CN103259486A - 基于状态轨迹外推的模型预测三电平直接转矩控制方法 - Google Patents

基于状态轨迹外推的模型预测三电平直接转矩控制方法 Download PDF

Info

Publication number
CN103259486A
CN103259486A CN2013101631656A CN201310163165A CN103259486A CN 103259486 A CN103259486 A CN 103259486A CN 2013101631656 A CN2013101631656 A CN 2013101631656A CN 201310163165 A CN201310163165 A CN 201310163165A CN 103259486 A CN103259486 A CN 103259486A
Authority
CN
China
Prior art keywords
extrapolation
inverter
output
torque control
direct torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101631656A
Other languages
English (en)
Other versions
CN103259486B (zh
Inventor
阮智勇
朱洪志
宋文祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Fu Fu fluid power equipment Limited by Share Ltd
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201310163165.6A priority Critical patent/CN103259486B/zh
Publication of CN103259486A publication Critical patent/CN103259486A/zh
Application granted granted Critical
Publication of CN103259486B publication Critical patent/CN103259486B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明提供一种基于状态轨迹外推的模型预测三电平直接转矩控制方法。该方法采用模型预测控制器代替了传统直接转矩控制的滞环控制器。利用内部状态预测模型,针对容许开关矢量对输出轨迹外推确定长预测范围,以逆变器平均开关频率作为价值函数,根据模型预测控制的有限时域滚动优化策略,实时求解出最优的开关矢量直接作用于逆变器。本发明能将NPC三电平逆变器开关频率降低至300Hz左右,同时获得快速的动态响应能力和理想的电流谐波畸变特性,在中高压大功率领域具有广阔的应用前景。

Description

基于状态轨迹外推的模型预测三电平直接转矩控制方法
技术领域
本发明属于大功率交流电机的低开关频率控制领域,特别是涉及一种异步电机低开关频率控制的基于状态轨迹外推的模型预测三电平直接转矩控制方法。
背景技术
多电平逆变器相对于两电平逆变器具有输出电压更接近正弦波、能降低器件的耐压等级、输出电压和电流谐波含量小等优点。二极管中点箝位型(NPC)三电平逆变器由于结构简单、无须复杂变压器等优点,在实际应用中最为广泛。三电平逆变器每个功率管的耐压限制在直流母线电压的1/2,可提升直流母线的电压容量近一倍,且其输出电压比传统两电平多一个台阶,其谐波特性明显优于两电平。因此,在中、高压变频调速,有源电力滤波装置和电力系统无功等大功率领域有着广阔的应用前景。
三电平逆变器的主要优势体现在中高压大功率场合,通常为减小开关损耗、提高逆变器输出功率,功率器件的开关频率一般限制在几百赫兹。基于脉宽调制的矢量控制方案在低开关频率下由于PWM响应滞后显著,严重破坏系统的动态解耦性能,甚至导致系统无法正常工作。虽然采用复矢量电流调节器可以实现低开关频率下电流的有效解耦,但是随着开关频率的降低存在电流谐波畸变严重的问题。直接转矩控制(DTC)方案通常工作开关频率较高,或者低开关频率下无法取得理想的控制效果。传统的高性能控制方案都难以满足大功率场合几百赫兹低开关频率下高性能控制的要求,如何在低开关频率下既获得较小谐波畸变,又能使系统具有快速响应能力,是交流电机大功率传动高性能控制方面的一大难题。
发明内容
本发明的目的在于针对NPC三电平逆变器驱动异步电机低开关频率的高性能控制,提供一种基于状态轨迹外推的模型预测三电平直接转矩控制方法,使传动系统运行在较低开关频率下(300 Hz左右)能够获得快速的动态响应能力和理想的电流谐波畸变特性。
为达到上述目的,本发明采用下述技术方案:
本发明采用模型预测控制器代替传统DTC的滞环控制器。所述模型预测控制器由内部状态预测模型和价值函数滚动优化两个模块组成,磁链观测器观测到的定转子磁链、速度传感器测得的转速和上一采样周期输出的开关矢量作为内部状态预测模型的输入,内部状态预测模型的状态输出、转速调节器输出的给定电磁转矩和给定定子磁链作为价值函数滚动优化模块的输入。
所述模型预测控制器根据建立的内部状态预测模型,依据逆变器上一采样时刻的开关状态确定容许开关矢量,针对容许开关矢量通过内部状态预测模型外推输出轨迹,确定一个长的预测范围,然后以逆变器平均开关频率作为价值函数,利用模型预测控制(MPC)的有限时域滚动优化策略,实时求解最优开关矢量作用于逆变器。
所述容许开关矢量根据逆变器的上一采样周期的开关状态确定的逆变器容许开关跳变而定,将容许开关跳变明确界定为跳变必须保持其连续性(即:
Figure 357036DEST_PATH_IMAGE001
)且同一时刻最多只有一相发生跳变,满足容许开关跳变的开关矢量确定为容许开关矢量。
所述预测范围N p由输出轨迹外推步长确定,也就是外推轨迹直到存在输出变量触及其设定滞环边界为止对应的时间步长。
所述内部预测模型根据NPC三电平逆变器驱动异步电机系统的数学模型和二次型外推方法确定。
所述二次型外推方法根据NPC三电平逆变器驱动异步电机系统的离散化数学模型,确定在k时刻的采样值计算出(k+1)和(k+2)时刻输出矢量的输出轨迹,记为 y (k|k), y (k+1|k)和 y (k+2|k);输出变量轨迹自第(k+2)时刻起以二次型方式外推,根据确定的预测范围N p,从采样时间步kk+N p的输出轨迹为:
Figure 592845DEST_PATH_IMAGE002
二次型系数矢量 a b c 为:
Figure 603526DEST_PATH_IMAGE003
所述的以逆变器平均开关频率作为价值函数的优化准则为:
Figure 571482DEST_PATH_IMAGE004
式中|| · ||表示一阶范数, u (k)和 u (k-1)分别表示当前和上一采样时刻对应的开关矢量。
本发明的优点和积极效果是:
1、本发明根据模型预测思想,将三电平逆变器驱动异步电机系统低开关频率控制问题规范化为一个带约束条件的有限状态滚动时域优化控制问题,通过求解该优化问题得到最优的开关电压矢量直接作用于逆变器,开关矢量的选择依据价值函数滚动优化准则确定。没有电流调节器和调制器,结构简单,并且价值函数易于涵盖非线性约束,控制极具灵活性。
2、本发明能够维持电机磁链和转矩在其设定滞环范围内,从而实现电机的高性能控制,同时还能尽可能地降低逆变器的开关频率。
3、本发明能够将NPC三电平逆变器的开关频率降至300Hz左右,并在该低开关频率下获得快速的动态响应能力和理想的电流谐波畸变特性。
4、本发明还对NPC三电平逆变器的中点电位进行了控制,能够控制维持中点电位在给定滞环范围内。
5、本发明是一种不同于传统矢量控制和直接转矩控制的新颖的高性能控制策略,能有效应用于中压大功率领域的低开关频率控制,可降低器件开关损耗,提高逆变器输出功率,提升能源利用率。
附图说明
图1为本发明基本控制原理框图;
图2为本发明实施例中提供的容许开关序列;
图3为本发明实施例中提供的输出矢量轨迹外推。
具体实施方式
本发明的优选实施例结合附图详述如下:
实施例一:
参见图1,本基于状态轨迹外推的异步电机模型预测三电平直接转矩控制方法,采用模型预测控制器代替传统直接转矩控制的滞环控制器;所述模型预测控制器由内部状态预测模型和价值函数滚动优化两个模块组成,磁链观测器观测到的定转子磁链、速度传感器测得的转速和上一采样周期输出的开关矢量作为内部状态预测模型的输入,内部状态预测模型的状态输出、转速调节器输出得到的给定转矩和给定定子磁链作为价值函数滚动优化模块的输入。
实施例二:
本实施例于实施例一基本相同,特别之处是:所述模型预测控制器利用建立的内部状态预测模型,根据逆变器上一时刻的开关状态确定容许开关矢量,针对容许开关矢量通过内部状态预测模型外推输出轨迹,确定一个长的预测范围,然后以逆变器平均开关频率作为价值函数,利用模型预测控制的有限时域滚动优化策略,实时求解出最优的开关矢量;
所述容许开关矢量根据逆变器的上一采样周期开关状态确定逆变器的容许开关跳变,将容许开关跳变明确界定为跳变必须保持其连续性,即:
Figure 729931DEST_PATH_IMAGE001
,且同一时刻最多只存在一相发生跳变,满足容许开关跳变的开关矢量确定为容许开关矢量;
所述预测范围N p由输出轨迹外推步长确定,也就是外推输出轨迹直到存在输出变量触及其设定滞环边界时对应的时间步长;
所述内部预测模型根据NPC三电平逆变器驱动异步电机系统的数学模型和二次型外推方法确定;
所述二次型外推方法采用一阶欧拉法对NPC三电平逆变器驱动异步电机系统的数学模型进行离散化,并根据k时刻的采样值计算出(k+1)和(k+2)时刻输出矢量的输出轨迹,记为 y (k|k), y (k+1|k)和 y (k+2|k);输出变量轨迹自第(k+2)时刻起以二次型方式外推,根据确定的预测范围N p,从采样时间步kk+N p的输出轨迹为:
Figure 441535DEST_PATH_IMAGE002
二次型系数矢量 a b c 为:
Figure 306723DEST_PATH_IMAGE003
所述以逆变器平均开关频率为价值函数的优化准则:
式中|| · ||表示一阶范数, u (k)和 u (k-1)分别表示当前和上一采样时刻对应的开关矢量。
实施例三:
本实施例的基本技术框架为:采用模型预测控制器代替传统DTC的滞环控制器。由NPC三电平逆变器驱动异步电机数学模型和二次外推法建立内部状态预测模型,根据逆变器上一采样时刻的开关状态确定容许开关矢量,针对容许开关矢量,根据内部状态预测模型对输出轨迹进行外推,从而确定一个长预测范围。然后以逆变器平均开关频率作为价值函数,利用模型预测控制的有限时域滚动优化策略,实时求解最优开关矢量作用于逆变器,其实施基本原理框架如图1所示。
下面对本发明具体实施方式进行详细阐述。
根据给出的当前状态矢量 x (k),最后一次开关矢量 u (k−1),输出变量给定的滞环边界: Y =[(1-δ ψ)ψ s *,(1+δ ψ)ψ s *;(1-δ T)T e *,(1+δ T)T e *;-δ v V dcδ v V dc],利用传动系统内部状态预测模型,控制器根据MPC的滚动优化策略,实现低开关频率下模型预测三电平直接转矩控制的步骤如下:
S1. 将逆变器容许开关跳变明确界定为跳变必须保持连续性(即:)且同一时刻最多只有一相发生跳变。根据最后一次开关矢量 u (k−1)和容许开关跳变确定容许开关矢量和开关序列,对应的第i个容许开关矢量为 u i(k),容许开关序列为 U i(k)=[ u i(k)… u i(k+N p-1)]。
S2. 建立模型预测控制器所需的内部状态预测模型:
选取 x =[ψ s α ψ s β ψ r α ψ r β V n]T为状态变量,定子磁链幅值、电磁转矩和中点电位构成输出变量 y =[ψ s T e V n]T,开关状态组成输入矢量 u =[S a S b S c]T
Figure 341041DEST_PATH_IMAGE006
{-1,0,1}3。建立传动系统的离散化模型:
Figure 391561DEST_PATH_IMAGE007
(1a)
Figure 701320DEST_PATH_IMAGE008
(1b)
式中, I 5 × 5为五阶单位矩阵,T s为采样周期,x m (k) (m=1,…,5)表示状态矢量 x 的第m个变量; |u| =[|S a| |S b| |S c|]T ,
Figure 772044DEST_PATH_IMAGE009
,
Figure 887768DEST_PATH_IMAGE010
Figure 727548DEST_PATH_IMAGE011
Figure 208207DEST_PATH_IMAGE012
Figure 562965DEST_PATH_IMAGE013
Figure 420063DEST_PATH_IMAGE014
Figure 114350DEST_PATH_IMAGE015
Figure 828228DEST_PATH_IMAGE016
Figure 331070DEST_PATH_IMAGE018
C为NPC三电平逆变器两个直流母线电容之一;
Figure 879863DEST_PATH_IMAGE019
为漏感系数;R sR r分别为定、转子电阻;L sL rL m分别为定、转子电感和互感;ω r为转子角速度。
根据k采样周期时刻的状态输入 x (k)和 u (k),由式(1)的离散化模型进行两次迭代得到在k (k+1)和(k+2)时刻输出矢量的输出轨迹: y (k|k), y (k+1|k)和 y (k+2|k),输出变量轨迹自第(k+2)个采样周期起以二次型方式外推。在预测范围为N p内,从采样时间步kk+N p的输出轨迹为
Figure 30222DEST_PATH_IMAGE002
(2)
将通过离散时间模型得到的 y (k|k), y (k+1|k)和 y (k+2| k)代入式(2),确定二次系数矢量 a b c 的值为:
Figure 297255DEST_PATH_IMAGE003
(3)
式(1)—(3)构成了所述模型预测控制器的内部状态预测模型。
S3. 根据内部状态预测模型外推输出轨迹,确定对应的外推步长。对于容许的开关序列 U i(k),利用内部状态预测模型预测的输出矢量轨迹为 Y i(k) = [ y i(k|k), . . . , y i(k +N p|k)]。将外推的输出轨迹 Y i(k)与给定滞环边界 Y 进行比较,直到存在输出变量触及其边界为止。将能使输出矢量外推轨迹维持在给定滞环范围内的开关序列 U i(k)定义为候选开关序列,相应地开关矢量 u i(k)为候选开关矢量,记下候选开关序列对应的外推步长N p i
S4. 按式(4)所示的价值函数优化准则,根据MPC的滚动优化策略求取最优开关序列:
(4)
式中|| · ||表示一阶范数, u (k)和 u (k-1)分别表示当前和上一采样时刻对应的开关矢量。
S5. 将产生的最优开关序列的第一个开关矢量 u i(k)作用于逆变器,在下一采样周期重复上述步骤S1.~ S4.。
下面结合图2和图3对本发明的一个具体实施实例方式进行说明。
图2和图3为本发明基于状态轨迹外推的模型预测三电平直接转矩控制方法的一个具体实例,假设在第k采样时刻电机定子磁链幅值ψ s已经触及到设定下边界(1-δ ψ)ψ s *,此时需要改变逆变器开关状态。若上一采样时刻开关矢量 u (k-1)=[1 1 1]T。考虑前文提到的开关约束,此时容许开关矢量 u (k)只考虑下列三种选择:
Figure 961772DEST_PATH_IMAGE020
u 1(k)=[1 1 0] T u 2(k)=[1 0 1] T,
Figure 37361DEST_PATH_IMAGE022
u 3(k)=[0 1 1] T。图2为对应容许的开关序列 U i(k)。每个开关序列作用于逆变器,预测输出变量轨迹超出其边界的时间步长不一样。
如图3所示,若在第k采样时刻切换到 u 3(k),磁链ψ s轨迹背离设定的下边界(1-δ ψ)ψ s *,因此 u 3(k)不是候选开关矢量,而 u 1(k)、 u 2(k)能使输出矢量轨迹维持在各自的滞环范围内,为候选开关矢量。对于候选开关序列 U 1(k)、 U 2(k),利用内部状态预测模型外推输出轨迹直到存在输出变量轨迹超出其边界为止,也就是确定输出矢量 Y i(k) = [ y i(k|k), . . . , y i(k +N p|k)]直到有变量超出其设定滞环边界时的步长N p i
在图3中,采用开关序列 U 2(k)转矩T e输出轨迹经过9个时间步长后超出其上边界,而对于 U 1(k)在第3个时间步过后中点电位V n就超出了其边界,因此可以确定 U 2( k)是最优的开关序列,将 U 2(k)的第一个开关矢量 u 2(k)作用于逆变器,在下一采样周期重复上述步骤。需要说明的是,图3只是定性地描述了所述模型预测控制器的轨迹外推预测思想,实际上外推可以高达几十个采样步长,这也就使得逆变器开关频率维持在几百赫兹。

Claims (7)

1.提供一种基于状态轨迹外推的异步电机模型预测三电平直接转矩控制方法,其特征在于:采用模型预测控制器代替传统直接转矩控制的滞环控制器;所述模型预测控制器由内部状态预测模型和价值函数滚动优化两个模块组成,磁链观测器观测到的定转子磁链、速度传感器测得的转速和上一采样周期输出的开关矢量作为内部状态预测模型的输入,内部状态预测模型的状态输出、转速调节器输出得到的给定转矩和给定定子磁链作为价值函数滚动优化模块的输入。
2. 如权利要求1所述的基于状态轨迹外推的异步电机模型预测三电平直接转矩控制方法,其特征在于:所述模型预测控制器利用建立的内部状态预测模型,根据逆变器上一时刻的开关状态确定容许开关矢量,针对容许开关矢量通过内部状态预测模型外推输出轨迹,确定一个长的预测范围,然后以逆变器平均开关频率作为价值函数,利用模型预测控制的有限时域滚动优化策略,实时求解出最优的开关矢量。
3.如权利要求2所述的基于状态轨迹外推的异步电机模型预测三电平直接转矩控制方法,其特征在于:所述容许开关矢量根据逆变器的上一采样周期开关状态确定逆变器的容许开关跳变,将容许开关跳变明确界定为跳变必须保持其连续性,即:
Figure 2013101631656100001DEST_PATH_IMAGE001
,且同一时刻最多只存在一相发生跳变,满足容许开关跳变的开关矢量确定为容许开关矢量。
4.如权利要求2所述的基于状态轨迹外推的异步电机模型预测三电平直接转矩控制方法,其特征在于:所述预测范围N p由输出轨迹外推步长确定,也就是外推输出轨迹直到存在输出变量触及其设定滞环边界时对应的时间步长。
5.如权利要求1所述的基于状态轨迹外推的异步电机模型预测三电平直接转矩控制方法,其特征在于:所述内部预测模型根据NPC三电平逆变器驱动异步电机系统的数学模型和二次型外推方法确定。
6.如权利要求5所述的基于状态轨迹外推的异步电机模型预测三电平直接转矩控制方法,其特征在于:所述二次型外推方法采用一阶欧拉法对NPC三电平逆变器驱动异步电机系统的数学模型进行离散化,并根据k时刻的采样值计算出(k+1)和(k+2)时刻输出矢量的输出轨迹,记为 y (k|k), y (k+1|k)和 y (k+2|k);输出变量轨迹自第(k+2)时刻起以二次型方式外推,根据确定的预测范围N p,从采样时间步kk+N p的输出轨迹为:
Figure 2013101631656100001DEST_PATH_IMAGE002
二次型系数矢量 a b c 为:
Figure 2013101631656100001DEST_PATH_IMAGE003
7.如权利要求2所述的基于状态轨迹外推的异步电机模型预测三电平直接转矩控制方法,其特征在于:所述以逆变器平均开关频率为价值函数的优化准则:
Figure 2013101631656100001DEST_PATH_IMAGE004
式中|| ·||表示一阶范数, u (k)和 u (k-1)分别表示当前和上一采样时刻对应的开关矢量。
CN201310163165.6A 2013-05-07 2013-05-07 基于状态轨迹外推的模型预测三电平直接转矩控制方法 Active CN103259486B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310163165.6A CN103259486B (zh) 2013-05-07 2013-05-07 基于状态轨迹外推的模型预测三电平直接转矩控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310163165.6A CN103259486B (zh) 2013-05-07 2013-05-07 基于状态轨迹外推的模型预测三电平直接转矩控制方法

Publications (2)

Publication Number Publication Date
CN103259486A true CN103259486A (zh) 2013-08-21
CN103259486B CN103259486B (zh) 2015-08-12

Family

ID=48963230

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310163165.6A Active CN103259486B (zh) 2013-05-07 2013-05-07 基于状态轨迹外推的模型预测三电平直接转矩控制方法

Country Status (1)

Country Link
CN (1) CN103259486B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715961A (zh) * 2013-12-19 2014-04-09 华中科技大学 基于模型预测的双凸极永磁同步电机直接转矩控制方法
CN103731084A (zh) * 2014-01-10 2014-04-16 西北工业大学 永磁同步电机低逆变器功耗直接转矩控制方法及装置
CN103746624A (zh) * 2013-12-28 2014-04-23 华中科技大学 基于模型预测的双凸极永磁同步电机的电流控制方法
CN104167968A (zh) * 2014-08-29 2014-11-26 东南大学 一种异步电机矢量控制方法
CN104716856A (zh) * 2015-03-17 2015-06-17 上海交通大学 模块化多电平变流器模型预测控制方法
CN106026725A (zh) * 2016-05-30 2016-10-12 鹿寨县众盛商贸有限公司 一种基于dSPACE的模型预测控制的三相逆变器装置
CN106712626A (zh) * 2017-01-22 2017-05-24 西安理工大学 一种异步电机模型预测控制方法
CN107069732A (zh) * 2017-04-18 2017-08-18 西南交通大学 基于最小电流误差模型预测的有源滤波器谐波电流补偿方法
CN107565872A (zh) * 2017-09-15 2018-01-09 郑州轻工业学院 一种异步电机模型预测直接转矩控制方法
CN108712129A (zh) * 2018-06-20 2018-10-26 长安大学 一种基于直接转矩控制预测控制的转矩计算优化方法
CN106059361B (zh) * 2016-06-16 2019-02-05 苏州大学 一种逆变器定频模型预测控制方法及装置
CN109510539A (zh) * 2018-10-08 2019-03-22 北方工业大学 一种基于新型增益矩阵的模型预测磁链控制系统及方法
CN110224653A (zh) * 2019-06-28 2019-09-10 南京航空航天大学 一种用于三相异步电机的新型直接转矩控制方法
CN110460281A (zh) * 2019-03-28 2019-11-15 南通大学 一种三电平永磁同步电机双矢量模型预测磁链控制方法
CN112054732A (zh) * 2020-09-09 2020-12-08 上海大学 一种基于价值函数预选择的pmsm多步电流预测控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1258129A (zh) * 1998-12-21 2000-06-28 开关磁阻驱动有限公司 开关磁阻电机的控制
CN101149423A (zh) * 2007-11-02 2008-03-26 清华大学 永磁同步电机永磁磁场畸变实时检测与分析方法及其装置
CN102075136A (zh) * 2011-01-10 2011-05-25 江苏大学 一种无轴承永磁同步电机磁链的软测量方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1258129A (zh) * 1998-12-21 2000-06-28 开关磁阻驱动有限公司 开关磁阻电机的控制
CN101149423A (zh) * 2007-11-02 2008-03-26 清华大学 永磁同步电机永磁磁场畸变实时检测与分析方法及其装置
CN102075136A (zh) * 2011-01-10 2011-05-25 江苏大学 一种无轴承永磁同步电机磁链的软测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOBIAS GEYER等: "Computationally Efficient Model Predictive Direct Torque Control", 《IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 26, NO. 10, OCTOBER 2011》 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715961A (zh) * 2013-12-19 2014-04-09 华中科技大学 基于模型预测的双凸极永磁同步电机直接转矩控制方法
CN103715961B (zh) * 2013-12-19 2016-02-03 华中科技大学 基于模型预测的双凸极永磁同步电机直接转矩控制方法
CN103746624B (zh) * 2013-12-28 2016-03-02 华中科技大学 基于模型预测的双凸极永磁同步电机的电流控制方法
CN103746624A (zh) * 2013-12-28 2014-04-23 华中科技大学 基于模型预测的双凸极永磁同步电机的电流控制方法
CN103731084A (zh) * 2014-01-10 2014-04-16 西北工业大学 永磁同步电机低逆变器功耗直接转矩控制方法及装置
CN103731084B (zh) * 2014-01-10 2016-06-01 西北工业大学 永磁同步电机低逆变器功耗直接转矩控制方法及装置
CN104167968A (zh) * 2014-08-29 2014-11-26 东南大学 一种异步电机矢量控制方法
CN104167968B (zh) * 2014-08-29 2016-07-13 东南大学 一种异步电机矢量控制方法
CN104716856A (zh) * 2015-03-17 2015-06-17 上海交通大学 模块化多电平变流器模型预测控制方法
CN104716856B (zh) * 2015-03-17 2017-06-13 上海交通大学 模块化多电平变流器模型预测控制方法
CN106026725A (zh) * 2016-05-30 2016-10-12 鹿寨县众盛商贸有限公司 一种基于dSPACE的模型预测控制的三相逆变器装置
CN106059361B (zh) * 2016-06-16 2019-02-05 苏州大学 一种逆变器定频模型预测控制方法及装置
CN106712626A (zh) * 2017-01-22 2017-05-24 西安理工大学 一种异步电机模型预测控制方法
CN106712626B (zh) * 2017-01-22 2018-11-27 西安理工大学 一种异步电机模型预测控制方法
CN107069732A (zh) * 2017-04-18 2017-08-18 西南交通大学 基于最小电流误差模型预测的有源滤波器谐波电流补偿方法
CN107069732B (zh) * 2017-04-18 2019-10-25 西南交通大学 基于最小电流误差模型预测的有源滤波器谐波电流补偿方法
CN107565872A (zh) * 2017-09-15 2018-01-09 郑州轻工业学院 一种异步电机模型预测直接转矩控制方法
CN107565872B (zh) * 2017-09-15 2020-04-07 郑州轻工业学院 一种异步电机模型预测直接转矩控制方法
CN108712129A (zh) * 2018-06-20 2018-10-26 长安大学 一种基于直接转矩控制预测控制的转矩计算优化方法
CN108712129B (zh) * 2018-06-20 2020-05-19 长安大学 一种基于直接转矩控制预测控制的转矩计算优化方法
CN109510539A (zh) * 2018-10-08 2019-03-22 北方工业大学 一种基于新型增益矩阵的模型预测磁链控制系统及方法
CN110460281A (zh) * 2019-03-28 2019-11-15 南通大学 一种三电平永磁同步电机双矢量模型预测磁链控制方法
CN110460281B (zh) * 2019-03-28 2021-04-13 南通大学 一种三电平永磁同步电机双矢量模型预测磁链控制方法
CN110224653A (zh) * 2019-06-28 2019-09-10 南京航空航天大学 一种用于三相异步电机的新型直接转矩控制方法
CN112054732A (zh) * 2020-09-09 2020-12-08 上海大学 一种基于价值函数预选择的pmsm多步电流预测控制方法
CN112054732B (zh) * 2020-09-09 2021-08-10 上海大学 一种基于价值函数预选择的pmsm多步电流预测控制方法

Also Published As

Publication number Publication date
CN103259486B (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
CN103259486B (zh) 基于状态轨迹外推的模型预测三电平直接转矩控制方法
CN110829908B (zh) 一种基于混合多电平逆变器的永磁牵引电机控制方法
CN109391166A (zh) 一种变换电路、控制方法和供电设备
CN103715935A (zh) 一种基于模块化多电平电压源型换流器的损耗确定方法
CN107453635B (zh) 一种模块化多电平换流器拓扑结构的电容预充电方法
CN108900119A (zh) 基于死区效应的永磁同步电机模型预测控制方法
CN105811771B (zh) 一种基于mmc隔离型dc/dc变换器开关损耗的确定方法
CN109302119A (zh) 全周期低共模电压运行的控制方法、控制器及系统
CN104065295A (zh) 适用于电压比为1:2的h桥混合级联逆变器的控制方法
CN102594242A (zh) 基于间接式矩阵变换器多机传动系统的矢量控制方法
CN111668867A (zh) 一种风电场经vsc-hvdc系统并网的无源滑模控制方法
US11146181B2 (en) Control method and apparatus for common-mode modulated wave of single-phase five-level inverter
CN103916040A (zh) 一种逆变器拓扑电路、逆变方法及一种逆变器
Lin et al. A novel superconducting magnetic energy storage system design based on a three-level T-type converter and its energy-shaping control strategy
CN205051611U (zh) 抑制开关磁阻电机转矩脉动的电机驱动系统
CN201985816U (zh) 一种大功率三电平四象限防爆变频装置
CN104494457A (zh) 一种电流源型插电混合动力汽车能量传送驱动装置及方法
CN104348368A (zh) 在变速驱动器中实现的控制方法
CN105391371A (zh) 基于六个功率开关管的两相三电平逆变驱动电路
CN102403946B (zh) 基于空间矢量调制的等效交直交矩阵高压变频器控制方法
CN113162505A (zh) 一种永磁电机转矩控制方法及系统
CN113992112B (zh) 一种轻型mmc电机驱动系统拓扑及其调制方法
CN112803808B (zh) 降低模块化多电平换流器直流侧高频脉动电流控制方法
CN107040146A (zh) 级联h桥多电平变流器中各单元瞬时功率计算方法
Chen An overview of power electronic converter technology for renewable energy systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20180921

Address after: 201802 Building 2, 598 Sheng Sheng Road, Nanxiang Town, Jiading District, Shanghai.

Patentee after: Shanghai Fu Fu fluid power equipment Limited by Share Ltd

Address before: No. 99, Baoshan District Road, Shanghai, Shanghai

Patentee before: Shanghai University

TR01 Transfer of patent right