CN103443512A - 轮式装载机及轮式装载机的控制方法 - Google Patents

轮式装载机及轮式装载机的控制方法 Download PDF

Info

Publication number
CN103443512A
CN103443512A CN2012800013640A CN201280001364A CN103443512A CN 103443512 A CN103443512 A CN 103443512A CN 2012800013640 A CN2012800013640 A CN 2012800013640A CN 201280001364 A CN201280001364 A CN 201280001364A CN 103443512 A CN103443512 A CN 103443512A
Authority
CN
China
Prior art keywords
tractive force
level
drawbar pull
maximum drawbar
wheel loader
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012800013640A
Other languages
English (en)
Other versions
CN103443512B (zh
Inventor
白尾敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Publication of CN103443512A publication Critical patent/CN103443512A/zh
Application granted granted Critical
Publication of CN103443512B publication Critical patent/CN103443512B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18172Preventing, or responsive to skidding of wheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2253Controlling the travelling speed of vehicles, e.g. adjusting travelling speed according to implement loads, control of hydrostatic transmission
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2289Closed circuit
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/421Motor capacity control by electro-hydraulic control means, e.g. using solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/46Automatic regulation in accordance with output requirements
    • F16H61/472Automatic regulation in accordance with output requirements for achieving a target output torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/30Auxiliary equipments
    • B60W2510/305Power absorbed by auxiliaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/105Output torque

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

本发明涉及一种轮式装载机及轮式装载机的控制方法,该轮式装载机的牵引力控制部是在牵引力控制为打开状态时,使最大牵引力与牵引力控制为关闭状态下的最大牵引力相比降低。在牵引力控制为打开状态下满足判定条件时,牵引力控制部使最大牵引力增大。判定条件包括作业内容是挖掘、油门操作部件的操作量是规定的操作阈值以上、和动臂角度是规定的角度阈值以上。

Description

轮式装载机及轮式装载机的控制方法
技术领域
本发明涉及轮式装载机及轮式装载机的控制方法。
背景技术
在轮式装载机中有时搭载有所谓HST(Hydro Static Transmission)。HST式的轮式装载机是通过发动机驱动液压泵,并通过从液压泵排出的工作油驱动行驶用液压马达。由此,轮式装载机行驶。在这样的HST式的轮式装载机中,能够通过控制发动机转速、液压泵的容量、行驶用液压马达的容量等来控制车速及牵引力(专利文献1参照)。
在上述轮式装载机中,操作者能够选择执行牵引力控制。在牵引力控制中,例如,将行驶用液压马达的容量限制成比最大容量小的上限容量。由此,最大牵引力减小。在因牵引力过大而产生打滑或失速等现象时,操作者选择执行牵引力控制。由此,最大牵引力减小,抑制打滑或失速等现象的发生。
【现有技术文献】
【专利文献1】日本特开2008-144942号公报
某种轮式装载机构成为操作者能够选择牵引力控制中的最大牵引力的水平。操作者预先选择牵引力控制中的最大牵引力的水平。操作者操作牵引力控制的执行开关时,最大牵引力被限制成所选择的水平。由此,操作者能够根据例如路面的状态,选择适当的牵引力的水平。
但是,挖掘作业时所需的牵引力不恒定,根据作业的状况,所需的牵引力不同。由此,操作者不容易预先选择为不发生失速和打滑等现象,哪种水平的最大牵引力是最佳的。因此,在上述轮式装载机中,在挖掘作业时,每当作业状况变化,操作者就必须选择最大牵引力的水平。
例如,在轮式装载机进行的作业中,有所谓的铲起作业。铲起作业是指通过挖掘将牧草等对象物铲入铲斗并边前进边堆积的作业。轮式装载机进行铲起作业时,需要大的牵引力。但是,进行铲起作业时,若执行牵引力控制,则牵引力不足,由此,不能有效率地进行作业。另外,在铲起作业时为获得充分的牵引力,操作者需要进行将牵引力控制过程中的最大牵引力变更成更大的水平的操作、或者解除牵引力控制的操作。这样的操作对于操作者来说是繁琐的,成为使轮式装载机的操作性降低的原因。
发明内容
本发明的课题是提供一种轮式装载机及轮式装载机的控制方法,在铲起作业时能够得到充分的牵引力并且能够抑制操作性的降低。
本发明的第一方式的轮式装载机具有工作装置、发动机、液压泵、行驶用液压马达、油门操作部件、牵引力控制操作部、作业内容判定部、油门操作量判定部、动臂角度判定部和牵引力控制部。工作装置具有动臂和铲斗。液压泵被发动机驱动。行驶用液压马达由从液压泵排出的工作油驱动。操作油门操作部件来设定发动机的目标转速。操作牵引力控制操作部来切换使最大牵引力降低的牵引力控制的打开、关闭。作业内容判定部判定作业内容是否是挖掘。油门操作量判定部判定油门操作部件的操作量是否是规定的操作阈值以上。动臂角度判定部判定动臂角度是否是规定的角度阈值以上。动臂角度是动臂的相对于水平方向的角度。在牵引力控制为打开状态时,牵引力控制部使最大牵引力与牵引力控制为关闭状态下的最大牵引力相比降低。在牵引力控制为打开状态下满足判定条件时,牵引力控制部使最大牵引力增大。判定条件包括作业内容是挖掘、油门操作部件的操作量是规定的操作阈值以上、和动臂角度是规定的角度阈值以上。
本发明的第二方式的轮式装载机是在第一方式的轮式装载机中,牵引力控制部在牵引力控制中将牵引力的控制水平设定成标准水平。标准水平的最大牵引力比牵引力控制为关闭状态下的最大牵引力小。在牵引力控制为打开状态下满足判定条件时,牵引力控制部将最大牵引力的控制水平变更成高水平。高水平的最大牵引力比标准水平的最大牵引力大。
本发明的第三方式的轮式装载机是在第二方式的轮式装载机中,高水平的最大牵引力比牵引力控制为关闭状态下的最大牵引力小。
本发明的第四方式的轮式装载机是在第二方式的轮式装载机中,牵引力控制操作部具有:牵引力水平变更部,用于变更标准水平的最大牵引力的大小;牵引力控制操作部件,用于指示标准水平下的牵引力控制的执行。
本发明的第五方式的轮式装载机是在第四方式的轮式装载机中,高水平的最大牵引力与通过牵引力水平变更部被变更的标准水平的最大牵引力的大小无关,是恒定的。
本发明的第六方式的轮式装载机是在第五方式的轮式装载机中,牵引力控制是关闭状态的情况下,牵引力在车速为比零大的第一车速时成为最大牵引力。车速为零时的高水平下的牵引力与车速为零时的牵引力控制为关闭状态下的牵引力一致。
本发明的第七方式的轮式装载机是在第二方式的轮式装载机中,在牵引力控制为打开状态下不满足判定条件时,牵引力控制部使牵引力的控制水平返回标准水平。
本发明的第八方式的轮式装载机是在第一方式的轮式装载机中,牵引力控制操作部具有牵引力控制选择部,其用于从多个水平选择牵引力的控制水平,并且指示牵引力控制的执行。在牵引力控制为打开状态下满足判定条件时,牵引力控制部使最大牵引力与通过牵引力控制选择部被选择的水平相比增大。
本发明的第九方式的轮式装载机是在第八方式的轮式装载机中,在牵引力控制为打开状态下满足判定条件时,牵引力控制部使最大牵引力增大到比通过牵引力控制选择部被选择的水平高一级的水平。
本发明的第十方式的轮式装载机是在第八方式的轮式装载机中,在牵引力控制为打开状态下不满足判定条件时,牵引力控制部使牵引力的控制水平返回原来的水平。
本发明的第十一方式的轮式装载机是在第一方式的轮式装载机中,在作业内容不是挖掘时,牵引力控制部不进行上述最大牵引力的增大。
本发明的第十二方式的轮式装载机是在第一方式的轮式装载机中,在油门操作部件的操作量不是规定的操作阈值以上时,牵引力控制部不进行上述最大牵引力的增大。
本发明的第十三方式的轮式装载机是在第一方式的轮式装载机中,在动臂角度不是规定的角度阈值以上时,牵引力控制部不进行上述最大牵引力的增大。
本发明的第十四方式的轮式装载机是在第一方式的轮式装载机中,作业内容判定部基于车辆的行驶状态和工作装置的工作状态,判定作业内容是否是挖掘。
本发明的第十五方式的轮式装载机是在第一方式的轮式装载机中,牵引力控制部通过控制行驶用液压马达的倾转角来控制行驶用液压马达的容量,并通过控制行驶用液压马达的容量的上限容量来进行最大牵引力的控制。
本发明的第十六方式的轮式装载机是在第一至第十五方式中的任一项的轮式装载机中,将最大牵引力相对于牵引力控制为关闭状态下的最大牵引力之比作为牵引力比率,在牵引力控制为打开状态下,牵引力控制部根据油门操作部件的操作量或发动机转速设定牵引力比率。
本发明的第十七方式的轮式装载机是在第十六方式的轮式装载机中,在牵引力控制为打开状态下满足判定条件时,牵引力控制部以规定的比例使牵引力比率增大,由此使最大牵引力的控制水平增大。
本发明的第十八方式的控制方法是轮式装载机的控制方法。轮式装载机具有工作装置、发动机、液压泵、行驶用液压马达、油门操作部件和牵引力控制操作部。工作装置具有动臂和铲斗。液压泵被发动机驱动。行驶用液压马达由从液压泵排出的工作油驱动。操作油门操作部件来设定发动机的目标转速。操作牵引力控制操作部来切换使最大牵引力降低的牵引力控制的打开、关闭。本方式的控制方法具有以下步骤。在第一步骤中,判定作业内容是否是挖掘。在第二步骤中,判定动臂角度是否是规定的角度阈值以上。在第三步骤中,判定油门操作部件的操作量是否是规定的操作阈值以上。动臂角度是动臂的相对于水平方向的角度。在第四步骤中,在牵引力控制为打开状态时,使最大牵引力与牵引力控制为关闭状态下的最大牵引力相比降低。在第五步骤中,在牵引力控制为打开状态下满足判定条件时,使最大牵引力增大。判定条件包括作业内容是挖掘、油门操作部件的操作量是规定的操作阈值以上、和动臂角度是规定的角度阈值以上。
发明的效果
在本发明的第一方式的轮式装载机中,在牵引力控制为打开状态下满足判定条件时,最大牵引力增大。判定条件包括作业内容是挖掘、油门操作部件的操作量是规定的操作阈值以上、和动臂角度是规定的角度阈值以上。由此,满足判定条件是指轮式装载机进行铲起作业。在本方式的轮式装载机中,在这样的状态下,最大牵引力自动地增大,由此,在铲起作业时能够得到充分的牵引力。另外,由于操作者不需要进行使最大牵引力增大的操作,所以能够抑制操作性的降低。
在本发明的第二方式的轮式装载机中,通过牵引力控制,将最大牵引力降低到标准水平的最大牵引力。而且,满足判定条件时,最大牵引力从标准水平的最大牵引力自动地增大到高水平的最大牵引力。由此,在铲起作业时能够得到充分的牵引力,并且能够抑制操作性的降低。
在本发明的第三方式的轮式装载机中,高水平的最大牵引力比牵引力控制为关闭状态下的最大牵引力小。因此,满足判定条件时,能够防止最大牵引力过度增大。
在本发明的第四方式的轮式装载机中,能够通过牵引力水平变更部变更标准水平的最大牵引力的大小。而且,满足判定条件时,最大牵引力自动地增大到比标准水平的最大牵引力大的值。由此,操作者能够根据作业状况更精细地设定所需的最大牵引力。
在本发明的第五方式的轮式装载机中,即使通过牵引力水平变更部将标准水平的最大牵引力设定成小的值,满足判定条件时,也使最大牵引力大幅度增大。由此,轮式装载机在铲起作业时能够得到充分的牵引力。
在本发明的第六方式的轮式装载机中,满足判定条件时,能够得到大的牵引力。
在本发明的第七方式的轮式装载机中,在牵引力控制为打开状态下不满足判定条件时,最大牵引力返回标准水平的最大牵引力。由此,能够得到与作业状况相应的适当的最大牵引力。
在本发明的第八方式的轮式装载机中,操作者能够从多个水平选择牵引力的控制水平并直接执行。另外,满足判定条件时,由于最大牵引力与操作者所选择的水平相比增大,所以轮式装载机在铲起作业时能够得到充分的牵引力。
在本发明的第九方式的轮式装载机中,满足判定条件时,最大牵引力增大到比操作者所选择的水平高1级的水平。即,被增大的最大牵引力是操作者能够自由选择的水平,从而对于操作者来说,操作不适感少。由此,能够抑制操作性的降低。
在本发明的第十方式的轮式装载机中,在牵引力控制为打开状态下不满足判定条件时,最大牵引力返回原来的水平的最大牵引力。由此,能够得到与作业状况相应的适当的最大牵引力。
在本发明的第十一方式的轮式装载机中,在作业内容不是挖掘时,不需要牵引力的增大,从而维持标准的牵引力控制时的最大牵引力。或者,最大牵引力与标准的牵引力控制时的最大牵引力相比已经增大的情况下,使最大牵引力返回标准的牵引力控制时的最大牵引力即可。
在本发明的第十二方式的轮式装载机中,在油门操作部件的操作量不是规定的操作阈值以上时,不需要牵引力的增大,从而维持标准的牵引力控制时的最大牵引力。或者,在最大牵引力与标准的牵引力控制时的最大牵引力相比已经增大的情况下,使最大牵引力维持现状即可。
在本发明的第十三方式的轮式装载机中,在动臂角度不是规定的角度阈值以上时,不需要牵引力的增大,从而维持标准的牵引力控制时的最大牵引力。或者,在最大牵引力与标准的牵引力控制时的最大牵引力相比已经增大的情况下,使最大牵引力返回标准的牵引力控制时的最大牵引力即可。此外,角度阈值也可以在最大牵引力的增大时和减少时分别具有与不同的值。
在本发明的第十四方式的轮式装载机中,能够基于车辆的行驶状态和工作装置的工作状态,高精度地判定作业内容是否是挖掘。
在本发明的第十五方式的轮式装载机中,能够通过控制行驶用液压马达的上限容量来控制最大牵引力。
在本发明的第十六方式的轮式装载机中,牵引力控制部通过变更牵引力比率来变更牵引力控制为打开状态下的最大牵引力。
在本发明的第十七方式的轮式装载机中,牵引力控制部通过以规定的比例使牵引力比率增大,而使最大牵引力的控制水平增大。
在本发明的第十八方式的轮式装载机的控制方法中,在牵引力控制为打开状态下满足判定条件时,最大牵引力增大。判定条件包括作业内容是挖掘、油门操作部件的操作量是规定的操作阈值以上、和动臂角度是规定的角度阈值以上。由此,满足判定条件是指轮式装载机进行铲起作业。在本方式的轮式装载机中,在这样的状态下使最大牵引力自动地增大,由此在铲起作业时能够得到充分的牵引力。另外,由于操作者不需要进行使最大牵引力增大的操作,所以能够抑制操作性的降低。
附图说明
图1是本发明的一实施方式的轮式装载机的侧视图。
图2是表示搭载在轮式装载机上的液压驱动机构的结构的框图。
图3是表示发动机的输出扭矩线的图。
图4是表示泵容量-驱动回路压特性的一例的图。
图5是表示马达容量-驱动回路压特性的一例的图。
图6是表示轮式装载机的车速-牵引力线图的一例的图。
图7是表示牵引力比率信息的一例的图。
图8是表示车身控制器的结构的框图。
图9是表示在牵引力控制过程中使最大牵引力自动地增大的判定处理的流程图。
图10是用于表示动臂角度的定义的工作装置的侧视图。
图11是表示使马达容量变化时的马达容量的指令值的变更速度的图。
图12是表示用于判定作业内容是否是挖掘的处理的流程图。
图13是表示用于判定动臂压降低标识是否是打开的处理的流程图。
图14是表示其他实施方式的搭载在轮式装载机上的液压驱动机构的结构的框图。
图15是表示其他实施方式的轮式装载机的车速-牵引力线图的一例的图。
具体实施方式
使用附图说明本发明的一实施方式的轮式装载机50。图1是轮式装载机50的侧视图。轮式装载机50具有车身51、工作装置52、多个车轮55、驾驶室56。工作装置52被安装在车身51的前部。工作装置52具有动臂53、铲斗54、升降液压缸19、铲斗液压缸26。动臂53是用于举起铲斗54的部件。动臂53由升降液压缸19驱动。铲斗54被安装在动臂53的前端。铲斗54通过铲斗液压缸26被倾倒及倾斜。驾驶室56被载置在车身51上。
图2是表示搭载在轮式装载机50上的液压驱动机构30的结构的框图。液压驱动机构30主要具有发动机1、第一液压泵4、第二液压泵2、供给泵3、行驶用液压马达10、发动机控制器12a、车身控制器12、驱动液压回路20。在液压驱动机构30中,第一液压泵4由发动机1驱动,由此排出工作油。行驶用液压马达10通过从第一液压泵4排出的工作油被驱动。而且,行驶用液压马达10旋转驱动上述车轮55旋转驱动,由此,轮式装载机50行驶。即,在液压驱动机构30中,采用所谓的一泵一马达的HST系统。
发动机1是柴油机式发动机,发动机1产生的输出扭矩被传递到第二液压泵2、供给泵3、第一液压泵4等。在液压驱动机构30中设置有用于检测发动机1的实际转速的发动机转速传感器1a。另外,在发动机1中连接有燃料喷射装置1b。后述的发动机控制器12a控制燃料喷射装置1b,由此控制发动机1的输出扭矩(以下称为“发动机扭矩”)和转速。
第一液压泵4由发动机1驱动,由此排出工作油。第一液压泵4是可变容量型的液压泵。从第一液压泵4排出的工作油通过驱动液压回路20向行驶用液压马达10输送。具体来说,驱动液压回路20具有第一驱动回路20a和第二驱动回路20b。工作油从第一液压泵4经由第一驱动回路20a被供给到行驶用液压马达10,由此,行驶用液压马达10被向一方向(例如,前进方向)驱动。工作油从第一液压泵4经由第二驱动回路20b被供给到行驶用液压马达10,由此,行驶用液压马达10被向另一方向(例如,后退方向)驱动。
在驱动液压回路20中设置有驱动回路压检测部17。驱动回路压检测部17检测经由第一驱动回路20a或第二驱动回路20b向行驶用液压马达10被供给的工作油的压力(以下称为“驱动回路压”)。具体来说,驱动回路压检测部17具有第一驱动回路压传感器17a和第二驱动回路压传感器17b。第一驱动回路压传感器17a检测第一驱动回路20a的液压。第二驱动回路压传感器17b检测第二驱动回路20b的液压。第一驱动回路压传感器17a和第二驱动回路压传感器17b将检测信号发送到车身控制器12。另外,在第一液压泵4上连接有用于控制第一液压泵4的排出方向的FR切换部5和泵容量控制液压缸6。
FR切换部5是基于来自车身控制器12的控制信号来切换工作油向泵容量控制液压缸6的供给方向的电磁控制阀。FR切换部5切换工作油向泵容量控制液压缸6的供给方向,由此,切换第一液压泵4的排出方向。具体来说,FR切换部5将第一液压泵4的排出方向切换成向第一驱动回路20a的排出和向第二驱动回路20b的排出。由此,行驶用液压马达10的驱动方向变更。泵容量控制液压缸6通过经由泵先导回路32被供给工作油而被驱动,并变更第一液压泵4的倾转角。
在泵先导回路32上配置有泵容量控制部7。泵容量控制部7将泵容量控制液压缸6连接到泵先导回路32和工作油箱中的任意一方。泵容量控制部7基于来自车身控制器12的控制信号进行控制的电磁控制阀。泵容量控制部7控制泵容量控制液压缸6内的工作油的压力,由此调整第一液压泵4的倾转角。
泵先导回路32经由截止阀47与供给回路33和工作油箱连接。截止阀47的先导端口经由梭阀46与第一驱动回路20a和第二驱动回路20b连接。梭阀46将第一驱动回路20a的液压和第二驱动回路20b的液压中的大的一方导入截止阀47的先导端口。即,驱动回路压被施加在截止阀47的先导端口。在驱动回路压比规定的截止压低时,截止阀47使供给回路33和泵先导回路32连通。由此,工作油从供给回路33被供给到泵先导回路32。在驱动回路压成为规定的截止压以上时,截止阀47使泵先导回路32与工作油箱连通,而使泵先导回路32的工作油向工作油箱逃逸。由此,通过泵先导回路32的液压降低,第一液压泵4的容量减小,驱动回路压的上升被抑制。
供给泵3是被发动机1驱动且用于将工作油向驱动液压回路20供给的泵。供给泵3与供给回路33连接。供给泵3经由供给回路33将工作油供给到泵先导回路32。供给回路33经由第一单向阀41与第一驱动回路20a连接。第一单向阀41允许工作油从供给回路33向第一驱动回路20a流动,但限制工作油从第一驱动回路20a向供给回路33流动。另外,供给回路33经由第二单向阀42与第二驱动回路20b连接。第二单向阀42允许工作油从供给回路33向第二驱动回路20b流动,但限制工作油从第二驱动回路20b向供给回路33流动。另外,供给回路33经由第一溢流阀43与第一驱动回路20a连接。第一溢流阀43在第一驱动回路20a的液压变得比规定的压力大时被打开。供给回路33经由第二溢流阀44与第二驱动回路20b连接。第二溢流阀44在第二驱动回路20b的液压变得比规定的压力大时被打开。另外,供给回路33经由低压溢流阀45与工作油箱连接。低压溢流阀45是在供给回路33的液压变得比规定的溢流压大时被打开。由此,调整为驱动回路压不超过规定的溢流压。另外,低压溢流阀45的规定的溢流压与第一溢流阀43的溢流压及第二溢流阀44的溢流压相比,相当低。因此,驱动回路压变得比供给回路33的液压低时,工作油经由第一单向阀41或第二单向阀42从供给回路33向驱动液压回路20被供给。
第二液压泵2被发动机1驱动。从第二液压泵2排出的工作油经由工作装置用液压回路31被供给到升降液压缸19。由此,工作装置52被驱动。第二液压泵2的排出压被排出压传感器39检测。排出压传感器39将检测信号发送到车身控制器12。在工作装置用液压回路31中设置有工作装置控制阀18。工作装置控制阀18与工作装置操作部件23的操作量相应地被驱动。工作装置控制阀18与被施加在先导端口的先导压相应地控制向升降液压缸19供给的工作油的流量。被施加在工作装置控制阀18的先导端口的先导压通过工作装置操作部件23的先导阀23a被控制。先导阀23a将与工作装置操作部件23的操作量相应的先导压施加到工作装置控制阀18的先导端口。由此,与工作装置操作部件23的操作量相应地控制升降液压缸19。被施加到工作装置控制阀18的先导端口的先导压被PPC压传感器21检测。另外,向升降液压缸19供给的工作油的压力被动臂压传感器22检测。PPC压传感器21及动臂压传感器22将检测信号发送到车身控制器12。另外,在升降液压缸19上设置有动臂角度检测部38。动臂角度检测部38检测后述的动臂角度。动臂角度检测部38是检测动臂53的旋转角度的传感器。或者,动臂角度检测部38也可以检测升降液压缸19的行程量,从行程量计算动臂53的旋转角度。动臂角度检测部38将检测信号发送到车身控制器12。此外,铲斗液压缸26也与升降液压缸19同样地通过控制阀被控制,但在图2中省略了图示。
行驶用液压马达10是可变容量型液压马达。行驶用液压马达10由从第一液压泵4排出的工作油驱动,产生用于行驶的驱动力。在行驶用液压马达10中设置有马达液压缸11a和马达容量控制部11b。马达液压缸11a变更行驶用液压马达10的倾转角。马达容量控制部11b基于来自车身控制器12的控制信号而被控制的电磁控制阀。马达容量控制部11b基于来自车身控制器12的控制信号控制马达液压缸11a。马达液压缸11a和马达容量控制部11b被连接在马达先导回路34上。马达先导回路34经由单向阀48与第一驱动回路20a连接。单向阀48允许工作油从第一驱动回路20a向马达先导回路34流动,但限制工作油从马达先导回路34向第一驱动回路20a流动。马达先导回路34经由单向阀49与第二驱动回路20b连接。单向阀49允许工作油从第二驱动回路20b向马达先导回路34流动,但限制工作油从马达先导回路34向第二驱动回路20b流动。通过单向阀48、49将第一驱动回路20a和第二驱动回路20b中的大的一方的液压即驱动回路压的工作油供给到马达先导回路34。马达容量控制部11b基于来自车身控制器12的控制信号,切换工作油从马达先导回路34向马达液压缸11a的供给方向及供给流量。由此,车身控制器12能够任意地改变行驶用液压马达10的容量。另外,能够任意地设定行驶用液压马达10的上限容量及下限容量。
在液压驱动机构30中设置有车速传感器16。车速传感器16检测车速。车速传感器16将检测信号发送到车身控制器12。车速传感器16通过例如检测车轮驱动轴的转速来检测车速。
轮式装载机50具有油门操作部件13a、前进后退切换操作部件14、牵引力控制操作部8和微动操作部27。
油门操作部件13a是用于使操作者设定发动机1的目标转速的部件。油门操作部件13a是例如油门踏板,供操作者操作。油门操作部件13a与油门操作量传感器13连接。油门操作量传感器13由电位器等构成。油门操作量传感器13将表示油门操作部件13a的操作量(以下称为“油门操作量”)的检测信号发送到发动机控制器12a。操作者能够通过调整油门操作量来控制发动机1的转速。
前进后退切换操作部件14被操作者操作,并被切换成前进位置、后退位置和中立位置。前进后退切换操作部件14将表示前进后退切换操作部件14的位置的检测信号发送到车身控制器12。操作者能够通过操作前进后退切换操作部件14来切换轮式装载机50的前进和后退。
牵引力控制操作部8被操作者操作,并为切换牵引力控制的打开关闭而被操作。牵引力控制是使轮式装载机50的最大牵引力降低的控制。最大牵引力是指与车速相应地变化的牵引力(参照图6)的峰值。此外,在以下的说明中,牵引力控制是关闭状态是指未执行牵引力控制的状态。另外,牵引力控制是打开状态是指执行牵引力控制的状态。牵引力控制操作部8具有牵引力控制操作部件15和设定操作装置24。
牵引力控制操作部件15是例如开关。牵引力控制操作部件15由操作者操作,来指示执行后述的牵引力控制。关于牵引力控制,在后面详细说明。牵引力控制操作部件15将表示牵引力控制操作部件15的选择位置的检测信号发送到车身控制器12。
设定操作装置24是用于进行轮式装载机50的各种设定的装置。设定操作装置24是例如带有触摸板功能的显示装置。设定操作装置24具有牵引力水平变更部24a。如下所述,在牵引力控制中,牵引力的控制水平被设定成标准水平。标准水平的最大牵引力比牵引力控制是关闭状态下的最大牵引力小。操作者能够通过操作牵引力水平变更部24a,将牵引力控制中的标准水平的最大牵引力的大小变更成多级水平。
微动操作部27具有微动操作部件27a和微动操作传感器27b。微动操作部件27a被操作者操作。微动操作部件27a是例如踏板。微动操作部件27a如下所述地兼有微动操作的功能和制动操作的功能。微动操作传感器27b检测微动操作部件27a的操作量(以下称为“微动操作量”),并将检测信号发送到车身控制器12。微动操作部件27a被操作时,车身控制器12基于来自微动操作传感器27b的检测信号控制泵容量控制部7。车身控制器12与微动操作部件27a的操作量相应地使泵先导回路32的液压降低。由此,驱动回路压降低,行驶用液压马达10的转速降低。微动操作部27是在例如要使发动机1的转速上升的同时还要抑制行驶速度的上升时等被使用的。即,通过油门操作部件13a的操作使发动机1的转速上升时,泵先导回路32的液压也上升。此时,通过操作微动操作部件27a,能够控制泵先导回路32的液压的上升。由此,能够抑制第一液压泵4的容量的增大,并能够抑制行驶用液压马达10的转速的上升。换言之,微动操作部件27a是用于不使发动机转速降低地使车速减小而被操作的。
另外,在微动操作部件27a上连结有制动阀28。制动阀28控制工作油向液压制动装置29的供给。微动操作部件27a兼用作液压制动装置29的操作部件。基于来自微动操作传感器27b的检测信号,仅进行上述微动操作,直到微动操作部件27a的操作量达到规定量。而且,微动操作部件27a的操作量达到规定量时,开始制动阀28的操作,由此,在液压制动装置29中产生制动力。微动操作部件27a的操作量为规定量以上时,与微动操作部件27a的操作量相应地控制液压制动装置29的制动力。
发动机控制器12a是具有CPU等计算装置和各种存储器等的电子控制部。发动机控制器12a为得到所设定的目标转速而控制发动机1。图3表示发动机1的输出扭矩线。发动机1的输出扭矩线表示发动机1的转速和在各转速下发动机1能够输出的最大发动机扭矩之间的关系。在图3中,实线L100表示油门操作量为100%时的发动机输出扭矩线。该发动机输出扭矩线与例如发动机1的额定或最大的动力输出相当。此外,油门操作量为100%是指油门操作部件13a被最大地操作的状态。另外,虚线L75表示油门操作量为75%时的发动机输出扭矩线。发动机控制器12a以使发动机扭矩成为发动机输出扭矩线以下的方式控制发动机1的输出。该发动机1的输出的控制通过例如控制向发动机1的燃料喷射量的上限值而实施。
车身控制器12是具有CPU等计算装置和各种存储器等的电子控制部。车身控制器12基于来自各检测部的检测信号来电子控制各控制阀,由此控制第一液压泵4的容量和行驶用液压马达10的容量。
具体来说,车身控制器12基于发动机转速传感器1a所检测的发动机转速将指令信号向泵容量控制部7输出。由此,限定泵容量和驱动回路压的关系。图4表示泵容量-驱动回路压特性的一例。泵容量-驱动回路压特性表示泵容量和驱动回路压的关系。图中的L11~L16表示与发动机转速相应地被变更的泵容量-驱动回路压特性的线。具体来说,车身控制器12基于发动机转速控制泵容量控制部7的流量,由此,泵容量-驱动回路压特性被变更成L11~L16。由此,泵容量被控制成与发动机转速及驱动回路压对应的大小。
车身控制器12处理来自发动机转速传感器1a及驱动回路压检测部17的检测信号,并将马达容量的指令信号向马达容量控制部11b输出。这里,车身控制器12参考存储在车身控制器12中的马达容量-驱动回路压特性,并从发动机转速的值和驱动回路压的值设定马达容量。车身控制器12将与该设定的马达容量对应的倾转角的变更指令向马达容量控制部11b输出。图5表示马达容量-驱动回路压特性的一例。图中的实线L21是发动机转速为某值的状态下的、确定相对于驱动回路压的马达容量的线。这里的马达容量与行驶用液压马达10的倾转角对应。驱动回路压为某一定的值以下的情况下,倾转角为最小(Min)。然后,随着驱动回路压的上升,倾转角也逐渐变大(实线的倾斜部分L22)。而且,倾转角成为最大(Max)之后,即使驱动回路压上升,倾转角也维持最大倾转角(Max)。倾斜部分L22限定驱动回路压的目标压力。即,在驱动回路压变得比目标压力大时,车身控制器12使行驶用液压马达的容量增大。另外,驱动回路压变得比目标压力小时,使行驶用液压马达的容量减小。目标压力与发动机转速相应地被确定。即,图5所示的倾斜部分L22是以与发动机转速的增减相应地上下倾斜的方式被设定的。具体来说,倾斜部分L22以如下方式进行控制,即,若发动机转速低,则倾转角从驱动回路压更低的状态变大,在驱动回路压更低的状态下,达到最大倾转角(参照图5中的下侧的虚线的倾斜部分L23)。相反地,若发动机转速高,则维持最小倾转角(Min)直到驱动回路压变得更高,在驱动回路压更高的状态下,达到最大倾转角(Max)(参照图5中的上侧的虚线的倾斜部分L24)。由此,如图6所示,轮式装载机50的牵引力和车速能够无级地变化,从车速零到最高速度没有变速操作地自动地变速。此外,在图5中,倾斜部分L22是为容易理解而强调性地显示出了倾斜,但实际上是大致水平的。因此,驱动回路压达到目标压力时,马达容量在最小值(或最小制限值)和最大值(或最大制限值)之间切换。但是,驱动回路压达到目标压力时,指令值不是即时地被变更,而是发生时间延迟。该时间延迟是倾斜部L22存在的理由。在图6中,Lmax是牵引力控制为关闭状态下的车速-牵引力特性。在牵引力控制为关闭状态下的车速-牵引力特性Lmax中,牵引力是在车速为比零大的第一车速V1时成为最大牵引力Tmax。当车速为第一车速V1以下,车速越小,牵引力越小。另外,当车速为第一车速V1以上,车速越大,牵引力越小。
牵引力控制操作部件15被操作,由此,车身控制器12执行牵引力控制。车身控制器12变更行驶用液压马达10的上限容量而变更车辆的最大牵引力。例如,如图5所示,以将上限容量从Max变更到Ma、Mb、Mc中的任意一个的方式,车身控制器12向马达容量控制部11b输出指令信号。上限容量被变更成Ma时,车速-牵引力特性如图6的线La所示地变化。像这样,与表示未进行牵引力控制的状态的车速-牵引力特性的线Lmax相比,最大牵引力降低。上限容量被变更成Mb时,车速-牵引力特性如线Lb所示地变化,最大牵引力进一步降低。另外,上限容量被变更成Mc时,车速-牵引力特性如线Lc所示地变化,最大牵引力进一步降低。
在牵引力控制中,车辆的最大牵引力被降低到预先设定的标准水平的最大牵引力。操作者能够通过操作上述牵引力水平变更部24a,从多个水平预先选择并设定牵引力控制中的标准水平的最大牵引力的大小。具体来说,牵引力水平变更部24a能够从水平A、水平B、水平C这3级的水平选择作为标准水平设定的水平。水平A是与上述上限容量Ma对应的牵引力的水平。水平B是与上述上限容量Mb对应的牵引力的水平。水平C是与上述上限容量Mc对应的牵引力的水平。
图7表示限定牵引力比率和油门操作量的关系的牵引力比率信息。牵引力比率是指将牵引力控制为关闭状态下的最大牵引力作为100%时的牵引力控制下的最大牵引力的比例。在图7中,Ln是标准水平的牵引力比率信息。在牵引力比率信息Ln中,油门操作量为规定的阈值A2以下时,牵引力比率恒定为R1。油门操作量比规定的阈值A2大时,牵引力比率与油门操作量相应地增大。车身控制器12在自动牵引力控制中将牵引力的控制水平设定成标准水平时,以得到牵引力比率信息Ln所示的最大牵引力的方式,控制行驶用液压马达10的上限容量。此外,牵引力比率信息Ln中的牵引力比率与牵引力水平变更部24a的选择结果相应地被变更。
在牵引力控制过程中满足规定的判定条件时,车身控制器12将牵引力的控制水平从标准水平变更成高水平。牵引力的控制水平的变更是通过使上述牵引力比率以规定的比例增减而进行的。在图6中,Lup是高水平的车速-牵引力特性。在高水平的车速-牵引力特性Lup中,车速为零时的牵引力与在牵引力控制为关闭状态时的车速-牵引力特性Lmax中车速为零时的牵引力T0一致。车身控制器12是在牵引力控制过程中满足判定条件时,以得到车速-牵引力特性Lup所示的最大牵引力的方式,控制行驶用液压马达10的上限容量。由此,最大牵引力自动地增大。以下,关于在牵引力控制中使最大牵引力自动地增大的判定处理进行详细说明。
如图8所示,车身控制器12具有牵引力控制部61、作业内容判定部62、油门操作判定部63、动臂角度判定部64和变更标识判定部65。图9是表示在牵引力控制过程中将牵引力的控制水平从标准水平变更成高水平的判定处理的流程图。通过操作牵引力控制操作部件15,车身控制器12将牵引力控制设定成打开状态时,执行图9所示的处理。
在步骤S101中,牵引力控制部61将牵引力的控制水平设定成标准水平。另外,在步骤S102中,牵引力控制部61将变更标识设定成关闭。变更标识是在将牵引力的控制水平从标准水平提高到高水平的情况下被设定成打开。变更标识是在没有将牵引力的控制水平从标准水平提高到高水平的情况下被设定成关闭。即,变更标识是关闭的情况下,牵引力控制部61将牵引力的控制水平维持在标准水平。
然后,在步骤S103中,作业内容判定部62判定挖掘标识是否是打开。挖掘标识为打开是指作业内容是挖掘。作业内容判定部62基于车辆的行驶状态和工作装置52的工作状态,判定作业内容是否是挖掘。作业内容判定部62判定为作业内容是挖掘时,将挖掘标识设定成打开。作业内容判定部62判定为作业内容是挖掘以外的作业时,将挖掘标识设定成关闭。关于具体的作业内容的判定处理在后面说明。
在步骤S104中,动臂角度判定部64判定动臂角度是否是规定的角度阈值B1以上。动臂角度判定部64基于来自动臂角度检测部38的检测信号,进行上述判定。如图10所示,动臂角度是从侧面观察时以水平方向为0度,连结动臂销57和铲斗销58的线与水平方向之间所成的角θ。比水平方向更靠下方的角度是负值,比水平方向更靠上方的角度是正值。动臂角度被定义成趋向上方而增大。角度阈值B1与在铲起作业过程中可获得的动臂角度相当。例如,角度阈值B1为-20度以上。角度阈值B1例如是-10度。
在步骤S105中,油门操作判定部63判定油门操作量是否是规定的油门阈值A1以上。油门操作判定部63基于来自油门操作量传感器13的检测信号,进行上述判定。油门阈值A1是能够视为油门操作部件13a被最大限地操作的程度这样大的值。油门阈值A1是比上述阈值A2(参照图7)大的值。例如,以油门操作量的最大值为100%时,油门阈值A1优选为80%以上。油门阈值A1更优选为90%以上。
步骤S103和步骤S104的条件中的任意一方的条件不满足时,进入步骤S106。在步骤S106中,牵引力控制部61将牵引力的控制水平设定成标准水平。即,在牵引力的控制水平是标准水平的状态下,步骤S103和步骤S104的条件中的任意一方不满足时,将牵引力的控制水平维持在标准水平。在牵引力的控制水平是高水平的状态下,步骤S103和步骤S104的条件中的任意一方不满足时,使牵引力的控制水平从高水平返回标准水平。因此,在作业内容不是挖掘时,牵引力控制部61不进行最大牵引力的增大。在动臂角度不是规定的角度阈值B1以上时,牵引力控制部61不进行最大牵引力的增大。此外,也可以是在将控制水平从标准水平提高到高水平时将角度阈值设定成B1,在从高水平降低到标准水平时将角度阈值设定成比B1小的B2。
不满足步骤S105的条件的情况下,维持现有的控制水平。即,牵引力控制部61是在油门操作部件13a的操作量不是规定的操作阈值A1以上时,不进行最大牵引力的增大。这是因为,在铲起作业时,牵引力与油门操作量相应地变化时,操作性受损。
步骤S103至步骤S105的所有条件都满足时,进入步骤S107。在步骤S107中,变更标识判定部65判定变更标识是否是关闭。即,变更标识判定部65判定牵引力的控制水平是否是标准水平。变更标识是关闭的情况下,即,在牵引力的控制水平是标准水平的情况下,进入步骤S108。
在步骤S108中,牵引力控制部61将变更标识设定成打开。另外,在步骤S109中,牵引力控制部61将牵引力的控制水平从标准水平变更成高水平。由此,牵引力控制部61基于图6所示的车速-牵引力特性Lup控制牵引力。但是,如图6所示,高水平的最大牵引力比牵引力控制是关闭状态下的最大牵引力小。另外,即使作为标准水平选择水平A(参照图6的La)、水平B(参照图6的Lb)、水平C(参照图6的Lc)中的任意水平,满足上述判定条件时,牵引力控制部61都基于图6所示的车速-牵引力特性Lup控制牵引力。即,高水平的最大牵引力与通过牵引力水平变更部24a被变更的标准水平的最大牵引力的大小无关,是恒定的。具体来说,与高水平对应的牵引力比率与通过牵引力水平变更部24a被变更的标准水平的牵引力比率的大小无关,是恒定的。
牵引力控制部61是在将牵引力的控制水平从标准水平提高到高水平时,与从高水平返回标准水平时相比,以相同的速度使牵引力变化。即,牵引力控制部61是在牵引力控制中使最大牵引力增大时,与使最大牵引力减小时相比,以相同的速度使牵引力变化。图11(a)表示使马达容量增大时的马达容量的指令值的变更速度。即,图11(a)表示使最大牵引力增大时的马达容量的指令值的变更速度。图11(b)表示使马达容量减少时的马达容量的指令值的变更速度。即,图11(b)表示使最大牵引力减少时的马达容量的指令值的变更速度。如图11所示,时间T1=时间T2。因此,牵引力控制部61是在使最大牵引力增大时、和使最大牵引力减少时,以相同的速度使马达容量的指令值变化。此外,时间T1和时间T2不限于相同的值,也可以是相互不同的值。尤其,使最大牵引力增大时的时间T1也可以设定成比使最大牵引力减少时的时间T2大的值。该情况下,能够抑制打滑的同时,能够确保铲起作业时的充分的牵引力。
此外,在图9所示的步骤S107中,变更标识不是关闭的情况下,将牵引力的控制水平维持在高水平,并且重复进行步骤S103至步骤S107的判定。而且,步骤S103和步骤S104的条件中的任意一个不满足时,在步骤S106中,使牵引力的控制水平从高水平返回标准水平。
图12是表示用于判定挖掘标识是否是打开的处理的流程图。即,图12是表示用于判定作业内容是否是挖掘的处理的流程图。如图12所示,在步骤S201中,作业内容判定部62将挖掘标识设定成关闭。在步骤S202中,作业内容判定部62判定动臂压降低标识是否是打开。动臂压降低标识是打开是指铲斗是空载状态。关于动臂压降低标识的判定处理在后面说明。
在步骤S203中,判定动臂角度是否比规定的角度阈值B2小。角度阈值B2与铲斗置于地面上时的动臂角度相当。角度阈值B2比上述角度阈值B1小。
在S204中,作业内容判定部62判定动臂压是否是第一动臂压判定值以上。动臂压是使升降液压缸19伸长时被供给到升降液压缸19的液压。动臂压被上述动臂压传感器22检测。第一动臂压判定值是在挖掘过程中获得的动臂压的值。第一动臂压判定值通过实验或模拟预先求出并被设定。第一动臂压判定值是与动臂角度相应的值。车身控制器12存储有表示第一动臂压判定值和动臂角度的关系的动臂压判定值信息(以下称为“第一动臂压判定值信息”)。第一动臂压判定值信息是例如表示第一动臂压判定值和动臂角度的关系的表格或映射图。作业内容判定部62通过参考第一动臂压判定值信息,来决定与动臂角度相应的第一动臂压判定值。
步骤S202至步骤S204的所有条件都满足时,进入步骤S205。在步骤S205中,作业内容判定部62将挖掘标识设定成打开。即,作业内容判定部62是在步骤S202至步骤S204的所有条件都满足时判定成作业内容是挖掘。这是因为步骤S202至步骤S204的所有条件都满足时,能够视为轮式装载机50进入挖掘的准备阶段。步骤S202、S203、S204的条件中的至少一个不满足时,重复进行步骤S202至步骤S204的判定。
另外,在步骤S206中,作业内容判定部62将动臂压降低标识设定成关闭。然后,在步骤S207中,作业内容判定部62判定FNR识别值是否是F。FNR识别值是表示车辆是前进状态、后退状态和中立状态中的任意一方的信息。FNR识别值为F是指车辆为前进状态。FNR识别值为R是指车辆为后退状态。FNR识别值为N是指车辆为中立状态。作业内容判定部62基于来自前进后退切换操作部件14的检测信号,判定FNR识别值是否是F。FNR识别值不是F时,进入步骤S209。在步骤S209中,作业内容判定部62将挖掘标识设定成关闭。即,车辆为后退状态或中立状态时,将挖掘标识设定成关闭。在步骤S207中,FNR识别值为F时,进入步骤S208。
在步骤S208中,作业内容判定部62判定动臂压降低标识是否是打开。动臂压降低标识是打开时,进入步骤S209。动臂压降低标识不是打开时,返回步骤S207。因此,一旦判定为作业内容是挖掘时,然后,即使步骤S202至步骤S204的条件不满足,挖掘标识也被维持在打开,直到前进后退切换操作部件14从前进位置切换到后退位置,或者,直到前进后退切换操作部件14从前进位置切换到中立位置。此外,即使前进后退切换操作部件14被维持在前进位置,在动臂压降低标识被设定成打开时,挖掘标识也变更成关闭。
图13是表示用于判定动臂压降低标识是否是打开的处理的流程图。如图13所示,在步骤S301中,作业内容判定部62将动臂压降低标识设定成关闭。
在步骤S302中,作业内容判定部62开始第一定时器的测量。这里,第一定时器测量满足用于将动臂压降低标识设定成打开的条件的持续时间。
在步骤S303中,作业内容判定部62判定动臂压是否比第二动臂压判定值小。第二动臂压判定值是在铲斗为空载状态时可获得的动臂压的值。车身控制器12存储有表示第二动臂压判定值和动臂角度的关系的动臂压判定值信息(以下称为“第二动臂压判定值信息”)。第二动臂压判定值信息是例如表示第二动臂压判定值和动臂角度的关系的表格或映射图。作业内容判定部62通过参考第二动臂压判定值信息来决定与动臂角度相应的第二动臂压判定值。在第二动臂压判定值信息中,动臂角度比0度大时,第二动臂压判定值恒定为动臂角度为0度时的值。这是因为动臂角度为0度以上时的动臂压的增加率比动臂角度比0度小时的动臂压的增加率小,动臂角度比0度大时的第二动臂压判定值能够近似成动臂角度为0度时的第二动臂压判定值。
在步骤S304中,作业内容判定部62判定第一定时器的测量时间是否是规定的时间阈值D2以上。即,持续时间判定部67判定满足步骤S303的条件的状态的持续时间是否是规定的时间阈值D2以上。时间阈值D2被设定成能够视为步骤S303的条件一时不被满足的程度的时间。时间阈值D2比上述时间阈值D1大。第一定时器的测量时间不是规定的时间阈值D2以上时,重复进行步骤S303的判定。在步骤S304中,第一定时器的测量时间是规定的时间阈值D2以上时,进入步骤S305。
在步骤S305中,作业内容判定部62将动臂压降低标识设定成打开。而且,在步骤S306中,作业内容判定部62结束第一定时器的测量。此外,在步骤S303中,动臂压不比第二动臂压判定值小时,进入步骤S307。在步骤S307中,作业内容判定部62重置第一定时器。
在步骤S308中,作业内容判定部62开始第二定时器的测量。而且,在步骤S309中,作业内容判定部62判定挖掘标识是否是打开。挖掘标识是打开时,进入步骤S310。
在步骤S310中,作业内容判定部62结束第二定时器的测量。而且,返回步骤S301,作业内容判定部62将动臂压降低标识设定成关闭。
在步骤S309中,挖掘标识不是打开时,进入步骤S311。在步骤S311中,作业内容判定部62判定动臂压是否比第二动臂压判定值小。动臂压比第二动臂压判定值小时,进入步骤S312。
在步骤S312中,作业内容判定部62判定第二定时器的测量时间是否是规定的时间阈值D3以上。第二定时器的测量时间是规定的时间阈值D3以上时,进入步骤S310。与上述同样地,在步骤S310中,作业内容判定部62结束第二定时器的测量,在步骤S301中,将动臂压降低标识设定成关闭。在步骤S312中,第二定时器的测量时间不是规定的时间阈值D3以上时,返回步骤S309。
此外,在步骤S311中,动臂压不比第二动臂压判定值小时,进入步骤S313。在步骤S313中,作业内容判定部62重置第二定时器,并返回步骤S309。
在本实施方式的轮式装载机50中,在牵引力控制过程中,满足上述判定条件时,将牵引力的控制水平从标准水平提高到高水平。由此,最大牵引力增大。判定条件包括作业内容是挖掘、油门操作部件的操作量是规定的操作阈值以上、和动臂角度是规定的角度阈值以上。由此,满足判定条件是指轮式装载机进行铲起作业。在本实施方式的轮式装载机中,在这样的状态下,最大牵引力自动地增大,由此,在铲起作业时能够得到充分的牵引力。另外,由于操作者不需要进行使最大牵引力增大的操作,所以能够抑制操作性的降低。
满足判定条件时,牵引力控制部61将牵引力的控制水平从标准水平提高到高水平,但高水平的最大牵引力比牵引力控制为关闭状态下的最大牵引力小。因此,满足判定条件时,能够防止最大牵引力过度地增大。
操作者通过操作牵引力水平变更部24a,能够变更标准水平的最大牵引力的大小。而且,满足判定条件时,牵引力控制部61使最大牵引力增大到比标准水平的最大牵引力大的值。由此,操作者能够根据作业状况更精细地设定所需的最大牵引力。
即使通过牵引力水平变更部24a将标准水平设定成图6的车速-牵引力特性La~Lc所示的任意的水平,满足判定条件时,也变更成图6的车速-牵引力特性Lup所示的水平。由此,轮式装载机在铲起作业时能够得到充分的牵引力。另外,如图6所示,在车速-牵引力特性Lup中,与牵引力控制为关闭状态下的车速-牵引力特性Lmax相比,相对于车速变化的牵引力变化小。具体来说,在图6中,车速从第二车速V2变化到零的情况下,车速-牵引力特性Lup下的牵引力的变化比车速-牵引力特性Lmax下的牵引力的变化小。由此,由于急剧的牵引力的变化被抑制,所以能够抑制操作性的降低。
在牵引力控制过程中,不满足判定条件时,牵引力控制部61使牵引力的控制水平返回标准水平。具体来说,在牵引力控制过程中,作业内容不是挖掘时,牵引力控制部61使牵引力的控制水平返回标准水平。另外,在牵引力控制过程中,动臂角度比规定的角度阈值B1小时,牵引力控制部61使牵引力的控制水平返回标准水平。由此,能够得到与作业状况相应的适当的最大牵引力。而且,在牵引力控制过程中,油门操作量比规定的油门阈值A1小时,将牵引力的控制水平维持在现有的水平,由此,能够抑制与油门操作量的变更相应地频繁增减牵引力,并能够抑制操作性的降低。
以上,关于本发明的一实施方式进行了说明,但本发明不限于上述实施方式,在不脱离发明的主旨的范围内能够进行各种变更。
在上述实施方式中,以搭载了包含一个液压泵和行驶用液压马达10的一泵一马达的HST系统的轮式装载机50为例进行了说明。但是,本发明不限于此。例如,对于搭载了包含一个第一液压泵和两个行驶用液压马达的一泵双马达的HST系统的轮式装载机,也能够适用本发明。
在上述实施方式中,牵引力水平变更部24a能够以三级变更标准水平的最大牵引力的大小。但是,牵引力水平变更部24a也可以以三级以外的多级变更标准水平的最大牵引力的大小。或者,牵引力水平变更部24a也可以连续地将标准水平的最大牵引力的大小变更成任意的大小。或者,也可以省略牵引力水平变更部24a。即,标准水平的最大牵引力的大小也可以不能变更。
判定条件不仅限于上述条件,也可以追加其他条件。或者,也可以变更上述判定条件的一部分。
在上述实施方式中,牵引力控制部61通过变更马达容量的上限容量来降低最大牵引力,但也可以通过其他方法来降低最大牵引力。例如,牵引力控制部61也可以通过控制驱动回路压来降低最大牵引力。例如,通过控制第一液压泵4的容量来控制驱动回路压。
在上述实施方式中,以牵引力比率与油门操作量的增大相应地增大的方式设定牵引力比率信息,但也可以以与油门操作量无关地使牵引力比率恒定的方式设定牵引力比率信息。
在上述实施方式中,通过操作牵引力控制操作部件15,将牵引力的控制水平设定成预先设定的水平,但也可以以操作者能够直接从多个水平选择牵引力的控制水平并指示执行的方式构成牵引力控制操作部8。该情况下,例如,如图14所示,牵引力控制操作部8具有牵引力控制选择部24b。牵引力控制选择部24b是为指示牵引力的控制水平的选择和牵引力控制的执行而被操作的。操作者通过牵引力控制选择部24b从多个水平选择牵引力的控制水平的同时指示牵引力控制的执行。图15表示能够通过牵引力控制选择部24b选择的牵引力的各控制水平下的车速-牵引力特性L1~L5。如图15所示,牵引力控制选择部24b能够以标准水平至第五水平的五级的控制水平指示牵引力控制的执行。L1表示第一水平下的车速-牵引力特性。L2表示第二水平下的车速-牵引力特性。L3表示第三水平下的车速-牵引力特性。L4表示第四水平下的车速-牵引力特性。L5表示第五水平下的车速-牵引力特性。第一水平的最大牵引力最小,第五水平的最大牵引力最大。另外,第五水平下的车速-牵引力特性与上述高水平下的车速-牵引力特性(参照图6的Lup)一致。牵引力控制部61与上述实施方式同样地,判定条件在牵引力控制过程中被满足时,使最大牵引力增大。例如,牵引力控制部61是在牵引力控制过程中满足判定条件时,使最大牵引力增大为比通过牵引力控制选择部24b被选择的水平高一级的水平。具体来说,在第一水平下的牵引力控制过程中满足判定条件时,牵引力控制部61将控制水平提高到第二水平。在第二水平下的牵引力控制过程中满足判定条件时,牵引力控制部61将控制水平提高到第三水平。在第三水平下的牵引力控制过程中满足判定条件时,牵引力控制部61将控制水平提高到第四水平。在第四水平下的牵引力控制过程中满足判定条件时,牵引力控制部61将控制水平提高到第五水平。但是,在第五水平下的牵引力控制过程中满足判定条件时,牵引力控制部61将控制水平维持在第五水平。另外,牵引力控制部61是在牵引力控制过程中不满足判定条件时,使牵引力的控制水平返回原来的水平。
在上述结构中,操作者通过操作牵引力控制选择部24b,能够从多个水平选择牵引力的控制水平并直接执行。另外,满足判定条件时,使最大牵引力与操作者所选择的水平相比增大,从而轮式装载机在铲起作业时能够得到充分的牵引力。而且,被增大的最大牵引力是操作者能够自由选择的水平,从而对于操作者来说,操作不适感少。由此,能够抑制操作性的降低。
此外,能够通过牵引力控制选择部24b选择的水平的数量不限于五个。也可以通过牵引力控制选择部24b选择比五个少或比五个多的水平。或者,也可以通过牵引力控制选择部24b连续地选择任意大小的最大牵引力。另外,满足判定条件时,不限于将牵引力的控制水平提高到比现在的水平高一级的水平,也可以高两级以上的水平。或者,也可以将牵引力的控制水平提高到能够通过牵引力控制选择部24b选择的水平以外的水平。而且,牵引力控制操作部8具有上述牵引力控制操作部件24b及牵引力水平变更部24a的同时,还可以具有牵引力控制选择部24b。即,也可以以有选择地执行牵引力控制操作部件24b和牵引力水平变更部24a的牵引力控制、以及牵引力控制选择部24b的牵引力控制的方式构成牵引力控制操作部8。
工业实用性
根据本发明提供的轮式装载机及轮式装载机的控制方法,在铲起作业时能够得到充分的牵引力的同时能够抑制操作性的降低。
附图标记的说明
1    发动机
4    第一液压泵
10   行驶用液压马达
13a  油门操作部件
15   牵引力控制操作部件
24a  牵引力水平变更部
24b  牵引力控制选择部
50   轮式装载机
52   工作装置
61   牵引力控制部
62   作业内容判定部
63   油门操作判定部
64   动臂角度判定部

Claims (18)

1.一种轮式装载机,其特征在于,具有:
工作装置,具有动臂和铲斗;
发动机;
液压泵,被所述发动机驱动;
行驶用液压马达,由从所述液压泵排出的工作油驱动;
油门操作部件,为设定所述发动机的目标转速而操作该油门操作部件;
牵引力控制操作部,为切换使最大牵引力降低的牵引力控制的打开、关闭而操作该牵引力控制操作部;
作业内容判定部,判定作业内容是否是挖掘;
油门操作量判定部,判定所述油门操作部件的操作量是否是规定的操作阈值以上;
动臂角度判定部,判定所述动臂的相对于水平方向的角度即动臂角度是否是规定的角度阈值以上;
牵引力控制部,在所述牵引力控制是打开状态时,使最大牵引力降低到比所述牵引力控制为关闭状态下的最大牵引力小,
在所述牵引力控制为打开状态下,包含所述作业内容是挖掘、所述油门操作部件的操作量是所述规定的操作阈值以上、和所述动臂角度是所述规定的角度阈值以上在内的判定条件都满足时,所述牵引力控制部使最大牵引力增大。
2.如权利要求1所述的轮式装载机,其特征在于,
在所述牵引力控制中,所述牵引力控制部将牵引力的控制水平设定成最大牵引力比所述牵引力控制为关闭状态下的最大牵引力小的标准水平,
在所述牵引力控制为打开状态下满足所述判定条件时,所述牵引力控制部将最大牵引力的控制水平变更成最大牵引力比所述标准水平大的高水平。
3.如权利要求2所述的轮式装载机,其特征在于,所述高水平的最大牵引力比所述牵引力控制为关闭状态下的最大牵引力小。
4.如权利要求2所述的轮式装载机,其特征在于,所述牵引力控制操作部具有:牵引力水平变更部,用于变更所述标准水平的最大牵引力的大小;牵引力控制操作部件,用于指示所述标准水平下的牵引力控制的执行。
5.如权利要求4所述的轮式装载机,其特征在于,所述高水平的最大牵引力与通过所述牵引力水平变更部被变更的所述标准水平的最大牵引力的大小无关,是恒定的。
6.如权利要求5所述的轮式装载机,其特征在于,
所述牵引力控制是关闭状态的情况下,牵引力在车速为比零大的第一车速时成为最大牵引力,
车速为零时的所述高水平下的牵引力与车速为零时的所述牵引力控制为关闭状态下的牵引力一致。
7.如权利要求2所述的轮式装载机,其特征在于,在所述牵引力控制为打开状态下不满足所述判定条件时,所述牵引力控制部使牵引力的控制水平返回所述标准水平。
8.如权利要求1所述的轮式装载机,其特征在于,
所述牵引力控制操作部具有牵引力控制选择部,其从多个水平选择牵引力的控制水平,并且指示所述牵引力控制的执行,
在所述牵引力控制为打开状态下满足所述判定条件时,所述牵引力控制部使最大牵引力与通过牵引力控制选择部被选择的水平相比增大。
9.如权利要求8所述的轮式装载机,其特征在于,在所述牵引力控制为打开状态下满足所述判定条件时,所述牵引力控制部使最大牵引力增大到比通过所述牵引力控制选择部被选择的水平高一级的水平。
10.如权利要求8所述的轮式装载机,其特征在于,在所述牵引力控制为打开状态下不满足所述判定条件时,所述牵引力控制部使牵引力的控制水平返回原来的水平。
11.如权利要求1所述的轮式装载机,其特征在于,在所述作业内容不是挖掘时,所述牵引力控制部不进行所述最大牵引力的增大。
12.如权利要求1所述的轮式装载机,其特征在于,在所述油门操作部件的操作量不是所述规定的操作阈值以上时,所述牵引力控制部不进行所述最大牵引力的增大。
13.如权利要求1所述的轮式装载机,其特征在于,在所述动臂角度不是所述规定的角度阈值以上时,所述牵引力控制部不进行所述最大牵引力的增大。
14.如权利要求1所述的轮式装载机,其特征在于,所述作业内容判定部基于车辆的行驶状态和所述工作装置的工作状态,判定所述作业内容是否是挖掘。
15.如权利要求1所述的轮式装载机,其特征在于,牵引力控制部通过控制所述行驶用液压马达的倾转角来控制所述行驶用液压马达的容量,并通过所述行驶用液压马达的容量的上限容量来进行所述最大牵引力的控制。
16.如权利要求1~15中任一项所述的轮式装载机,其特征在于,
将最大牵引力相对于所述牵引力控制为关闭状态下的最大牵引力之比作为牵引力比率,
在所述牵引力控制为打开状态下,所述牵引力控制部根据所述油门操作部件的操作量或发动机转速设定所述牵引力比率。
17.如权利要求16所述的轮式装载机,其特征在于,在所述牵引力控制为打开状态下满足所述判定条件时,所述牵引力控制部以规定的比例使所述牵引力比率增大。
18.一种轮式装载机的控制方法,该轮式装载机具有:
工作装置,具有动臂和铲斗;
发动机;
液压泵,被所述发动机驱动;
行驶用液压马达,由从所述液压泵排出的工作油驱动;
油门操作部件,为设定所述发动机的目标转速而操作该油门操作部件;
牵引力控制操作部,为切换使最大牵引力降低的牵引力控制的打开关闭而操作该牵引力控制操作部,
该控制方法的特征在于,具有如下步骤:
判定作业内容是否是挖掘的步骤;
判定所述动臂的相对于水平方向的角度即动臂角度是否是规定的角度阈值以上的步骤;
判定所述油门操作部件的操作量是否是规定的操作阈值以上的步骤;
在所述牵引力控制是打开状态时,使最大牵引力与所述牵引力控制为关闭状态下的最大牵引力相比减小的步骤;
在所述牵引力控制是打开状态下,包含所述作业内容是挖掘、所述油门操作部件的操作量是所述规定的操作阈值以上、和所述动臂角度是所述规定的角度阈值以上在内的判定条件都满足时,使最大牵引力增大的步骤。
CN201280001364.0A 2012-03-30 2012-05-15 轮式装载机及轮式装载机的控制方法 Active CN103443512B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012-078938 2012-03-30
JP2012078938 2012-03-30
PCT/JP2012/062352 WO2013145342A1 (ja) 2012-03-30 2012-05-15 ホイールローダ及びホイールローダの制御方法

Publications (2)

Publication Number Publication Date
CN103443512A true CN103443512A (zh) 2013-12-11
CN103443512B CN103443512B (zh) 2014-09-24

Family

ID=49258697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280001364.0A Active CN103443512B (zh) 2012-03-30 2012-05-15 轮式装载机及轮式装载机的控制方法

Country Status (3)

Country Link
EP (1) EP2667060B1 (zh)
CN (1) CN103443512B (zh)
WO (1) WO2013145342A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104527628A (zh) * 2014-12-30 2015-04-22 郑州宇通重工有限公司 一种轮胎式推土机微动功能和液压制动控制系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6555592B2 (ja) * 2016-09-28 2019-08-07 日立建機株式会社 作業車両
JP7038516B2 (ja) * 2017-09-29 2022-03-18 日立建機株式会社 ホイールローダ
WO2019064527A1 (ja) * 2017-09-29 2019-04-04 株式会社Kcm ホイールローダ
JP7038515B2 (ja) * 2017-09-29 2022-03-18 日立建機株式会社 ホイールローダ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229560A (ja) * 1994-02-18 1995-08-29 Komatsu Ltd 静油圧−機械式変速機の制御装置
JP2004024172A (ja) * 2002-06-27 2004-01-29 Iseki & Co Ltd ロータリの耕耘ピッチ制御装置
US20090112437A1 (en) * 2007-10-29 2009-04-30 Ford Global Technologies, Llc Traction Control for Performance and Demonstration Spin
CN101663515A (zh) * 2007-04-26 2010-03-03 株式会社小松制作所 建筑车辆
JP2011063945A (ja) * 2009-09-15 2011-03-31 Kcm:Kk 産業用車両
WO2011108353A1 (ja) * 2010-03-05 2011-09-09 株式会社小松製作所 作業車両及び作業車両の制御方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908176B2 (ja) 2006-12-13 2012-04-04 株式会社小松製作所 建設車両の牽引力制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229560A (ja) * 1994-02-18 1995-08-29 Komatsu Ltd 静油圧−機械式変速機の制御装置
JP2004024172A (ja) * 2002-06-27 2004-01-29 Iseki & Co Ltd ロータリの耕耘ピッチ制御装置
CN101663515A (zh) * 2007-04-26 2010-03-03 株式会社小松制作所 建筑车辆
US20090112437A1 (en) * 2007-10-29 2009-04-30 Ford Global Technologies, Llc Traction Control for Performance and Demonstration Spin
JP2011063945A (ja) * 2009-09-15 2011-03-31 Kcm:Kk 産業用車両
WO2011108353A1 (ja) * 2010-03-05 2011-09-09 株式会社小松製作所 作業車両及び作業車両の制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104527628A (zh) * 2014-12-30 2015-04-22 郑州宇通重工有限公司 一种轮胎式推土机微动功能和液压制动控制系统
CN104527628B (zh) * 2014-12-30 2017-03-22 郑州宇通重工有限公司 一种轮胎式推土机微动功能和液压制动控制系统

Also Published As

Publication number Publication date
EP2667060A1 (en) 2013-11-27
CN103443512B (zh) 2014-09-24
EP2667060A4 (en) 2014-04-02
WO2013145342A1 (ja) 2013-10-03
EP2667060B1 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
CN103597256B (zh) 轮式装载机及轮式装载机的控制方法
CN103429935B (zh) 轮式装载机及轮式装载机的控制方法
CN102985306B (zh) 作业车辆和作业车辆的控制方法
JP5092071B1 (ja) ホイールローダ及びホイールローダの制御方法
US8788156B2 (en) Wheel loader
CN104603430B (zh) 轮式装载机及轮式装载机的发动机控制方法
CN102753867B (zh) 作业车辆及作业车辆的控制方法
CN102341625B (zh) 建筑车辆
CN103502698B (zh) 作业车辆及作业车辆的控制方法
EP2662599A1 (en) Work vehicle and method for controlling work vehicle
CN103443512B (zh) 轮式装载机及轮式装载机的控制方法
CN102459770B (zh) 工程机械及工程机械的控制方法
CN103459729B (zh) 作业机械的显示装置
CN103370479A (zh) 轮式装载机
CN106133409A (zh) 轮式装载机及其控制方法
CN102959285A (zh) 作业车辆及作业车辆的控制方法
JP5092069B1 (ja) ホイールローダ及びホイールローダの制御方法
CN108779622B (zh) 作业车辆
KR101833063B1 (ko) 건설기계

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant