD21)。在源的一端,分子束的出口隔板由热解氮化硼(PBN)制成,有9个直径为0.2mm的通孔。该源通过一个10″的延伸管安装在喷射小室的标准喷口上。用于制作激光二极管10的N2源86是研究纯级,源86的泄漏阀入口压强为5PSi(磅/平方英寸)。
MBE生长室54是依照cheng等题名为“用分子束外延生长P型和N型ZnSe”的文章所述方法操作的。见J.CrystalGrowth,95,512(1989)。使用Se6源79为Se源,分别生长样品器件10的N型接触层19和光导层14。
SPSLS量子阱层12用ALE和/或MEE方法生长在样品激光器10的光导层14上。使用这些熟知的技术,量子阱层12由一组重迭的Cd、Zn和Se的单晶厚度层(即单原子层)构成。量子阱层12的详细结构示于图4。在本实施例中,量子阱层12包括若干个被一对邻近的Zn和Se的单原子层所夹的邻近的Cd和Se的单原子层。这一结构一般用下式描述:
〔(CdSe)m(ZnSe)np这里m、n和p是整数。在图4所示的实施例中,m=1,n=2和p=1。在另一实施例中(未示出),m=1,n=1-5和p=1-5。量子阱层12中Cd的当量浓度由量子阱层中的CdSe层数与总层数(包括ZnSe和CdSe两者)之比来确定。量子阱层12的总厚度由生长的单原子层数乘以每一单原子层厚度给出。图6是样品器件10的剖面的高分辨率透射电镜显微照片分析,它含有一个SPSLS量子阱,其周期P=6,清晰地表示了量子阱的单原子层结构。
量子阱层12的Cd、Zn和Se单原子层的组分和厚度的完全控制精确地由ALE和/或MEE方法达到。通过运用这些技术,单原子层生长基本由Cd、Zn和Se喷射小室76、70、72的快门各自的开启和关闭的次序和定时来控制。生长图4所示量子阱层12所用的喷射小室喷咀的快门开关次序示于图5。在反应物标样的序列脉冲之间引入一个特定的延迟时间以允许过量的反应物再蒸发。
样品激光器10的SPSLS量子阱层,如图4所示,是在150℃下使用热解Se(Se2)源喷射小室76生长的。快门的次序以Se快门的打开开始,在淀积至少一个单原子层(约5秒)之后,Se源快门关闭。其后有短暂延时(约2秒)以允许过量的Se原子蒸发,随后Zn快门开启。至少淀积一个单原子层的Zn之后(约需4秒),Zn快门关闭。在关闭Zn快门和重开Se快门之间,有一短暂延时(约1秒)允许有时间使过量的Zn原子蒸发。借助轮流开关快门,生长过程不断继续下去,依次淀积重迭的Cd、Se和Zn原子层。Cd快门开启约4秒,在Se快门再开启之前,有约1秒的延时。起始于Se快门开启的次序如此重复以完成量子阱层12的生长。用于制作样品激光器10的量子阱层12的MBE生长室54的其它操作参数如下:
Cd束流等效压强:1.0×10-7*
Zn束流等效压强:1.0×10-7*
Se热解区温度:600℃*
Se体蒸发器温度:250℃*
*参数决定于特定的MBE系统配置和等离子体源。
包含SPSLS量子阱层12的样品激光器10在150℃下用上述方法生长,该器件显示了最高的量子效率。然而,在高达235℃下生长的SPSLS量子阱层构成的量子阱层实验晶片也显示了很好的特性。在高达300℃下生长的SPSLS量子阱的实验晶片上所观察到的特性也还是可以接受的。可以预言,在低于150℃时也可以生长具有所希望的特性的器件。
MBE生长室54按照Park等题为“在分子束外延期间用氮原子束掺杂的P型ZnSe”一文中所描述的方式操作,使用Se6源79生长P型光导层16(参看Appl,Phys,Lett,57,2127(1990))。
低阻P型ZnSe欧姆接触层20由低温下在MBE生长室内使用热解Se源72(即热解区82和蒸发器84)生长完成。而在同时,按照Park等上述文章披露的方法对接触层P型半导体材料掺杂。制作样品激光器10的接触层20的低温生长技术在cheng等题为“用热解Se源的ZnSe的分子束外延低温生长”一文有一般性的描述,见Appl.Phys,Lett,(Feb,1990)。在衬底18上具有层19、14、12和16的半导体基体被加热至低于250℃但又高到足以促使P型掺杂的ZnSe的结晶化生长的某温度,其受主浓度至少为1×1017cm-3,在约150℃的衬底温度下生长时,样品激光二极管10的欧姆接触层中,净受主浓度可达1×1018cm-3。然而,可以预期,具有合格特性的欧姆接触层20也可在另外的至少低至130℃的生长温度下完成。用于制作样品激光二极管10的欧姆接触层20的其它MBE生长室模作参数如下:
Zn束流等效压强:1.0×1017*
Se热解区温度:600℃*
Se体蒸发器温度:250℃*
生长速率:0.3~0.6μm/小时
表面重构:锌稳型
生长室内的氮压强:>3.5×10-7乇*
射频功率:150~250W*
*参数决定于特定的MBE系统配置
在淀积接触层20后,尚未完成的激光二极管10从MBE生长室54取出。电极24包括真空蒸发到接触层20上的Au,并用常规的光刻工艺和剥离(lift off)技术把Au层图形化为条状(典型值约为20μm宽)。然后将绝缘层22加在电极24和接触层暴露的表面上。为了绝缘层能在低温下应用,推荐使用聚酰亚胺光抗蚀剂。Ciba-Geigy公司生产的Pobimide 408用于制作样品激光二级管10。通过掩模等曝光和用制造者推荐的工艺方法显影来除去复盖电极24的约20μm宽的聚酰亚胺层22的条,只是显影后的固外除外。为了固化显影之后的聚酰亚胺,将器件暴露在经一掩模对准器来的紫外灯下强烈曝光至1J/cm2,然后放在平板上,在空气中125℃下烘烤3分钟。随后将Ti-Au层26蒸发在暴露的Au电极24和聚酰亚胺层22表面上以利于导线键合。用于MBE衬底粘接的In也用作衬底18上的电极30。将该器件相对的两端沿(110)面解理成为侧面镜。这些侧面被轮流镀覆以MgF2和ZnSe,形成总共4个重迭的四分之一长的叠层,以获得90%的反射率。样品器件的腔长约1000μm。然后将激光二极管10的P面向上用掺银树脂粘结在陶瓷样品架上。
本发明的激光二极管10具有显著的优点。生长量子阱层的ALE/MEE技术能更好的控制组分和量子阱层厚度,而且发光效率也优于用常规MBE方法生长的随机合金量子阱。这些特性由增强的室温光荧光和电荧光强度及较低的激光阈值电流得到证实。虽然这些样品器件的室温阈值电流密度(1030A/cm2)还不如有包层的器件那么低,但是它们具有结构简单,工作电压低(约13V)的优点。
上述实施例包含的光导层的晶格与衬底晶格匹配。预计,在光导层与衬底晶格匹配的器件中,寿命和性能都会得到改善。第一和第二光导层可包含GaAs衬底上的ZnS0.06Se0.94或者Cd0.48Zn0.57S,或者在In9.04Ga0.96As或In0.52Ga0.48P衬底上的ZnSe光导层。光导层也可由ZnSxSe1-x,CdxZn1-xS,ZnS1-xTex,Zn1-xCdxSe,Zn1-xMgxSySe1-y,或CdxZn1-x-yMgyS层组成,它们的晶格可与这样一些衬底匹配,如:GaAs,AlAs,GaP,AlxGa1-xAs,InxGa1-xAs,InxAl1-xAs,InxGa1-xP,InxAl1-xP,GaAs1-xPx,InxGa1-x-yAlyAs,InxGa1-x-yAlyP,ZnSe或Zn1-xCdxS等。
虽然本发明是以推荐的实施例为参考加以描述,本领域的普通技术人员会认识到,在形式上和细节上只要不偏离本发明的精神和范畴,是可以做出某些改变的。例如,可以期望这里披露的制作样品激光二极管的发明概念也适于制作具有ALE/MEE有源层和/或光导层的激光二板管,而材料可取自其它各种II-VI族半导体和合金。它们包括ZnSe,ZnTe,ZnSeTe,CdS,CdZnSeTe,MgZnSe,CdZnS,ZnSTe和CdZnTe等。

Claims (9)

1.一种生长激光二极管中量子阱的分子束外延(MBE)系统的操作方法,该系统有一个生长室和至少一种II族元素源及至少一种VI族元素源,用以在II-VI族化合物半导体电发光器件制作期间,在一衬底及任意初始生长层上生长量子阱有源层,该方法包括:
在MBE生成室中加热衬底和初始生长层,把衬底和初始生长层加热到小于或等于200℃;
向MBE生成室中交替注入II族和VI族元素;
生长至少包含两层II族和VI族元素的重叠单原子层的量子阱层。
2.根据权利要求1的方法,其中MBE系统包含Cd、Zn和Se元素源,并且:
元素注入步骤包括交替注入Cd、Zn和Se元素;
生长量子阱层的步骤包括生长短周期应变层超晶格(SPSLS)层中含有Cd、Zn和Se的重叠单原子层,在形式上用式[(CdSe)m(ZnSe)n]p描述,其中m、n和p为整数。
3.根据权利要求1的方法,其中,MBE系统包含Zn、Te和Se元素源,并且:
元素注入步骤包括交替注入Zn、Te和Se元素;
SPSLS量子阱层生长步骤包括生长重叠的Zn、Te和Se单原子层,形式上用[(ZnTe)m|p表述,其中,m、n和p为整数。
4.根据权利要求1的方法,其中,SPSLS量子阱层生长包括生长m=1至3、n=1至5和p=1至5的层。
5.根据权利要求1的方法,其中,SPSLS量子阱层的生长包括长长m=1、n=2、p=3的层。
6.根据权利要求1的方法,其中,衬底和器件初始生长层加热包括加热衬底和初始生长层至小于或等于约190℃的温度。
7.根据权利要求1的方法,其中,衬底和器件初始生长层加热包括加热衬底和初始生长层至小于或等于约170℃的温度。
8.根据权利要求1的方法,其中,衬底和器件初始生长层加热包括加热衬底和初始生长层至小于或等于约150℃的温度。
9.按照权利要求1至8的方法制造的II-VI族激光二板管。
CN93105939A 1992-05-22 1993-05-21 生长激光二极管中量子阱的分子束外延系统的操作方法 Expired - Fee Related CN1034455C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US88754192A 1992-05-22 1992-05-22
US07/887,541 1992-05-22

Publications (2)

Publication Number Publication Date
CN1081027A CN1081027A (zh) 1994-01-19
CN1034455C true CN1034455C (zh) 1997-04-02

Family

ID=25391375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN93105939A Expired - Fee Related CN1034455C (zh) 1992-05-22 1993-05-21 生长激光二极管中量子阱的分子束外延系统的操作方法

Country Status (10)

Country Link
US (2) US5395791A (zh)
EP (1) EP0641493B1 (zh)
JP (1) JP3129736B2 (zh)
KR (1) KR100279037B1 (zh)
CN (1) CN1034455C (zh)
AU (1) AU4378893A (zh)
DE (1) DE69328929T2 (zh)
RU (1) RU94046132A (zh)
SG (1) SG44654A1 (zh)
WO (1) WO1993024979A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100431101C (zh) * 2007-05-11 2008-11-05 北京交通大学 光辅助MBE系统及生长ZnO单晶薄膜的方法

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404027A (en) * 1991-05-15 1995-04-04 Minnesota Mining & Manufacturing Compay Buried ridge II-VI laser diode
US5567646A (en) * 1992-12-28 1996-10-22 Philips Electronics North America Corporation Method of making a stripe-geometry II/VI semiconductor gain-guided injection laser structure using ion implantation
JPH0878785A (ja) * 1994-08-31 1996-03-22 Sharp Corp 半導体レーザ素子およびその製造方法
FI100409B (fi) 1994-11-28 1997-11-28 Asm Int Menetelmä ja laitteisto ohutkalvojen valmistamiseksi
US5674779A (en) * 1995-08-16 1997-10-07 Philips Electronics North America Corporation Method for fabricating a ridge-shaped laser in a channel
US6342277B1 (en) 1996-08-16 2002-01-29 Licensee For Microelectronics: Asm America, Inc. Sequential chemical vapor deposition
US5834330A (en) * 1996-10-07 1998-11-10 Minnesota Mining And Manufacturing Company Selective etch method for II-VI semiconductors
US6090637A (en) * 1997-02-13 2000-07-18 3M Innovative Properties Company Fabrication of II-VI semiconductor device with BeTe buffer layer
US5767534A (en) * 1997-02-24 1998-06-16 Minnesota Mining And Manufacturing Company Passivation capping layer for ohmic contact in II-VI semiconductor light transducing device
US5963573A (en) * 1997-08-25 1999-10-05 3M Innovative Properties Company Light absorbing layer for II-VI semiconductor light emitting devices
JPH11135834A (ja) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd 発光ダイオード装置及びその製造方法
US6322901B1 (en) * 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
US6607829B1 (en) 1997-11-13 2003-08-19 Massachusetts Institute Of Technology Tellurium-containing nanocrystalline materials
US6207392B1 (en) 1997-11-25 2001-03-27 The Regents Of The University Of California Semiconductor nanocrystal probes for biological applications and process for making and using such probes
AUPP147398A0 (en) * 1998-01-23 1998-02-19 Defence Science And Technology Organisation Dual non-parallel electronic field electro-optic effect device
US6617583B1 (en) 1998-09-18 2003-09-09 Massachusetts Institute Of Technology Inventory control
US6251303B1 (en) 1998-09-18 2001-06-26 Massachusetts Institute Of Technology Water-soluble fluorescent nanocrystals
US6306610B1 (en) 1998-09-18 2001-10-23 Massachusetts Institute Of Technology Biological applications of quantum dots
JP2003531477A (ja) 2000-03-14 2003-10-21 マサチューセッツ インスティテュート オブ テクノロジー 光学増幅器およびレーザー
EP2293322A1 (en) * 2000-06-08 2011-03-09 Genitech, Inc. Method for forming a metal nitride layer
US6620723B1 (en) 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US7732327B2 (en) 2000-06-28 2010-06-08 Applied Materials, Inc. Vapor deposition of tungsten materials
US7405158B2 (en) 2000-06-28 2008-07-29 Applied Materials, Inc. Methods for depositing tungsten layers employing atomic layer deposition techniques
US6551929B1 (en) * 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
US7964505B2 (en) * 2005-01-19 2011-06-21 Applied Materials, Inc. Atomic layer deposition of tungsten materials
US7101795B1 (en) * 2000-06-28 2006-09-05 Applied Materials, Inc. Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer
US7868015B2 (en) * 2000-08-10 2011-01-11 Cold Spring Harbor Laboratory Phosphodiesesterase 4 inhibitors for the treatment of a cognitive deficit
US6765178B2 (en) 2000-12-29 2004-07-20 Applied Materials, Inc. Chamber for uniform substrate heating
US6825447B2 (en) * 2000-12-29 2004-11-30 Applied Materials, Inc. Apparatus and method for uniform substrate heating and contaminate collection
US6998579B2 (en) 2000-12-29 2006-02-14 Applied Materials, Inc. Chamber for uniform substrate heating
US20020083897A1 (en) * 2000-12-29 2002-07-04 Applied Materials, Inc. Full glass substrate deposition in plasma enhanced chemical vapor deposition
US20020127336A1 (en) * 2001-01-16 2002-09-12 Applied Materials, Inc. Method for growing thin films by catalytic enhancement
US6811814B2 (en) 2001-01-16 2004-11-02 Applied Materials, Inc. Method for growing thin films by catalytic enhancement
US6951804B2 (en) * 2001-02-02 2005-10-04 Applied Materials, Inc. Formation of a tantalum-nitride layer
US20020110180A1 (en) * 2001-02-09 2002-08-15 Barney Alfred A. Temperature-sensing composition
US6878206B2 (en) 2001-07-16 2005-04-12 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US6660126B2 (en) 2001-03-02 2003-12-09 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US6734020B2 (en) 2001-03-07 2004-05-11 Applied Materials, Inc. Valve control system for atomic layer deposition chamber
US6849545B2 (en) 2001-06-20 2005-02-01 Applied Materials, Inc. System and method to form a composite film stack utilizing sequential deposition techniques
US20070009658A1 (en) * 2001-07-13 2007-01-11 Yoo Jong H Pulse nucleation enhanced nucleation technique for improved step coverage and better gap fill for WCVD process
US7211144B2 (en) * 2001-07-13 2007-05-01 Applied Materials, Inc. Pulsed nucleation deposition of tungsten layers
US7085616B2 (en) 2001-07-27 2006-08-01 Applied Materials, Inc. Atomic layer deposition apparatus
JP5236847B2 (ja) * 2001-08-10 2013-07-17 克巳 岸野 Ii−vi族化合物半導体結晶および光電変換機能素子
AU2002326920B2 (en) * 2001-09-17 2007-09-13 Massachusetts Institute Of Technology Semiconductor nanocrystal composite
US20030059538A1 (en) * 2001-09-26 2003-03-27 Applied Materials, Inc. Integration of barrier layer and seed layer
US7049226B2 (en) 2001-09-26 2006-05-23 Applied Materials, Inc. Integration of ALD tantalum nitride for copper metallization
US6936906B2 (en) 2001-09-26 2005-08-30 Applied Materials, Inc. Integration of barrier layer and seed layer
US6916398B2 (en) 2001-10-26 2005-07-12 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
KR100760291B1 (ko) * 2001-11-08 2007-09-19 에이에스엠지니텍코리아 주식회사 박막 형성 방법
US7150910B2 (en) * 2001-11-16 2006-12-19 Massachusetts Institute Of Technology Nanocrystal structures
US6729824B2 (en) 2001-12-14 2004-05-04 Applied Materials, Inc. Dual robot processing system
US6911391B2 (en) * 2002-01-26 2005-06-28 Applied Materials, Inc. Integration of titanium and titanium nitride layers
US6998014B2 (en) 2002-01-26 2006-02-14 Applied Materials, Inc. Apparatus and method for plasma assisted deposition
US6827978B2 (en) * 2002-02-11 2004-12-07 Applied Materials, Inc. Deposition of tungsten films
US6833161B2 (en) * 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
US7439191B2 (en) * 2002-04-05 2008-10-21 Applied Materials, Inc. Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications
US6720027B2 (en) 2002-04-08 2004-04-13 Applied Materials, Inc. Cyclical deposition of a variable content titanium silicon nitride layer
US6846516B2 (en) * 2002-04-08 2005-01-25 Applied Materials, Inc. Multiple precursor cyclical deposition system
US20030194825A1 (en) * 2002-04-10 2003-10-16 Kam Law Deposition of gate metallization for active matrix liquid crystal display (AMLCD) applications
US6869838B2 (en) * 2002-04-09 2005-03-22 Applied Materials, Inc. Deposition of passivation layers for active matrix liquid crystal display (AMLCD) applications
US6875271B2 (en) 2002-04-09 2005-04-05 Applied Materials, Inc. Simultaneous cyclical deposition in different processing regions
US7279432B2 (en) 2002-04-16 2007-10-09 Applied Materials, Inc. System and method for forming an integrated barrier layer
US7319709B2 (en) 2002-07-23 2008-01-15 Massachusetts Institute Of Technology Creating photon atoms
JP4931348B2 (ja) * 2002-08-13 2012-05-16 マサチューセッツ インスティテュート オブ テクノロジー 半導体ナノクリスタルヘテロ構造体
US20040065255A1 (en) * 2002-10-02 2004-04-08 Applied Materials, Inc. Cyclical layer deposition system
US6821563B2 (en) * 2002-10-02 2004-11-23 Applied Materials, Inc. Gas distribution system for cyclical layer deposition
US7262133B2 (en) 2003-01-07 2007-08-28 Applied Materials, Inc. Enhancement of copper line reliability using thin ALD tan film to cap the copper line
US7917298B1 (en) 2003-04-17 2011-03-29 Nanosys, Inc. Nanocrystal taggants
JP2007523994A (ja) * 2003-06-18 2007-08-23 アプライド マテリアルズ インコーポレイテッド バリヤ物質の原子層堆積
US7229497B2 (en) * 2003-08-26 2007-06-12 Massachusetts Institute Of Technology Method of preparing nanocrystals
CN1864253A (zh) * 2003-10-06 2006-11-15 马萨诸塞州技术研究院 非易失性存储装置
US7229690B2 (en) * 2004-07-26 2007-06-12 Massachusetts Institute Of Technology Microspheres including nanoparticles
US7316967B2 (en) * 2004-09-24 2008-01-08 Massachusetts Institute Of Technology Flow method and reactor for manufacturing noncrystals
US8134175B2 (en) 2005-01-11 2012-03-13 Massachusetts Institute Of Technology Nanocrystals including III-V semiconductors
JP4920221B2 (ja) * 2005-09-05 2012-04-18 学校法人上智学院 InP基板を有する光半導体装置
US7394094B2 (en) * 2005-12-29 2008-07-01 Massachusetts Institute Of Technology Semiconductor nanocrystal heterostructures
US8821637B2 (en) * 2007-01-29 2014-09-02 Applied Materials, Inc. Temperature controlled lid assembly for tungsten nitride deposition
US20090035946A1 (en) * 2007-07-31 2009-02-05 Asm International N.V. In situ deposition of different metal-containing films using cyclopentadienyl metal precursors
US8383525B2 (en) * 2008-04-25 2013-02-26 Asm America, Inc. Plasma-enhanced deposition process for forming a metal oxide thin film and related structures
KR101436564B1 (ko) * 2008-05-07 2014-09-02 한국에이에스엠지니텍 주식회사 비정질 실리콘 박막 형성 방법
CN101712456B (zh) * 2009-11-13 2012-09-05 山东大学 消除ZnSe/BeTeⅡ量子阱中内秉电场的方法
CN104073876B (zh) * 2014-06-05 2017-01-04 中国科学院上海微系统与信息技术研究所 一种提高异质材料界面质量的分子束外延生长方法
CN104746143A (zh) * 2015-03-05 2015-07-01 中国电子科技集团公司第十一研究所 一种硅基碲化锌缓冲层分子束外延工艺方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4261771A (en) * 1979-10-31 1981-04-14 Bell Telephone Laboratories, Incorporated Method of fabricating periodic monolayer semiconductor structures by molecular beam epitaxy
JP2544378B2 (ja) * 1987-03-25 1996-10-16 株式会社日立製作所 光半導体装置
US5068867A (en) * 1989-11-20 1991-11-26 Hughes Aircraft Company Coupled quantum well strained superlattice structure and optically bistable semiconductor laser incorporating the same
US5045897A (en) * 1990-03-14 1991-09-03 Santa Barbara Research Center Quaternary II-VI materials for photonics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100431101C (zh) * 2007-05-11 2008-11-05 北京交通大学 光辅助MBE系统及生长ZnO单晶薄膜的方法

Also Published As

Publication number Publication date
WO1993024979A1 (en) 1993-12-09
JP3129736B2 (ja) 2001-01-31
US6057559A (en) 2000-05-02
EP0641493B1 (en) 2000-06-28
US5395791A (en) 1995-03-07
SG44654A1 (en) 1997-12-19
KR100279037B1 (ko) 2001-02-01
DE69328929T2 (de) 2000-11-02
RU94046132A (ru) 1996-09-27
JPH07507422A (ja) 1995-08-10
DE69328929D1 (de) 2000-08-03
CN1081027A (zh) 1994-01-19
EP0641493A1 (en) 1995-03-08
AU4378893A (en) 1993-12-30

Similar Documents

Publication Publication Date Title
CN1034455C (zh) 生长激光二极管中量子阱的分子束外延系统的操作方法
CN1034454C (zh) 无包层单量子阱ii-vi族激光二极管
JP3242925B2 (ja) 埋め込み山型ii−vi族化合物半導体レーザダイオードの作製方法
EP0863555A2 (en) Optical semiconductor element and fabricating method therefor
RU2127478C1 (ru) Сине-зеленый лазерный диод
KR100329023B1 (ko) 피(p)형II-VI족반도체의경사형조성의오믹접촉
US5213998A (en) Method for making an ohmic contact for p-type group II-VI compound semiconductors
CN1218409C (zh) Ⅲ-ⅴ/ⅱ-ⅵ族半导体界面的制备方法
US5818859A (en) Be-containing II-VI blue-green laser diodes
CN1111840A (zh) 蓝-绿激光二极管的制造方法
JP2676967B2 (ja) ヘテロ接合素子及びその製造方法
JPH11135883A (ja) 半導体発光素子およびその製造方法
RU2151457C1 (ru) Способ изготовления омического контактного слоя и полупроводниковое устройство ii-vi групп
Swenberg Development of wide-bandgap II-VI semiconductor light emitting device technology based on the graded injector design
JPH1022587A (ja) 半導体発光素子の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee