CN103252218A - 混合式整体晶胶介质及其制备方法 - Google Patents

混合式整体晶胶介质及其制备方法 Download PDF

Info

Publication number
CN103252218A
CN103252218A CN2013101522269A CN201310152226A CN103252218A CN 103252218 A CN103252218 A CN 103252218A CN 2013101522269 A CN2013101522269 A CN 2013101522269A CN 201310152226 A CN201310152226 A CN 201310152226A CN 103252218 A CN103252218 A CN 103252218A
Authority
CN
China
Prior art keywords
crystal gel
gel medium
medium
anion exchange
hybrid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101522269A
Other languages
English (en)
Other versions
CN103252218B (zh
Inventor
贠军贤
林东强
关怡新
姚善泾
沈绍传
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201310152226.9A priority Critical patent/CN103252218B/zh
Publication of CN103252218A publication Critical patent/CN103252218A/zh
Priority to PCT/CN2014/070566 priority patent/WO2014173192A1/zh
Application granted granted Critical
Publication of CN103252218B publication Critical patent/CN103252218B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/14Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

本发明公开了一种具有疏水苄基-阴离子交换叔氨基的混合式整体超大孔晶胶分离介质及其制备方法,所述晶胶介质孔径为1~300μm,孔隙率85~96%,水相渗透率2×10-12~6×10-12m2,所述晶胶介质带有式(Ⅰ)所示疏水苄基-阴离子交换叔氨基的功能基团;本发明提供的晶胶介质聚合物链中同时含有氨基型离子交换基团及一定疏水功能的苄基,有助于与蛋白质等生物大分子形成多点吸附,改善其分离性能,具有其它晶胶介质的优良基础性能,如孔隙率高,孔道连通性好,具有一定的机械强度,干燥后重新吸水迅速恢复原来的形状等,在生化分离领域具有广阔的应用前景;

Description

混合式整体晶胶介质及其制备方法
(一)技术领域
本发明涉及一种超大孔混合式整体晶胶分离介质及其制备方法,特别涉及一种具有疏水苄基-阴离子交换叔氨基的混合式整体晶胶介质及其制备方法。
(二)背景技术
晶胶分离介质具有尺寸从数微米至数百微米的超大孔隙,允许含有微生物细胞碎片的复杂发酵液、培养液或转化液等复杂流体直接穿过床层,可以实现对生物大分子物质的快速分离,在生物下游领域有重要应用前景。研究和发展具有不同功能基团的新型离子交换晶胶介质具有重要意义。
目前国内外关于混合式晶胶分离介质鲜有报道,对于离子交换型晶胶分离介质的报道也较少。文献资料中(Hanora等,Journal of Biotechnology,2006,123(3):343-355)报道了两种氨基功能基团的阴离子交换晶胶介质,骨架材料为聚丙烯酰胺。但是,现有文献中的阴离子交换型晶胶介质功能基团单一,对于具有一定疏水功能、以离子交换功能为主的混合式整体晶胶介质,则很缺乏。
(三)发明内容
本发明目的是提供一种具有疏水苄基-阴离子交换叔氨基的混合式功能基团的整体晶胶分离介质及其制备方法。
本发明采用的技术方案是:
本发明提供一种具有疏水苄基-阴离子交换叔氨基的混合式整体晶胶介质,所述晶胶介质孔径为1~300μm,孔隙率85~96%,水相渗透率2×10-12~6×10-12m2,所述晶胶介质带有式(Ⅰ)所示疏水苄基-阴离子交换叔氨基的功能基团:
Figure BDA00003109106400021
式(Ⅰ)中n为正整数。
本发明还提供一种所述具有疏水苄基-阴离子交换叔氨基的混合式整体晶胶介质的方法,所述方法为:将可与晶胶介质基质发生接枝反应的单体在催化剂的作用下,通过接枝反应固载在晶胶介质基质内,即获得所述具有疏水苄基-阴离子交换叔氨基的混合式整体晶胶介质;所述单体为N,N,N-三甲基乙烯基苯甲氯化铵;所述晶胶介质基质为聚丙烯酰胺或聚甲基丙烯酸羟乙酯;所述催化剂为浓度0.037~0.056mol/L的Cu3+的水溶液(优选K5[Cu(HIO6)2]水溶液),所述催化剂体积用量是晶胶介质基质体积的3~5倍;所述单体以0.25~1mol/L单体水溶液的形式加入,所述单体水溶液的体积用量是晶胶介质基质体积的1~5倍。
进一步,所述接枝反应的温度为40~55℃,反应时间为0.5~4h。
进一步,所述单体以0.5mol/L单体水溶液的形式加入,所述单体水溶液的体积用量是晶胶介质基质体积的3倍。
本发明所述单体与晶胶介质基质通过接枝聚合反应,从而固载在晶胶介质基质内。
本发明提供的具有疏水苄基-阴离子交换叔氨基的混合式整体晶胶介质及其制备方法具有如下特点:
(1)本发明提供的具有疏水苄基-阴离子交换叔氨基的混合式整体晶胶分离介质与现有阴离子交换型晶胶介质不同,本发明提供的晶胶介质聚合物链中同时含有氨基型离子交换基团及一定疏水功能的苄基,有助于与蛋白质等生物大分子形成多点吸附,改善其分离性能。
(2)本发明提供的具有疏水苄基-阴离子交换叔氨基的混合式整体晶胶分离介质具有其它晶胶介质的优良基础性能,如孔隙率高,孔道连通性好,具有一定的机械强度,干燥后重新吸水迅速恢复原来的形状等,在生化分离领域具有广阔的应用前景。
(四)附图说明
图1实施例1制备的晶胶介质的扫描电镜图。
(五)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
实施例1
取直径10mm、高度69mm的聚丙烯酰胺基整体晶胶基质,以27mL浓度为0.056M的K5[Cu(HIO6)2]水溶液为催化剂,用27mL浓度为0.25M的N,N,N-三甲基乙烯基苯甲氯化铵水溶液为反应液,于40℃下接枝反应4h,得到超大孔混合式整体晶胶分离介质(即具有疏水苄基-阴离子交换叔氨基的混合式整体晶胶介质),有效孔隙率87%,最大孔隙率94%,孔径大小约1~270μm,其微观结构的扫描电镜图见图1;水相渗透率6×10-12m2;流速2cm/min下对牛血清蛋白的动态吸附容量(穿透浓度/上样液浓度>0.9,下同)达0.8mg/mL,对牛血清蛋白的静态吸附容量达2.1mg/mL。该介质具有弹性,机械强度较好,在高流速下(如10~15cm/min,20mM pH7.2磷酸盐缓冲液)无明显变形;干燥后吸水3~5秒可恢复原状。
实施例2
取直径10mm、高度76mm的聚丙烯酰胺基整体晶胶基质,以17.9mL浓度为0.056M的K5[Cu(HIO6)2]水溶液为催化剂,用16mL浓度为1M的N,N,N-三甲基乙烯基苯甲氯化铵水溶液为反应液,于50℃下接枝反应2h,得到具有疏水苄基-阴离子交换叔氨基的混合式整体超大孔晶胶分离介质,有效孔隙率85%,最大孔隙率94%,水相渗透率2×10-12m2;孔径大小约1~300μm,流速1cm/min下对牛血清蛋白的动态吸附容量达2.3mg/mL,对牛血清蛋白的静态吸附容量达3.5mg/mL。该介质具有弹性,机械强度较好,在高流速下(如10~15cm/min,20mM pH7.2磷酸盐缓冲液)无明显变形;干燥后吸水3~5秒可恢复原状。
实施例3
取直径10mm、高度80mm的聚甲基丙烯酸羟乙酯整体晶胶基质,以19mL浓度为0.037M的K5[Cu(HIO6)2]水溶液为催化剂,用6.3mL浓度为0.5M的N,N,N-三甲基乙烯基苯甲氯化铵水溶液为反应液,于55℃下接枝反应0.5h,得到具有疏水苄基-阴离子交换叔氨基的混合式整体超大孔晶胶分离介质,有效孔隙率86%,最大孔隙率96%,孔径大小约20~210μm,水相渗透率3×10-12m2;流速2cm/min下对牛血清蛋白的动态吸附容量达1.2mg/mL,对牛血清蛋白的静态吸附容量达2.8mg/mL。该介质具有弹性,机械强度较好,在高流速下(如10~15cm/min,20mM pH7.2磷酸盐缓冲液)无明显变形;干燥后吸水3~5秒可恢复原状。

Claims (4)

1.一种具有疏水苄基-阴离子交换叔氨基的混合式整体晶胶介质,其特征在于所述晶胶介质孔径为1~300μm,孔隙率85~96%,水相渗透率2×10-12~6×10-12m2,所述晶胶介质带有式(Ⅰ)所示疏水苄基-阴离子交换叔氨基的功能基团:
Figure FDA00003109106300011
式(Ⅰ)中n为正整数。
2.一种制备权利要求1所述具有疏水苄基-阴离子交换叔氨基的混合式整体晶胶介质的方法,其特征在于所述方法为:将可与晶胶介质基质发生接枝反应的单体在催化剂的作用下,通过接枝反应固载在晶胶介质基质内,即获得所述具有疏水苄基-阴离子交换叔氨基的混合式整体晶胶介质;所述单体为N,N,N-三甲基乙烯基苯甲氯化铵;所述晶胶介质基质为聚丙烯酰胺或聚甲基丙烯酸羟乙酯;所述催化剂为浓度0.037~0.056mol/L的Cu3+的水溶液,所述催化剂体积用量是晶胶介质基质体积的3~5倍;所述单体以0.25~1mol/L单体水溶液的形式加入,所述单体水溶液的体积用量是晶胶介质基质体积的1~5倍。
3.如权利要求2所述制备具有疏水苄基-阴离子交换叔氨基的混合式整体晶胶介质的方法,其特征在于所述接枝反应的温度为40~55℃,反应时间为0.5~4h。
4.如权利要求2所述制备具有疏水苄基-阴离子交换叔氨基的混合式整体晶胶介质的方法,其特征在于所述单体以0.5mol/L单体水溶液的形式加入,所述单体水溶液的体积用量是晶胶介质基质体积的3倍。
CN201310152226.9A 2013-04-26 2013-04-26 混合式整体晶胶介质及其制备方法 Active CN103252218B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201310152226.9A CN103252218B (zh) 2013-04-26 2013-04-26 混合式整体晶胶介质及其制备方法
PCT/CN2014/070566 WO2014173192A1 (zh) 2013-04-26 2014-01-14 混合式整体晶胶介质及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310152226.9A CN103252218B (zh) 2013-04-26 2013-04-26 混合式整体晶胶介质及其制备方法

Publications (2)

Publication Number Publication Date
CN103252218A true CN103252218A (zh) 2013-08-21
CN103252218B CN103252218B (zh) 2015-08-05

Family

ID=48956629

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310152226.9A Active CN103252218B (zh) 2013-04-26 2013-04-26 混合式整体晶胶介质及其制备方法

Country Status (2)

Country Link
CN (1) CN103252218B (zh)
WO (1) WO2014173192A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014173192A1 (zh) * 2013-04-26 2014-10-30 浙江工业大学 混合式整体晶胶介质及其制备方法
CN104607162A (zh) * 2015-01-15 2015-05-13 浙江工业大学 一种阳离子交换嵌合型晶胶分离介质及其制备方法
CN106674443A (zh) * 2016-12-23 2017-05-17 浙江工业大学 一种葡聚糖‑聚甲基丙烯酸羟乙酯基连续床晶胶分离介质及其制备方法
CN109499550A (zh) * 2018-12-19 2019-03-22 浙江工业大学 一种半疏水性纳晶胶介质及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2190644C1 (ru) * 2001-04-26 2002-10-10 Институт элементоорганических соединений им. А.Н.Несмеянова РАН Композиция для получения криогеля поливинилового спирта и способ получения криогеля
WO2003049671A2 (en) * 2001-12-10 2003-06-19 Emembrane, Inc. Functionalized materials and libraries thereof
JP3905244B2 (ja) * 1999-04-26 2007-04-18 独立行政法人科学技術振興機構 ヌクレオチド応答性ヒドロゲル
CN101081373A (zh) * 2007-06-29 2007-12-05 浙江工业大学 一种阳离子交换晶胶层析介质及其制备方法
CN101085797A (zh) * 2007-06-29 2007-12-12 浙江工业大学 一种三磷酸腺苷的晶胶吸附层析分离方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545379A (ja) * 2005-05-13 2008-12-18 プロティスタ バイオテクノロジー アーベー 水性懸濁液からの、生体粒子の吸着に基づく分離方法
WO2007108770A1 (en) * 2006-03-21 2007-09-27 Protista Biotechnology Ab Composite sorbent material, its preparation and its use
CN101497033B (zh) * 2008-12-19 2011-12-21 浙江工业大学 一种阴离子交换型大孔晶胶介质及其制备方法
CN103252218B (zh) * 2013-04-26 2015-08-05 浙江工业大学 混合式整体晶胶介质及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3905244B2 (ja) * 1999-04-26 2007-04-18 独立行政法人科学技術振興機構 ヌクレオチド応答性ヒドロゲル
RU2190644C1 (ru) * 2001-04-26 2002-10-10 Институт элементоорганических соединений им. А.Н.Несмеянова РАН Композиция для получения криогеля поливинилового спирта и способ получения криогеля
WO2003049671A2 (en) * 2001-12-10 2003-06-19 Emembrane, Inc. Functionalized materials and libraries thereof
CN101081373A (zh) * 2007-06-29 2007-12-05 浙江工业大学 一种阳离子交换晶胶层析介质及其制备方法
CN101085797A (zh) * 2007-06-29 2007-12-12 浙江工业大学 一种三磷酸腺苷的晶胶吸附层析分离方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHUAN WANG ET AL.: "Enhanced adsorption capacity of cryogel bed by incorporating polymeric resin particles", 《JOURNAL OF CHROMATOGRAPHY A》, vol. 1272, 29 November 2012 (2012-11-29) *
WILLIAM LEE ET AL.: "Design of urea-permeable anion-exchange membrane by radiation-induced graft polymerization", 《JOURNAL OF MEMBRANE SCIENCE》, vol. 81, 31 December 1993 (1993-12-31) *
郭东荣 等: "季铵阳离子聚合物的制备与应用", 《石油钻探技术》, vol. 25, no. 4, 31 December 1997 (1997-12-31), pages 19 - 24 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014173192A1 (zh) * 2013-04-26 2014-10-30 浙江工业大学 混合式整体晶胶介质及其制备方法
CN104607162A (zh) * 2015-01-15 2015-05-13 浙江工业大学 一种阳离子交换嵌合型晶胶分离介质及其制备方法
CN106674443A (zh) * 2016-12-23 2017-05-17 浙江工业大学 一种葡聚糖‑聚甲基丙烯酸羟乙酯基连续床晶胶分离介质及其制备方法
CN109499550A (zh) * 2018-12-19 2019-03-22 浙江工业大学 一种半疏水性纳晶胶介质及其制备方法
CN109499550B (zh) * 2018-12-19 2022-02-15 浙江工业大学 一种半疏水性纳晶胶介质及其制备方法

Also Published As

Publication number Publication date
CN103252218B (zh) 2015-08-05
WO2014173192A1 (zh) 2014-10-30

Similar Documents

Publication Publication Date Title
Liao et al. Magnetic chitin hydrogels prepared from Hericium erinaceus residues with tunable characteristics: A novel biosorbent for Cu2+ removal
US12011694B2 (en) Crosslinked protein-based separation membrane and application thereof
CN103252218A (zh) 混合式整体晶胶介质及其制备方法
JP2022140462A (ja) 温度応答性電解質材料、温度応答性電解質フィルム、膜、並びにイオン濃度勾配を生じさせる装置及び方法
RU2003136737A (ru) Наноразмерный электроположительный волокнистый адсорбент
CN104722101A (zh) 层析介质和方法
CN102532408B (zh) 一种温敏型磁性蛋白质印迹纳米球的制备方法
CN102732475A (zh) 一种用于细胞培养的微载体、其制备方法及检测方法
Krenkova et al. Less common applications of monoliths: V. Monolithic scaffolds modified with nanostructures for chromatographic separations and tissue engineering
CN106633863B (zh) 具有高效吸附活性的3d聚苯胺/石墨烯气凝胶复合吸油材料及其制备方法
Li et al. Electrospun nanofiber membranes containing molecularly imprinted polymer (MIP) for rhodamine B (RhB)
CN103709434A (zh) 一种青蒿素分子印迹膜的制备方法及其应用
CN109097591A (zh) 海藻酸钙固定化微生物吸附剂及其制备方法和在回收铂族金属二次资源中的应用
Jian et al. Research progress of the molecularly imprinted cryogel
Zhou et al. Metal coordination assisted thermo-sensitive magnetic imprinted microspheres for selective adsorption and efficient elution of proteins
CN101294930B (zh) 一种整体型固定化pH梯度的制备方法及其应用
CN102604008A (zh) 一种培氟沙星表面分子印迹聚合物的制备方法以及应用
CN103599757B (zh) 一种磁性温敏型表面锶离子印迹吸附剂的制备方法
Hajizadeh Application of composite cryogels in downstream processing-A review
CN103586009A (zh) 高密度聚乙烯亚胺修饰介质提高蛋白质吸附容量和吸附速率的方法
CN107325231B (zh) 一种多孔有机聚合物的制备及其应用
CN103230784B (zh) 复合晶胶连续床介质、制备与分离IgG和白蛋白的应用
Zhao et al. Organized cryogel composites with 3D hierarchical porosity as an extraction adsorbent for nucleosides
CN103232613B (zh) 双亲性寡肽对聚甲基丙烯酸甲酯微流控芯片表面改性方法
CN108927113B (zh) 一种纳米羟基磷灰石功能化固相萃取整体柱

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant