WO2014173192A1 - 混合式整体晶胶介质及其制备方法 - Google Patents

混合式整体晶胶介质及其制备方法 Download PDF

Info

Publication number
WO2014173192A1
WO2014173192A1 PCT/CN2014/070566 CN2014070566W WO2014173192A1 WO 2014173192 A1 WO2014173192 A1 WO 2014173192A1 CN 2014070566 W CN2014070566 W CN 2014070566W WO 2014173192 A1 WO2014173192 A1 WO 2014173192A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
gel medium
crystal gel
tertiary amino
benzyl
Prior art date
Application number
PCT/CN2014/070566
Other languages
English (en)
French (fr)
Inventor
贠军贤
林东强
关怡新
姚善泾
沈绍传
Original Assignee
浙江工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江工业大学 filed Critical 浙江工业大学
Publication of WO2014173192A1 publication Critical patent/WO2014173192A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/14Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores

Definitions

  • the present invention relates to an ultra-macroporous mixed monolithic colloidal separation medium and a preparation method thereof, and more particularly to a hybrid monolithic colloidal medium having a hydrophobic benzyl-anion exchanged tertiary amino group and a preparation method thereof.
  • the gelatin separation medium has ultra-large pores ranging in size from several micrometers to hundreds of micrometers, allowing complex fluids such as complex fermentation broth, culture fluid or conversion fluid containing microbial cell debris to pass directly through the bed, enabling rapid biomacromolecules. Separation has important application prospects in the field of biological downstream. It is of great significance to research and develop new ion exchange gel media with different functional groups.
  • An object of the present invention is to provide a monolithic gel separation medium having a mixed functional group of a hydrophobic benzyl-anion exchange tertiary amino group and a process for the preparation thereof.
  • the invention provides a mixed monolithic colloidal medium having a hydrophobic benzyl-anion exchanged tertiary amino group, the crystal colloidal medium having a pore diameter of 1 to 300 ⁇ , a porosity of 85 to 96%, and an aqueous phase permeability of 2 X 10 - 12 ⁇ 6 X l(T 12 m 2 , the gelatin medium has a hydrophobic benzyl-anion group represented by formula (I) In the formula (I), n is a positive integer.
  • the invention also provides a method for the mixed monolithic colloidal medium having a hydrophobic benzyl-anion exchanged tertiary amino group, wherein the method comprises: reacting a monomer capable of grafting reaction with a crystal medium matrix in a catalyst Under the gluing medium matrix, the mixed monolithic colloidal medium having a hydrophobic benzyl-anion exchange tertiary amino group is obtained by a grafting reaction; the monomer is ruthenium, osmium, iridium-trimethyl Vinyl benzyl ammonium chloride; the crystal medium matrix is polyacrylamide or polyhydroxyethyl methacrylate; the catalyst is an aqueous solution of Cu 3+ having a concentration of 0.037 ⁇ 0.056 mol/L (preferably K 5 [Cu (HI0 6 :> 2 ] aqueous solution), the catalyst is used in an amount of 3 to 5 times the volume of the matrix medium; the monomer is added in the form of a 0.25 to 1 mol/
  • the temperature of the graft reaction is 40 to 55 ° C, and the reaction time is 0.5 to 4 hours.
  • the monomer was added in the form of a 0.5 mol/L aqueous monomer solution, and the monomer aqueous solution was used in an amount of 3 times the volume of the crystal medium.
  • the monomer of the present invention and the gel medium matrix are graft-polymerized to be supported in a matrix of the colloidal medium.
  • the mixed monolithic separation medium having a hydrophobic benzyl-anion exchanged tertiary amino group provided by the present invention is different from the existing anion exchange type colloidal medium, and the gelatin medium provided by the present invention is polymerized.
  • the amide group containing both an amino-type ion exchange group and a certain hydrophobic function in the compound chain contributes to multi-point adsorption with biomacromolecules such as proteins and improves the separation performance.
  • the mixed monolithic separation medium having a hydrophobic benzyl-anion exchanged tertiary amino group provided by the invention has excellent basic properties of other gelatin medium, such as high porosity, good pore connectivity, and certain mechanical strength. It can quickly restore its original shape after drying, and has broad application prospects in the field of biochemical separation.
  • Figure 1 is a scanning electron micrograph of the colloidal medium prepared in Example 1.
  • ⁇ , ⁇ -trimethylvinylbenzylammonium chloride aqueous solution is used as a reaction solution, and grafted at 40 ° C for 4 h to obtain a super-macroporous mixed monolithic separation medium (ie, having a hydrophobic benzyl group-anion exchange tertiary amino group) Mixed solid crystal medium), effective porosity 87%, maximum porosity 94%, pore size about 1 ⁇ 270 ⁇ , the scanning electron micrograph of its microstructure is shown in Figure 1; water phase permeability 6 ⁇ 10- 12 m 2 ; The dynamic adsorption capacity of bovine serum albumin at a flow rate of 2 cm/min (penetration concentration/loading solution concentration >0.9, the same below) reaches 0.8 mg/mL, and the static adsorption capacity of bovine serum albumin reaches 2.1 mg/mLo.
  • the medium has elasticity and good mechanical strength. It has no obvious deformation at high flow rate (such as 10 ⁇ 15 cm/min, 20 m
  • the effective porosity was 85%, the maximum porosity was 94%, and the water phase permeability was 2 X. 10_ 12 m 2 ;
  • the pore size is about 1 ⁇ 300 ⁇ , the dynamic adsorption capacity of bovine serum albumin is 2.3 mg/mL at a flow rate of 1 cm/min, and the static adsorption capacity of bovine serum albumin is 3.5 mg/mL.
  • the medium has elasticity and good mechanical strength. It has no obvious deformation at high flow rate (such as 10 ⁇ 15 cm/min, 20 mM pH 7.2 phosphate buffer); it can be restored after being dried for 3 ⁇ 5 seconds.
  • Separation medium effective porosity 86%, maximum porosity 96%, pore size about 20 ⁇ 210 ⁇ , water phase permeability 3 X 10_ 12 m 2 ; dynamic adsorption capacity of bovine serum albumin at a flow rate of 2 cm/min Mg/mL, the static adsorption capacity of bovine serum albumin reached 2.8 mg/mL.
  • the medium has elasticity and good mechanical strength. It has no obvious deformation at high flow rate (such as 10 ⁇ 15 cm/min, 20 mM pH 7.2 phosphate buffer); it can be restored after being dried for 3 ⁇ 5 seconds.

Abstract

本发明公开了一种具有疏水苄基-阴离子交换叔氨基的混合式整体超大孔晶胶分离介质及其制备方法,所述晶胶介质孔径为1〜300μm,孔隙率85〜96%,水相渗透率2Χ10—12〜6X10—12m2,所述晶胶介质带有式(I)所示疏水苄基-阴离子交换叔氨基的功能基团;本发明提供的晶胶介质聚合物链中同时含有氨基型离子交换基团及一定疏水功能的苄基,有助于与蛋白质等生物大分子形成多点吸附,改善其分离性能,具有其它晶胶介质的优良基础性能,如孔隙率高,孔道连通性好,具有一定的机械强度,干燥后重新吸水迅速恢复原来的形状等,在生化分离领域具有广阔的应用前景;式(I)中n为正整数。

Description

混合式整体晶胶介质及其制备方法
(一) 技术领域
本发明涉及一种超大孔混合式整体晶胶分离介质及其制备方法,特别 涉及一种具有疏水苄基-阴离子交换叔氨基的混合式整体晶胶介质及其制 备方法。
(二) 背景技术
晶胶分离介质具有尺寸从数微米至数百微米的超大孔隙,允许含有微 生物细胞碎片的复杂发酵液、 培养液或转化液等复杂流体直接穿过床层, 可以实现对生物大分子物质的快速分离, 在生物下游领域有重要应用前 景。 研究和发展具有不同功能基团的新型离子交换晶胶介质具有重要意 义。
目前国内外关于混合式晶胶分离介质鲜有报道,对于离子交换型晶胶 分离介质的报道也较少。文献资料中(Hanora等, Journal of Biotechnology, 2006, 123 (3): 343-355 )报道了两种氨基功能基团的阴离子交换晶胶介质, 骨架材料为聚丙烯酰胺。但是,现有文献中的阴离子交换型晶胶介质功能 基团单一,对于具有一定疏水功能、 以离子交换功能为主的混合式整体晶 胶介质, 则很缺乏。
(三) 发明内容
本发明目的是提供一种具有疏水苄基-阴离子交换叔氨基的混合式功 能基团的整体晶胶分离介质及其制备方法。
本发明采用的技术方案是:
本发明提供一种具有疏水苄基-阴离子交换叔氨基的混合式整体晶胶 介质, 所述晶胶介质孔径为 1〜300μηι, 孔隙率 85〜96%, 水相渗透率 2 X 10—12〜6 X l(T12 m2, 所述晶胶介质带有式( I )所示疏水苄基-阴离子交
Figure imgf000004_0001
式 ( I ) 中 n为正整数。
本发明还提供一种所述具有疏水苄基-阴离子交换叔氨基的混合式整 体晶胶介质的方法,所述方法为:将可与晶胶介质基质发生接枝反应的单 体在催化剂的作用下,通过接枝反应固载在晶胶介质基质内, 即获得所述 具有疏水苄基-阴离子交换叔氨基的混合式整体晶胶介质; 所述单体为 Ν,Ν,Ν-三甲基乙烯基苯甲氯化铵;所述晶胶介质基质为聚丙烯酰胺或聚甲 基丙烯酸羟乙酯; 所述催化剂为浓度 0.037〜0.056mol/L的 Cu3+的水溶液 (优选 K5[Cu(HI06:>2]水溶液),所述催化剂体积用量是晶胶介质基质体积 的 3~5倍; 所述单体以 0.25〜l mol/L单体水溶液的形式加入, 所述单体 水溶液的体积用量是晶胶介质基质体积的 1~5倍。
进一步, 所述接枝反应的温度为 40〜55°C, 反应时间为 0.5〜4h。 进一步, 所述单体以 0.5 mol/L单体水溶液的形式加入, 所述单体水 溶液的体积用量是晶胶介质基质体积的 3倍。
本发明所述单体与晶胶介质基质通过接枝聚合反应,从而固载在晶胶 介质基质内。
本发明提供的具有疏水苄基 -阴离子交换叔氨基的混合式整体晶胶介 质及其制备方法具有如下特点:
( 1 )本发明提供的具有疏水苄基-阴离子交换叔氨基的混合式整体晶 胶分离介质与现有阴离子交换型晶胶介质不同,本发明提供的晶胶介质聚 合物链中同时含有氨基型离子交换基团及一定疏水功能的苄基,有助于与 蛋白质等生物大分子形成多点吸附, 改善其分离性能。
(2 )本发明提供的具有疏水苄基-阴离子交换叔氨基的混合式整体晶 胶分离介质具有其它晶胶介质的优良基础性能,如孔隙率高,孔道连通性 好, 具有一定的机械强度, 干燥后重新吸水迅速恢复原来的形状等, 在生 化分离领域具有广阔的应用前景。
(四) 附图说明
图 1实施例 1制备的晶胶介质的扫描电镜图。
(五) 具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围 并不仅限于此:
实施例 1
取直径 10 mm、高度 69 mm的聚丙烯酰胺基整体晶胶基质,以 27 mL 浓度为 0.056 M的 K5[Cu(HI06)2]水溶液为催化剂,用 27 mL浓度为 0.25 M 的 Ν,Ν,Ν-三甲基乙烯基苯甲氯化铵水溶液为反应液, 于 40°C下接枝反应 4h, 得到超大孔混合式整体晶胶分离介质 (即具有疏水苄基 -阴离子交换 叔氨基的混合式整体晶胶介质), 有效孔隙率 87%, 最大孔隙率 94%, 孔 径大小约 1〜270 μηι, 其微观结构的扫描电镜图见图 1 ; 水相渗透率 6 Χ 10-12 m2 ; 流速 2 cm/min下对牛血清蛋白的动态吸附容量(穿透浓度 /上样 液浓度 >0.9, 下同) 达 0.8 mg/mL, 对牛血清蛋白的静态吸附容量达 2.1 mg/mLo该介质具有弹性,机械强度较好,在高流速下(如 10〜15 cm/min, 20 mM pH 7.2 磷酸盐缓冲液)无明显变形; 干燥后吸水 3〜5秒可恢复原 状。 实施例 2
取直径 10 mm、 高度 76 mm的聚丙烯酰胺基整体晶胶基质, 以 17.9 mL浓度为 0.056 M的 K5[Cu(HI06:)2]水溶液为催化剂, 用 16 mL浓度为 1 M的 Ν,Ν,Ν-三甲基乙烯基苯甲氯化铵水溶液为反应液, 于 50 °C下接枝 反应 2 h,得到具有疏水苄基-阴离子交换叔氨基的混合式整体超大孔晶胶 分离介质, 有效孔隙率 85%, 最大孔隙率 94%, 水相渗透率 2 X 10_12 m2; 孔径大小约 1〜300 μηι, 流速 1 cm/min下对牛血清蛋白的动态吸附容量 达 2.3 mg/mL,对牛血清蛋白的静态吸附容量达 3.5 mg/mL。该介质具有 弹性, 机械强度较好, 在高流速下(如 10〜15 cm/min, 20 mM pH 7.2 磷 酸盐缓冲液) 无明显变形; 干燥后吸水 3〜5秒可恢复原状。 实施例 3
取直径 10 mm、 高度 80 mm的聚甲基丙烯酸羟乙酯整体晶胶基质, 以 19 mL浓度为 0.037 ^ K5[Cu(ffl06)2]水溶液为催化剂, 用 6.3 mL浓度为 0.5 M的 Ν,Ν,Ν-三甲基乙烯基苯甲氯化铵水溶液为反应液,于 55 °C下接枝 反应 0.5 h, 得到具有疏水苄基-阴离子交换叔氨基的混合式整体超大孔晶 胶分离介质,有效孔隙率 86%,最大孔隙率 96%,孔径大小约 20〜210 μηι, 水相渗透率 3 X 10_12 m2; 流速 2 cm/min下对牛血清蛋白的动态吸附容量达 1.2 mg/mL, 对牛血清蛋白的静态吸附容量达 2.8 mg/mL。 该介质具有弹 性, 机械强度较好, 在高流速下 (如 10〜15 cm/min, 20 mM pH7.2 磷酸 盐缓冲液) 无明显变形; 干燥后吸水 3〜5秒可恢复原状。

Claims

权利要求书
1、 一种具有疏水苄基-阴离子交换叔氨基的混合式整体晶胶介质, 其特 征在于所述晶胶介质孔径为 1〜300μηι, 孔隙率 85〜96%, 水相渗透率 2 Χ 10—12〜6 Χ 10—12 m2, 所述晶胶介质带有式 ( I ) 所示疏水苄基-阴离子交换叔 氨基的功能基团:
Figure imgf000007_0001
式 ( I ) 中 n为正整数。
2、 一种制备权利要求 1 所述具有疏水苄基-阴离子交换叔氨基的混合式 整体晶胶介质的方法, 其特征在于所述方法为: 将可与晶胶介质基质发生接 枝反应的单体在催化剂的作用下, 通过接枝反应固载在晶胶介质基质内, 即 获得所述具有疏水苄基-阴离子交换叔氨基的混合式整体晶胶介质; 所述单体 为 Ν,Ν,Ν-三甲基乙烯基苯甲氯化铵; 所述晶胶介质基质为聚丙烯酰胺或聚甲 基丙烯酸羟乙酯; 所述催化剂为浓度 0.037〜0.056 mol/L的 Cu3+的水溶液, 所述催化剂体积用量是晶胶介质基质体积的 3〜5 倍; 所述单体以 0.25〜1 mol/L 单体水溶液的形式加入, 所述单体水溶液的体积用量是晶胶介质基质 体积的 1~5倍。
3、 如权利要求 2所述制备具有疏水苄基-阴离子交换叔氨基的混合式整 体晶胶介质的方法, 其特征在于所述接枝反应的温度为 40〜55°C, 反应时间 为 0.5〜4h。
4、如权利要求 2所述制备具有疏水苄基 -阴离子交换叔氨基的混合式整体 晶胶介质的方法, 其特征在于所述单体以 0.5 mol/L单体水溶液的形式加入, 所述单体水溶液的体积用量是晶胶介质基质体积的 3倍。
PCT/CN2014/070566 2013-04-26 2014-01-14 混合式整体晶胶介质及其制备方法 WO2014173192A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310152226.9 2013-04-26
CN201310152226.9A CN103252218B (zh) 2013-04-26 2013-04-26 混合式整体晶胶介质及其制备方法

Publications (1)

Publication Number Publication Date
WO2014173192A1 true WO2014173192A1 (zh) 2014-10-30

Family

ID=48956629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070566 WO2014173192A1 (zh) 2013-04-26 2014-01-14 混合式整体晶胶介质及其制备方法

Country Status (2)

Country Link
CN (1) CN103252218B (zh)
WO (1) WO2014173192A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103252218B (zh) * 2013-04-26 2015-08-05 浙江工业大学 混合式整体晶胶介质及其制备方法
CN104607162B (zh) * 2015-01-15 2018-02-27 浙江工业大学 一种阳离子交换嵌合型晶胶分离介质及其制备方法
CN106674443B (zh) * 2016-12-23 2019-04-30 浙江工业大学 一种葡聚糖-聚甲基丙烯酸羟乙酯基连续床晶胶分离介质及其制备方法
CN109499550B (zh) * 2018-12-19 2022-02-15 浙江工业大学 一种半疏水性纳晶胶介质及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101497033A (zh) * 2008-12-19 2009-08-05 浙江工业大学 一种阴离子交换型大孔晶胶介质及其制备方法
US20090200232A1 (en) * 2005-05-13 2009-08-13 Bo Mattiasson Process for absorption-based separation of bioparticles from an aqueous suspension
US20110117596A1 (en) * 2006-03-21 2011-05-19 Bo Mattiasson Composite sorbent material, its preparation and its use
CN103252218A (zh) * 2013-04-26 2013-08-21 浙江工业大学 混合式整体晶胶介质及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3905244B2 (ja) * 1999-04-26 2007-04-18 独立行政法人科学技術振興機構 ヌクレオチド応答性ヒドロゲル
RU2190644C1 (ru) * 2001-04-26 2002-10-10 Институт элементоорганических соединений им. А.Н.Несмеянова РАН Композиция для получения криогеля поливинилового спирта и способ получения криогеля
WO2003049671A2 (en) * 2001-12-10 2003-06-19 Emembrane, Inc. Functionalized materials and libraries thereof
CN101085797B (zh) * 2007-06-29 2010-06-16 浙江工业大学 一种三磷酸腺苷的晶胶吸附层析分离方法
CN100574883C (zh) * 2007-06-29 2009-12-30 浙江工业大学 一种阳离子交换晶胶层析介质及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090200232A1 (en) * 2005-05-13 2009-08-13 Bo Mattiasson Process for absorption-based separation of bioparticles from an aqueous suspension
US20110117596A1 (en) * 2006-03-21 2011-05-19 Bo Mattiasson Composite sorbent material, its preparation and its use
CN101497033A (zh) * 2008-12-19 2009-08-05 浙江工业大学 一种阴离子交换型大孔晶胶介质及其制备方法
CN103252218A (zh) * 2013-04-26 2013-08-21 浙江工业大学 混合式整体晶胶介质及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAMIAN CONNOLLY ET AL.: "Polymeric Monolithic Materials Modified with Nanopaticles for Separation and Detection of Biomolecules: A Review.", PROTEOMICS., vol. 12, 31 August 2012 (2012-08-31), pages 2904 - 2917 *
YE JIALEI ET AL.: "Poly (Hydroxyethyl Methacrylate)-Based Composite Cryogel with Embedded Macroporous Cellulose Beads for the Separation of Human Serum Immunoglobulin and Albumin.", J. SEP. SCI., vol. 36, 30 November 2013 (2013-11-30), pages 3813 - 3820 *

Also Published As

Publication number Publication date
CN103252218B (zh) 2015-08-05
CN103252218A (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
CN103801269B (zh) 一种表面印迹石墨烯复合材料的制备
US20220134294A1 (en) Crosslinked protein-based separation membrane and application thereof
Jain et al. Protein purification with polymeric affinity membranes containing functionalized poly (acid) brushes
WO2014173192A1 (zh) 混合式整体晶胶介质及其制备方法
TWI438227B (zh) 一種磁性離子交換樹脂及其製造方法
CN106191025B (zh) 一种利用氧化石墨烯-金属离子配位固定化酶的方法
KR20130031351A (ko) 크로마토그래피 매질 및 방법
Mattiasson Cryogels for biotechnological applications
CN106604992B (zh) 用于分离生物大分子的吸附剂材料
CN102532408B (zh) 一种温敏型磁性蛋白质印迹纳米球的制备方法
CN104530314A (zh) 一种仿生温敏分子印迹复合膜的制备方法及应用
CN103709434A (zh) 一种青蒿素分子印迹膜的制备方法及其应用
Oliveira et al. Enzyme immobilization on anodic aluminum oxide/polyethyleneimine or polyaniline composites
Han et al. Advances of enantioselective solid membranes
Zhao et al. Ecofriendly construction of enzyme reactor based on three-dimensional porous cryogel composites
CN107271410B (zh) 细菌或真菌的活性快速检测方法
Mikhalovsky et al. 5.03-Biomaterials/Cryogels
CN112934000B (zh) 一种pvdf微滤膜的改性方法
CN109499550B (zh) 一种半疏水性纳晶胶介质及其制备方法
CN103230784B (zh) 复合晶胶连续床介质、制备与分离IgG和白蛋白的应用
CN102380353B (zh) 一种磁性氧化镁表面分子印迹固相萃取剂的制备方法
CN107570010B (zh) 一种仿生透水膜及其制备方法
CN101531734A (zh) 复合TiO2共聚物微球的制备及其应用
CN109078505A (zh) 一种含有吸附介质的复合层析过滤膜及其制备方法和应用
CN110180406A (zh) 一种高水通量、高抗污环保水处理膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14789113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14789113

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 27-05-2016 )

122 Ep: pct application non-entry in european phase

Ref document number: 14789113

Country of ref document: EP

Kind code of ref document: A1