CN103221809B - 气体传感器及其制备方法 - Google Patents

气体传感器及其制备方法 Download PDF

Info

Publication number
CN103221809B
CN103221809B CN201180034515.8A CN201180034515A CN103221809B CN 103221809 B CN103221809 B CN 103221809B CN 201180034515 A CN201180034515 A CN 201180034515A CN 103221809 B CN103221809 B CN 103221809B
Authority
CN
China
Prior art keywords
sensor
gas
formaldehyde
sensitization region
sensor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180034515.8A
Other languages
English (en)
Other versions
CN103221809A (zh
Inventor
N·巴桑
U·维马
J·科姆勒
L·马伊德勒
S·波克雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eberhard Karls Universitaet Tuebingen
Universitaet Bremen
Original Assignee
Eberhard Karls Universitaet Tuebingen
Universitaet Bremen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eberhard Karls Universitaet Tuebingen, Universitaet Bremen filed Critical Eberhard Karls Universitaet Tuebingen
Publication of CN103221809A publication Critical patent/CN103221809A/zh
Application granted granted Critical
Publication of CN103221809B publication Critical patent/CN103221809B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0047Organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Nanotechnology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明涉及一种检测空气中气体,特别是甲醛的气体传感器。该传感器包括至少一个气体敏感区域,其优选为基材上的层且其含有三元化合物In4Sn3O12作为气体敏感材料。使用火焰喷射热解(FSP)来制备气体敏感区域,其中使用铟和锡的金属有机化合物作为原料。该气体传感器特别适用于在线气体检测。

Description

气体传感器及其制备方法
本发明涉及用于检测空气中气体、特别是检测甲醛的气体传感器,以及制备该传感器的方法。
甲醛是一种在工业中广泛应用的化学化合物。它被应用于生产塑料、在木材加工过程中作为胶合板和木屑板的胶粘剂、在建筑工业中作为绝热体、在纺织工业中用于防皱和易护理整理以及在农业和食品工业中作为防腐剂。甲醛作为消毒剂使用,且此外它包含在化妆品、身体护理品和口腔护理品中以及部分包含在色料、漆料和地毯中(1)。
此外,甲醛在不完全燃烧过程中产生。举例来说,其存在于机动车的内燃机中,铸造车间中,塑料制品的生产或小型燃烧设备中的木材燃烧过程中。在冒烟时也以这种方式产生甲醛,其造成空气的污染(1)。
甲醛是一种气态物质,它会引起健康问题如眼睛酸痛或黏膜刺激。短时间暴露哪怕是低浓度也会引起眼睛和呼吸器官的刺激:自0.01ppm起刺激眼睛,自0.08ppm起刺激眼睛和鼻子,而自0.5ppm起刺激咽喉。超过10ppm的高浓度蒸气会导致严重的黏膜刺激状态,伴随着流泪、咳嗽和鼻子及鼻子和咽喉的灼痛。浓度超过30ppm时会引起中毒性肺水肿和危及生命的肺炎(1)。
甲醛引起的慢性作用有心理障碍(如失眠、疲乏、无精打采(Antriebsverlust)、食欲不振或紧张不安)、眼睛刺激和结膜炎、皮肤刺激、慢性咳嗽、感冒和支气管炎、头疼、抑郁等等。此外,甲醛还会引起过敏,且一段时间来被怀疑可能引起人类的癌症以及遗传基因改变和损害胎儿由于这些原因,德国联邦卫生局提出工作场所的最高浓度(MAK)为0.3ppm(0.375mg/m3)。考虑到长期暴露于其中,室内的标准值甚至仅为0.1ppm(0.125mg/m3)(2)。
由于这些原因,对空气中的甲醛有效且快速的检测和测量具有重要意义。
现有技术中有几种检测空气中甲醛的方法(对已知的方法的综述有例如H.Nishikawa和T.Sakai的出版物(3))。
举例来说,GC和HPLC分析属于分析的标准方法。为了进行工作场所风险的评估,NIOSH(国立职业安全与健康研究所)标准化了几种用于检测空气中甲醛的分析方法。
举例来说,在NIOSH方法2016中使试样空气通过由涂有二硝基苯肼(DNPH)的硅胶制成的媒质。化学反应导致生成腙,其作为稳定的衍生物可以通过HPLC、GC/FID、GC/ECD或二极管阵列检测器来识别和定量测定(4)。
NIOSH方法2541是基于GC/FID分析。在此,使试样空气通过施涂了2-羟甲基哌啶(2-HMP)的小管。样品中的甲醛与2-HM反应产生噁唑烷衍生物,其随后脱附并在气相色谱中进行分析(5)。
NIOSH方法3500是基于光谱测定。在此,在硫酸的存在下甲醛和两个分子的变色酸缩合反应而产生了红色的碳正离子。随后,通过在580nm测定进行光谱检测(6)。
这些分析方法的一个主要缺点是空气样品必须复杂地准备以实现甲醛的衍生化,并且实际的测量仅可以在专用实验室进行。使用这些方法不能进行在线的检测。
除了这些分析方法外,现有技术中还已知一系列的仪器方法。基于甲醛的电离电位为10.87eV,其可以在经氩灯电离后通过光离子化检测器检测。这种方法的主要缺点也在于其复杂性。
另一种检测甲醛的方法是基于电化学电池。该方法的缺点在于测量需要的仪器非常昂贵。此外,测量仪器需要定期重新校准,并且电池的使用寿命被限制为不足一年。
另外,在现有技术中有基于荧光的用于检测甲醛的方法,例如基于Hanzsch反应的检测方法。尽管这种方法具有相对高的选择性,然而其相应的测量仪器非常昂贵。另外一个缺点是空气试样需要复杂地准备,其中为了测量将甲醛相应地衍生化(7)。
为了衍生化和随后分析甲醛,上述提到的检测甲醛的方法要求高的设备投入,因此这些方法只能在大型实验室中进行,并且只有在长时间的准备过程后才能知道结果。
在现有技术中已知一种基于MOX的方法,其能够在线确定甲醛的浓度。在此,试样中的甲醛与金属氧化物传感器反应,由此改变其传导性。由Zn、Ni、Sn、Cd、In和其它金属不同组合的氧化物构成的敏感层用作传感器。表1中给出了迄今已知的用于甲醛检测的金属氧化物的概览,并说明其检测范围和作者。
表1:现有技术中已知的迄今用于甲醛检测的金属氧化物。
从表1中清楚的是,所有迄今已知的基于金属氧化物(除了ZnO纳米线)的气体传感器在非常高的浓度范围起作用,其浓度范围远远高于法律规定的最大允许的标准值,或者这些气体传感器的具有弱的传感信号(传感信号(覆盖3个数量级的浓度范围,且仅仅在1-1.6的范围内)不容许有重要意义的浓度分级)。就纳米线而言,在Chu的出版物(23)中报道了这些传感器的长时间稳定性方面的问题(23)。
美国专利US2002/0118027A1中公开了一种用于气体传感器的纳米结构阳极氧化铝基材,其在电极上具有平行孔。敏感材料沉积在孔内,与在平面上施加的层相比这样据信大大增加了敏感层的表面积,并增加了传感器的灵敏度。用于敏感层的材料在该文献中起到了次要的作用。制造这种基材的成本会相对高。
因此,本发明的目的是提供一种新型的气体传感器,其具有高灵敏度,可以在线检测,目此外在生产过程中价格便宜。
根据权利要求1,该目的通过一种气体传感器达到,其在其气体敏感区域中包含材料In4Sn3O12。其优选实施方式和扩展实施方式,制造方法及其应用是从属权利要求的主题。
已知物质In4Sn3O12在现有技术中用于辐射放射和电致变色装置的生产中(DE 102007049005A1,DE 102004001508T2,DE000060017440T2)。该材料至今没有用于制作传感器的记载。
在本发明的范围内,令人惊奇地显示物质In4Sn3O12具有高效的气体传感器的性质。
对本发明的传感器至关重要的是物质In4Sn3O12以三元氧化物(混合氧化物相)存在,而不是以简单的氧化物的混合物存在。其是一种独立的材料,更确切的说是具有特有结构的不平凡(nicht-triviale)相。例如在文献(29)中,该物质被详细地描述和表征。从现有技术中完全无法得到该混合氧化物相In4Sn3O12用作气体传感器中的敏感层的提示和建议。
根据本发明的传感器包括至少一个气体敏感区域,其由In4Sn3O12组成,优选以层的形式形成。使用本发明的传感器检测气体时,让它的敏感层与气体试样(如空气)进行接触。反应后,敏感层的电性质发生变化,其可以通过电阻抗的变化、输出功和/或电容变化进行测量。其中优选测量电阻的变化。
根据本发明优选的实施方案,本发明的传感器用于检测甲醛。举例来说,通过使用本发明的传感器在甲醛的浓度范围在20ppb-180ppb时可以得到2.1-10.9的传感器信号。与商业有售的对照传感器相比,本发明的传感器显示传感信号的增加高达640%。这相当于它的灵敏度比起对照传感器的灵敏度高出两个数量级。如图4所示,当对照传感器的灵敏度在1kΩ/ppb的范围时,In4Sn3O12传感器具有的灵敏度为350kΩ/ppb。本发明的传感器的另一优点在于它对CO的低灵敏性:与商业有售的传感器相比,其对CO的传感信号在100ppb时仅为19.6%。
在本发明的扩展方案中,传感器可用于检测如NO2、醇(乙醇)、CO等其它气体。
本发明的主题同样包括制造本发明的传感器的方法。为此,气体敏感的In4Sn3O12层通过所谓的FSP方法(Flame Spray Pyrolysis,火焰喷射热解)被施加到基材上。
已知FSP方法在现有技术中用于提供Pd/SnO2传感器(L.等,28)。与传统的FSP方法相比,本发明方法的创造性步骤在于识别适合的起始物质,以便能够制备In4Sn3O12层。在本发明的范围内证实,使用铟或锡的金属有机化合物作为原料(其溶解于有机溶剂中),能够在制备敏感层时得到特别好的结果。溶于混合二甲苯(Xylol)的物质乙酰丙酮铟和2-乙基己酸锡特别适合于制备In4Sn3O12层。
进一步证实,在本发明的传感器的气体敏感层的制备方法中,起始物质的浓度起到重要的作用。因此当使用起始物质乙酰丙酮铟和2-乙基己酸锡各自的浓度在0.05-0.7摩尔浓度(摩尔每升溶剂)范围得到最好的结果。
本发明的另一主题是以上描述的气体传感器用于家居区域中的气体检测的应用,以便能够在线分析空气中相应的污染。另外,传感器适用于允许在处理甲醛并且因此不能排除对人和环境的危害的企业中进行空气分析。
由于至今未出现通过在线应用中检测甲醛的可能,根据本发明的传感器对于现有技术来说是新的里程碑。
该传感器及其制造方法的其它优势、特征和应用可能性接下来通过下述的工作实施例并参照附图进行描述。
图1:显示了本发明的传感器的传感信号与锡含量的关系。0%对应纯In2O3,100%对应纯SnO2。传感信号的最大值出现在锡含量为43%时,其对应于纯的In4Sn3O12相。方形标记在甲醛浓度为180ppb时的传感信号,点标记在浓度为100ppb时的传感信号。
图2:显示了使用本发明的传感器测量不同甲醛浓度时的电阻随时间的变化,并与使用现有技术中已知的仪器的测量相比。实线对应于使用本发明的具有纯的In4Sn3O12相的传感器的测量,点线对应于AppliedSensor MLC(2.3V),而虚线对应于Figaro TGS 2620(5.0V)传感器。通过对数描绘图直观的比较可以发现,本发明的传感器的传感信号显著大于那些现有技术已知的传感器的传感信号。分配给各个信号级别的浓度为20、40、80、100、120、160和180ppb,然后按该顺序重复。
图3:显示了在潮湿空气中(50%相对湿度)甲醛在不同的浓度下的传感信号曲线。与使用现有技术已知的对照传感器(方形为Figaro,三角形为AppliedSensor)测量的传感信号相比较,In4Sn3O12相(圆圈)的传感信号的增强在每个浓度范围均是清晰可见的。与根据本发明的传感器一样,现有技术已知的这两种对照传感器基于电阻的变化工作,但是它们的敏感层基于二氧化锡。
图4:显示了本发明的传感器的灵敏度与现有技术已知的那两种参照传感器的灵敏度的比较。方形对应于Figaro TGS 2620,三角形对应于AppliedSensorMLC,而点或星号表示本发明的In4Sn3O12传感器在不同的两天中的灵敏度。根据灵敏度的定义,这里相对于分析物浓度变化的电阻变化对分析物浓度制图。可以清晰地看出,本发明的传感器具有比现有技术已知的参照传感器高出两个数量级的灵敏度。
工作实施例
材料的制备及其在传感器基材上的沉积
鉴于SnO2在In2O3中的固溶体的相图(I.等,(29)),很明显In4Sn3O12相是亚稳高温相,其在1600-1900K的温度范围内形成。如果缓慢降低温度(在图中垂直向下),则该相分解为ITO和SnO2的固溶体。当组成中Sn含量超过10%,In4Sn3O12相总是能够通过适宜地选择温度来获得。如果温度继续上升,最后由此形成离子液体。因此,火焰喷射热解的合成方法可以在火焰中制备相,而其在冷却基材上的沉积确保该相激冷(abgeschreckt)并从而得到维持。
金属有机化合物如乙酰丙酮铟(纯度99.9%,Strem)或2-乙基己酸锡(纯度99.5%,Strem)在火焰喷射热解(FSP)中使用,以制备掺杂锡的In2O3(ITO)金属氧化物。该金属有机化合物(下文中称作前体)溶解在有机溶剂中(例如甲苯(纯度99.95%,Strem)或混合二甲苯(纯度99.99%,Sigma Aldrich)),以得到0.15M的浓度。作为合成中的标准参数,前体的体积流量选择为5ml/min。溶液通过喷嘴和同时注入的51/min的氧气体积流动喷雾,其中喷嘴的喷雾压力为1.6bar。前体喷射的燃烧通过环形的甲烷/氧气火焰(1.5l/min/3.2l/min)喷出(injiziert)。
合成相的组成见表2。分别按照使用的前体的比例,可以获得敏感层的目标(gezielt)组成。从表格中看出,当锡浓度为43%时得到纯的In4Sn3O12相。
传感器基材(Hereaus)放置在火焰上方距离25cm的位置,而背面通过相应的试样支架用水冷却。沉积时间为20分钟。
表2:设想的锡浓度的测量值和所获得的材料的组成
电阻的测量和温度校正
基材在烘箱中加热,并且测定其背面的加热线圈的电阻。产生的校正曲线用作传感器运行的基线。
传感器转移到相应的测量室,其与专门的气体混合装置相连接(等,(30)),该气体混合装置是特别为了处理低浓度甲醛而开发的。敏感层的电阻通过万用表(Agilent 34970A)读出,其通过与计算机联用确保测量数据的收集。图2显示了电阻测量值随时间的变化。这些数据可以通过数学处理转化层传感信号和灵敏度的数值,以获得为了某种应用的传感器的质量的判断依据。在图1中显示了敏感层的不同组成的传感信号。对于Sn含量为43%的组成,这些数据可直接从图3中显示的传感信号曲线中获得。
参考文献:
1.WHO Regional Office for Europe,Copenhagen,2001
http://test.cp.euro.who.int/document/aig/5_8formaldehyde.pdf
2.Bundesinstitut für Risikobewertung,Toxikologische Bewertung von Formaldehydvom 30.03.2006,
http://www.bfr.bund.de/cm/252/toxikologische_bewertung_von_formaldehyd.pdf
3.H.Nishikawa,T.Sakai,Derivatization and Chromatographic Determination ofAldehydes in Gaseous and Air Samples,Journal of Chromatography A,第710卷,第159-165页,1995.
4.NIOSH Manual of Analytical Methods,Formaldehyde:Method 2016,第4版,2003,http://www.cdc.gov./niosh/docs/2003-154/pdfs/2016.pdf
5.NIOSH Manual of Analytical Methods,Formaldehyde:Method 2541,第4版,2003,http://www.cdc.gov./niosh/docs/2003-154/pdfs/2541.pdf
6.NIOSH Manual of Analytical Methods,Formaldehyde:Method 3500,第4版,2003,http://www.cdc.gov./niosh/docs/2003-154/pdfs/3500.pdf
7.VdL RL-03,VdL-Richtlinie Formaldehydbestimmung,1997,
http://www.lackindustrie.de/template_downloads/tmp_LackverbandInternet/79811VDLRL03-597.pdf?DokNr=79811&p=16
8.James A.Dirksen,Kristin Duval,Terry A.Ring,NiO thin-film formaldehyde gassensor,Sensors and Actuators B:Chemical,第80卷,第2项,2001年11月20日,第106-115页,ISSN 0925-4005,DOI:10.1016/S0925-4005(01)00898-X.
9.Xingjiu Huang,Fanli Meng,Zongxin Pi,Weihong Xu,Jinhuai Liu,Gas sensingbehavior of a single tin dioxide sensor under dynamic temperature modulation,Sensorsand Actuators B:Chemical,第99卷,第2-3项,2004年5月1日,第444-450页,ISSN 0925-4005,DOI:10.1016/j.snb.2003.12.013.
10.Liqin Shi,Wei Gao,Yuki Hasegawa,Teruaki Katsube,Mamoru Nakano,KiyozumiNakamura,High Sensitive Formaldehyde Gas Sensor Prepared by R.F.InductionPlasma Deposition Method.IEEJ Transactions on Sensors and Micromachines,2005.125(12):第485-489页。
11.Ling Zhang,Jifan Hu,Peng Song,Hongwei Qin,Xiangdong Liu,Minhua Jiang,Formaldehyde-sensing characteristics of perovskite La0.68Pb0.32FeO3nano-materials,Physica B:Condensed Matter,第370卷,第1-4页,2005年12月15日,第259-263页。
12.Chia-Yen Lee,Che-Ming Chiang,Yu-Hsiang Wang,Rong-Hua Ma,A self- heatinggas sensor with integrated NiO thin film for formaldehyde detection,Sensors andActuators B:Chemical,第122卷,第2项,2007年3月26日,第503-510页,ISSN0925-4005,DOI:10.1016/j.snb.2006.03.033.
13.Jiaqiang Xu,Xiaohua Jia,Xiangdong Luo,Guaxi Xi,Jianjun Han,Qiaohuan Gao,Selective detection of HCHO gas using mixed oxides of ZnO/ZnSnO3,Sensors andActuators B:Chemical,第120卷,第2项,2007年1月10日,第694-699页,ISSN0925-4005,DOI:10.1016/j.snb.2006.03.033.
14.T.Chen,Q.J.Liu,Z.L.Zhou,Y.D.Wang,The fabrication and gans- sensingcharacteristics of the formaldehyde gas sensor with high sensitivity,Sensors andActuators B:Chemical,第131卷,Issue,Special Issue:Selected Papers from the 12thInternational Symposium on Olfaction and Electronic Noses-ISOEN 2007,International Symposium on Olfaction and Electronic Noses,2008年4月14日,第301-305页,ISSN 0925-4005,DOI:10.1016/j.snb.2007.11.025
15.Shanxing Huang,Hongwei Qin,Peng Song,Xing Liu,Lun Li,Rui Zhang,ifan Hu,Hongdan Yan,Minhzua Jiang,The formaldehyde sensitivity of LaFel-x Zn x O3-basedgas sensor.Journal of Materials Science,2007.42(24):第9973-9977页。
16.Pin Lv,Zhenan Tang,Guangfen Wei,Jun Yu,Zhengxing Huang,Recognizingindoor formaldehyde in binary gas mixtures with a micro gas sensor array and a neuralnetwork.Measurement Science and Technology,2007.18(9):第2997页。
17.Zikui Bai,Changsheng Xie,Mulin Hu,Shunping Zhang,Formaldehyde sensor basedon Ni-doped tetrapod-shaped ZnO nanopowder induced by external magnetic field.Physica E:Low-dimensional Systems and Nanostructures,2008.41(2):第235-239页。
18.T.Chen,Q.J.Liu,Z.L.Zhou,Y.D.Wang,A high sensitivity gas sensor forformaldehyde based on CdO and In 2 O 3 doped nanocrystalline SnO2.Nanotechnology,2008.19(9):p.095506.
19.Jinyun Liu,Zheng Guo,Fanli Meng,Yong Jia,Jinhuai Liu,A novel
Antimony-Carbon Nanotube-Tin Oxide Thin Film:Carbon Nanotubes as GrowthGuider and Energy Buffer.Application for Indoor Air Pollutants Gas Sensor.TheJournal of Physical Chemistry C,2008.112(15):第6119-6125页。
20.Pin Lv,Zhen A.Tang,Jun Yu,Feng T.Zhang,Guang F.Wie,Zheng X.Huang,Yann Hu,Study on a micro-gas sensor with SnO2-Nio sensitive film for indoorformaldehyde detection.Sensors and Actuators B:Chemical,2008.132(1):第74-80页。
21.Jing Wang,Li Liu,Song-Ying Cong,Jin-Qing Qi,Bao-Kun Xu,An enrichmentmethod to detect low concentration formaldehyde.Sensors and Actuators B:Chemical,2008.134(2):第1010-1015页。
22.Xiangfeng Chu,Tongyun Chen,Wangbing Zhang,Banqiao Zheng,Hengfu Shui,Investigation on formaldehyde gas sensor with ZnO thick film prepared throughmicrowave heating method.Sensors and Actuators B:Chemical,2009.142(1):第49-54页。
23.Ning Han,Yajun Tian,Xiaofeng Wu,Yunfa Chen,Improving humidity selectivityin formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO.Sensors andActuators B:Chemical,2009.138(1):第228-235页。
24.Yude Wang,Ting Chen,Quiying Mu,Guofeng Wangm A nonaqueous sol-gelroute to synthesize CdIn2O4 nanoparticles for the improvement of
formaldehyde-sensing performance,Scripta Materialia,第61卷,第10项,2009年11月,第935-938页,ISSN 1359-6462,DOI:10.1016/j.scriptamat.2009.07.029.
25.Jing Wang,Peng Zhang,Jin-Qing Qi,Peng-Jun Yao,Silicon-based micro-gassensors for detecting formaldehyde,Sensors and Actuators B:Chemical,第136卷,第2项,2009年3月2日,第399-404页,ISSN 0925-4005,DOI:10.1016/j.snb.2008.12.056.
26.Zeng W.,Liu T.,Wang Z.,Tsukimoto S.,Saito M.,Ikuhara Y.Selective Detectionof Formaldehyde Gas Using a Cd-Doped TiO2-SnO2 Sensor.Sensors.2009;9(11):9029-9038
27.M.A.Aronova,K.S.Chang,I.Takeuchi,H.Jabs,D.westerheim,A.Gonzalez-Martin,J.Kim,B-Lewis,Combinatorial libraries of semiconductor gas sensors as inorganicelectrocnic noses-Appl.Phys.Lett.83,6,1255-1257.
28.L.A.S.E:Pratsinis,T.Sahm,A.Gurlo,N.Barsan,U.Weimar.Sensors and Actuators B 114(2206)283-295.
29.I.M.H.,W.Gierlotka,B.Onderka,K.Fitzner,Thermodynamic evaluationof the In-Sn-O system.Journal of Alloys and Compounds,2006(422):第173-177页。
30.F.N.Barsan,U.Weimar,已提交给“Measurement Science andTechnology”,2010.

Claims (10)

1.检测气体的传感器,包括至少一个施加到基材上的气体敏感区域,其特征在于该气体敏感区域包含In4Sn3O12亚稳态混合氧化物相。
2.根据权利要求1的传感器,其特征在于所述至少一个气体敏感区域以层的形式形成。
3.根据上述权利要求任一的传感器,其特征在于所述至少一个气体敏感区域以火焰喷射热解方法(FSP)施加。
4.制备根据权利要求1的传感器的方法,其中气体敏感区域通过火焰喷射热解(FSP)产生。
5.根据权利要求4的方法,其特征在于将溶于有机溶剂中的铟和锡的金属有机化合物用作原材料。
6.根据权利要求5的方法,其特征在于所述原材料为乙酰丙酮铟和2-乙基己酸锡。
7.根据权利要求6的方法,其特征在于所述原材料乙酰丙酮铟和2-乙基己酸锡分别以0.05-0.7 摩尔浓度的相同浓度使用。
8.根据权利要求1的传感器用于在线气体检测的应用。
9.根据权利要求1的传感器用于甲醛检测的应用。
10.根据权利要求1的传感器用于家居区域或企业的气体检测的应用。
CN201180034515.8A 2010-07-13 2011-07-07 气体传感器及其制备方法 Active CN103221809B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010027070A DE102010027070A1 (de) 2010-07-13 2010-07-13 Gas-Sensor und Verfahren zu seiner Herstellung
DE102010027070.9 2010-07-13
PCT/DE2011/001417 WO2012006994A2 (de) 2010-07-13 2011-07-07 Gas-sensor und verfahren zu seiner herstellung

Publications (2)

Publication Number Publication Date
CN103221809A CN103221809A (zh) 2013-07-24
CN103221809B true CN103221809B (zh) 2015-09-23

Family

ID=44970894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180034515.8A Active CN103221809B (zh) 2010-07-13 2011-07-07 气体传感器及其制备方法

Country Status (7)

Country Link
US (1) US9091669B2 (zh)
EP (1) EP2593779B1 (zh)
JP (1) JP5926726B2 (zh)
KR (1) KR101787153B1 (zh)
CN (1) CN103221809B (zh)
DE (1) DE102010027070A1 (zh)
WO (1) WO2012006994A2 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010027070A1 (de) * 2010-07-13 2012-01-19 Eberhard-Karls-Universität Tübingen Gas-Sensor und Verfahren zu seiner Herstellung
CN103439380B (zh) * 2013-09-04 2015-01-28 浙江工商大学 一种检测微量苯的气体检测系统
CN104181219B (zh) * 2014-08-29 2016-08-31 武汉理工大学 一种甲醛气体传感器
DE102015007474A1 (de) 2015-06-10 2016-12-15 Mtu Friedrichshafen Gmbh Anordnung mit einer Brennkraftmaschine
CN105628740B (zh) * 2015-12-26 2018-11-13 周庆芬 进出口汽车脚垫中有毒气体甲醛的在线检测方法
CN109324092B (zh) * 2018-08-27 2021-07-16 天津理工大学 介孔多晶ZnO纳米片及其制备方法与应用
RU2723161C1 (ru) * 2019-04-26 2020-06-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Газочувствительный слой для определения формальдегида в воздухе, сенсор с газочувствительным слоем и детектор для определения формальдегида
RU193254U1 (ru) * 2019-05-22 2019-10-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Детектор для определения формальдегида в воздухе
CN111547772B (zh) * 2020-05-14 2022-06-07 重庆工商大学 一种钨酸锌复合锡酸锌气体传感材料、制备方法和应用
CN113189089B (zh) * 2021-03-19 2022-05-17 四川轻化工大学 一种臭氧检测试剂及其制备装置和制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1542444A (zh) * 2003-11-04 2004-11-03 浙江大学 一种检测室内气体污染的气体传感器阵列
CN1804609A (zh) * 2006-01-17 2006-07-19 山东师范大学 叠加式敏感层甲醛气敏器件及其制作方法
CN101560059A (zh) * 2009-05-27 2009-10-21 中南大学 掺铝氧化锌涂膜和纳米棒阵列材料及其制备方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950353A (ja) * 1982-09-16 1984-03-23 Matsushita Electric Works Ltd ガス検知素子の製法
JPS6170449A (ja) * 1984-09-13 1986-04-11 Toshiba Corp ガス検知素子
US6565811B1 (en) * 1989-03-30 2003-05-20 Solomon Zaromb Apparatus for the detection of harmful substances or traces thereof
JPH06170449A (ja) 1992-11-30 1994-06-21 Furukawa Alum Co Ltd アルミニウムまたはその合金からなる形材の曲げ加工方法
US6202471B1 (en) * 1997-10-10 2001-03-20 Nanomaterials Research Corporation Low-cost multilaminate sensors
US6705152B2 (en) * 2000-10-24 2004-03-16 Nanoproducts Corporation Nanostructured ceramic platform for micromachined devices and device arrays
ATE287096T1 (de) 1999-10-11 2005-01-15 Univ Dublin Elektrochrome vorrichtung
KR20030038818A (ko) * 2000-10-16 2003-05-16 이 아이 듀폰 디 네모아 앤드 캄파니 가스의 혼합물을 분석하는 방법 및 장치
EP1378489A1 (en) * 2002-07-03 2004-01-07 Eidgenössische Technische Hochschule Zürich Metal oxides prepared by flame spray pyrolysis
US7083880B2 (en) * 2002-08-15 2006-08-01 Freescale Semiconductor, Inc. Lithographic template and method of formation and use
JP4387652B2 (ja) * 2002-10-07 2009-12-16 株式会社豊田中央研究所 炭素電極及びこれを備えた色素増感型太陽電池
JP4589915B2 (ja) 2003-01-31 2010-12-01 エヌテラ リミテッド エレクトロクロミックディスプレイ・デバイス
DE10311645A1 (de) * 2003-03-14 2004-09-23 Degussa Ag Nanoskaliges Indium-Zinn-Mischoxidpulver
KR100647278B1 (ko) * 2003-10-27 2006-11-17 삼성전자주식회사 III - V 족 GaN 계 화합물 반도체 및 이에적용되는 p-형 전극
EP1669747A1 (en) * 2004-12-09 2006-06-14 ETH Zürich Formation of highly porous gas-sensing layers by deposition of nanoparticles produced by flame spray pyrolysis
US7507618B2 (en) * 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
DE102005038235A1 (de) * 2005-08-12 2007-02-15 Umicore Ag & Co. Kg Verwendung von Indium-Zinn-Mischoxid für Werkstoffe auf Silberbasis
KR100812357B1 (ko) * 2005-12-23 2008-03-11 한국과학기술연구원 초고감도 금속산화물 가스센서 및 그 제조방법
US7483212B2 (en) * 2006-10-11 2009-01-27 Rensselaer Polytechnic Institute Optical thin film, semiconductor light emitting device having the same and methods of fabricating the same
DE102007058453A1 (de) * 2007-09-10 2009-03-12 Osram Opto Semiconductors Gmbh Strahlungsemittierende Vorrichtung
DE102007049005A1 (de) 2007-09-11 2009-03-12 Osram Opto Semiconductors Gmbh Strahlungsemittierende Vorrichtung
WO2009157175A1 (ja) * 2008-06-24 2009-12-30 パナソニック電工株式会社 色素増感太陽電池
JP5601686B2 (ja) * 2008-06-24 2014-10-08 日本曹達株式会社 Fto/ito積層体を有する透明導電膜
JP2010030824A (ja) 2008-07-28 2010-02-12 Idemitsu Kosan Co Ltd 金属相含有酸化インジウム焼結体及びその製造方法
JP2010070409A (ja) * 2008-09-17 2010-04-02 Idemitsu Kosan Co Ltd 酸化物焼結体の製造方法
US20100102700A1 (en) * 2008-10-24 2010-04-29 Abhishek Jaiswal Flame spray pyrolysis with versatile precursors for metal oxide nanoparticle synthesis and applications of submicron inorganic oxide compositions for transparent electrodes
CN102300806B (zh) * 2008-12-08 2013-11-06 赫斯提亚Tec有限公司 多组分纳米粒子材料及其方法和设备
DE102010027070A1 (de) * 2010-07-13 2012-01-19 Eberhard-Karls-Universität Tübingen Gas-Sensor und Verfahren zu seiner Herstellung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1542444A (zh) * 2003-11-04 2004-11-03 浙江大学 一种检测室内气体污染的气体传感器阵列
CN1804609A (zh) * 2006-01-17 2006-07-19 山东师范大学 叠加式敏感层甲醛气敏器件及其制作方法
CN101560059A (zh) * 2009-05-27 2009-10-21 中南大学 掺铝氧化锌涂膜和纳米棒阵列材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Stability of transparent conducting oxide films for use at high temperatures;Minami T, Miyata T, Yamamoto T;《Journal of Vacumm Science & Technology A》;19991231;第17卷(第4期);第1页左栏第1段 *

Also Published As

Publication number Publication date
DE102010027070A1 (de) 2012-01-19
EP2593779A2 (de) 2013-05-22
US9091669B2 (en) 2015-07-28
EP2593779B1 (de) 2014-05-21
JP2013531250A (ja) 2013-08-01
KR20130143538A (ko) 2013-12-31
CN103221809A (zh) 2013-07-24
WO2012006994A2 (de) 2012-01-19
KR101787153B1 (ko) 2017-11-15
US20130111974A1 (en) 2013-05-09
WO2012006994A3 (de) 2012-04-12
JP5926726B2 (ja) 2016-05-25

Similar Documents

Publication Publication Date Title
CN103221809B (zh) 气体传感器及其制备方法
Wang et al. Silicon-based micro-gas sensors for detecting formaldehyde
Deng et al. Temperature & light modulation to enhance the selectivity of Pt-modified zinc oxide gas sensor
Forzani et al. A hybrid electrochemical− colorimetric sensing platform for detection of explosives
Zhang et al. Development of a simple cataluminescence sensor system for detecting and discriminating volatile organic compounds at different concentrations
Capone et al. Analysis of CO and CH4 gas mixtures by using a micromachined sensor array
JPS6067850A (ja) 雰囲気中の選択された数のガスを選択的に検出,測定,識別する装置
Ivanov et al. Investigation of catalytic hydrogen sensors with platinum group catalysts
Barsan et al. High-performance gas sensing of CO: comparative tests for semiconducting (SnO2-based) and for amperometric gas sensors
Fraiwan et al. A paper-based cantilever array sensor: Monitoring volatile organic compounds with naked eye
Pandeeswari et al. CeO 2 thin film as a low-temperature formaldehyde sensor in mixed vapour environment
Xu et al. A high-performance three-dimensional microheater-based catalytic gas sensor
Banga et al. MATH: Methanol vapor analytics through handheld sensing platform
Malyshev et al. Dynamic properties and sensitivity of semiconductor metal-oxide thick-film sensors to various gases in air gaseous medium
Chu et al. A cataluminescence sensor for propionaldehyde based on the use of nanosized zirconium dioxide
WO2018158692A1 (en) Formaldehyde gas sensor and method for producing the same
Montméat et al. Model of the thickness effect of SnO2 thick film on the detection properties
CN104897733A (zh) 一种基于对氨基苯基取代卟啉聚集体材料的二氧化氮气敏传感器
Zhou et al. Simultaneous determination of formaldehyde and hydrogen sulfide in air using the cataluminescence of nanosized Zn 3 SnLa 2 O 8
CN105158306B (zh) 一种用于挥发性有机物检测的气体传感器的制备方法
CN2874479Y (zh) 气体污染物快速检测仪
Kumar et al. Polyethyleneimine–chromium oxide nanocomposite sensor with patterned copper clad as a substrate for CO2 detection
CN105606655A (zh) 一种基于二维多孔纳米复合材料负载钯的丙酮气体传感器的制备方法及应用
Pokhrel et al. Cr2− xTixO3 (x≤ 0.5) as CH3COCH3 sensitive resistors
Yu et al. Gas phase reaction combined light-regulated electrochemical sensing technique for improved response selectivity and sensitivity to hydrocarbons

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant