CN103255140A - 水稻缺氮后恢复供氮特异性诱导表达的启动子y2及应用 - Google Patents

水稻缺氮后恢复供氮特异性诱导表达的启动子y2及应用 Download PDF

Info

Publication number
CN103255140A
CN103255140A CN2012100395859A CN201210039585A CN103255140A CN 103255140 A CN103255140 A CN 103255140A CN 2012100395859 A CN2012100395859 A CN 2012100395859A CN 201210039585 A CN201210039585 A CN 201210039585A CN 103255140 A CN103255140 A CN 103255140A
Authority
CN
China
Prior art keywords
nitrogen
promoter
promotor
paddy rice
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100395859A
Other languages
English (en)
Other versions
CN103255140B (zh
Inventor
练兴明
杨猛
张星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN201210039585.9A priority Critical patent/CN103255140B/zh
Publication of CN103255140A publication Critical patent/CN103255140A/zh
Application granted granted Critical
Publication of CN103255140B publication Critical patent/CN103255140B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明属于植物基因工程技术领域。具体涉及一种水稻缺氮后恢复供氮特异性诱导表达启动子Y2及应用。利用芯片技术,得到了启动子Y2下游基因供氮诱导表达的信息,通过不同水稻品种验证了Y2下游基因供氮诱导的表达模式。通过PCR方法,扩增出启动子Y2全长和其5`端截短的片段,连接到启动子载体DX2181b上,构建得到启动子融合GUS表达的载体。再将构建好的载体对水稻品种中花11进行遗传转化,在转化阳性植株中验证该启动子对GUS基因表达的调控,通过Realtime表达量验证和GUS蛋白活性的检测,进一步确证该启动子属于缺氮后恢复供氮特异性诱导表达的启动子,其功能区段在AT6上游519bp。

Description

水稻缺氮后恢复供氮特异性诱导表达的启动子Y2及应用
技术领域
本发明涉及植物基因工程技术领域。具体涉及一种水稻缺氮后恢复供氮特异性诱导表达的启动子Y2及应用
背景技术
目前转基因研究主要以组成型启动子驱动目的基因表达,最典型的是花椰菜花叶病毒中分离的CaMV35S启动子(Hirt et al.,1990;Battraw et al.,1990),以及近年来一些植物来源的启动子,如从水稻中克隆的肌动蛋白基因Actinl的启动子和玉米中克隆的泛素基因ubiquitin启动子(Schledzewski et al.,1994)。但是外源基因的组成型表达往往会造成资源的非必要浪费,同时大量异源蛋白的积累也会打破植物原有的代谢平衡,阻碍植物的正常生长(聂丽娜等,2008;Rai et al.,2009)。Kasuga等(1999)在研究中发现,使用强的组成型表达启动子CaMV35S启动DREB1A的表达时,对植物的生长可能起到某种程度的阻碍作用,而用诱导型的启动子可以减轻这种状况。诱导型的启动子可以快速有效地诱导转录基因的“开、关”:可根据需要在植物特定发育阶段、组织器官或生长环境下接受诱导信号,诱导基因表达,也可以随时解除胁迫,停止表达(李杰等,2006)。因此,获得水稻在氮饥饿状态下诱导表达的启动子,不仅可以减少外源基因大量表达带来的负面影响,更能为基因工程改良水稻提供安全有效的调控。
在植物生长所需的各种大量元素中,氮素是限制植物生长和形成植物产量的首要因素。氮不仅是遗传物质的基础,更是蛋白质、核酸、叶绿素、酶、维生素、生物碱和植物激素等的重要组成部分(陆景陵,1994)。近半个世纪以来,世界各国都把增施氮肥作为增加水稻产量的重要农业措施,特别是第一次绿色革命之后,随着高产耐肥品种推广应用,农田氮肥施用量迅猛增长,极大提高了水稻的产量(钟代斌等,2001)。农田氮肥的过量施用,随之而来的便是氮素利用率降低以及一系列的环境问题。氮素的大量流失直接导致地下水污染和江河湖泊的富营养化作用(王光火等,2003)。
随着分子生物学和基因工程在植物领域的迅速发展,植物对氮吸收转运的分子机制也越来越清晰。大量的铵盐转运子、硝酸盐转运子被发现,GS/GOGAT(谷氨酸胺合成酶/谷氨酸合成酶)循环同化铵机理被揭示,为基因工程改良水稻氮的吸收利用提供大量的研究素材。虽然通过突变体或者吸收实验等验证了不少基因的吸收转运功能,但是这些基因在水稻体内的超量表达并未达到提高吸收转运铵的目的。Mohammad等(2006)用玉米ubiquitin启动子超量表达水稻中的铵盐转运子OsAMT1-1,提高了水稻中铵的吸收能力以及根中总铵含量,但同时产生了铵的毒害,导致地上部生物量大量减少。如果改为缺氮诱导启动子驱动,就有可能根据植株的需要,适当控制铵的吸收,避免毒害。GS是参与NH4+同化合成谷氨酰胺(Gln)的主要酶,Cai等(2009)用35S启动子在水稻品种中花11中超量表达水稻谷氨酰胺合成酶基因GS1;1、GS1;2和大肠杆菌谷氨酰胺合成酶基因glnA,GS活性、总氮含量、氨基酸含量、可溶性蛋白等都得到了显著提高,但是单株生物学产量及籽粒产量都显著下降了。如果改为供氮诱导启动子驱动,不仅可以降低组成型表达造成的“浪费”,更可以保证仅在供氮充足的情况下促进GS的同化,避免单株因氮源不足而造成生物学产量降低。
本发明通过芯片发掘了一个供氮诱导基因表达的启动子,用实时定量realtime PCR在三个不同品种中进行了验证,同时通过水稻稳定转化进一步确定了该启动子是一个供氮诱导的启动子,为基因工程改良水稻对氮的吸收利用提供了新的材料。
发明内容
本发明的目的在于克服现有的技术缺陷,提供了一种在水稻中供氮诱导基因表达启动子的应用。启动子Y2在水稻中供氮诱导基因表达的用途如下:芯片结果显示,日本晴和珍汕97在缺氮胁迫7d后再供氮时,启动子Y2控制的下游基因在根中均诱导表达25倍左右,而在地上部组织中不诱导表达。在第三个品种中花11中,通过realtime PCR验证(Realtime PCR的方法参见TAKARA商业试剂盒的使用说明书,货号:code:DRR041A)发现启动子Y2控制的下游基因在缺氮7d后再供氮2h时即可诱导30倍以上,供氮6h诱导可达40倍以上。从中花11(或称ZH11)材料中扩增启动子Y2全长序列融合GUS基因稳定转化水稻,并构建系列5`端缺失载体,将转基因阳性材料进行缺氮胁迫后供氮处理,发现供氮前后GUS基因在根中表达量显著诱导表达,而GUS蛋白活性相比诱导前明显上升。进一步验证了启动子Y2供氮诱导表达的特性,并且功能区段在ATG上游519bp。
本发明是这样实现的:
本发明以水稻日本晴(英文名称:Nipponbare,一个公知公用的水稻品种材料,且已经完成全基因组测序的水稻品种)和珍汕97(一个公知公用的水稻品种,来自江西省农业科学院)作为基础材料,水培幼苗至5叶期,分不同时间点缺氮胁迫处理取样(缺氮1h、缺氮1d、缺氮3d、缺氮7d、缺氮7d后恢复供氮2小时、恢复供氮1天),以持续正常营养液培养的幼苗作为对照,利用全基因组eDNA芯片表达谱作为技术手段(杨蓉等,1999),得到了一个在两种材料的根中供氮2h后都高倍诱导表达的基因,根据这些基因的信息在NCBI网站(www.ncbi.nlm.nih.gov)获得了基因上游序列即其启动子序列,同时,申请人按同样的处理方法处理了第三个水稻品种中花11(又称ZH11,来自于中国农业科学院作物科学研究所的一个公知公用品种),并通过realtime PCR验证了该基因供氮诱导的表达模式。将启动子序列融合GUS报告基因构建到启动子载体DX2181b(载体DX2181b是申请人所在作物遗传国家重点实验室研究人员在商业载体pCAMBIA1381,一个来自澳大利亚公开报道和使用的质粒的基础上改造得到的,见图2)上,再进行农杆菌介导的遗传转化,转化水稻品种中花11,得到阳性转化植株。检测转化阳性植株的GUS基因表达量发现,缺氮处理7d后供氮2h的GUS表达量显著上升,GUS蛋白检测发现供氮处理后其活性明显增强。
本发明的优点在于:
(1)本发明提供了一种在水稻中供氮诱导基因表达启动子的应用。在三个不同的品种中验证了该启动子下游基因的表达量缺氮处理后供氮高倍诱导的表达模式。启动子融合GUS基因稳定转化水稻阳性植株中,GUS表达量和GUS活性供氮处理后均显著上升。
(2)本发明首次发现了启动子Y2是一个供氮高倍诱导基因表达的启动子,并且功能区段在ATG上游519bp内,为基因工程改良水稻中如何有效控制氮素的吸收同化提供了新的材料。
(3)本发明中应用的启动子及其下游基因可以为水稻等禾谷类作物以及其它作物的营养代谢研究提供支持。
附图说明
SEQ ID NO:1是启动子Y2A的核苷酸序列,序列全长为2266bp。
SEQ ID NO:2是启动子Y2A的其中一个截短的启动子区段Y2B的核苷酸序列,序列全长为1056bp。
SEQ ID NO:3是启动子Y2A的另一个截短的启动子区段Y2C的核苷酸序列,序列全长为519bp。
SEQ ID NO:4是启动子Y2A的CDS区序列,序列全长为1089bp。
SEQ ID NO:4是启动子Y2A编码的蛋白质的氨基酸序列,编码362个氨基酸。
图1.是本发明的总体技术路线图。
图2.是载体DX2181b的结构示意图。图2a是DX2181b改造前载体pCAMBIA1381载体结构图;图2b是载体DX2181b的结构示意图;图2c是载体DX2181b的多克隆位点结构。
图3.启动子融合GUS表达载体稳定转化水稻片段的结构示意图。
图4.启动子Y2下游基因在芯片材料中的表达模式。图4a是芯片数据,显示在日本晴(nip)和珍汕97(ZS)两个品种的芯片数据中该基因供氮强烈诱导;图4b是以芯片同批珍汕97材料重新抽提RNA做realtime验证表达量结果,同样显示供氮强烈诱导。
图5.启动子Y2下游基因用realtime验证中花11中的表达模式。图5a是地上部分结果(shoot);图5b是根结果(root)。
图6.启动子Y2融合GUS稳定转化水稻后,各个截短模式的不同阳性单株中GUS基因表达量随供氮前后的变化。图6-1、6-2、6-3依次为启动子全长Y2A及启动子区段Y2B、Y2C结果,后面的不同数字编号代表不同的转基因阳性株系。
图7.启动子Y2融合GUS稳定转化水稻后,各个截短模式的不同阳性单株中GUS蛋白活性随供氮前后的变化。图7-1、7-2、7-3依次为启动子全长Y2A及启动子区段Y2B、Y2C结果,后面的不同数字编号代表不同的转基因阳性株系。
具体实施方式
以下实施例进一步定义本发明,并描述了启动子Y2及其截短片段调节基因表达的模式、遗传转化、以及表达水平和GUS活性的测定方法和该启动子在水稻中的调控表达的模式。根据以下的描述和这些实施事例,本领域技术人员可以确定本发明的基本特征,并且在不偏离本发明精神和范围的情况下,可以对本发明做出各种改变和修改,以使其适用各种用途和条件。
下面结合附图对本发明作进一步具体描述。
实施例1:Y2基因启动子的调控模式的确定和序列的获得
为发掘水稻中缺氮或供氮高倍诱导基因表达的启动子,为基因工程改良水稻氮素吸收提供新的启动子材料,申请人设计了图1中的技术路线,并选用了两种公知公用的常规水稻品种作为实验材料:即日本晴和珍汕97。应用芯片技术,挑选对氮胁迫有明显反应的新基因,该技术可用于定量检测大量基因在不同时间表达水平(杨蓉等,1999)。
将日本晴和珍汕97的种子37℃浸种3天,催芽2天,沙培一周出苗,移苗于水稻全营养液水培(水培营养液成分:1.44mM NH4NO3,0.3mM NaH2PO4,0.5mM K2SO4,1.0mM CaCl2,1.6mM MgSO4,0.17mMNaSiO3,50μM Fe-EDTA,0.06μM(NH4)6Mo7O24,15μM H3BO3,8μM MnCl2,0.12μM CuSO4,0.12μMZnSO4,29μM FeCl3,40.5μM Citric acid,pH值5.5,具体参见Yoshida et al.,1976),培养至5叶期,将部分水稻苗移至缺氮的营养液(上述营养液中不加NH4NO3即可)中进行氮胁迫处理,以继续用全营养液培养的苗做为对照。根据实验需要,处理时间点设计如下:缺氮1h、缺氮1d、缺氮3d、缺氮7d、缺氮7d后恢复供氮2h、恢复供氮1d。取样时地上部和根部分开,分别用锡箔纸包好,置于液氮中保存。抽提样品RNA并反转录成cDNA(具体步骤参见invitrogen公司的SSIII反转录试剂盒说明书,货号:Cat.No.18080-093),将各个时间点的样品送至北京博奥生物有限公司制作全基因组cDNA芯片(杨蓉等,1999),对反馈的芯片数据进行分析,从芯片结果中发现,由启动子Y2启动的下游基因在这两个品种中缺氮7d后恢复供氮2h根部有高倍诱导,而地上部则无此反应(见图4a、图4b)。为了确信该基因对氮的反应是不是在不同品种中都是同样的表达模式,申请人又用另一种水稻品种中花11(或称ZH11)种了一批胁迫材料,验证这些基因对氮的反应。Realtime验证结果(Realtime PCR的方法参见TAKARA商业试剂盒的使用说明书,货号code:DRR041A):在中花11中供氮2h根也有30倍的诱导(见图5a、图5b)。说明启动子Y2下游基因的表达模式确实与芯片结果相符。申请人将该基因序列输入RGAP网站(//rice.plantbiology.msu.edu/)进行Blast得到该基因的全基因序列及登录号LOC_Os08g02700。在softberry网站上,预测全长ORF,从而得到Y2下游基因的全长基因组序列及启动子序列。该基因位于水稻8号染色体,全长基因组序列为1672bp,全长cDNA为1089bp,编码362个氨基酸(见序列表SEQ ID NO:4)。申请人取该基因ATG上游2266bp为该基因的启动子全长,本发明是通过PCR方法,以水稻品种中花11的总DNA为模板,扩增得到了Y2启动子全长的序列,为便于应用并且缩小该启动子对氮反应调控元件的范围,申请人又同时将该启动子全长序列按5`端截短模式截短为两段,分别命名为:Y2B(该基因ATG上游1056bp)、Y2C(该基因ATG上游519bp),启动子全长序列也命名为Y2A(启动子全长2266bp)。用PCR的方法得到截短的片段,再把片段连接到启动子融合GUS报告基因的载体DX2181b上(由申请人所在的作物遗传改良国家重点实验室对商业载体pCAMBIA1381改造GUS连接方向和酶切位点而来,见图2)上,再进行农杆菌介导的遗传转化,转化水稻品种中花11,得到阳性转化植株。检测转化阳性植株的GUS基因表达量发现,缺氮处理7d后恢复供氮2小时的GUS表达量显著上升,GUS蛋白检测发现缺氮处理后供氮其活性明显增强。
实施例2:启动子表达转化载体的构建
根据已知启动子Y2A全长序列(2266bp,见序列表SEQ ID NO:1所述)及其截短的启动子区段:Y2B(见序列表SEQ ID NO:2),Y2C(见序列表SEQ ID NO:3)设计三对引物对(引物对的序列见表1),以水稻品种中花11的总DNA为模板,扩增分别得到启动子Y2A全长序列(2266bp)及截短的Y2B(1056bp)和Y2C(519bp)。扩增这3个片段时,在三对引物的5`端均添加了相同的限制性内切酶位点BamHI(如表1-1所示),因此扩增得到的片段可以用限制性核酸内切酶BamHI进行酶切,然后连接到启动子载体DX2181b上(载体DX2181b是申请人所在作物遗传国家重点实验室研究人员在商业载体pCAMBIA1381,一个来自澳大利亚公开报道和使用的质粒的基础上改造得到的。该载体包含有潮霉素的筛选基因:hygromycin(R),载体DX2181b的结构参见图2所述),然后再用表1-2所示的引物对得到的克隆进行测序,确定基因按正确的方向连接到DX2181b载体上(见图2所示)。
利用经典的农杆菌介导的转化方法(农杆菌EHA105,来自澳大利亚CAMBIA实验室,转化的具体操作方法参见:Elizabeth et.al.,1993),在水稻品种中花11中用Y2A及其截短启动子启动GUS基因的表达。考察转基因阳性植株,发现缺氮7d后供氮处理会导致GUS表达量显著上升,GUS蛋白活性明显增加。
表1-1本发明设计的PCR引物对
Figure BDA0000137296420000041
表1-2本发明设计的测序引物
Figure BDA0000137296420000042
Figure BDA0000137296420000051
实施例3:Y2启动子全长及其截短启动子片段融合GUS后的水稻转化实验
Y2启动子全长及截短片段分别连接到载体DX2181b上后,利用农杆菌介导的转基因的方法,得到转化的水稻阳性植株,转化的具体步骤如下:
将得到的正确克隆的质粒(DX2181b-Y2A、DX2181b-Y2B和DX2181b-Y2C)通过农杆菌(EHA105由澳大利亚CAMBIA实验室提供)介导的水稻遗传转化体系导入到水稻品种中花11中,经过预培养、侵染、共培养、筛选具有潮霉素抗性的愈伤、分化、生根、练苗移栽,得到转化植株。农杆菌介导的水稻(粳稻亚种)遗传转化体系主要采用Hiei等人(1994)报道基础上进一步优化的方法。
本发明的遗传转化的主要步骤、培养基及其配制的方法如下所述:
(1)试剂和溶液缩写
本发明中培养基所用到的植物激素的缩写表示如下:6-BA(6-BenzylaminoPurine,6-苄基腺嘌呤);CN(Carbenicillin,羧苄青霉素);KT(Kinetin,激动素);NAA(Napthalene acetic acid,萘乙酸);IAA(Indole-3-acetic acid,吲哚乙酸);2,4-D(2,4-Dichlorophenoxyacetic acid,2,4-二氯苯氧乙酸);AS(Acetosringone,乙酰丁香酮);CH(Casein Enzymatic Hydrolysate,水解酪蛋白);HN(Hygromycin B,潮霉素);DMSO(Dimethyl Sulfoxide,二甲基亚砜);N6max(N6大量元素成分溶液);N6mix(N6微量元素成分溶液);MSmax(MS大量元素成分溶液);MSmix(MS微量元素成分溶液)
(2)溶液配方
1)N6培养基大量元素母液(按照10倍浓缩液(10X)配制):
Figure BDA0000137296420000052
将上述试剂逐一溶解,然后用蒸馏水定容至1000毫升。
2)N6培养基微量元素母液(按照100倍浓缩液(100X)配制
Figure BDA0000137296420000053
将上述试剂在20-25摄氏度下溶解并用蒸馏水定容至1000毫升。
3)铁盐(Fe2EDTA)贮存液(按照100X浓缩液配制)
将3.73克乙二铵四乙酸二钠(Na2EDTA·2H2O)和2.78克FeSO4·7H2O分别溶解,混合并用蒸馏水定容至1000毫升,至70℃温浴2小时,4℃保存备用。
4)维生素贮存液(按照100X浓缩液配制)
Figure BDA0000137296420000054
Figure BDA0000137296420000061
加蒸馏水定容至1000毫升,4℃保存备用。
5)MS培养基大量元素母液(MSmax母液)(按照10X浓缩液配制)
Figure BDA0000137296420000062
将上述试剂在20-25℃温度下溶解,并用蒸馏水定容至1000毫升。
6)MS培养基微量元素母液(MSmin母液)(按照100X浓缩液配制)
Figure BDA0000137296420000063
将上述试剂在20-25℃温度下溶解,并用蒸馏水定容至1000毫升。
7)2,4-D贮存液(1毫克/毫升)的配制:
秤取2,4-D 100毫克,用1毫升1N氢氧化钾溶解5分钟,然后加10毫升蒸馏水溶解完全后定容至100毫升,于20-25℃温度下保存。
8)6-BA贮存液(1毫克/毫升)的配制:
秤取6-BA 100毫克,用1毫升1N氢氧化钾溶解5分钟,然后加10毫升蒸馏水溶解完全后定容至100毫升,20-25℃温度保存。
9)萘乙酸(NAA)贮存液(1毫克/毫升)的配制:
秤取NAA 100毫克,用1毫升1N氢氧化钾溶解5分钟,然后加10毫升蒸馏水溶解完全后定容至100毫升,4℃保存备用。
10)吲哚乙酸(IAA)贮存液(1毫克/毫升)的配制:
秤取IAA 100毫克,用1毫升1N氢氧化钾溶解5分钟,然后加10毫升蒸馏水溶解完全后定容至100毫升,4℃保存备用。
11)葡萄糖贮存液(0.5克/毫升)的配制:
秤取葡萄糖125克,然后用蒸馏水溶解定容至250毫升,灭菌后4℃保存备用。
12)AS贮存液的配制:
秤取AS 0.392克,加入DMSO 10毫升溶解,分装至1.5毫升离心管内,4℃保存备用。
13)1N氢氧化钾贮存液
秤取氢氧化钾5.6克,用蒸馏水溶解定容至100毫升,20-25℃温度保存备用。
(3)用于水稻遗传转化的培养基配方
1)诱导培养基
Figure BDA0000137296420000071
加蒸馏水至900毫升,1N氢氧化钾调节pH值到5.9,煮沸并定容至1000毫升,分装到50毫升三角瓶(25毫升/瓶),封口后按常规方法灭菌(121℃下灭菌25分钟,下述的培养基灭菌方法与本培养基的灭菌方法相同)。
2)继代培养基
Figure BDA0000137296420000072
加蒸馏水至900毫升,1N氢氧化钾调节pH值到5.9,煮沸并定容至1000毫升,分装到50毫升三角瓶(25毫升/瓶),封口,按上述方法灭菌。
3)预培养基
加蒸馏水至250毫升,1N氢氧化钾调节pH值到5.6,封口,按上述方法灭菌。
使用前加热溶解培养基并加入5毫升葡萄糖贮存液和250微升AS贮存液,分装倒入培养皿中(25毫升/皿)。
4)共培养基
Figure BDA0000137296420000074
Figure BDA0000137296420000081
加蒸馏水至250毫升,1N氢氧化钾调节pH值到5.6,封口,按上述方法灭菌。
使用前加热溶解培养基并加入5毫升葡萄糖贮存液和250微升AS贮存液,分装倒入培养皿中(25毫升/每皿)。
5)悬浮培养基
Figure BDA0000137296420000082
加蒸馏水至100毫升,调节pH值到5.4,分装到两个100毫升的三角瓶中,封口,按上述方法灭菌。使用前加入1毫升无菌葡萄糖贮存液和100微升AS贮存液。
6)选择培养基
Figure BDA0000137296420000083
加蒸馏水至250毫升,调节pH值到6.0,封口,按上述方法灭菌。
使用前溶解培养基,加入250微升HN(50毫克/毫升)和400微升CN(250毫克/毫升)分装倒入培养皿中(25毫升/皿)。(注:第一次选择培养基羧苄青霉素浓度为400毫克/升,第二次及以后选择培养基羧苄青霉素浓度为250毫克/升)。
7)预分化培养基
Figure BDA0000137296420000091
加蒸馏水至250毫升,1N氢氧化钾调节pH值到5.9,封口,按上述方法灭菌。
使用前溶解培养基,250微升HN(50毫克/毫升)250微升CN(250毫克/毫升),分装倒入培养皿中(25毫升/皿)。
8)分化培养基
Figure BDA0000137296420000092
加蒸馏水至900毫升,1N氢氧化钾调节pH值到6.0。
煮沸并用蒸馏水定容至1000毫升,分装到50毫升三角瓶(50毫升/瓶),封口,按上述方法灭菌。
9)生根培养基
Figure BDA0000137296420000093
加蒸馏水至900毫升,用1N氢氧化钾调节pH值到5.8。
煮沸并用蒸馏水定容至1000毫升,分装到生根管中(25毫升/管),封口,按上述方法灭菌。
(4)农杆菌介导的遗传转化步骤
愈伤诱导
1)将成熟的中花11水稻种子去壳,然后依次用70%的乙醇处理1分钟,0.15%氯化汞(HgCl2)种子表面消毒15分钟;
2)用灭菌水洗种子4-5次;
3)将种子放在诱导培养基上;
4)将接种后的培养基置于黑暗处培养4周,温度25±1℃。
3.2愈伤继代
挑选亮黄色、紧实且相对干燥的胚性愈伤,放于继代培养基上黑暗下培养2周,温度25±1℃。
3.3预培养
挑选紧实且相对干燥的胚性愈伤,放于预培养基上黑暗下培养2周,温度25±1℃。
3.4农杆菌培养
1)在带有对应抗性选择的LA培养基(LA培养基的配制参照J.萨姆布鲁克等,1998)上预培养农杆菌EHA105(该菌株来自CAMBIA公司公开使用的农杆菌菌株)两天,温度28℃;
2)将农杆菌转移至悬浮培养基里,28℃摇床上培养2-3小时。
3.5农杆菌侵染
1)将预培养的愈伤转移至灭好菌的瓶子内;
2)调节农杆菌的悬浮液至OD6000.8-1.0;
3)将愈伤在农杆菌悬浮液中浸泡30分钟;
4)转移愈伤至灭菌好的滤纸上吸干;然后放置在共培养基上培养3天,温度19-20℃。
3.6愈伤洗涤和选择培养
1)灭菌水洗涤愈伤至看不见农杆菌;
2)浸泡在含400毫克/L羧苄青霉素(CN)的灭菌水中30分钟;
3)转移愈伤至灭菌好的滤纸上吸干;
4)转移愈伤至选择培养基上选择培养2-3次,每次2周。
3.7分化
1)将抗性愈伤转移至预分化培养基上于黑暗处培养5-7天;
2)转移预分化培养的愈伤至分化培养基上,光照下培养,温度26℃。
3.8生根
1)剪掉分化时产生的根;
然后将其转移至生根培养基中光照下培养2-3周,温度26℃。
3.9移栽
洗掉根上的残留培养基,将具有良好根系的幼苗转入温室,同时在最初的几天保持水分湿润。
转化粳稻品种中花11,得到转基因单株T0代植株(Y2A得到阳性株系28株,Y2B得到阳性株系24株,Y2C得到阳性株系31株)。将T0代阳性株系收种,为T1代转基因材料。
实施例4:Y2启动子及其截短转基因植株的调控模式的验证
分别测定T0代转基因植株根的Y2启动子全长和截短的启动子调节GUS基因的表达量和编码的GUS蛋白的活性,发现T0代各个片段的转基因植株,都表现出与芯片相符的诱导模式,即GUS基因的表达量和GUS活性在恢复供氮2小时后受到明显诱导。同时测定了T1代转基因植株,也测到了相同诱导结果。这同时也证明了这个启动子可以通过遗传转化来改良水稻品质。
1.Realtime PCR验证方法
Realtime PCR的方法参见宝生物工程(大连)有限公司即TAKARA商业试剂盒的使用说明书(货号:DRR041A)。实验中采用10μl的反应体系,包含:cDNA模板1.5μl(待检测表达量的水稻材料样品),基因左右引物各0.2μM(本实验中GUS检测所用的左右引物分别为qGUS-F和qGUS-R,内参基因Ubi的左右引物分别为qUbi-F和qUbi-R,具体参见表2)和1U Taq DNA聚合酶。PCR扩增的条件为:95℃预变性30s;95℃5s,60℃34s,45个循环;信号收集在60℃。
表2realtime表达量检测引物表
Figure BDA0000137296420000111
检测结果中(如图6),在缺氮胁迫7天后恢复供氮2h时,随机选取每个启动子片段转化的各4个阳性株系都显示在缺氮后恢复供氮有明显的诱导反应,证明该启动子系列确实为调控基因缺氮后供氮诱导表达的启动子。
注:图6-1(Y2A不同转基因株系的GUS表达量检测)、6-2(Y2B不同转基因株系的GUS表达量检测)、6-3(Y2C不同转基因株系的GUS表达量检测)所示,其中不同数字编号代表不同的转基因株系,CK表示正常营养液培养,-N7d表示缺氮处理7d,+N2h表示缺氮处理7d后供氮2h,+N1d表示缺氮处理7d后供氮1d。所有数据均为根部样品的结果。
2、GUS蛋白活性测定
为了进一步证明该基因启动子在翻译水平上也是缺氮后供氮诱导的调控模式,申请人对转基因苗进行了GUS活性测定,结果显示Y2启动子与芯片结果和Realtime结果一致,并且截短的启动子区段Y2B、Y2C也显示同样的诱导模式(三个启动子区段间活性无明显强弱差别),所以可以确定该基因启动子为缺氮后恢复供氮诱导的启动子,并且功能区段在启动子Y2C序列中(起始密码子ATG上游519bp内)。
具体方法和试剂如下:
GUS的蛋白含量检测
1、蛋白的提取及浓度测定
(1)取适量待测定水稻样品于液氮预冷的研钵中,加入液氮,研成粉末,取0.2g左右粉末装入2ml离心管,加1ml酶提取液颠倒混匀,置冰上浸提4小时以上。于13,000rpm,4℃离心10min,取上清。重复离心一次并吸取上清。置冰上备用。
(2)蛋白标准曲线的制作
取配制的100μg/ml的牛血清白蛋白(BSA)母液(准确称取0.100g BSA粉末加适量ddH2O溶解,再定容到1L,即为100μg/ml),按表3进行BSA梯度稀释。
表3标准曲线中BSA浓度梯度的配制
Figure BDA0000137296420000112
从配好的梯度溶液中取250μL加入750μL考马斯亮蓝染液(根据反应体系的不同,BSA梯度溶液和考马斯亮蓝染液按体积比1∶3配制),混匀,室温放置5min,测定595nm的光吸收值,制作标准曲线。
(3)样品蛋白含量测定取蛋白上清250μL,按照蛋白上清和考马斯亮蓝染液体积比1∶3的比例加入750μL考马斯亮蓝染液,混匀,室温放置5min,测定595nm的光吸收值,根据蛋白标准曲线计算样品蛋白含量。
2GUS荧光检测
(1)以100μmol的4-甲基伞型酮(4-MU)溶液为标准:配制4-MU梯度浓度液(由反应终止液配制)0μmol/L,5μmol/L,10μmol/L,20μmol/L,40μmol/L,60μmol/L(该梯度也可根据样品的实际信号值进行调整,适用即可)在激发光365nm,发射光455nm,,测定各样品的荧光值,绘制标准曲线。
(2)酶反应:每200μL的反应体系中:取30μL蛋白上清,加入10μL 40mM 4-MUG,置于37℃反应1h,加入160ul反应终止液里(37℃预热),该反应可直接在96孔酶标板上进行。
(3)预热酶标仪,在激发光365nm,发射光455nm测定荧光值。根据标准曲线,计算各样品酶活。
(4)GUS活性以pmol 4-MU/μg/min表示。
GUS提取缓冲液:
Figure BDA0000137296420000121
反应终止液:0.2M Na2CO3,(要求现配现用)
考马斯亮蓝G250溶液:称取考马斯亮蓝G250 50mg,溶于95%乙醇25ml,H3PO450ml,加双蒸水定容至500ml,过滤后4℃避光保存。
100ug/ml BSA标线溶液:10mg BSA,加双蒸水定容至100mL。
GUS定量检测所需溶液
一、磷酸缓冲液Na2HPO4和NaH2PO4溶液
Na2HPO4.12H2O的分子量:   358.14
NaH2PO4.2H2O的分子量:    156.01
1、200ml 1mol/L Na2HPO4溶液
Na2HPO4.12H2O             71.628g
H2O                       补充至200ml
2、配制200ml 1mol/L NaH2PO4溶液
NaH2PO4.2H2O              31.202g
H2O                       补充至200ml
二、0.1M磷酸缓冲液(pH7.0)
1mol/L Na2HPO4            28.85ml
1mol/L NaH2PO4            21.15ml
H2O                       补充至500ml
三、10%十二烷基硫酸钠(SDS)溶液
在90ml水中溶解10g SDS,加热到68℃助溶,加入几滴浓盐酸调节pH至7.2,然后加水定容至100ml。
四、0.5M EDTA(pH8.0)
Na2EDTA.2H2O的分子量:    372.24
在80ml水中加入18.61g Na2EDTA.2H2O,用NaOH调pH至8.0(约需2g左右的固体NaOH),溶解后定容至100ml。
五、GUS酶提取液
Figure BDA0000137296420000131
六、GUS活性检测液(MUG溶液)
MUG(C16H16O9 4-甲基伞型酮-β-葡萄糖醛酸苷)分子量:352.3
将50mg MUG溶解在3.548ml的GUS酶提取液中,配制成浓度为40mmol/L的MUG溶液。
七、反应终止液(0.2mol/L Na2CO3)
Na2CO3分子量:105.99
配制500ml 0.2mol/L的Na2CO3溶液:
Na2CO3        10.6g
H2O           补充至500ml
八、4-MU溶液配制
4-MU(4-甲基伞型酮)分子量:176.2
称0.14096g 4-MU固体溶于40ml反应终止液(0.2M Na2CO3)中,配制成20mM的4-MU溶液。然后再稀释到1mM浓度,贮存于-20度,留待制备MU标准曲线。
GUS定量检测操作步骤
一、标准曲线的制备
用反应终止液将MU母液(1mM,配制如前所述)稀释成浓度范围在0-100μM的系列标准液,通过测定它们的荧光强度作出一条标准曲线。
二、GUS酶提取、测定方法:
1、取适量待测定水稻样品于液氮预冷的研钵中,加入液氮,研成粉末,取0.2g左右粉末装入2ml离心管,加1ml酶提取液颠倒混匀,置冰上浸提4小时以上。
2、于13000rpm,4℃离心10min,小心吸取上清于另一离心管中。重复离心一次,吸取上清。该上清即为初蛋白酶液。
3、取40μl上述上清稀释至1ml,用前面所述的考马斯亮蓝法测定蛋白的含量。
4、取30μl上述上清(可根据测定的蛋白含量进行适当的调整体积)加入到10μl在37℃预热的检测液(40mmol/L 4-MUG溶液,配制如前所述)中。迅速充分混匀,37℃反应60min并立刻取出加入到160μL反应终止液(0.2mol/LNa2CO3,配制如前所述)。
5、用荧光分光光度计在激发波长365nm、发射波长455nm下,测定样品的荧光值。
6、GUS活性以pmol 4-MU/μg/min表示。
结果分析:
结果如图7-1(Y2A不同转基因株系的GUS蛋白活性检测)、7-2(Y2B不同转基因株系的GUS蛋白活性检测)、7-3(Y2C不同转基因株系的GUS蛋白活性检测)所示。其中不同数字编号代表不同的转基因株系,CK表示正常营养液培养,-N7d表示缺氮处理7d,+N2h表示缺氮处理7d后供氮2h,+N1d表示缺氮处理7d后供氮1d。所有数据均为根样品的结果。结果中显示,全长启动子Y2A及其截短模式中所有转化阳性株系在GUS蛋白活性上均表现出明显的供氮诱导趋势,进一步验证了Y2供氮诱导的调控模式,且其调控元件在Y2C即ATG上游519bp范围内。
参考文献:
1.李杰,张福城,王文泉,黄丽云.高等植物启动子的研究进展.生物技术通讯,2006,17:658-661
2.陆景陵.植物营养学(上部).北京:中国农业大学出版社.1994,1-36
3.聂丽娜,夏兰琴,徐兆师,高东尧,李琳,于卓,陈明,李连城,马有志.植物基因启动子的克隆及其功能研究进展.植物遗传资源学报,2008,9:385-391
4.王光火,张奇春,黄昌勇.提高氮肥利用率,控制氮肥污染的新途径-SSNM.浙江大学学报,2003,29:67-70
5.杨蓉,谢文章,张亮,朱小山,王国青,董赫,李志明,陈恳,陈德朴,程京.生物芯片研究进展.生物工程进展,1999,19:33-37
6.钟代斌,陆雅海,郭龙彪.植物遗传资源科学.2001,2:16-20
7.J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯.分子克隆指南(第二版).金冬燕等(译).北京:科学出版社.1998,908-908
8.Battraw M J,Hall T C.Histochemical analysis of CaMV 35S promoter-beta-glucuronidase gene expressionin transgenic rice plants.Plant Mol Biol,1990,15:527-538
9.Cai HM,Zhou Y,Xiao JH,Li XH,Zhang QF,Lian XM.2009.Overexpressed glutamine synthetase genemodifies nitrogen metabolism and abiotic stress responses in rice.Plant Cell Reports,28:527-537
10.Elizabeth E.,Stanton B.,Leo S.and Andre H.NewAgrobacterium helper plasmids for gene transfer to plants.Transgenic Res 2,1993,208-218
11.Hiei Y,Ohta S,Komari T,Kumashiro T.Efficient transformation of rice(Oryza sativa L.)mediated byAgrobacterium and sequence analysis of the boundaries of the T-DNA.The Plant Journal,1994,6(2):271-282
12.Hirt H,Kogl M,Murbacher T,Heberle-Bors E.Evolutionary conservation of transcriptional machinerybetween yeast and plants as shown by the efficient expression from the CaMV35S promoter and 35Sterminator.Curr Genet,1990,17:473-479
13.Kasuga M,Liu Q,Miura S,Yamaguchi-Shinozaki K,Shinozaki K.Improving plant drought salt and freezingtolerance by gene transfer of a single stress-inducible transcription factor.Nat Biotechnol,1999,17:287-291
14.Mohammad.S H,Josette M,Michael K.U,Peter R.R,Narayana M.U.Over-expression of the riceOsAMT1-1 gene increases ammonium uptake and content,but impairs growth and development of plantsunder high ammonium nutrition.Functional Plant Biology,2006,33:153-163
15.Rai M,He C,Wu R.Comparative functional ahalysis of three abiotic stress-inducible promoters in transgenicrice.Transgenic Res,2009,[Epub ahead of print]
16.Schledzewski K and Mendel R R.Quantitative transient gene expression:Comparison of the promoters formaize polyubiquitin1,rice actin1,maize-derived Emu and CaMV 35S in cells of barley,maize and tobacco.Transgenic Res,1994,3:249-255
17.Yoshida S,Forno DA,Cook JH,Gomez KA.Laboratory manual for physiological studies of rice,3rd ed.International Rice Research Institute,Manila,1976
Figure IDA0000137296510000011
Figure IDA0000137296510000021
Figure IDA0000137296510000031
Figure IDA0000137296510000041
Figure IDA0000137296510000051

Claims (3)

1.一种在水稻缺氮后恢复供氮下特异性诱导表达的启动子Y2A,它的核苷酸序列如序列表SEQ ID NO:1所示。
2.一种在水稻供氮情况下特异性诱导基因表达的启动子Y2A,它还包括截短的启动子区段Y2B和Y2C,它们的核苷酸序列分别如序列表SEQ ID NO:2和SEQ ID NO:3所示。
3.权利要求1或2所述的启动子在缺氮后恢复供氮下诱导基因在水稻中表达的应用。
CN201210039585.9A 2012-02-21 2012-02-21 水稻缺氮后恢复供氮特异性诱导表达的启动子y2及应用 Expired - Fee Related CN103255140B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210039585.9A CN103255140B (zh) 2012-02-21 2012-02-21 水稻缺氮后恢复供氮特异性诱导表达的启动子y2及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210039585.9A CN103255140B (zh) 2012-02-21 2012-02-21 水稻缺氮后恢复供氮特异性诱导表达的启动子y2及应用

Publications (2)

Publication Number Publication Date
CN103255140A true CN103255140A (zh) 2013-08-21
CN103255140B CN103255140B (zh) 2014-06-18

Family

ID=48959353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210039585.9A Expired - Fee Related CN103255140B (zh) 2012-02-21 2012-02-21 水稻缺氮后恢复供氮特异性诱导表达的启动子y2及应用

Country Status (1)

Country Link
CN (1) CN103255140B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104711260A (zh) * 2013-12-13 2015-06-17 华中农业大学 水稻缺氮后恢复供氮特异诱导表达的启动子y8a及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1375011A (zh) * 1998-02-13 2002-10-16 莫特和尚东香帕尼公司 含有压力诱导型启动子序列和二苯乙烯合成酶编码基因序列的核酸

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1375011A (zh) * 1998-02-13 2002-10-16 莫特和尚东香帕尼公司 含有压力诱导型启动子序列和二苯乙烯合成酶编码基因序列的核酸

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HONGMEI CAI ET AL.: "Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice", 《PLANT CELL REP》 *
SASAKI ET AL.: "AP006723.2", 《GENBANK》 *
聂丽娜等: "植物基因启动子的克隆及其功能研究进展", 《植物遗传资源学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104711260A (zh) * 2013-12-13 2015-06-17 华中农业大学 水稻缺氮后恢复供氮特异诱导表达的启动子y8a及应用
CN104711260B (zh) * 2013-12-13 2017-07-07 华中农业大学 水稻缺氮后恢复供氮特异诱导表达的启动子y8a及应用

Also Published As

Publication number Publication date
CN103255140B (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
Antony Ceasar et al. Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants
Somleva et al. Agrobacterium‐mediated genetic transformation of switchgrass
US7560626B2 (en) Promoter sequence obtained from rice and methods of use
CN103088027B (zh) 一种调控人参皂苷积累的pdr转运蛋白基因启动子及其应用
Ogaki et al. Importance of co-cultivation medium pH for successful Agrobacterium-mediated transformation of Lilium× formolongi
CN100445384C (zh) 逆境特异诱导双向表达活性的水稻启动子cpip的鉴定和利用
CN101096681A (zh) 利用水稻蛋白激酶基因OsCIPK15提高植物耐盐能力
Cao et al. Agrobacterium tumefaciens-mediated transformation of corn (Zea mays L.) multiple shoots
CN103695439B (zh) 金柑FcWRKY70基因及其在提高植物耐旱中的应用
CN102712929B (zh) 植物根特异表达启动子的鉴定和应用
Wang et al. Functional characterization of cytosolic pyruvate phosphate dikinase gene (MecyPPDK) and promoter (MecyPPDKP) of cassava in response to abiotic stress in transgenic tobacco
CN103421813A (zh) Sn1基因在控制水稻抗高温性和抗旱性中的应用
CN101358193B (zh) 水稻叶片衰老特异性启动子的鉴定及应用
CN103255141B (zh) 一种水稻缺氮特异性诱导表达的启动子y5及应用
CN103255140B (zh) 水稻缺氮后恢复供氮特异性诱导表达的启动子y2及应用
CN106674337A (zh) 一种植物磷转运蛋白ZmPHT1;7及其编码基因和应用
CN103045640B (zh) 丹波黑大豆SGF14a基因的植物表达载体及其应用
CN104711260B (zh) 水稻缺氮后恢复供氮特异诱导表达的启动子y8a及应用
CN102559676B (zh) 水稻根特异性启动子及其应用
CN108004257A (zh) 水稻硫氰酸酶编码基因OsRHOD1;1及其应用
CN103421784A (zh) 水稻干旱和高盐诱导型启动子pds1的鉴定和利用
CN103695422B (zh) 水稻根尖特异表达启动子Pro-Os04g24469及其应用
CN102206662B (zh) miR399融合基因及其构建方法和在植物育种中的应用
CN101386865A (zh) 基因OsAAT2在控制水稻谷粒品质中的用途
CN102776231A (zh) 一种农杆菌介导的日本结缕草遗传转化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140618

Termination date: 20150221

EXPY Termination of patent right or utility model