CN103333055A - 一种浆态床催化加氢精制聚甲醛二烷基醚的方法 - Google Patents

一种浆态床催化加氢精制聚甲醛二烷基醚的方法 Download PDF

Info

Publication number
CN103333055A
CN103333055A CN2013102321017A CN201310232101A CN103333055A CN 103333055 A CN103333055 A CN 103333055A CN 2013102321017 A CN2013102321017 A CN 2013102321017A CN 201310232101 A CN201310232101 A CN 201310232101A CN 103333055 A CN103333055 A CN 103333055A
Authority
CN
China
Prior art keywords
raney
dialkyl ether
polyoxymethylene dialkyl
catalytic hydrofinishing
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013102321017A
Other languages
English (en)
Other versions
CN103333055B (zh
Inventor
商红岩
赵会吉
洪正鹏
徐成娟
刘晨光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Dongfang Hongsheng New Energy Application Technology Institute Co Ltd
China University of Petroleum East China
Original Assignee
Beijing Dongfang Hongsheng New Energy Application Technology Institute Co Ltd
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Dongfang Hongsheng New Energy Application Technology Institute Co Ltd, China University of Petroleum East China filed Critical Beijing Dongfang Hongsheng New Energy Application Technology Institute Co Ltd
Priority to CN201310232101.7A priority Critical patent/CN103333055B/zh
Publication of CN103333055A publication Critical patent/CN103333055A/zh
Priority to US14/257,215 priority patent/US9090842B2/en
Priority to EP14171387.5A priority patent/EP2810929B1/en
Application granted granted Critical
Publication of CN103333055B publication Critical patent/CN103333055B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/48Preparation of compounds having groups
    • C07C41/50Preparation of compounds having groups by reactions producing groups
    • C07C41/56Preparation of compounds having groups by reactions producing groups by condensation of aldehydes, paraformaldehyde, or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/28Post-polymerisation treatments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/30Chemical modification by after-treatment
    • C08G2/34Chemical modification by after-treatment by etherification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • C08L59/02Polyacetals containing polyoxymethylene sequences only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种浆态床催化加氢精制聚甲醛二烷基醚的方法,其采用浆态床加氢精制反应器,对含有聚甲醛二烷基醚产物的平衡体系进行催化加氢精制,以除去其中含有的甲醛。本发明所述加氢精制方法可显著提升聚甲醛二烷基醚的提取率,使得再经精馏后获得聚甲醛二烷基醚的纯度大于99.5%的,收率大于97%,原子利用率将近100%。

Description

一种浆态床催化加氢精制聚甲醛二烷基醚的方法
技术领域
本发明涉及一种浆态床催化加氢精制聚甲醛二烷基醚的方法,属于煤基能源化工、清洁能源及化学过程精制领域。
背景技术
近年调查显示,我国柴油表观消费量已达1.67亿吨左右,使得柴油供应紧张的现象频繁发生(国内柴油、汽油的需求比约为2.5:1,而目前产出比约为2.3:1)。这除了有不同类型油品定价不够合理、国内成品油价与国际原油价格联动迟缓等体制方面的原因之外,根本的原因还是资源短缺的制约。传统上,柴油生产均以石油为原料,中国相对“富煤、贫油、少气”的资源禀赋,使其经济社会持续、较快发展与石油供应的矛盾日益突出。自1993年成为石油净进口国以来,进口量不断快速增长,2011年以后对外依存度已经超过56%,严重影响国家的能源战略安全。
此外,由于原油质量日渐恶化,导致我国重油催化加工的规模不断扩大,催化柴油的比例不断增加,致使成品柴油十六烷值(CN值)逐渐下降,燃烧排放的有害物因而也明显增加,提高柴油CN值是迫切需要解决的问题。
柴油发动机排放的尾气中除了CO、CO2和NOx之外,还含有大量未燃尽HC化合物以及颗粒物PM等有害物质,是城市空气中PM2.5污染的主要来源之一。2012年6月,隶属世界卫生组织(WHO)的国际癌症研究中心(IARC)宣布,决定提升柴油引擎尾气的致癌危害等级,由1988年划归的“可能致癌”类别提升到“确定致癌”类别。随着科学研究的推进,目前已经有足够的证据证明,柴油引擎尾气是导致人们罹患肺癌的一个原因。此外,还有有限的证据显示,吸入柴油引擎尾气与罹患膀胱癌存在关联。人们在日常生活和工作中都会有多种渠道接触到柴油引擎尾气。国际癌症研究中心希望本次重新分类能够为各国政府和其他决策者提供借鉴,推动他们制定更加严格的柴油引擎尾气排放标准。这一重要决定无疑对柴油质量提出了更加苛刻的要求。
通过加氢精制等石油炼制工艺降低燃料中硫、氮、芳烃等有害成分的含量是改善燃油质量有效的技术路线,但是对加氢催化剂和反应工艺要求很高,加工成本较高。国际上许多科研机构都在开展汽、柴油含氧调合组分,尤其是高含氧、高十六烷值柴油调合组分生产技术的研发,这已经成为近年来新能源技术领域的研究热点。
经研究,鉴于含氧燃料自身的特性,若在燃料中添加煤炭基、甲醇基等含氧且自身十六烷值高的物质作为燃料添加剂,则可以在不改变发动机原参数的情况下,实现有效降低HC、CO的排量,尤其是碳烟的排放,同时并不会引起NOx排放的增加。
现今已有诸多研究表明,聚甲醛二甲醚(又名聚甲氧基甲缩醛,英文缩写Polyoxymethlene dimethyl ethers,POMDMEn,n=2-8),其通式为CH3(OCH2)nOCH3,一种高沸点黄色液体,其平均十六烷值达63以上,且随着聚合度的增大而大幅增加,平均含氧量为47%-50%,闪点约为65.5℃,沸点约为160-280℃,是一种清洁、高十六烷值柴油调和组份,也是目前世界上公认的环保型燃油组份。可以实现与柴油调和使用且无需对在用车辆的发动机供油系统进行任何改动,即可显著提升柴油的性能。但是,实际使用中会发现,聚甲醛二甲醚的十六烷值受其自身聚合度的影响较大,需要较高聚合度的聚甲醛二甲醚才具有较好的效果。但是鉴于聚合反应自身的难度,无论是对设备还是工艺条件均具有较高的要求,也增大了其加工和提取的难度。因此,人们逐渐把目光投射于聚甲醛二烷基醚的性能关注之上。聚甲醛二烷基醚(polyoxymethylene dialkyl ethers,PODEn)是以亚甲氧基为主链,低碳烷基封端的低相对分子量缩醛聚合物,通式多为R(OCH2nOR,其中,R为CnH2n+1的烷基链。
由于聚甲醛二烷基醚的端基自身分子量稍大,因此其只需要稍低的聚合度即可实现与聚甲醛二烷基醚相近似的十六烷值的性能,同时制备过程中的难度也相应较小。聚甲醛二烷基醚环保性能好,按一定比例调和到柴油可提升到油品含氧量,大幅度减少汽车尾气中SOx、未燃尽的HC化合物、PM颗粒物黑烟以及CO等污染物的排放,且因为聚甲醛二烷基醚的十六烷值高,物性与柴油相近,所以也是一种应用价值极高的柴油燃料添加剂。
聚甲醛二烷基醚(包括聚甲醛二甲基醚)的合成可以通过合成气经由甲醇、甲醛、甲缩醛、聚甲醛与二甲醚等一系列步骤来实现。中国是著名的煤储大国,且中国煤制甲醇、天然气制甲醇、焦炉气制甲醇的技术日益成熟,2012年甲醇产能已经突破5000万吨,但装置开工率只有50%左右,甲醇过剩问题已十分突出,也迫切需要进一步延伸煤化工产业链。因此,开发以煤基甲醇制备聚甲醛二烷基醚的技术不仅能够为显著改进成品柴油质量提供一种新技术,而且也可以改善成品柴油生产的原料结构,使之更加适应我国化石能源的资源禀赋,促进我国发动机液体燃料供应的战略安全。
制备聚甲醛二烷基醚的工艺应该包括三个主要工艺单元,其一是合成单元,是在酸性催化剂催化下的梯级聚合反应、热力学平衡反应;其二是预处理单元,主要是中和脱酸、干燥脱水等处理步骤;其三是下游产物的精馏分离单元,试图通过简单精馏或者萃取精馏、共沸精馏等复杂精馏技术,分离出聚甲醛二烷基醚。
目前,国内外对于聚甲醛二烷基醚(包括聚甲醛二甲基醚)的制备工艺的研究主要均集中于合成单元的原料选择及条件优化以及催化剂体系的优化方面,研究如何改善目标产物的分布、提高产物收率的工艺技术上。以合成原料的优化而言,主要有以下五种工艺:其一是以甲醇、甲醛或甲醛水溶液或多聚甲醛为原料合成聚甲醛二甲醚的工艺,主要详见专利文献US6437195B2、US2008/0207954A1以及EP1070755A1;其二是以缩甲醛、三聚甲醛或多聚甲醛为原料合成聚甲醛二甲醚,主要工艺详见专利文献US2007/0260094A1和US2449469A;其三是以甲醇、二甲醚为原料合成聚甲醛二甲醚,见专利文献US6265528B1;其四是在前三种方法的基础上发展起来的,以现有技术中其他工艺的含醇副产物为原料合成多种聚合度、多种端基的聚甲醛二烷基醚的混合体系,主要代表为中国专利CN102173984A、CN102180778A中公开的以工业酿造酒精副产物或费托合成副产物为原料或以石油C4、C5为原料合成多种聚合度、多种端基的聚甲醛二烷基醚的工艺。
在上述对聚甲醛二烷基醚合成研究的方案中,对合成产物的分离提取均是采用现有技术中常规的普通精馏、共沸精馏或是萃取精馏进行提取的,对目标产物的提取单元并未进行更为深入性的研究。但实际研究中发现,采用上述常规的看似可行的手段对目标产物进行提取时,总是导致产物的提取率不高、以及提出产物的纯度不够理想,无法达到与化石柴油调和使用的技术指标,还需要后续额外的提纯操作才能满足需求,而无论对整个提取单元操作工艺的参数及条件如何的优化,始终无法突破提取率的难题,无法在提取率及产物提纯度方面获得大幅的提升。而在实际生产中,出于经济及诸多方面的考虑,无论前面合成单元的效率有多么惊人,无法通过有效手段获得满足需要的产物,始终成为抑制该工艺发展的难题及瓶颈,也成为该领域亟待解决的当务之急。
发明内容
本发明所要解决的技术问题在于通过对现有技术中聚甲醛二烷基醚的提取单元工艺的深入研究,找出提取单元提取率及提取产物纯度较差的影响原因,并进而提供一种可显著提升提取率及产物纯度的浆态床催化加氢精制聚甲醛二烷基醚的方法。
为解决上述技术问题,本发明是通过以下技术方案实现的:
提供一种浆态床催化加氢精制聚甲醛二烷基醚的方法,其采用浆态床加氢精制反应器,在催化剂条件下,对含有聚甲醛二烷基醚产物的平衡体系进行催化加氢精制,以除去其中含有的甲醛,并对去除甲醛后的产物进行后续的精馏操作。
所述催化剂为骨架金属催化剂。
优选为雷尼钴Raney-Co、雷尼铁Raney-Fe、雷尼钌Raney-Ru、雷尼镍Raney-Ni催化剂、雷尼铜Raney-Cu中的一种或几种组合。
最优选为雷尼镍Raney-Ni催化剂或雷尼铜Raney-Cu催化剂。
具体的,所述雷尼镍Raney-Ni催化剂的用量占所述待加氢精制物料的0.2-10wt%。
优选,所述雷尼镍Raney-Ni催化剂的用量占所述待加氢精制物料的3-8wt%。
所述雷尼铜Raney-Cu催化剂的用量占所述待加氢精制物料的0.2-10wt%。
优选,所述雷尼铜Raney-Cu催化剂的用量占所述待加氢精制物料的3-8wt%。
所述含有聚甲醛二烷基醚产物的平衡体系中甲醛的含量为0.5-20wt%。
所述催化加氢精制的工艺条件为:氢气压力1-10Mpa,加氢精制反应温度60-150℃,反应时间2-8小时。
最优的,所述催化加氢精制的工艺条件为:氢气压力2-6Mpa,加氢精制反应温度70-120℃,反应时间3-6小时。
所述提取步骤包括常压蒸馏、减压蒸馏、闪蒸、精馏、相分离、过滤中的一种或多种操作的组合。
本发明的上述技术方案相比现有技术具有以下优点:
(1)申请人通过对聚甲醛二烷基醚合成工艺的深入研究发现,无论是以甲醛、多聚甲醛或是甲缩醛为反应原料,由于整个反应体系为平衡可逆反应,均存在着与低碳醇(或甲醇)无法完全反应的问题,所以无论怎样改善反应条件,产物体系中均存在有约3.5%wt的甲醛无法完全反应(或是多聚甲醛、甲缩醛解聚的单体),而之所以导致聚甲醛产物的难以提取及产物纯度不高,主要则是因为体系中的甲醛产生了预料之外的负面影响,甲醛与各聚合度的聚甲醛二烷基醚发生了络合反应,甲醛如锁链般连接各聚合产物之间形成巨大的络合体系,导致整个产物体系无法通过常规的蒸馏等工艺进行产物的提纯及精制,不仅给产物的分离处理带来了很大的困难,同时严重影响了产物的收率及经济性;此外,在精馏过程中甲醛氧化、歧化为甲酸形成酸性环境,而甲酸是聚甲醛二烷基醚逆向分解的催化剂,从而造成精馏过程中目标产物聚甲醛二烷基醚发生逆向分解并释放出新的甲醛的技术问题;因此,必须在提取目标产物之前,针对性的除掉平衡体系中含有的少量甲醛,才能将所需的各个产物释放,才能够通过其他可行手段获得满足需求的产物;
(2)申请人在对影响提取效率原因进行研究的同时也惊喜的发现,整个合成产物后的平衡体系中,含水量对于产物的提取效率及纯度具有极大的影响,因此,在选择去除甲醛的精制工艺中,需要精选合理的方法以最大限度的保证产物的提取效率和纯度;
(3)本发明所述的提取工艺中,经过申请人的悉心研究,创造性的发现影响现有技术中聚甲醛二烷基醚提取效率的重要因素,并通过针对性的对上述不曾引起本领域技术人员关心与思考的因素的改进,实现了对各聚合度聚甲醛二烷基醚产物的高效、高纯度的提取;
(4)本发明所述的浆态床催化加氢精制聚甲醛二烷基醚的方法,将所述含有聚甲醛二烷基醚产物的平衡体系中没有反应的甲醛还原为甲醇,从而破坏甲醛与甲醇、甲醛与产物之间复杂的共沸体系,进而对产物进行常压精馏、减压精馏,能生产出纯度大于99.5%的聚甲醛二烷基醚,且聚甲醛二烷基醚的收率大于97%,原子利用率将近100%,工艺过程没有废水、废渣的排放,是一条分离精制聚甲醛二烷基醚的绿色创新工艺和技术;
(5)本发明所述的浆态床催化加氢精制聚甲醛二烷基醚的方法,采用浆态床加氢精制反应器,骨架金属催化剂,包括雷尼钴Raney-Co、雷尼铁Raney-Fe、雷尼钌Raney-Ru、雷尼镍Raney-Ni催化剂、雷尼铜Raney-Cu。优选地是雷尼镍Raney-Ni催化剂和雷尼铜Raney-Cu对平衡产物进行针对性、高选择性的对甲醛进行加氢精制,进而将各聚合度的产物进行针对性分离提纯,所选择的催化剂活性高、效率高;
(6)经本发明所述精制方法处理过后的平衡体系,后续的提取操作可以仅通过常压精馏或减压精馏等常规处理手段进行分离处理,且分离出的各聚合度产物纯度高、提取率高。
附图说明
为了使本发明的内容更容易被清楚的理解,下面结合附图,对本发明作进一步详细的说明,其中,
图1是本发明所述制备聚甲氧基二烷基醚的工艺流程图;
图2是本发明所述浆态床加氢精制步骤的工艺流程图;
图中附图标记表示为:1-浆态床合成反应器,2-缓冲罐,3-干燥塔,4-浆态床加氢精制反应器,5-缓冲罐,6-常压精馏塔,7-减压精馏塔。
具体实施方式
如图1所示,本发明制备聚甲氧基二烷基醚的工艺包括三个主要工艺单元,一是合成单元,所述合成单元其结构组成包括浆态床合成反应器1、缓冲罐2、干燥塔3;在浆态床合成反应器1合成得到的平衡体系,依次在缓冲塔2进行脱酸、干燥塔3进行脱水处理;其中聚甲氧基二甲醚的合成原料主要包括两部分:一部分是提供低聚甲醛的化合物,包括甲醛溶液、三聚甲醛、多聚甲醛等;另一部分提供封端化合物,包括甲醇、二甲醚、甲缩醛等),合成反应是在酸性催化剂催化下的梯级聚合反应、热力学平衡反应;二是预处理、催化精制单元,所述预处理、催化精制单元的结构组成包括:浆态床加氢精制反应器4和缓冲罐5;所述平衡体系依次经浆态床加氢精制反应器4和缓冲罐5进行处理,以除去没有反应的甲醛;三是精馏分离以进行提取的单元,其结构组成为常压精馏塔6和减压精馏塔7;所述平衡体系在通过常压精馏塔6、减压精馏塔7后最终得到高纯度的聚甲氧基二烷基醚。没有反应的轻组分甲缩醛、甲醇以及沸点低于150℃的聚甲氧基二烷基醚返回到所述浆态床合成反应器1循环使用;沸点高于320℃的聚甲氧基二烷基醚重组分也返回到所述浆态床合成反应器1循环反应。
如图2所示为所述浆态床加氢精制反应装置流程图,所述精制前的物料(平衡体系)与氢气在按选定氢油比经混合器混合后,进入所述浆态床(加氢精制)反应器,经加氢精制处理后,得到精致后的平衡体系物料,并进行后续的提取处理。
本发明实施例1、实施例2及对比例1所述含有聚甲氧基二甲基醚产物的平衡体系相同,其制备方法为:
在2L的浆态床合成反应器1中,加入60~80g的Amberlyst15阳离子交换树脂强酸性催化剂,然后加入不同摩尔配比的多聚甲醛(或者三聚甲醛)和缩醛(或者甲醇、乙醇、丙醇、丁醇、戊醇)共计1200g,所述摩尔配比为1:1~2:1。首先氮气置换反应器内的空气,然后充入1.5Mpa的初始氮气,开始升温到反应温度70~130℃,在搅拌下反应0.5~6小时,制得所述含有聚甲氧基二甲基醚产物的平衡体系,其中产物分布和目标产物POMDMEn收率见下表1所示。
表1-所述含有聚甲氧基二甲基醚产物平衡体系的产物分布和目标产物POMDMEn的收率
Figure BDA00003333136800081
Figure BDA00003333136800091
实施例1
首先,将63g雷尼镍Raney-Ni催化剂装载入2L的加压浆态床加氢精制反应器4;
接着,对1260g含有聚甲氧基二甲基醚产物的平衡体系进行催化加氢精制,所述Raney-Ni催化剂的使用量占总反应物的5wt%,其工艺条件为:氢气压力6Mpa、浆态床精制反应温度(即加氢精制反应温度)70℃、反应时间4小时;
最终,甲醛在所述Raney-Ni催化剂作用下加氢生成甲醇,而生成的甲醇作为平衡产物组分之一,从而在除去甲醛的同时不产生其他外来组分,催化加氢精制前后主要物料的组成和分布如表2所示。
将催化加氢精制后的平衡体系进行提取,所述提取工艺采用常压精馏技术,塔板数10~40块,塔顶气体温度48~58.0℃,塔底温度100~120℃,进料温度60~90℃,回流比1.0-3.0。提取结束后,检测产物提取率见表3。
实施例2
首先,将37.8g雷尼铜Raney-Cu催化剂装载入2L的加压浆态床加氢精制反应器;
接着,对1260g含有聚甲氧基二甲基醚产物的平衡体系进行催化加氢精制,所述Raney-Cu催化剂的使用量占总反应物的3wt%,其工艺条件为:氢气压力2Mpa、浆态床精制反应温度(即加氢精制反应温度)110℃、反应时间4.5小时;
最终,甲醛在所Raney-Cu催化剂作用下加氢生成甲醇,而生成的甲醇作为平衡产物组分之一,从而在除去甲醛的同时不产生其他外来组分,催化加氢精制前后主要物料的组成和分布如表2所示。
本实施例采用与实施例1相同的提取工艺进行提取处理。
所述实施例1和实施例2中,催化加氢精制前后的主要物料的组成和分布见表2(注,其中“~”代表趋于接近)。
表2经Raney-Cu催化剂催化加氢精制前后的主要物料的组成和分布
Figure BDA00003333136800101
由此可见,本发明所使用的催化剂可以有效解决去除体系中甲醛的问题,同时对体系中其他所需的产物并无影响,催化剂选择性及效率极高。
对比例1
本对比例是以与所述实施例1中相同的所述含有聚甲氧基二甲基醚产物的平衡体系为基础,但省略前述实施例1中的精制步骤,直接将合成后的平衡体系整体进入提取单元,所述对比例1与实施例1采用相同的提取方式进行各聚合度产物的提取。提取结束后,检测产物提取率见表3。
表3-产物提取率
Figure BDA00003333136800102
本发明实施例3-1至实施例6-2中所述含有聚甲氧基二烷基醚的各种平衡体系相同,其制备方法为:
在2L的浆态床加压反应器中,加入60~80g的Amberlyst15阳离子交换树脂强酸性催化剂,然后加入不同摩尔配比的多聚甲醛(或者三聚甲醛)和乙醇(或者丙醇、丁醇、戊醇)共计1200g,所述摩尔比为1:1~2。首先氮气置换反应器内的空气,然后充入1.5Mpa的初始氮气。开始升温到反应温度70~130℃。在搅拌下反应0.5~6小时。分别制备含有聚甲氧基二乙基醚产物、聚甲氧基二丙基醚产物、聚甲氧基二丁基醚产物、聚甲氧基二戊基醚产物的平衡体系。
实施例3-1
首先,将63g雷尼铜Raney-Cu催化剂装载入2L的加压浆态床加氢精制反应器;
接着,对1260g含有聚甲氧基二乙基醚产物的平衡体系进行催化加氢精制,所述Raney-Cu催化剂的使用量占总反应物的5wt%,其工艺条件为:氢气压力3Mpa、浆态床精制反应温度(即加氢精制反应温度)100℃、反应时间5小时;
最终,甲醛在所述Raney-Cu催化剂作用下加氢生成甲醇,而生成的甲醇作为平衡产物组分之一,从而在除去甲醛的同时不产生其他外来组分,催化加氢精制前后主要物料的组成和分布如表4-1所示。
将经精制后的平衡体系进行提取,所述提取工艺采用常压精馏技术,塔板数20~50块,塔顶气体温度45~65.0℃,塔底温度110~130℃,进料温度60~90℃,回流比1.0-3.0。提取结束后,检测产物提取率见下表4-2。
表4-1经Raney-Cu催化剂催化加氢精制前后的主要物料的组成和分布
Figure BDA00003333136800111
Figure BDA00003333136800121
实施例3-2
本实施例是以实施例3-1中的合成产物体系为基础,但省略前述实施例3-1中的精制等步骤,直接将合成后的平衡体系整体进入提取单元,所述实施例3-1和实施例3-2采用相同的提取方式进行各聚合度产物的提取。
表4-2产物提取率
Figure BDA00003333136800122
实施例4-1
首先,将88.2g雷尼镍Raney-Ni催化剂装载入2L的加压浆态床加氢精制反应器;
接着,对1260g含有聚甲氧基二乙基醚产物的平衡体系进行催化加氢精制,所述Raney-Ni催化剂的使用量占总反应物的7wt%,其工艺条件为:氢气压力4Mpa、浆态床精制反应温度(即加氢精制反应温度)80℃、反应时间3.5小时;
最终,甲醛在所述Raney-Ni催化剂作用下加氢生成甲醇,而生成的甲醇作为平衡产物组分之一,从而在除去甲醛的同时不产生其他外来组分,催化加氢精制前后主要物料的组成和分布如表5-1所示。
经精制后的平衡体系进行提取,所示提取工艺采用常压精馏技术,塔板数20~50块,塔顶气体温度45~65.0℃,塔底温度110~130℃,进料温度60~90℃,回流比1.0-3.0。提取结束后,检测产物提取率见下表5-2。
表5-1经Raney-Ni催化剂催化加氢精制前后的主要物料的组成和分布
Figure BDA00003333136800131
实施例4-2
本实施例是以实施例4-1中的合成产物体系为基础,但省略前述实施例4-1中的精制等步骤,直接将合成后的平衡体系整体进入提取单元,所述实施例4-1和实施例4-2采用相同的提取方式进行各聚合度产物的提取。
表5-2产物提取率
Figure BDA00003333136800132
实施例5-1
首先,将50.4g雷尼铜Raney-Cu催化剂装载入2L的加压浆态床加氢精制反应器;
接着,对1260g含有聚甲氧基二乙基醚产物的平衡体系进行催化加氢精制,所述Raney-Cu催化剂的使用量占总反应物的4wt%,其工艺条件为:氢气压力4Mpa、浆态床精制反应温度(即加氢精制反应温度)100℃、反应时间4小时;
最终,甲醛在所述Raney-Cu催化剂作用下加氢生成甲醇,而生成的甲醇作为平衡产物组分之一,从而在除去甲醛的同时不产生其他外来组分,催化加氢精制前后主要物料的组成和分布如表6-1所示。
经精制后的平衡体系进行提取,所述提取工艺采用常压精馏技术,塔板数20~50块,塔顶气体温度45~65.0℃,塔底温度110~130℃,进料温度60~90℃,回流比1.0-3.0。提取结束后,检测产物提取率见下表6-2。
表6-1经所述Raney-Cu催化剂催化加氢精制前后的主要物料的组成和分布
Figure BDA00003333136800141
实施例5-2
本实施例是以实施例5-1中的合成产物体系为基础,但省略前述实施例5-1中的精制等步骤,直接将合成后的平衡体系整体进入提取单元,所述实施例5-1和实施例5-2采用相同的提取方式进行各聚合度产物的提取。
表6-2产物提取率
Figure BDA00003333136800142
实施例6-1
首先,将37.8g雷尼镍Raney-Ni催化剂装载入2L的加压浆态床加氢精制反应器;
接着,对1260g含有聚甲氧基二乙基醚产物的平衡体系进行催化加氢精制,所述Raney-Ni催化剂的使用量占总反应物的3wt%,其工艺条件为:氢气压力4Mpa、浆态床精制反应温度(即加氢精制反应温度)90℃、反应时间4.5小时;
最终,甲醛在所述Raney-Ni催化剂作用下加氢生成甲醇,而生成的甲醇作为平衡产物组分之一,从而在除去甲醛的同时不产生其他外来组分,催化加氢精制前后主要物料的组成和分布如表7-1所示。
经精制后的平衡体系进行提取,所述提取工艺采用常压精馏技术,塔板数20~50块,塔顶气体温度45~65.0℃,塔底温度110~130℃,进料温度60~90℃,回流比1.0-3.0。提取结束后,检测产物提取率见表7-2。
表7-1经Raney-Ni催化剂催化加氢精制前后的主要物料的组成和分布
Figure BDA00003333136800151
实施例6-2
本实施例是以实施例6-1中的合成产物体系为基础,但省略前述实施例6-1中的精制等步骤,直接将合成后的平衡体系整体进入提取单元,所述实施例6-1和实施例6-2采用相同的提取方式进行各聚合度产物的提取。
表7-2产物提取率
Figure BDA00003333136800152
上述实施例中的提取数据可知,合成单元所得到的平衡体系中,如果不进行专门针对性的去除甲醛处理,那么无论合成部分的产物分布多么理想,均无法得到令人满意的产品,而经过本发明所述加氢精制工艺处理后的体系,只需要简单的常规提取操作即可实现各个聚合度产物的提取,得到令人满意的产品提取率以及产品纯度效果,因此,精制单元作为整个合成工艺的步骤,对产品的获得起到了至关重要的作用。更为重要的是,本发明所述的采用浆态床催化加氢精制的工艺,实现了接近100%的原子利用率,且整个工艺过程无任何废渣、废水的产生,不仅提取的效果令人满意,且整个工艺绿色环保,具有极大的现实意义。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (11)

1.一种浆态床催化加氢精制聚甲醛二烷基醚的方法,其特征在于,采用浆态床反应器,在催化剂条件下,对含有聚甲醛二烷基醚产物的平衡体系进行催化加氢精制,以除去其中含有的甲醛,并对去除甲醛后的产物进行后续的提取操作。
2.根据权利要求1所述的浆态床催化加氢精制聚甲醛二烷基醚的方法,其特征在于,所述催化剂为骨架金属催化剂。
3.根据权利要求2所述的浆态床催化加氢精制聚甲醛二烷基醚的方法,其特征在于,所述催化剂为雷尼钴Raney-Co、雷尼铁Raney-Fe、雷尼钌Raney-Ru、雷尼镍Raney-Ni催化剂、雷尼铜Raney-Cu催化剂中的一种或几种组合。
4.根据权利要求3所述的浆态床催化加氢精制聚甲醛二烷基醚的方法,其特征在于,所述雷尼镍Raney-Ni催化剂的用量占所述待加氢精制物料的0.2-10wt%。
5.根据权利要求4所述的浆态床催化加氢精制聚甲醛二烷基醚的方法,其特征在于,所述雷尼镍Raney-Ni催化剂的用量占所述待加氢精制物料的3-8wt%。
6.根据权利要求3所述的浆态床催化加氢精制聚甲醛二烷基醚的方法,其特征在于,所述雷尼铜Raney-Cu催化剂的用量占所述待加氢精制物料的0.2-10wt%。
7.根据权利要求6所述的浆态床催化加氢精制聚甲醛二烷基醚的方法,其特征在于,所述雷尼铜Raney-Cu催化剂的用量占所述待加氢精制物料的3-8wt%。
8.根据权利要求1-7任一所述的浆态床催化加氢精制聚甲醛二烷基醚的方法,其特征在于,所述含有聚甲醛二烷基醚产物的平衡体系中甲醛的含量为0.5-20wt%。
9.根据权利要求8所述的浆态床催化加氢精制聚甲醛二烷基醚的方法,其特征在于,所述催化加氢精制的工艺条件为:氢气压力1-10Mpa,加氢精制反应温度60-150℃,反应时间2-8小时。
10.根据权利要求9所述的浆态床催化加氢精制聚甲醛二烷基醚的方法,其特征在于,所述催化加氢精制的工艺条件为:氢气压力2-6Mpa,加氢精制反应温度70-120℃,反应时间3-6小时。
11.根据权利要求1-10任一所述的浆态床催化加氢精制聚甲醛二烷基醚的方法,其特征在于,所述提取步骤包括常压蒸馏、减压蒸馏、闪蒸、精馏、相分离、过滤中的一种或多种操作的组合。
CN201310232101.7A 2013-06-09 2013-06-09 一种浆态床催化加氢精制聚甲醛二烷基醚的方法 Active CN103333055B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201310232101.7A CN103333055B (zh) 2013-06-09 2013-06-09 一种浆态床催化加氢精制聚甲醛二烷基醚的方法
US14/257,215 US9090842B2 (en) 2013-06-09 2014-04-21 Method for refining polyoxymethylene dialkyl ethers by catalytic hydrogenation using a slurry bed
EP14171387.5A EP2810929B1 (en) 2013-06-09 2014-06-05 A method for refining polyoxymethylene dialkyl ethers by catalytic hydrogenation using a slurry bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310232101.7A CN103333055B (zh) 2013-06-09 2013-06-09 一种浆态床催化加氢精制聚甲醛二烷基醚的方法

Publications (2)

Publication Number Publication Date
CN103333055A true CN103333055A (zh) 2013-10-02
CN103333055B CN103333055B (zh) 2015-03-18

Family

ID=49241281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310232101.7A Active CN103333055B (zh) 2013-06-09 2013-06-09 一种浆态床催化加氢精制聚甲醛二烷基醚的方法

Country Status (3)

Country Link
US (1) US9090842B2 (zh)
EP (1) EP2810929B1 (zh)
CN (1) CN103333055B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111689840A (zh) * 2020-07-14 2020-09-22 北京东方红升新能源应用技术研究院有限公司 聚甲氧基二甲醚缩合产物的精制工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103333059B (zh) * 2013-06-09 2014-09-17 北京东方红升新能源应用技术研究院有限公司 一种固定床催化加氢精制聚甲醛二烷基醚的方法
US11898114B2 (en) 2020-12-11 2024-02-13 Alliance For Sustainable Energy, Llc Reactions and methods for producing fuels

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2449469A (en) * 1944-11-02 1948-09-14 Du Pont Preparation of polyformals
CN1173483A (zh) * 1996-07-29 1998-02-18 林德股份公司 处理主要由甲醛、甲醇、乙炔、水和低沸点物质组成的物料流的方法和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2276192A (en) 1938-08-25 1942-03-10 Du Pont Hydrogenation of formaldehyde
US3816478A (en) * 1970-07-20 1974-06-11 Atlantic Richfield Co Purification of a material containing aldehyde impurities
US4153578A (en) 1978-07-31 1979-05-08 Gaf Corporation Catalyst comprising Raney nickel with adsorbed molybdenum compound
US6166266A (en) 1998-11-12 2000-12-26 Bp Amoco Corporation Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of dimethyl ether with formaldehyde formed by oxidation of methanol
US6265528B1 (en) 1998-11-12 2001-07-24 Bp Corporation North America Inc. Preparation of polyoxymethylene dimethyl ethers by acid-activated catalytic conversion of methanol with formaldehyde formed by oxy-dehydrogenation of dimethyl ether
US6437195B2 (en) 1998-11-12 2002-08-20 Bp Corporation North America Inc. Preparation of polyoxymethylene dimethyl ethers by acid-activated catalytic conversion of methanol with formaldehyde formed by dehydrogenation of methanol
ITMI991614A1 (it) 1999-07-22 2001-01-22 Snam Progetti Miscela liquida costituita da gasoli diesel e da composti ossigenati
MXPA06003819A (es) 2003-10-07 2006-08-11 Shell Int Research Proceso para la produccion de 1,3-propanodiol por hidrogenacion catalitica de 3-hidroxipropanal en la presencia de un co-catalizador de hidratacion.
US20070260094A1 (en) 2004-10-25 2007-11-08 Basf Aktiengesellschaft Method for Producing Polyoxymethylene Dimethyl Ethers
DE102005027701A1 (de) 2005-06-15 2006-12-21 Basf Ag Verfahren zur Herstellung von Polyoxymethylendimethylethern aus Methanol und Formaldehyd
CN102173984B (zh) 2011-03-21 2013-08-21 北京东方红升新能源应用技术研究院有限公司 石油馏分制备低聚合度聚甲醛二烷基醚的方法及应用
CN102180778A (zh) 2011-03-21 2011-09-14 北京东方红升新能源应用技术研究院有限公司 低碳混合醇制备低聚合度聚甲醛二烷基醚的方法及应用
CN103333059B (zh) * 2013-06-09 2014-09-17 北京东方红升新能源应用技术研究院有限公司 一种固定床催化加氢精制聚甲醛二烷基醚的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2449469A (en) * 1944-11-02 1948-09-14 Du Pont Preparation of polyformals
CN1173483A (zh) * 1996-07-29 1998-02-18 林德股份公司 处理主要由甲醛、甲醇、乙炔、水和低沸点物质组成的物料流的方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111689840A (zh) * 2020-07-14 2020-09-22 北京东方红升新能源应用技术研究院有限公司 聚甲氧基二甲醚缩合产物的精制工艺
CN111689840B (zh) * 2020-07-14 2022-11-18 北京东方红升新能源应用技术研究院有限公司 聚甲氧基二甲醚缩合产物的精制工艺

Also Published As

Publication number Publication date
US9090842B2 (en) 2015-07-28
US20140364652A1 (en) 2014-12-11
CN103333055B (zh) 2015-03-18
EP2810929B1 (en) 2018-08-08
EP2810929A1 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
CN103333059B (zh) 一种固定床催化加氢精制聚甲醛二烷基醚的方法
CN103333060B (zh) 一种精制及提纯聚甲醛二烷基醚的方法
CN102558106A (zh) 一种利用废弃生物质制备2-甲基四氢呋喃的方法
CN104591984A (zh) 一种以浓缩甲醛为原料制备聚甲氧基二甲醚的方法
CN101864327A (zh) 一种煤焦油加氢改质的方法
CN104447237A (zh) 以甲醇制聚甲醛二甲醚的工艺方法
CN105152882B (zh) 一种由高凝聚甲氧基二甲醚组分dmm6+和甲缩醛dmm制dmm3‑5的方法
CN105713642B (zh) 一种以木质纤维素为原料合成高密度航空燃料的方法
CN103333061A (zh) 一种精制及提纯聚甲醛二烷基醚的方法
CN101020846A (zh) 一种多产柴油的煤焦油加氢方法
CN104230684A (zh) 由甲醇合成聚甲醛二甲醚的工艺方法
CN102504891B (zh) 甘油基生物燃料添加剂的制备方法
CN103333055B (zh) 一种浆态床催化加氢精制聚甲醛二烷基醚的方法
CN107286001B (zh) 聚甲氧基二甲醚分离方法
CN104447238A (zh) 提纯聚甲醛二甲基醚的方法
CN104603240A (zh) 用于使用预处理的脱氧物流生产生物燃料的方法
CN103664543B (zh) 由多聚甲醛制备聚甲醛二甲醚的方法
CN110835288A (zh) 分离乙醇与能量利用的方法
CN103319319B (zh) 一种精制及提纯聚甲醛二烷基醚的方法
CN107286004B (zh) 聚甲醛二甲醚精制的方法
CN102627985B (zh) 汽、柴油添加剂组合物及其制备方法和用途
CN107286002B (zh) 聚甲氧基二甲醚2的精制方法
CN102453509B (zh) 一种烃油催化转化方法
EP2810928B1 (en) A method for synthesizing polyoxymethylene dimethyl ethers
CN104419461B (zh) 一种煤焦油的浆态床和固定床串联加氢工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 1606, B, building 19, building 1, No. 100176, Ronghua Road, Beijing economic and Technological Development Zone, Beijing, China

Co-patentee after: China Petroleum University (East China)

Patentee after: Beijing Dongfang Hongsheng New Energy Application Technology Institute Co., Ltd.

Address before: 100723 Beijing Chaoyang District City, an area where 4 Building No. 16 China chemical building room 213

Co-patentee before: China Petroleum University (East China)

Patentee before: Beijing Dongfang Hongsheng New Energy Application Technology Institute Co., Ltd.