CN111547772B - 一种钨酸锌复合锡酸锌气体传感材料、制备方法和应用 - Google Patents

一种钨酸锌复合锡酸锌气体传感材料、制备方法和应用 Download PDF

Info

Publication number
CN111547772B
CN111547772B CN202010404946.XA CN202010404946A CN111547772B CN 111547772 B CN111547772 B CN 111547772B CN 202010404946 A CN202010404946 A CN 202010404946A CN 111547772 B CN111547772 B CN 111547772B
Authority
CN
China
Prior art keywords
zinc
znsno
tungstate
stannate
sensing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010404946.XA
Other languages
English (en)
Other versions
CN111547772A (zh
Inventor
郭威威
赵邦渝
黄苓莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Technology and Business University
Original Assignee
Chongqing Technology and Business University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Technology and Business University filed Critical Chongqing Technology and Business University
Priority to CN202010404946.XA priority Critical patent/CN111547772B/zh
Publication of CN111547772A publication Critical patent/CN111547772A/zh
Application granted granted Critical
Publication of CN111547772B publication Critical patent/CN111547772B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

本发明公开了一种钨酸锌复合锡酸锌气体传感材料、制备方法和应用,该气体传感材料是钨酸锌纳米薄片复合在锡酸锌立方体晶格上,钨酸锌与锡酸锌的摩尔数之比为(0.25~2)∶1。制备方法是将钨酸钠、乙酸锌、五水四氯化锡、氟化钠的摩尔数比为(1~8)∶(5~12)∶4∶10加入到去离子水中,磁力搅拌至少20分钟,将氢氧化钾缓慢倒入溶液中,磁力搅拌30分钟以上;转入反应釜,加热温度为120~180℃保温10~30h,冷却到室温,经固液分离、烘干、研磨、焙烧。该气体传感材料用于检测甲醛浓度。与锡酸锌相比,本发明用于检测甲醛时,提高了甲醛检测的灵敏度,降低了工作温度。

Description

一种钨酸锌复合锡酸锌气体传感材料、制备方法和应用
技术领域
本发明属于气体检测技术领域,具体涉及一种甲醛传感材料和该材料的制备方法。
背景技术
ZnSnO3(锡酸锌)是典型的n型金属氧化物半导体材料。ZnSnO3是一种三元金属氧化物半导体材料,具有禁带宽度窄、电子传递快和光学性能优异等特点,被广泛应用于光催化剂,锂离子电池,气体传感器,光电化学装置,电子器件和微波吸收器等领域。但在气体检测中,工作温度高(>200℃),灵敏度低,选择性差,限制了ZnSnO3在传感器领域中的应用。根据文献“Highly sensitive formaldehyde chemical sensor based on in situprecipitation synthesis of ZnSnO3 microspheres[J]”. X.H. Jia, M.G. Tian, Z.Zhang, R. Dai, X. Wu, H. Song. Journal of Materials Science: Materials inElectronics. 26 (2015) 1-8. (“基于ZnSnO3微球原位沉淀合成的高灵敏度甲醛化学传感器”,贾晓华,Journal of Materials Science: Materials in Electronics,第26期,第1-8页,2015年),记载:ZnSnO3微球在工作温度260℃下对50 ppm甲醛灵敏度为17。
文献“Hybridization of ZnSnO3 and rGO for improvement of formaldehydesensing properties[J]”, J.H. Sun, S.L. Bai, Y. Tian, Y. Zhao, N. Han, R. Luo,D. Li, A. Chen. Sens. Actuators B: Chem. 257 (2018)29-36.(“ZnSnO3和rGO的复合可以改善甲醛气敏性能”,孙建华,Chen. Sens. Actuators B: Chem,第257期,第29-36页,2018年),该文献记载:通过基于溶液的自组装合成方法合成了rGO/ZnSnO3复合材料,传感实验表明,在工作温度110℃下,3wt%rGO的rGO/ZnSnO3复合材料对10 ppm甲醛具有较高的灵敏度,灵敏度为12。
文献“One-pot synthesis of cubic ZnSnO3/ZnO heterostructure compositeand enhanced gas-sensing performance[J]”,Y. Yan, J. Liu, H. Zhang, D. Song,et al. Journal of Alloys and Compounds. 780 (2019) 193-201.(“一步水热法合成立方晶ZnSnO3/ZnO异质结构及其增强气敏性能”,严艳,Journal of Alloys and Compounds,第780期,第193-201页,2019年),该文献记载:通过一步水热法合成了ZnSnO3/ZnO复合材料,在工作温度160℃下,ZnSnO3/ZnO复合材料对50 ppm三乙胺气体表现出较高的气体灵敏度,该灵敏度为101,而对甲醛的灵敏度相对低一些(<100)。
甲醛是一种典型的室内污染气体,严重危害人们的健康。甲醛检测一直困扰气体检测技术的一个难题,至今尚未开发出一种有效检测甲醛浓度的气体传感材料。
发明内容
针对现有技术存在的问题,本发明所要解决的技术问题就是提供一种钨酸锌复合锡酸锌气体传感材料,它能提高甲醛检测的灵敏度,且能降低锡酸锌材料的工作温度。本发明还提供一种钨酸锌复合锡酸锌气体传感材料的制备方法和应用。
为了解决上述技术问题,本发明采用如下技术方案:
本发明提供的一种钨酸锌复合锡酸锌气体传感材料,钨酸锌纳米薄片复合在锡酸锌立方体晶格上,钨酸锌与锡酸锌的摩尔数之比为(0.25~2)∶1。
优选地:钨酸锌与锡酸锌的摩尔数之比为(0.5~1)∶1。
本发明提供的一种制备钨酸锌复合锡酸锌气体传感材料方法,包含以下步骤:
步骤1、将钨酸钠、乙酸锌、五水四氯化锡、氟化钠的摩尔数比为(1~8)∶(5~12)∶4∶10加入到去离子水中,磁力搅拌至少20分钟,直到乙酸锌完全溶解到溶液中,
步骤2、将氢氧化钾溶液缓慢倒入步骤1所得的溶液中,磁力搅拌至少30分钟;
步骤3、将步骤2所得溶液转入反应釜,加热温度为120~180℃,保温10~30h;反应结束后,冷却到室温;
步骤4、将步骤3所得产物进行固液分离、烘干、研磨、焙烧,得到钨酸锌复合锡酸锌粉末。
本发明的离子反应式为:
Zn 2+ +WO 4 2- →ZnWO 4
Zn 2+ +Sn 4+ +6OH - →ZnSn(OH) 6
在550℃下焙烧至少1小时:
ZnSn(OH) 6 →ZnSnO 3 +3H 2 O
本发明还提供上述的钨酸锌复合锡酸锌气体传感材料用于检测甲醛浓度。
与纯锡酸锌相比,本发明的优点是:用于检测甲醛时,提高了甲醛检测的灵敏度,又降低了工作温度;与现有已知的锡酸锌复合材料相比,本发明提高了甲醛检测的灵敏度。
附图说明
本发明的附图说明如下:
图1为ZnSnO3和ZnWO4/ZnSnO3的XRD图谱;
图2为0.5:1 ZnWO4/ZnSnO3的XPS全谱图;
图3为0.5:1 ZnWO4/ZnSnO3的XPS W 4f光谱;
图4为ZnSnO3和0.5:1ZnWO4/ZnSnO3的N2吸附—解吸等温线和Barret-Joyner-Halenda(BJH)孔径分布图;
图5为ZnSnO3和0.5:1 ZnWO4/ZnSnO3的SEM图像和TEM图像;
(a) ZnSnO3SEM图像,(b) 0.5:1 ZnWO4/ZnSnO3SEM图像;(c) ZnSnO3TEM图像,(d)0.5:1 ZnWO4/ZnSnO3TEM图像;
图6为ZnSnO3和ZnWO4/ZnSnO3传感器在不同工作温度下(120℃~300℃)下对30ppm甲醛的最佳工作温度;
图7为ZnSnO3和ZnWO4/ZnSnO3制备的气体传感器在最佳工作温度下对30 ppm各种目标气体(丙酮,乙醇,甲醛,氨和苯)的响应直方图;
图8为ZnSnO3和ZnWO4/ZnSnO3制备的气体传感器在最佳温度下对30 ppm甲醛气体的响应恢复曲线:(a) ZnSnO3;(b) 0.25:1ZnWO4/ZnSnO3;(c) 0.5:1 ZnWO4/ZnSnO3;(d) 1:1ZnWO4/ZnSnO3;(e) 2:1 ZnWO4/ZnSnO3
图9为1:1 ZnWO4/ZnSnO3制备的气体传感器在180℃下对30 ppm甲醛气体的7个周期的响应-恢复曲线;
图10为ZnSnO3和0.5:1 ZnWO4/ZnSnO3制备的气体传感器在最佳温度下对15~45ppm甲醛气体的灵敏度曲线;
图11为ZnSnO3和ZnWO4/ZnSnO3样品的紫外-可见光吸收曲线;
图12为ZnSnO3和 ZnWO4/ZnSnO3样品的光致发光光谱曲线。
具体实施方式
下面结合附图和实施例对本发明作进一步说明:
实施例1(制备纯ZnSnO3
将1mmol乙酸锌、1 mmol五水四氯化锡、0.1g氟化钠加入到35ml去离子水中,磁力搅拌20分钟以上;将10mmol氢氧化钾缓慢倒入溶液中,磁力搅拌30分钟以上;转入反应釜,加热温度为120℃保温10h,冷却到室温,经固液分离、烘干、研磨,在550℃下焙烧至少1小时,得到纯锡酸锌(ZnSnO3)粉末。
实施例2(钨酸锌∶锡酸锌=0.25∶1)
将1mmol钨酸钠、5 mmol乙酸锌、4mmol五水四氯化锡和0.4g氟化钠(10mml)加入到65ml去离子水中,磁力搅拌20分钟以上;将40 mmol氢氧化钾缓慢倒入溶液中,磁力搅拌30分钟以上;转入反应釜,加热温度为120℃保温30h,冷却到室温,经固液分离、烘干、研磨、焙烧,得到复合比为0.25:1的钨酸锌复合锡酸锌(0.25:1ZnWO4/ZnSnO3)粉末。
实施例3(钨酸锌:锡酸锌=0.5:1)
将2mmol钨酸钠、6mmol乙酸锌、4mmol五水四氯化锡和0.4g氟化钠加入到65ml去离子水中,磁力搅拌20分钟以上;将40 mmol氢氧化钾缓慢倒入溶液中,磁力搅拌30分钟以上;转入反应釜,加热温度为140℃保温12h,冷却到室温,经固液分离、烘干、研磨、焙烧,得到复合比为0.5:1的钨酸锌复合锡酸锌(0.5:1ZnWO4/ZnSnO3)粉末。
实施例4(钨酸锌:锡酸锌=1:1)
将4mmol钨酸钠、8mmol乙酸锌、4mmol五水四氯化锡和0.4g氟化钠加入到65ml去离子水中,磁力搅拌20分钟以上;将40 mmol氢氧化钾缓慢倒入溶液中,磁力搅拌30分钟以上;转入反应釜,加热温度为160℃保温24h,冷却到室温,经固液分离、烘干、研磨、焙烧,得到复合比为1:1的钨酸锌复合锡酸锌(1:1ZnWO4/ZnSnO3)粉末。
实施例5(钨酸锌:锡酸锌=2:1)
将8mmol钨酸钠、12mmol乙酸锌、4mmol五水四氯化锡和0.4g氟化钠加入到65ml去离子水中,磁力搅拌20分钟以上;将40 mmol氢氧化钾缓慢倒入溶液中,磁力搅拌30分钟以上;转入反应釜,加热温度为180℃保温10h,冷却到室温,经固液分离、烘干、研磨、焙烧,得到复合比为2:1的钨酸锌复合锡酸锌(2:1ZnWO4/ZnSnO3)粉末。
样品表征
将实施例1制得的ZnSnO3与实施例2~实施例5制得的ZnWO4/ZnSnO3特性作对比。
测试条件:XRD(Max-1200,日本)、SEM(Hitachi S-4300)、TEM(JEOL JEM-2010F)、BET(ASAP 2020,美国)、UV(UV-2700)和XPS(Thermo ESCALAB 250,美国)对样品的晶体结构、比表面积和化学成分进行了表征。气敏性能由CGS-1TP仪器(北京精英科技有限公司)进行测试,气敏响应值定义为S=Ra/Rg(Ra、Rg分别为空气和目标气体中的传感器电阻)。
图1为ZnSnO3和ZnWO4/ZnSnO3样品的XRD图谱,图1中主要的衍射峰2θ=19.6o,22.7o,32.4o,36.6o,38.4o,40.1o,46.7o,52.4o,57.7o,68.3o 和73.1o分别对应ZnSnO3的(111),(200),(220),(013),(311), (222),(400),(420),(422),(440)和(442)晶面(JCPDS:11-0274)。值得注意的是,在ZnWO4/ZnSnO3样品不仅含有上述ZnSnO3的衍射峰,而且在2θ=30.7o,42.8o,63.8o处还表现出ZnWO4的衍射峰,对应于ZnWO4的(111),(211),(311)晶面(JCPDS:15-0774)。
XPS光谱用于表征ZnWO4/ZnSnO3样品的组成元素和化学价。如图2所示,所制备的0.5:1 ZnWO4/ZnSnO3样品的光谱具有Zn,Sn,O,C和W峰。图3为0.5:1 ZnWO4/ZnSnO3的高分辨率的XPS W 4f光谱,在34.8 eV和36.9 eV处的两个峰分别对应于W 4f7/2和W 4f /2,表明W的化学价为+6。XPS结果表明:W离子被掺入到ZnWO4/ZnSnO3中。
如图4所示,ZnSnO3和0.5:1 ZnWO4/ZnSnO3复合材料显示IV型等温线,其磁滞回线对应于中孔材料的等温线。此外,ZnSnO3和0.5:1 ZnWO4/ZnSnO3复合材料的比表面积分别为14.8m2/g和22.3m2/g。结果表明,与ZnSnO3相比,0.5:1 ZnWO4/ZnSnO3复合材料可提供更多的气体分子吸附-解吸位点和扩散路径,从而增强传感器的气敏性能。
如图5所示的结构:图5(a)可以看出,ZnSnO3样品具有均匀的立方结构;图5(b)中的ZnWO4/ZnSnO3复合材料由ZnSnO3立方体和ZnWO4纳米片组成,具有独特的层次结构。从图5(c)可以发现ZnSnO3具有明显的多孔结构,立方尺寸约为400-500nm左右;图5(d)可以看到ZnSnO3仍然保持立方结构,但尺寸在逐渐减小约为300nm~400nm,一些ZnWO4纳米片覆盖在厚度为20nm的ZnSnO3立方体表面上。此外,在图5(d)中,0.5:1 ZnWO4/ZnSnO3样品具有明亮的内部和明显的暗边,说明0.5:1 ZnWO4/ZnSnO3样品具有层次结构和多孔结构。
在图6中,测试了ZnSnO3和ZnWO4/ZnSnO3制备的传感器在不同的工作温度(120℃~300℃)下对30 ppm甲醛的响应;从图6看出:ZnSnO3和ZnWO4/ZnSnO3传感器的灵敏度先增大然后减小,ZnSnO3在250℃、ZnWO4/ZnSnO3在180℃达到最大响应。ZnSnO3和ZnWO4/ZnSnO3在最佳温度(T)下的灵敏度(S)为:ZnSnO3(S = 25.8,T = 250°C)、0.25:1 ZnWO4/ZnSnO3(S =47,T=180°C)、0.5:1 ZnWO4/ZnSnO3(S=198,T=180°C)、1:1 ZnWO4/ZnSnO3(S=73,T=180°C)、2:1ZnWO4/ZnSnO3(S =12,T =180°C)。
图7为ZnSnO3和ZnWO4/ZnSnO3制备的气体传感器在佳温工作温度下对30 ppm各种目标气体(丙酮,乙醇,甲醛,氨和苯)的响应。与ZnSnO3传感器相比,0.5:1 ZnWO4/ZnSnO3传感器对于每种目标气体均显示出较强的灵敏度。可以看出:0.5:1 ZnWO4/ZnSnO3传感器对甲醛气体的灵敏度最大,灵敏度为198,表明0.5:1 ZnWO4/ZnSnO3传感器对甲醛气体具有很好的选择性。
图8为ZnSnO3和ZnWO4/ZnSnO3制备的气体传感器在最佳温度下对30 ppm甲醛气体的响应恢复曲线,测试步骤:在100s时注射甲醛气体,300s时释放到空气中,400s时结束采集。
各样品在最佳温度下响应时间、恢复时间分别为:
图(a)的ZnSnO3(161s,20s,T=250℃);
图(b)的0.25:1 ZnWO4/ZnSnO3 (150s,17s,T=180℃);
图(c)的0.5:1ZnWO4/ZnSnO3 (142s,14s,T=180℃);
图(d)的1:1 ZnWO4/ZnSnO3 (148s,16s,T=180℃);
图(e)的2:1 ZnWO4/ZnSnO3 (162s,22s,T=180℃)。
可以看出0.5:1 ZnWO4/ZnSnO3复合材料具有更短的响应时间和恢复时间。
响应时间是指从传感器接触甲醛气体至达到稳定指示值的时间,恢复时间是指从传感器接触空气至达到稳定指示值的时间。通常,读取达到稳定值90%的时间作为响应或恢复时间。在响应时间后,能获得稳定的灵敏度。
图9为1:1 ZnWO4/ZnSnO3制备的气体传感器在180℃下对30 ppm甲醛气体的7个周期的响应-恢复曲线;测试方式:通7次甲醛气体、再换7次空气。从图9可以看出:经过连续七个气敏测试,响应恢复特性几乎可以重复,并且灵敏度保持稳定,表明ZnWO4/ZnSnO3传感器具有良好的重复性和稳定性。
图10为ZnSnO3和0.5:1 ZnWO4/ZnSnO3制备的气体传感器在最佳温度下对15~45ppm甲醛气体的灵敏度曲线;测试方式为:在100s时注射15ppm甲醛,在300s时释放到空气中;在400s时又注射20ppm甲醛,在600s时释放到空气中;在700s时又注射25ppm甲醛依次进行。
ZnSnO3与0.5:1 ZnWO4/ZnSnO3传感器的灵敏度对应为19.7、165.8(15ppm),21.5、177.9(20ppm),23.8、185.7(25ppm),26.5、198.5(30ppm),29.6、208.7(35ppm),31.9、214.7(40ppm),34.4、223.9(45ppm)。基于以上结果,0.5:1 ZnWO4/ZnSnO3传感器在甲醛的各个浓度下都显著高于ZnSnO3,能用于检测低浓度的甲醛。
图11为ZnSnO3和ZnWO4/ZnSnO3样品的紫外-可见光吸收曲线。从图11可以看到,所有的样品(包括纯ZnSnO3)在紫外光区370nm左右有强烈的吸收,与ZnSnO3相对比,钨酸锌复合锡酸锌产生了明显的红移现象,这种红移现象是因为ZnWO4复合ZnSnO3后,形成了新的能带。
图12为ZnSnO3和ZnWO4/ZnSnO3的光致发光(PL)光谱,通过对比发现,五个样品的发光强度比较结果是0.5:1 ZnWO4/ZnSnO3>1:1 ZnWO4/ZnSnO3>0.25:1 ZnWO4/ZnSnO3>ZnSnO3>2:1 ZnWO4/ZnSnO3,也就是:复合比为0.5:1时,具有最高的发光强度,表明材料中具有最多的晶体缺陷,这将有助于材料能够产生更多的氧空位,产生更多的吸附氧从而促进材料气敏性能的提高。因此0.5:1 ZnWO4/ZnSnO3电子转移速率更快、导电性更强, 从而缩短了响应恢复时间。
结合气敏性能可以得到:当复合ZnWO4后,ZnSnO3材料的气敏性能得到了改善,这是因为ZnWO4/ZnSnO3复合材料具有独特的分层多孔结构,具有较高的比表面积;复合后降低了禁带宽度,有利于电子的跃迁,并产生了大量缺陷,从而拥有更多的氧空位,提高了材料的气敏性能。ZnSnO3n型半导体,ZnWO4p型半导体,在水热合成的过程中,p-n异质结会在ZnWO4和ZnSnO3的界面生成,由于其功函数的差异导致电子迁移,电子从ZnSnO3转移到ZnWO4,在电子转移的过程中, 德拜电子耗尽层在p-n异质结上产生。当载流子的转移达到动态平衡时, 德拜电子耗尽层的厚度达到最大,引起气敏材料电阻的剧烈变化, 提高了灵敏度。
综上所述,采用一步水热法制备了ZnWO4/ZnSnO3复合材料,并将制备的材料应用于气敏传感器中检测甲醛气体。结果表明,在180℃的最佳温度下,0.5:1 ZnWO4/ZnSnO3复合材料对30ppm甲醛具有较高的灵敏度(198),快速的响应恢复时间(142s/14s),能作为甲醛气敏传感器的候选材料。

Claims (5)

1.一种钨酸锌复合锡酸锌气体传感材料,其特征是:钨酸锌纳米薄片复合在锡酸锌立方体晶格上,钨酸锌与锡酸锌的摩尔数之比为(0.25~2)∶1。
2.根据权利要求1所述的钨酸锌复合锡酸锌气体传感材料,其特征是:钨酸锌与锡酸锌的摩尔数之比为(0.25~1)∶1。
3.根据权利要求2所述的钨酸锌复合锡酸锌气体传感材料,其特征是:钨酸锌与锡酸锌的摩尔数之比为0.5∶1。
4.一种权利要求1所述钨酸锌复合锡酸锌气体传感材料的制备方法,其特征是,包含以下步骤:
步骤1、将钨酸钠、乙酸锌、五水四氯化锡、氟化钠的摩尔数比为(1~8)∶(5~12)∶4∶10加入到去离子水中,磁力搅拌至少20分钟,直到乙酸锌完全溶解到溶液中,
步骤2、将氢氧化钾溶液缓慢倒入步骤1所得的溶液中,磁力搅拌至少30分钟;
步骤3、将步骤2所得溶液转入反应釜,加热温度为120~180℃,保温10~30h;反应结束后,冷却到室温;
步骤4、将步骤3所得产物进行固液分离、烘干、研磨、焙烧,得到钨酸锌复合锡酸锌粉末;
所述焙烧是在550℃下焙烧至少1小时。
5.一种权利要求1、2或3所述的钨酸锌复合锡酸锌气体传感材料用于检测甲醛浓度。
CN202010404946.XA 2020-05-14 2020-05-14 一种钨酸锌复合锡酸锌气体传感材料、制备方法和应用 Active CN111547772B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010404946.XA CN111547772B (zh) 2020-05-14 2020-05-14 一种钨酸锌复合锡酸锌气体传感材料、制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010404946.XA CN111547772B (zh) 2020-05-14 2020-05-14 一种钨酸锌复合锡酸锌气体传感材料、制备方法和应用

Publications (2)

Publication Number Publication Date
CN111547772A CN111547772A (zh) 2020-08-18
CN111547772B true CN111547772B (zh) 2022-06-07

Family

ID=72004711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010404946.XA Active CN111547772B (zh) 2020-05-14 2020-05-14 一种钨酸锌复合锡酸锌气体传感材料、制备方法和应用

Country Status (1)

Country Link
CN (1) CN111547772B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010027070A1 (de) * 2010-07-13 2012-01-19 Eberhard-Karls-Universität Tübingen Gas-Sensor und Verfahren zu seiner Herstellung
CN108097233A (zh) * 2017-12-11 2018-06-01 河南师范大学 一种响应太阳光的立方体结构锡酸锌光催化剂的制备方法
WO2018158692A1 (en) * 2017-03-03 2018-09-07 Inm Technologies Pvt Ltd Formaldehyde gas sensor and method for producing the same
CN108855241A (zh) * 2018-06-15 2018-11-23 南京信息工程大学 一种花状光催化剂及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101633549B1 (ko) * 2014-08-06 2016-06-27 한국과학기술원 다결정 나노섬유, 마이크로입자 및 나노입자로 구성된 복합 금속산화물 감지소재, 이를 이용한 가스센서 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010027070A1 (de) * 2010-07-13 2012-01-19 Eberhard-Karls-Universität Tübingen Gas-Sensor und Verfahren zu seiner Herstellung
WO2018158692A1 (en) * 2017-03-03 2018-09-07 Inm Technologies Pvt Ltd Formaldehyde gas sensor and method for producing the same
CN108097233A (zh) * 2017-12-11 2018-06-01 河南师范大学 一种响应太阳光的立方体结构锡酸锌光催化剂的制备方法
CN108855241A (zh) * 2018-06-15 2018-11-23 南京信息工程大学 一种花状光催化剂及其制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Construction of NiO@ZnSnO3 hierarchical microspheres decorated with NiO nanosheets for formaldehyde sensing";Bai, Shouli et al.;《SENSORS AND ACTUATORS B-CHEMICAL》;20171231;第908-916页 *
"Hierarchical WO3/ZnWO4 1D fibrous heterostructures with tunable in-situ growth of WO3 nanoparticles on surface for efficient low concentration HCHO detection";Li Hui et al.;《SENSORS AND ACTUATORS B-CHEMICAL》;20191231;第564-574页 *
One pot synthesis of hierarchical and porous ZnSnO3 nanocubes and gas;Weiwei Guo et al.;《Results in Physics》;20191231;全文 *

Also Published As

Publication number Publication date
CN111547772A (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
Ma et al. Room temperature photoelectric NO2 gas sensor based on direct growth of walnut-like In2O3 nanostructures
Chen et al. Novel Zn2SnO4 hierarchical nanostructures and their gas sensing properties toward ethanol
CN107376825B (zh) 一种六方氮化硼材料及其制备方法和用途
Gao et al. Highly sensitive and selective H2S sensor based on porous ZnFe2O4 nanosheets
Liang et al. Reducing gas-sensing performance of Ce-doped SnO 2 thin films through a cosputtering method
Doan et al. Facile synthesis of metal-organic framework-derived ZnO/CuO nanocomposites for highly sensitive and selective H2S gas sensing
Rai et al. Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application
Dong et al. Enhanced formaldehyde sensing performance of 3D hierarchical porous structure Pt-functionalized NiO via a facile solution combustion synthesis
Li et al. Enhanced blue-green emission and ethanol sensing of Co-doped ZnO nanocrystals prepared by a solvothermal route
Han et al. Flower-like In 2 O 3 hierarchical nanostructures: Synthesis, characterization, and gas sensing properties
Sun et al. Highly active and porous single-crystal In 2 O 3 nanosheet for NO x gas sensor with excellent response at room temperature
TW202112671A (zh) 硫化鉬粉體及其製造方法、重金屬吸附劑、光熱轉化材料、蒸餾方法、氧還原催化劑和催化劑墨水
Cheng et al. Preparation and study of ammonia gas sensor based on ZnO/CuO heterojunction with high performance at room temperature
Li et al. Enhanced acetone-sensing performance of Au/ZnO hybrids synthesized using a solution combustion method
Wang et al. Carbon modification endows WO3 with anti-humidity property and long-term stability for ultrafast H2S detection
Gu et al. Metal–organic framework derived Au@ ZnO yolk–shell nanostructures and their highly sensitive detection of acetone
Liang et al. Practical room temperature formaldehyde sensing based on a combination of visible-light activation and dipole modification
Peng et al. In2O3/ZnO S-scheme heterojunction nanocomposite hollow microtubes with highly sensitive response to formaldehyde
Zhang et al. Expanded graphite/NiAl layered double hydroxide nanowires for ultra-sensitive, ultra-low detection limits and selective NO x gas detection at room temperature
CN113740390A (zh) 一种镍掺杂氧化铟纳米颗粒及其制备方法与应用
CN111547772B (zh) 一种钨酸锌复合锡酸锌气体传感材料、制备方法和应用
Jing et al. Low-temperature synthesis of WO 3 nanolamella and their sensing properties for xylene
Yin et al. Double-layer capsule of mesoporous ZnO@ SnO 2 for sensitive detection of triethylamine
CN112897588B (zh) 一种铁酸钙复合铁酸锌气体传感材料、制备方法和应用
CN108226233B (zh) 分级结构ZnO@ZnO纳米复合气敏材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant