CN103259512A - 多电平幅度信号传输接收器 - Google Patents

多电平幅度信号传输接收器 Download PDF

Info

Publication number
CN103259512A
CN103259512A CN2013100451069A CN201310045106A CN103259512A CN 103259512 A CN103259512 A CN 103259512A CN 2013100451069 A CN2013100451069 A CN 2013100451069A CN 201310045106 A CN201310045106 A CN 201310045106A CN 103259512 A CN103259512 A CN 103259512A
Authority
CN
China
Prior art keywords
signal
pam
circuit
level range
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100451069A
Other languages
English (en)
Other versions
CN103259512B (zh
Inventor
潘明德
丁玮琦
S·舒马拉耶夫
李鹏
M·希玛努奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altera Corp
Original Assignee
Altera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Altera Corp filed Critical Altera Corp
Publication of CN103259512A publication Critical patent/CN103259512A/zh
Application granted granted Critical
Publication of CN103259512B publication Critical patent/CN103259512B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4917Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using multilevel codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D1/00Demodulation of amplitude-modulated oscillations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/061Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing hard decisions only; arrangements for tracking or suppressing unwanted low frequency components, e.g. removal of dc offset
    • H04L25/066Multilevel decisions, not including self-organising maps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • H04L27/06Demodulator circuits; Receiver circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dc Digital Transmission (AREA)

Abstract

一个实施方式涉及一种用于在每个符号周期至少包括三个幅度电平的多电平幅度信号传输的接收器电路。该接收器电路包括峰值检测器、参考电压生成器和比较器电路。该峰值检测器被布置为检测该多电平幅度信号的峰值电压,并且该参考电压生成器使用该峰值电压来生成多个参考电压。该比较器电路使用该多个参考电压来检测该多电平幅度信号的幅度电平。还公开了其他实施方式和特征。

Description

多电平幅度信号传输接收器
技术领域
本发明一般性地涉及数据通信。更具体而言,本发明涉及用于高速数据链路的电路。
背景技术
高速数据链路用于在系统中的设备之间传送数据。对于这种高速链路,已经开发了日益加快的数据速率的串行接口协议。当前,用于最高速串行链路的数据信号仅使用两个电压电平(幅度)来传递信息:高电平和低电平。可以将高电平解释为逻辑1并且可以将低电平解释为逻辑0。该信号有时候被称为“不归零”(NRZ)数据信号传输。在NRZ信号传输中,一个符号在一个单位时间间隔(UI)中提供一个信息比特。
多电平幅度信号传输使用多个(至少三个)不同的电压电平以代替仅使用两个电平。有时候被称为脉冲幅度调制(PAM)信号传输的该多电平幅度信号传输在每个符号中传送多于一个信息比特。因此,对于相同的符号速率,PAM信号传输比NRZ信号传输提供更高的有效数据速率。
不幸的是,如果改为实现PAM信号传输来代替NRZ信号传输,则收发器复杂度一般会增加。例如,通常在接收器的前端实现高速模数转换器(ADC)电路以数字化PAM信号。但是,该高速ADC电路一般需要相对大的区域来实现并且通常消耗大量功率。
发明内容
一个实施方式涉及一种用于在每个符号周期至少包括三个幅度电平的多电平幅度信号传输的接收器电路。该接收器电路包括峰值检测器、参考电压生成器和比较器电路。该峰值检测器被布置为检测该多电平幅度信号的峰值电压,并且该参考电压生成器使用该峰值电压来生成多个参考电压。该比较器电路使用该多个参考电压来检测该多电平幅度信号的幅度电平。
另一个实施方式涉及一种用于接收在每个符号周期至少包括三个幅度电平的多电平幅度信号的方法。检测该多电平幅度信号的峰值电压,并且生成取决于该峰值电压的多个参考电压。将该多电平幅度信号与该多个参考电压进行比较以检测幅度电平。
另一个实施方式涉及一种包括脉冲幅度调制接收器的集成电路。该接收器至少包括峰值检测器、参考电压生成器和比较器电路。该峰值检测器被布置为检测在每个符号周期至少包括三个幅度电平的发射脉冲幅度调制信号的峰值电压。该参考电压生成器被布置为生成取决于该峰值电压的多个参考电压。该比较器电路被布置为将该脉冲幅度调制信号与该多个参考电压进行比较以检测幅度电平。
还公开了其他实施方式和特征。
附图说明
图1是根据本发明的一个实施方式的通信链路的高级示图。
图2是用于描绘根据本发明的一个实施方式的PAM-3信号传输接收器的框图。
图3描绘了可以由根据本发明的一个实施方式的接收器使用的参考电压生成器电路。
图4描绘了可以由根据本发明的一个实施方式的三电平信号传输接收器使用的两路比较器电路。
图5显示了可以由根据本发明的一个实施方式的接收器电路生成并且使用的示例性PAM-3信号和两个参考电平。
图6是用于描绘根据本发明的一个实施方式的PAM-4信号传输接收器的框图。
图7描绘了可以由根据本发明的一个实施方式的PAM-4信号传输接收器使用的三路比较器电路。
图8显示了可以由根据本发明的一个实施方式的接收器电路生成并且使用的示例性PAM-4信号和三个参考电平。
图9显示了可以由常规接收器电路使用的示例性PAM-4信号和7个参考电平。
图10是根据本发明的一个实施方式的多电平幅度信号传输发射器的框图。
图11A是根据本发明的一个实施方式的用于发射多电平幅度信号的方法的流程图。
图11B是根据本发明的一个实施方式的用于接收多电平幅度信号的方法的流程图。
图12是根据本发明的一个实施方式的可以被布置或配置为包括本文所公开的一个或多个电路的现场可编程门阵列的简化的部分框图。
图13是根据本发明的一个实施方式可以采用多电平信号传输数据链路的示例性数字系统的框图。
具体实施方式
本公开提供了显著降低接收器复杂度的、用于PAM信号传输的创新的接收器架构。根据本发明的一个实施方式,该接收器架构自动地校准限幅(slicing)电压电平的数目以最小化所需要的采样器的数目。
图1是根据本发明的一个实施方式的通信链路100的高级示图。如图1中所示,通信链路100一般性地包括发射器(TX)120、接收器(RX)140和用于在发射器与接收器之间传送信号的通信信道130。通信信道130可以包括一个或多个通道。
与本公开相关地,通信链路100可以利用多电平信号传输来增加链路100的有效数据速率。该多电平信号传输使用三个或更多电压电平来传送信息。
在PAM信号传输中,将信息编码到一系列信号脉冲的幅度中。PAM-M信号传输是指如下PAM信号传输,在该PAM信号传输中每个信号脉冲的幅度可以处于M个电压电平中的一个。例如在PAM-3信号传输中,每个信号脉冲的幅度可以处于3个电压电平之一,例如:-3伏特、0伏特或+3伏特。作为另一个示例,在PAM-4信号传输中,每个信号脉冲的幅度可以处于4个电压电平之一,例如:-3伏特、-1伏特、+1伏特或+3伏特。NRZ信号传输本质上是PAM-2信号传输。注意到,虽然下面详细描述了涉及PAM-3和PAM-4信号传输的实施方式,但是本文公开的接收器架构可以一般性地应用于PAM-M信号传输,其中M是3或更多。
图2是用于描绘根据本发明的一个实施方式的PAM-3信号传输接收器200的框图。如图所示,接收器200可以包括接收器缓冲器(RX缓冲器)201、均衡器和自动增益控制(EQ+AGC)电路202、峰值检测器204、参考电压生成器(Vref生成器)206、两路比较器电路208、解码器210和串并转换器212。
RX缓冲器201可以被布置为接收已经基于通信信道130发射的PAM-3信号并且输出缓冲的PAM-3信号(RXI)。可以将该RXI信号输入到EQ+AGC电路202。在均衡并且调整该信号的增益之后,EQ+AGC电路202可以输出已均衡且增益已调整的PAM-3信号(RXO信号)。
可以向峰值检测器204和两路比较器电路208输出RXO信号。峰值检测器204可以被布置为输出与RXO信号的峰值电压相对应的峰值电压(Vp)信号。可以例如使用可以被称为EYE监视器电路的片上信号质量监视电路来实现峰值检测器204。如图所示,可以向Vref生成器206和EQ+AGC电路202二者输出Vp信号。EQ+AGC电路202可以在它对于信号增益的调整中使用Vp信号。
Vref生成器206可以被布置为利用Vp信号来生成多个参考电压电平。在该情况下,可以由Vref生成器206生成两个参考电压电平。下文参照图3描述Vref生成器206的一个实施方式。
两路比较器电路208可以被布置为使用来自Vref生成器206的参考电压电平作为用于PAM-3信号的限幅电平。可以从两路比较器电路208输出用于指示比较结果的两比特信号。下文参照图4描述两路比较器电路208的一个实施方式。
可以由解码器210接收来自两路比较器电路208的两比特信号。解码器210可以被布置为解码该两比特信号,以便对来自发射器的串行二进制数据信号进行再生。可以由串并转换器212接收该串行二进制数据信号。串并转换器212可以被布置为将该串行二进制数据信号转换成并行二进制数据信号(被显示为数据[N:0])。
与常规PAM信号接收器相反,图2中的接收器200在前端处不包括ADC电路。作为替代,使用峰值检测器204和Vref生成器206自动生成两个限幅电压电平,并且两路比较器电路208和解码器210用于对该信号进行解调和解码。
图3描绘了可以由根据本发明的一个实施方式的接收器使用的参考电压生成器电路(Vref生成器)300。图3中的Vref生成器300可以用作图2中的接收器200的Vref生成器206。如图3中所示,Vref生成器300可以包括反相放大器电路,其中使用具有端到端阻抗R1的第一电阻器梯形电路302和具有端到端阻抗R2的第二电阻器梯形电路304以及运算放大器(OPA)电路306形成该反相放大器电路。
第一电阻器梯形电路302可以被布置在峰值电压Vp输入与OPA306的负输入端子之间。第二电阻器梯形电路304可以被布置在OPA306的负输入端子与输出端子之间。OPA306的正输入端子可以被连接到共模电压Vcm。OPA306的输出端子可以提供输出电压信号Vo=-(R2/R1)Vp+Vcm(R1+R2)/R1。如果Vcm是零伏特(接地)并且R1=R2,则Vo=-Vp。
第一电阻器梯形电路302可以包括多个串联电阻器元件R,并且可以从该梯形电路中的两个相邻电阻器元件R之间的节点获得第一(正)参考电压(Vrefp)。在接收器的配置期间可以可编程地选择该梯形电路中输出Vrefp的节点。在该情况下,由于OPA306的负端子被有效地驱动到Vcm,所以可以可编程地选择Vrefp的电压电平为在Vp与Vcm之间的范围中的电压电平。
类似地,第二电阻器梯形电路304也可以包括多个串联电阻器元件R,并且可以从该梯形电路中的两个相邻电阻器元件R之间的节点获得第二(负)参考电压(Vrefn)。在接收器的配置期间可以可编程地选择该梯形电路中输出Vrefn的节点。在该情况下,由于OPA306的负端子被有效地驱动到Vcm,所以可以可编程地选择Vrefn的电压电平为在Vcm与Vo之间的范围中的电压电平。
虽然图3中显示的示例性电阻器梯形电路每个都具有5个电阻器元件,但是电阻器元件的数目可以是任意数目。例如,在电阻器梯形电路中可以包括更多数目的电阻器元件,以增加可以可编程地选择的参考电压的粒度。此外,梯形电路中的电阻器元件的阻抗可以相同或者可以根据实现而改变。
图4描绘了可以由根据本发明的一个实施方式的三电平信号传输接收器使用的两路比较器电路400。图4中的两路比较器电路400可以用作图2中的接收器200的两路比较器电路208。
第一比较器402可以被布置为将RXO信号(来自EQ+AGC电路202的已均衡且增益已调整的PAM-3信号)中的每个符号与Vrefn信号(来自Vref生成器206的负参考电压)进行比较。第一比较器402的输出可以是取决于该比较的结果的第一码比特信号B<0>。例如,如果进行比较时ROX高于Vrefn则B<0>可以是高的(逻辑1),并且如果进行比较时ROX低于Vrefn则B<0>可以是低的(逻辑0)。
第二比较器404可以被布置为将RXO信号中的每个符号与Vrefp信号(来自Vref生成器206的正参考电压)进行比较。第二比较器404的输出可以是取决于该比较的结果的第二码比特信号B<1>。例如,如果进行比较时ROX高于Vrefp则B<1>可以是高的(逻辑1),并且如果进行比较时ROX低于Vrefp则B<1>可以是低的(逻辑0)。
(包括B<0>和B<1>的)两比特码信号指示用于PAM-3信号中的每个符号的幅度电平。例如,如果B<0>和B<1>都低,则可以将幅度指示为处于低电平。如果B<0>和B<1>都高,则可以将幅度指示为处于高电平。最后,如果B<0>高并且B<1>低,则可以将幅度指示为处于中间电平。
图5显示了可以由根据本发明的一个实施方式的接收器电路生成并且使用的示例性PAM-3信号(RXO)和两个参考电平(Vrefn和Vrefp)。由图可见,RXO信号可以在三个幅度电平之间转变:低于Vrefn的低电平、高于Vrefp的高电平以及在Vrefn和Vrefp之间的中间电平。
图6是用于描绘根据本发明的一个实施方式的PAM-4信号传输接收器的框图。如图所示,接收器600可以包括接收器缓冲器(RX缓冲器)601、均衡器和自动增益控制(EQ+AGC)电路602、峰值检测器604、参考电压生成器(Vref生成器)606、三路比较器电路608、解码器610和串并转换器612。
RX缓冲器601可以被布置为接收已经基于通信信道130发射的PAM-3信号并且输出缓冲的PAM-3信号(RXI)。可以将该RXI信号输入到EQ+AGC电路602。在均衡并且调整该信号的增益之后,EQ+AGC电路602可以输出已均衡且增益已调整的PAM-3信号(RXO信号)。
可以向峰值检测器604和三路比较器电路608输出RXO信号。峰值检测器604可以被布置为输出与RXO信号的峰值电压相对应的峰值电压(Vp)信号。可以例如使用EYE监视器电路来实现峰值检测器604。如图所示,可以向Vref生成器606和EQ+AGC电路602二者输出Vp信号。EQ+AGC电路602可以在它对于信号增益的调整中使用Vp信号。
Vref生成器606可以被布置为利用Vp信号来生成多个参考电压电平。在该情况下,可以由Vref生成器606生成两个参考电压电平。上文参照图3描述了Vref生成器606的一个实施方式。
三路比较器电路608可以被布置为使用来自Vref生成器606的两个参考电压电平和共模电压电平(Vcm)作为用于PAM-4信号的限幅电平。可以从三路比较器电路608输出用于指示比较结果的三比特信号。下文参照图7描述三路比较器电路608的一个实施方式。
可以由解码器610接收来自三路比较器电路608的三比特信号。解码器610可以被布置为解码该三比特信号,以便对来自发射器的串行二进制数据信号进行再生。可以由串并转换器612接收该串行二进制数据信号。串并转换器612可以被布置为将该串行二进制数据信号转换成并行二进制数据信号(被显示为数据[N:0])。
与常规PAM信号接收器相反,图6中的接收器600在前端处不包括ADC电路。作为替代,使用峰值检测器604和Vref生成器606自动生成三个限幅电压电平,并且三路比较器电路608和解码器610用于对该信号进行解调和解码。
图7描绘了可以由根据本发明的一个实施方式的PAM-4信号传输接收器使用的三路比较器电路700。图7中的三路比较器电路700可以用作图6中的接收器600的三路比较器电路608。
第一比较器702可以被布置为将RXO信号(来自EQ+AGC电路602的已均衡且增益已调整的PAM-4信号)中的每个符号与Vrefn信号(来自Vref生成器606的负参考电压)进行比较。第一比较器702的输出可以是取决于该比较的结果的第一码比特信号B<0>。例如,如果进行比较时ROX高于Vrefn则B<0>可以是高的(逻辑1),并且如果进行比较时ROX低于Vrefn则B<0>可以是低的(逻辑0)。
第二比较器704可以被布置为将RXO信号中的每个符号与Vcm信号(公共模式电压)进行比较。第二比较器704的输出可以是取决于该比较的结果的第二码比特信号B<1>。例如,如果进行比较时ROX高于Vcm则B<1>可以是高的(逻辑1),并且如果进行比较时ROX低于Vcm则B<1>可以是低(逻辑0)。
第三比较器706可以被布置为将RXO信号中的每个符号与Vrefp信号(来自Vref生成器606的正参考电压)进行比较。第三比较器706的输出可以是取决于该比较的结果的第三码比特信号B<2>。例如,如果进行比较时ROX高于Vrefp则B<2>可以是高的(逻辑1),并且如果进行比较时ROX低于Vrefp则B<2>可以是低的(逻辑0)。
(包括B<0>、B<1>和B<2>的)三比特码信号指示用于PAM-4信号中的每个符号的幅度电平。例如,如果B<0>低,则可以将幅度指示为处于最低电平,而如果B<2>高,则可以将幅度指示为处于最高电平。否则,如果B<0>高并且B<2>低,则如果B<1>低则可以将幅度指示为处于次最低电平,并且如果B<1>高则可以将幅度指示为处于次最高电平。
图8显示了可以由根据本发明的一个实施方式的接收器电路生成并且使用的示例性PAM-4信号和三个参考电平。由图可见,RXO信号可以在四个幅度电平之间转变:低于Vrefn的最低电平、高于Vrefn并且低于Vcm的次最低电平、高于Vcm并且低于Vrefp的次最高电平以及高于Vrefp的最高电平。
相反,图9显示了可以由常规接收器电路使用的示例性PAM-4信号和7个参考电平(comp1到comp7)。对于常规接收器而言,不能自动校准参考电平以对PAM-4信号进行限幅。如此,需要更多数目的比较器来确保参考电平能够在PAM-4信号的不同电平之间进行正确地区分。
根据本发明的一个实施方式,图10是多电平幅度信号传输发射器1000的框图,而图11A显示了用于发射多电平幅度信号的方法的流程图。如图10中所示,发射器1000可以包括串行化器1002、编码器1004和驱动器1006。串行化器1002接收将要在通信信道130上向接收器140发射的并行数据信号(数据[N:0])。串行化器1002串行化1102该并行数据信号,以生成向编码器1004输出的串行数据信号。编码器1004可以被布置为编码1104该串行数据信号以便生成多个码比特信号。驱动器1006可以被布置为基于码比特信号生成1106多电平幅度信号,并且经由通信信道130向接收器140发射1108该多电平幅度信号。
在图11B中显示了根据本发明的一个实施方式的用于接收1150多电平幅度信号的方法。如图所示,可以接收多电平幅度信号,并且可以检测1154该信号的峰值电平。使用该多电平幅度信号的峰值电平,可以生成1156多个参考电平。
根据本发明的实施方式,可以使得参考电平被自动校准的方式生成1156参考电平。该校准使得可以鲁棒的方式将该多电平幅度信号限幅成不同的电平。可以通过峰值电压的检测并且通过使用之前已经被编程为生成适用于正被接收的具体多电平幅度信号的限幅电压的参考电压生成器,自动实现该校准。
然后可以使用参考电平,将多电平幅度信号转换成1158多个码比特信号,并且可以解码1160该多个码比特信号以生成串行数据信号。最后,可以对该串行数据信号进行串并转换1162,以对发射的并行数据信号进行再生。
图12是根据本发明的一个实施方式的可以被布置或配置为包括本文所公开的一个或多个电路的现场可编程门阵列(FPGA)的简化的部分框图。应该理解,可以在包括FPGA、可编程逻辑器件(PLD)、复杂可编程逻辑器件(CPLD)、可编程逻辑阵列(PLA)、数字信号处理器(DSP)和专用集成电路(ASIC)的多种类型的集成电路中使用本发明的实施方式。
FPGA10在它的“内核”中包括可以由长度和速度不同的列和行互连导体的网络来互连的可编程逻辑阵列块(或LAB)12的二维阵列。LAB12包括多个(例如10个)逻辑元件(或LE)。LE是用于提供用户定义的逻辑功能的有效实现的可编程逻辑块。FPGA具有很多可以被配置为实现各种组合和顺序功能的逻辑元件。逻辑元件可以访问可编程互连结构。可编程互连结构可以被编程为以几乎任何希望的配置而互连逻辑元件。
FPGA10还可以包括分布式存储器结构,该分布式存储器结构包括在整个阵列上提供的大小不同的随机访问存储器(RAM)块。
RAM块包括例如块14、块16和块18。这些存储器块还可以包括移位寄存器和FIFO缓冲器。FPGA10还可以包括可以实现例如具有加法和减法特征的乘法器的数字信号处理器(DSP)块20。
在该示例中,位于该芯片的外围周围的输入/输出元件(IOE)22支持很多单端和差分输入/输出标准。每个IOE22被耦合到FPGA10的外部端子(即引脚)。收发器(TX/RX)信道阵列可以如图所示例如被布置为每个TX/RX信道电路30被耦合到多个LAB。TX/RX信道电路30可以包括本文所述的接收器电路和其他电路。
应该理解,本文仅为了说明的目的描述了FPGA10,并且可以用许多不同类型的PLD、FPGA和ASIC实现本发明。
图13是根据本发明的一个实施方式可以采用多电平信号传输的示例性数字系统50的框图。如图所示,系统50可以包括FPGA作为多个组件中的一个。
系统50可以是例如已编程的数字计算机系统、数字信号处理系统、专用数字交换网络或其他处理系统。系统50可以被设计为用于各种各样的应用,如电信系统、汽车系统、控制系统、消费电子、个人计算机、因特网通信和联网等等。此外,可以在单个板上、多个板上或者多个包装(enclosure)中提供系统50。
如图所示,系统50包括由一个或多个总线互连在一起的处理单元52、存储器单元54和输入/输出(I/O)单元56。根据该示例性实施方式,FPGA58被嵌入到处理单元52中。FPGA58可以用于系统50中的许多不同目的。FPGA58可以例如是处理单元52的逻辑结构块,用于支持它的内部和外部操作。FPGA58被编程为实现执行它在系统操作中的具体角色所必须的逻辑功能。可以通过连接60将FPGA58特别地耦合到存储器54并且通过连接62将FPGA58特别地耦合到I/O单元56。
处理单元52可以将数据导向用于处理或存储的合适的系统组件,执行存储器54中存储的程序,经由I/O单元56接收并且发射数据或者其他类似的功能。处理单元52可以是中央处理单元(CPU)、微处理器、浮点协处理器、图形协处理器、硬件控制器、微控制器、被编程为用作控制器的现场可编程门阵列、网络控制器或任意类型的处理器或控制器。此外,在许多实施方式中,通常不需要CPU。
例如,一个或多个FPGA58可以代替CPU来控制系统的逻辑操作。作为另一个示例,FPGA58作为可以根据需要而重编程以处理具体计算任务的可重配处理器。可替换地,FPGA58自身可以包括嵌入式微处理器。存储器单元54可以是随机访问存储器(RAM)、只读存储器(ROM)、硬盘或软盘介质、闪存、磁带或任意其他存储装置或这些存储装置的任意组合。
在以上描述中,给出了很多具体细节以提供对于本发明的实施方式的透彻理解。但是,本发明的所示实施方式的以上描述并非意图是穷举的或将本发明限制为所公开的精确形式。相关领域的熟练技术人员将认识到,在没有一个或多个该具体细节的情况下或者利用其他方法、组件等等也可以实施本发明。
在其他实例中,没有显示或详细描述公知的结构或操作,以免模糊本发明的方面。虽然在这里为了说明的目的描述了本发明的具体实施方式和示例,但是如相关领域的熟练技术人员将认识到的,在本发明的范围中各种等效的修改是可行的。可以根据以上详细描述对本发明进行这些修改。

Claims (15)

1.一种用于多电平幅度信号传输的接收器电路,所述接收器电路包括:
峰值检测器,用于检测在每个符号周期至少包括三个幅度电平的多电平幅度信号的峰值电压;
参考电压生成器,用于至少部分地响应于所述峰值电压而生成多个参考电压;以及
比较器电路,其使用所述多个参考电压来检测所述多电平幅度信号的幅度电平。
2.根据权利要求1所述的接收器电路,其中所述比较器电路中的比较器的数目小于所述多电平幅度信号中的幅度电平的数目。
3.根据权利要求2所述的接收器电路,其中所述多电平幅度信号包括三电平脉冲幅度调制(PAM-3)信号,并且所述比较器电路包括少于三个比较器。
4.根据权利要求2所述的接收器电路,其中所述多电平幅度信号包括四电平脉冲幅度调制(PAM-4)信号,并且所述比较器电路包括少于四个比较器。
5.根据权利要求1所述的接收器电路,其中所述参考电压生成器包括反相放大器,所述反相放大器包括至少一个电阻器梯形电路。
6.根据权利要求5所述的接收器电路,其中从所述电阻器梯形电路中的节点获得参考电压。
7.根据权利要求6所述的接收器电路,其中所述节点的选择是可编程的。
8.一种用于接收多电平幅度信号的方法,所述方法包括:
检测在每个符号周期至少包括三个幅度电平的多电平幅度信号的峰值电压;
至少部分地响应于所述峰值电压而生成多个参考电压;以及
将所述多电平幅度信号与所述多个参考电压进行比较,以检测幅度电平。
9.根据权利要求8所述的方法,其中由数目少于所述多电平幅度信号中的幅度电平的数目的比较器来执行所述比较。
10.根据权利要求9所述的方法,其中所述多电平幅度信号包括三电平脉冲幅度调制(PAM-3)信号,并且由少于三个比较器来执行所述比较器的比较。
11.根据权利要求9所述的方法,其中所述多电平幅度信号包括四电平脉冲幅度调制(PAM-4)信号,并且由少于四个比较器来执行所述比较。
12.根据权利要求8所述的方法,其中使用包括至少一个电阻器梯形电路的反相放大器来生成所述多个参考电压。
13.根据权利要求12所述的方法,还包括:
从所述电阻器梯形电路中的节点获得参考电压。
14.一种集成电路,包括:
脉冲幅度调制接收器,其包括:
峰值检测器,其被布置为检测在每个符号周期至少包括三个幅度电平的发射脉冲幅度调制信号的峰值电压,
参考电压生成器,其被布置为生成取决于所述峰值电压的多个参考电压,以及
比较器电路,其被布置为将所述脉冲幅度调制信号与所述多个参考电压进行比较以检测幅度电平。
15.根据权利要求14所述的集成电路,还包括:
发射器,其包括:
串行化器,其被布置为将并行数据信号转换成串行数据信号,
编码器,其被布置为编码所述串行数据信号以便生成多个码比特,以及
驱动器,其被布置为使用所述多个码比特来生成脉冲幅度调制信号以用于传输。
CN201310045106.9A 2012-01-31 2013-01-30 多电平幅度信号传输接收器 Active CN103259512B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/363,098 US8750406B2 (en) 2012-01-31 2012-01-31 Multi-level amplitude signaling receiver
US13/363,098 2012-01-31

Publications (2)

Publication Number Publication Date
CN103259512A true CN103259512A (zh) 2013-08-21
CN103259512B CN103259512B (zh) 2018-04-20

Family

ID=47603254

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310045106.9A Active CN103259512B (zh) 2012-01-31 2013-01-30 多电平幅度信号传输接收器

Country Status (3)

Country Link
US (1) US8750406B2 (zh)
EP (1) EP2624511B1 (zh)
CN (1) CN103259512B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105119690A (zh) * 2015-07-20 2015-12-02 北方民族大学 一种基于n进制进行数字信号传输的方法
CN106664071A (zh) * 2014-06-25 2017-05-10 康杜实验室公司 高速芯片间通信用多电平驱动电路
CN109740387A (zh) * 2019-01-04 2019-05-10 华大半导体有限公司 一种用于在线系统编程的方法和高安全电路
CN110278034A (zh) * 2019-08-07 2019-09-24 青岛海信宽带多媒体技术有限公司 一种光模块及光接收控制方法
CN110489373A (zh) * 2019-08-21 2019-11-22 格威半导体(厦门)有限公司 一种串行隔离通信方法、装置及系统
CN112543976A (zh) * 2018-08-21 2021-03-23 美光科技公司 用于多电平信令的驱动强度校准
CN112567461A (zh) * 2018-08-21 2021-03-26 美光科技公司 对与存储器器件相关联的接收器的训练程序
CN112769416A (zh) * 2020-12-24 2021-05-07 成都海光微电子技术有限公司 信号接收器、集成电路芯片、信号传输系统及电子设备
CN112838847A (zh) * 2020-12-31 2021-05-25 成都海光微电子技术有限公司 信号接收器、集成电路芯片、信号传输系统及电子设备
CN113810029A (zh) * 2020-06-12 2021-12-17 圣邦微电子(北京)股份有限公司 一种检测数据相关性的电路

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9985634B2 (en) 2010-05-20 2018-05-29 Kandou Labs, S.A. Data-driven voltage regulator
US9251873B1 (en) 2010-05-20 2016-02-02 Kandou Labs, S.A. Methods and systems for pin-efficient memory controller interface using vector signaling codes for chip-to-chip communications
US9077386B1 (en) 2010-05-20 2015-07-07 Kandou Labs, S.A. Methods and systems for selection of unions of vector signaling codes for power and pin efficient chip-to-chip communication
US9288082B1 (en) 2010-05-20 2016-03-15 Kandou Labs, S.A. Circuits for efficient detection of vector signaling codes for chip-to-chip communication using sums of differences
US9124557B2 (en) 2010-05-20 2015-09-01 Kandou Labs, S.A. Methods and systems for chip-to-chip communication with reduced simultaneous switching noise
US9246713B2 (en) 2010-05-20 2016-01-26 Kandou Labs, S.A. Vector signaling with reduced receiver complexity
DE102012102672B4 (de) * 2012-03-28 2016-11-03 Austriamicrosystems Ag Empfängerschaltung und Verfahren zum Empfang eines Eingangssignals sowie Lichtmodul mit einer derartigen Empfängerschaltung und Schaltungsanordnung
US9268683B1 (en) 2012-05-14 2016-02-23 Kandou Labs, S.A. Storage method and apparatus for random access memory using codeword storage
WO2014124450A1 (en) 2013-02-11 2014-08-14 Kandou Labs, S.A. Methods and systems for high bandwidth chip-to-chip communications interface
CN105379170B (zh) 2013-04-16 2019-06-21 康杜实验室公司 高带宽通信接口方法和系统
WO2014210074A1 (en) 2013-06-25 2014-12-31 Kandou Labs SA Vector signaling with reduced receiver complexity
US9806761B1 (en) 2014-01-31 2017-10-31 Kandou Labs, S.A. Methods and systems for reduction of nearest-neighbor crosstalk
US9100232B1 (en) 2014-02-02 2015-08-04 Kandou Labs, S.A. Method for code evaluation using ISI ratio
US9363114B2 (en) 2014-02-28 2016-06-07 Kandou Labs, S.A. Clock-embedded vector signaling codes
US11240076B2 (en) 2014-05-13 2022-02-01 Kandou Labs, S.A. Vector signaling code with improved noise margin
US9509437B2 (en) * 2014-05-13 2016-11-29 Kandou Labs, S.A. Vector signaling code with improved noise margin
US9852806B2 (en) 2014-06-20 2017-12-26 Kandou Labs, S.A. System for generating a test pattern to detect and isolate stuck faults for an interface using transition coding
US9252997B1 (en) * 2014-07-10 2016-02-02 Qualcomm Incorporated Data link power reduction technique using bipolar pulse amplitude modulation
EP3138253A4 (en) 2014-07-10 2018-01-10 Kandou Labs S.A. Vector signaling codes with increased signal to noise characteristics
US9432082B2 (en) 2014-07-17 2016-08-30 Kandou Labs, S.A. Bus reversable orthogonal differential vector signaling codes
KR102243423B1 (ko) 2014-07-21 2021-04-22 칸도우 랩스 에스에이 다분기 데이터 전송
EP3175592B1 (en) 2014-08-01 2021-12-29 Kandou Labs S.A. Orthogonal differential vector signaling codes with embedded clock
US9674014B2 (en) 2014-10-22 2017-06-06 Kandou Labs, S.A. Method and apparatus for high speed chip-to-chip communications
US9979571B2 (en) 2014-12-17 2018-05-22 Rambus Inc. Sampler reference level, DC offset, and AFE gain adaptation for PAM-N receiver
US9674009B2 (en) 2014-12-19 2017-06-06 Rambus Inc. Receiver with offset calibration
EP3314835B1 (en) 2015-06-26 2020-04-08 Kandou Labs S.A. High speed communications system
US9595495B1 (en) 2015-09-28 2017-03-14 Altera Corporation Multi-level signaling for on-package chip-to-chip interconnect through silicon bridge
US10055372B2 (en) 2015-11-25 2018-08-21 Kandou Labs, S.A. Orthogonal differential vector signaling codes with embedded clock
US10365833B2 (en) 2016-01-22 2019-07-30 Micron Technology, Inc. Apparatuses and methods for encoding and decoding of signal lines for multi-level communication architectures
WO2017132292A1 (en) 2016-01-25 2017-08-03 Kandou Labs, S.A. Voltage sampler driver with enhanced high-frequency gain
US10673535B2 (en) 2016-04-14 2020-06-02 Hewlett Packard Enterprise Development Lp Optical receiver with three data slicers and one edge slicer
CN115085727A (zh) 2016-04-22 2022-09-20 康杜实验室公司 高性能锁相环
WO2017185070A1 (en) 2016-04-22 2017-10-26 Kandou Labs, S.A. Calibration apparatus and method for sampler with adjustable high frequency gain
US10003454B2 (en) 2016-04-22 2018-06-19 Kandou Labs, S.A. Sampler with low input kickback
US10153591B2 (en) 2016-04-28 2018-12-11 Kandou Labs, S.A. Skew-resistant multi-wire channel
WO2017190102A1 (en) 2016-04-28 2017-11-02 Kandou Labs, S.A. Low power multilevel driver
US10333741B2 (en) 2016-04-28 2019-06-25 Kandou Labs, S.A. Vector signaling codes for densely-routed wire groups
US9906358B1 (en) 2016-08-31 2018-02-27 Kandou Labs, S.A. Lock detector for phase lock loop
US10411922B2 (en) 2016-09-16 2019-09-10 Kandou Labs, S.A. Data-driven phase detector element for phase locked loops
US10200188B2 (en) 2016-10-21 2019-02-05 Kandou Labs, S.A. Quadrature and duty cycle error correction in matrix phase lock loop
US10200218B2 (en) 2016-10-24 2019-02-05 Kandou Labs, S.A. Multi-stage sampler with increased gain
US10372665B2 (en) 2016-10-24 2019-08-06 Kandou Labs, S.A. Multiphase data receiver with distributed DFE
US10212009B2 (en) * 2017-03-06 2019-02-19 Blackberry Limited Modulation for a data bit stream
US10069663B1 (en) * 2017-06-27 2018-09-04 Xilinx, Inc. System and method for device characterization
US10116468B1 (en) 2017-06-28 2018-10-30 Kandou Labs, S.A. Low power chip-to-chip bidirectional communications
US10686583B2 (en) 2017-07-04 2020-06-16 Kandou Labs, S.A. Method for measuring and correcting multi-wire skew
US10283187B2 (en) 2017-07-19 2019-05-07 Micron Technology, Inc. Apparatuses and methods for providing additional drive to multilevel signals representing data
EP3665881A4 (en) 2017-08-07 2021-04-21 Rambus Inc. VOLTAGE LEVEL RECEIVER / TRANSMITTER CO-CALIBRATION IN PULSE AMPLITUDE MODULATION LINKS
US10203226B1 (en) 2017-08-11 2019-02-12 Kandou Labs, S.A. Phase interpolation circuit
US10326623B1 (en) 2017-12-08 2019-06-18 Kandou Labs, S.A. Methods and systems for providing multi-stage distributed decision feedback equalization
US10554380B2 (en) 2018-01-26 2020-02-04 Kandou Labs, S.A. Dynamically weighted exclusive or gate having weighted output segments for phase detection and phase interpolation
KR102401996B1 (ko) 2018-05-28 2022-05-24 삼성전자주식회사 타이밍 조절이 가능한 고속 멀티 레벨 신호 수신기를 포함하는 반도체 장치 및 상기 수신기를 포함하는 반도체 테스트 장치
US10931249B2 (en) 2018-06-12 2021-02-23 Kandou Labs, S.A. Amplifier with adjustable high-frequency gain using varactor diodes
CN112805972B (zh) 2018-06-12 2024-04-23 康杜实验室公司 用于多线路总线正交码的无源多输入比较器
US10181854B1 (en) 2018-06-15 2019-01-15 Dialog Semiconductor (Uk) Limited Low power input buffer using flipped gate MOS
US10897382B2 (en) * 2018-06-27 2021-01-19 Korea University Research And Business Foundation Pulse amplitude modulation-3 transceiver and operation method thereof
KR102579595B1 (ko) 2018-09-10 2023-09-18 칸도우 랩스 에스에이 슬라이서의 동작 전류를 제어하기 위한 안정화된 고주파 피킹을 갖는 프로그래밍 가능한 연속 시간 선형 이퀄라이저
US10623214B1 (en) 2018-12-01 2020-04-14 Hcl Technologies Limited System and method for multi-level amplitude modulation and demodulation
US10608849B1 (en) 2019-04-08 2020-03-31 Kandou Labs, S.A. Variable gain amplifier and sampler offset calibration without clock recovery
US10721106B1 (en) 2019-04-08 2020-07-21 Kandou Labs, S.A. Adaptive continuous time linear equalization and channel bandwidth control
US10680634B1 (en) 2019-04-08 2020-06-09 Kandou Labs, S.A. Dynamic integration time adjustment of a clocked data sampler using a static analog calibration circuit
US10574487B1 (en) 2019-04-08 2020-02-25 Kandou Labs, S.A. Sampler offset calibration during operation
US10623217B1 (en) * 2019-05-29 2020-04-14 Nvidia Corp. Proportional AC-coupled edge-boosting transmit equalization for multi-level pulse-amplitude modulated signaling
KR20220022665A (ko) * 2020-08-19 2022-02-28 삼성전자주식회사 수신 회로, 이를 포함하는 인쇄 회로 기판 및 인터페이스 회로
KR20220028694A (ko) 2020-08-31 2022-03-08 삼성전자주식회사 멀티 레벨 신호 수신기 및 이를 포함하는 메모리 시스템
US11454943B2 (en) * 2020-11-21 2022-09-27 Geo Micro Devices (Xiamen) Co., Ltd Serial isolation communication method, device and system
US11652567B2 (en) * 2020-12-01 2023-05-16 Micron Technology, Inc. Replacement scheme for a pulse amplitude modulated bus
US11303484B1 (en) 2021-04-02 2022-04-12 Kandou Labs SA Continuous time linear equalization and bandwidth adaptation using asynchronous sampling
US11374800B1 (en) 2021-04-14 2022-06-28 Kandou Labs SA Continuous time linear equalization and bandwidth adaptation using peak detector
US11456708B1 (en) 2021-04-30 2022-09-27 Kandou Labs SA Reference generation circuit for maintaining temperature-tracked linearity in amplifier with adjustable high-frequency gain
KR20230056315A (ko) 2021-10-20 2023-04-27 삼성전자주식회사 멀티 레벨 신호 수신을 위한 수신기 및 이를 포함하는 메모리 장치
US11817861B2 (en) 2021-11-29 2023-11-14 Samsung Electronics Co., Ltd. Receiver including offset compensation circuit
TWI780004B (zh) * 2022-02-17 2022-10-01 瑞昱半導體股份有限公司 訊號偵測電路以及訊號偵測方法
EP4270887A1 (en) * 2022-04-25 2023-11-01 Samsung Electronics Co., Ltd. Transmitter and receiver for 3-level pulse amplitude modulation signaling and system including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3534273A (en) * 1967-12-18 1970-10-13 Bell Telephone Labor Inc Automatic threshold level selection and eye tracking in digital transmission systems
CN1189037A (zh) * 1996-11-28 1998-07-29 索尼公司 用于解调器的多级比较器
EP1408662A1 (en) * 2002-10-11 2004-04-14 Accelerant Networks, Inc. System and method of equalization of high speed signals
CN101989001A (zh) * 2009-07-30 2011-03-23 华映视讯(吴江)有限公司 液晶显示器的共同电压产生电路
US20110311008A1 (en) * 2010-06-17 2011-12-22 Transwitch Corporation Apparatus and method thereof for clock and data recovery of n-pam encoded signals using a conventional 2-pam cdr circuit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761246A (en) * 1995-08-14 1998-06-02 International Business Machines Corporation Circuit for multiplexing a plurality of signals on one transmission line between chips
US5832038A (en) 1996-07-03 1998-11-03 Motorola, Inc. Method and apparatus for classifying a multi-level signal
JPH10163877A (ja) 1996-11-28 1998-06-19 Sony Corp 復調回路における多値コンパレータのしきい値制御回路
US6324602B1 (en) 1998-08-17 2001-11-27 Integrated Memory Logic, Inc. Advanced input/output interface for an integrated circuit device using two-level to multi-level signal conversion
US6198779B1 (en) 1999-05-05 2001-03-06 Motorola Method and apparatus for adaptively classifying a multi-level signal
CA2296209C (en) 2000-01-17 2003-04-01 Philsar Semiconductor Inc. Method and apparatus for dynamically generating multiple level decision thresholds of an m-ary coded signal
US6771675B1 (en) * 2000-08-17 2004-08-03 International Business Machines Corporation Method for facilitating simultaneous multi-directional transmission of multiple signals between multiple circuits using a single transmission line
US7233164B2 (en) 2003-12-17 2007-06-19 Rambus Inc. Offset cancellation in a multi-level signaling system
KR100583631B1 (ko) 2005-09-23 2006-05-26 주식회사 아나패스 클록 신호가 임베딩된 멀티 레벨 시그널링을 사용하는디스플레이, 타이밍 제어부 및 컬럼 구동 집적회로
US8026740B2 (en) 2008-03-21 2011-09-27 Micron Technology, Inc. Multi-level signaling for low power, short channel applications
US7795915B2 (en) 2008-08-04 2010-09-14 Chil Semiconductor Corporation Multi-level signaling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3534273A (en) * 1967-12-18 1970-10-13 Bell Telephone Labor Inc Automatic threshold level selection and eye tracking in digital transmission systems
CN1189037A (zh) * 1996-11-28 1998-07-29 索尼公司 用于解调器的多级比较器
EP1408662A1 (en) * 2002-10-11 2004-04-14 Accelerant Networks, Inc. System and method of equalization of high speed signals
CN101989001A (zh) * 2009-07-30 2011-03-23 华映视讯(吴江)有限公司 液晶显示器的共同电压产生电路
US20110311008A1 (en) * 2010-06-17 2011-12-22 Transwitch Corporation Apparatus and method thereof for clock and data recovery of n-pam encoded signals using a conventional 2-pam cdr circuit

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664071A (zh) * 2014-06-25 2017-05-10 康杜实验室公司 高速芯片间通信用多电平驱动电路
CN106664071B (zh) * 2014-06-25 2019-06-14 康杜实验室公司 高速芯片间通信用多电平驱动电路
CN105119690B (zh) * 2015-07-20 2018-08-07 北方民族大学 一种基于n进制进行数字信号传输的方法
CN105119690A (zh) * 2015-07-20 2015-12-02 北方民族大学 一种基于n进制进行数字信号传输的方法
CN112567461A (zh) * 2018-08-21 2021-03-26 美光科技公司 对与存储器器件相关联的接收器的训练程序
CN112543976A (zh) * 2018-08-21 2021-03-23 美光科技公司 用于多电平信令的驱动强度校准
CN109740387A (zh) * 2019-01-04 2019-05-10 华大半导体有限公司 一种用于在线系统编程的方法和高安全电路
CN110278034A (zh) * 2019-08-07 2019-09-24 青岛海信宽带多媒体技术有限公司 一种光模块及光接收控制方法
CN110489373A (zh) * 2019-08-21 2019-11-22 格威半导体(厦门)有限公司 一种串行隔离通信方法、装置及系统
CN113810029A (zh) * 2020-06-12 2021-12-17 圣邦微电子(北京)股份有限公司 一种检测数据相关性的电路
CN112769416A (zh) * 2020-12-24 2021-05-07 成都海光微电子技术有限公司 信号接收器、集成电路芯片、信号传输系统及电子设备
CN112769416B (zh) * 2020-12-24 2023-05-09 成都海光微电子技术有限公司 信号接收器、集成电路芯片、信号传输系统及电子设备
CN112838847A (zh) * 2020-12-31 2021-05-25 成都海光微电子技术有限公司 信号接收器、集成电路芯片、信号传输系统及电子设备
CN112838847B (zh) * 2020-12-31 2023-05-09 成都海光微电子技术有限公司 信号接收器、集成电路芯片、信号传输系统及电子设备

Also Published As

Publication number Publication date
CN103259512B (zh) 2018-04-20
EP2624511A1 (en) 2013-08-07
US8750406B2 (en) 2014-06-10
EP2624511B1 (en) 2020-02-26
US20130195155A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
CN103259512A (zh) 多电平幅度信号传输接收器
US10652067B2 (en) Orthogonal differential vector signaling codes with embedded clock
US7583753B2 (en) Methods and transmitters for loop-back adaptive pre-emphasis data transmission
US20040109510A1 (en) Technique for utilizing spare bandwidth resulting from the use of a transition-limiting code in a multi-level signaling system
US10673535B2 (en) Optical receiver with three data slicers and one edge slicer
US20040022546A1 (en) Method and apparatus for compacting data in a communication network
US9483435B2 (en) USB transceiver
KR102203390B1 (ko) 싱글 엔디드 3-레벨 펄스 진폭 변조 시그널링을 위한 장치 및 방법
KR20230132481A (ko) 고유 하프-레이트 동작으로의 c-phy 데이터-트리거된에지 생성
US8369713B2 (en) Bit-rate discrimination method and its apparatus
US9912499B2 (en) Electronic device with equalization, integrated circuit and methods therefor
US9559872B2 (en) Signal transmission system
US9571160B2 (en) High data rate serial link
US8015539B2 (en) Method and apparatus for performance metric compatible control of data transmission signals
JP2005210695A (ja) データ伝送方式およびデータ伝送回路
US20110116568A1 (en) Block-coded group modulation method and transmitter/receiver using the same
US9112763B1 (en) Device, system and method for bi-phase modulation decoding
US7535964B2 (en) Self-clocked two-level differential signaling methods and apparatus
US9712344B2 (en) Receiving device with error detection circuit
US8526532B2 (en) Transmitter with dynamic equalizer
Das et al. Pulse shape modulation-generation and detection strategies (encoding each symbol to be transmitted across a communication channel through a unique pulse shape)
KR20150062114A (ko) 데이터 인코딩 방법, 및 이를 이용한 인코더
KR101854970B1 (ko) 신호 폭 변조 송신을 통한 cmos 기반 이미지 센서의 다중 레벨 수신 장치 및 방법
CN115133922A (zh) 一种pam-4信号电平判决阈值的移位装置及电子设备
EP2816764B1 (en) N-wire two-level digital interface

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant