JP4387652B2 - 炭素電極及びこれを備えた色素増感型太陽電池 - Google Patents

炭素電極及びこれを備えた色素増感型太陽電池 Download PDF

Info

Publication number
JP4387652B2
JP4387652B2 JP2002294050A JP2002294050A JP4387652B2 JP 4387652 B2 JP4387652 B2 JP 4387652B2 JP 2002294050 A JP2002294050 A JP 2002294050A JP 2002294050 A JP2002294050 A JP 2002294050A JP 4387652 B2 JP4387652 B2 JP 4387652B2
Authority
JP
Japan
Prior art keywords
electrode
dye
sensitized solar
solar cell
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002294050A
Other languages
English (en)
Other versions
JP2004127849A (ja
Inventor
康彦 竹田
和夫 樋口
晃洋 武市
友美 元廣
竜生 豊田
利行 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Central R&D Labs Inc
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Central R&D Labs Inc, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2002294050A priority Critical patent/JP4387652B2/ja
Publication of JP2004127849A publication Critical patent/JP2004127849A/ja
Application granted granted Critical
Publication of JP4387652B2 publication Critical patent/JP4387652B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

【0001】
【発明の属する技術分野】
本発明は炭素電極及びこれを備えた色素増感型太陽電池に関する。
【0002】
【従来の技術】
近年、地球温暖化やエネルギー問題に対する関心の高まりとともに太陽電池の様々な開発が進められている。その太陽電池の中でも、色素増感型太陽電池はグレッツェルらにより提案(例えば、特許第2664194号公報)されて以来、使用する材料が安価であること、比較的シンプルなプロセスで製造できること等の利点からその実用化が期待されている。
【0003】
このような色素増感型太陽電池の対極としては、例えば、透明基板上に、Pt等の触媒粒子を付着させた透明導電膜をコートした構成を有するいわゆるPt担持TCOガラス基板(Transparent Conductive Oxide Coated Glass)やPt担持導電性合成樹脂フィルムが知られている(例えば、特許第2664194号公報)。TCOガラス基板としては、例えば、95% 酸化インジウムと 5% 酸化錫とからなる化合物(ITO)コートガラスや、フッ素ドープSnO2(FTO)コートガラス等が挙げられ、導電性合成樹脂フィルムとしては導電性PETフィルム等が挙げられる。
【0004】
しかし、上述の対極以外に、電解質中に存在する酸化還元対(例えば、I3 -/I-等)の酸化体を還元体に還元する還元反応(例えば、I3 -をI-に還元する還元反応)を速やかに進行させることが可能な優れた電極特性を有し、かつ、製造が容易にできてしかも安価な対極を開発することは、色素増感型太陽電池の実用化の観点から重要であり、これまで様々な検討が行われている。
【0005】
例えば、上記のような検討として、例えば、Solar Energy Materials and Solar Cells, 44(1996) p.99-117 には、カーボンブラック粒子と、平板状の形状を有するグラファイト粒子と、アナターゼ型の酸化チタン粒子(例えば、上記文献の図3を参照)とを構成材料として形成された多孔質の炭素電極が提案されており、さらにこれを対極として使用した色素増感型太陽電池が提案されている。
【0006】
上記の多孔質の炭素電極は、電極内部の細孔中に電解質溶液を取り込むことができるので、先に述べたPt担持TCOガラス基板からなる対極に比較して、電極面積をより大きく確保することが容易であり、また、軽量かつ化学的に安定であり、更に、低コストで様々な形状に容易に形成することができるという利点を有する。
【0007】
【特許文献1】
特許第2664194号公報(第3頁、図1)
【非特許文献1】
Andreas Kay, Michael Gratzel,「Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder」,Solar Energy Materials and Solar Cells, 44,Elsevier Science,1996,p.99-117
【0008】
【発明が解決しようとする課題】
しかしながら、本発明者らは、上記従来の炭素電極を対極として備える色素増感型太陽電池は、先に述べたPt担持TCOガラス基板を対極として備えた色素増感型太陽電池に比較して、得られるFilling Factor (以下、「F.F.」という)及びエネルギー変換効率ηが低く、未だ不充分であるという問題があることを見出した。
【0009】
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、電極表面の電子移動反応を速やかに進行させることのできる炭素電極及びこれを対極として備えており、優れたエネルギー変換効率を有する色素増感型太陽電池を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、上記従来の炭素電極の電気伝導率が先に述べたPt担持TCOガラス基板からなる対極よりも低いことが上述の問題に大きく影響していることを見出した。
【0011】
そして本発明者らは、電極の電気伝導率の向上を目指して更に検討を重ねた結果、上記従来の炭素電極を構成する際に、バインダとして含有されているアナターゼ型の酸化チタン粒子のかわりにこれよりも電気抵抗率の低い導電性酸化物粒子を用いることが、先に述べた長所を失うことなくその電気伝導率の向上を図ることに対して極めて有効であることを見出し、本発明に到達した。
【0012】
すなわち、本発明は、細孔を有する多孔質の炭素電極であって、カーボンブラック状粒子と、グラファイト状粒子と、アナターゼ型の酸化チタン粒子よりも電気抵抗率の低い導電性酸化物粒子と、を構成材料として少なくとも含有しており、カーボンブラック状粒子の含有質量W1と、グラファイト状粒子の含有質量W2と、導電性酸化物粒子の含有質量W3とが、下記式(1)及び下記式(2)で表される条件を同時に満たしていること、を特徴とする炭素電極を提供する。
0.05≦(W1/W2)≦0.4・・・(1)
0.05≦{W3/(W1+W2)}≦0.4・・・(2)
【0013】
本発明においては、アナターゼ型の酸化チタン粒子よりも電気抵抗率の低い導電性酸化物粒子を構成材料として使用することにより、得られる炭素電極の電気伝導率を向上させることができる。そのため、本発明の炭素電極は、先に述べた従来の炭素電極に比較して、該電子移動反応を速やかに進行させることができる。また、本発明の炭素電極は、先に述べた従来のPT担持TCOガラス基板からなる電極に比較して、広い電極面積を確保し易く、また、軽量かつ化学的に安定であり、しかも低コストで所望の形状に容易に形成することができる。
【0014】
従って、本発明の炭素電極を色素増感型太陽電池の対極として使用すれば、先に述べた従来の炭素電極に比較して、電解質中に含有される酸化還元対(例えば、I3 -/I-等)の酸化体に電子を反応させて還元体を得る還元反応(例えば、I3 -をI-へ還元する還元反応)を速やかに進行させることが可能となり、高いエネルギー変換効率を得ることができる。また、本発明の炭素電極は、軽量で所望の形状に容易に形成できるので、コンパクトで軽量の色素増感型太陽電池を低コストで容易に構成することができる。
【0015】
なお、本発明の炭素電極の用途は特に限定されず、色素増感型太陽電池の対極として好ましく使用されるが、色素増感型太陽電池の対極以外の電極としても使用できる。例えば、他の電池(例えば、空気電池、マンガン乾電池)、電解工業の各種プロセス(例えば、食塩電解、アルミニウム、カルシウム、マグネシウム、アルカリ金属等の電解精錬)、又は、電解製鋼、電解合成用のアノードとして使用してもよい。
【0016】
また、本発明は、受光面を有する半導体電極と当該受光面上に隣接して配置された透明電極とを有する光電極と、対極とを有しており、半導体電極と対極とが電解質を介して対向配置された色素増感型太陽電池であって、対極が上述の本発明の炭素電極であること、を特徴とする色素増感型太陽電池を提供する。
【0017】
このように、先に述べた本発明の炭素電極を対極として用いることにより、優れたエネルギー変換効率を有する色素増感型太陽電池を容易に構成することができる。なお、本発明の炭素電極を色素増感型太陽電池の対極として使用する場合、炭素電極自身を対極として使用してもよく、基板上に本発明の炭素電極を一体化して形成したものを対極として使用してもよい。
【0018】
ここで、本発明において、「色素」とは、金属錯体色素及び有機色素を示す。また、「電解質」とは、電解質溶液(以下、必要に応じて「電解液」という)、電解質溶液にゲル化剤を添加してゲル化したもの、及び、固体電解質を示す。
【0019】
また、本明細書において、「カーボンブラック状粒子」とは、カーボンブラック粒子(アモルファス状態のもの、結晶化された状態のもの、並びに、アモルファス状態の構造及び結晶化された状態の構造とが混在した状態のもの)、カーボンエアロゲル粒子(アモルファス状態のもの、結晶化された状態のもの、並びに、アモルファス状態の構造及び結晶化された状態の構造とが混在した状態のもの)、並びに、上記カーボンブラック粒子及び上記カーボンエアロゲル粒子の混合物を示す。このカーボンブラック状粒子の形状は特に限定されず、例えば、中空状の粒子であってもよい。
【0020】
更に、本明細書において、「グラファイト状粒子」とは、(i)グラファイト粒子、(ii)グラファイト粒子の層間を膨潤させたもの、(iii)グラファイト粒子の層間に他の元素が取り込まれた状態の層間化合物、及び、(iv)上記の(i)〜(iii)のうちの少なくとも2種の粒子を任意に混合させた混合物を示す。
【0021】
【発明の実施の形態】
以下、図面を参照しながら本発明の炭素電極及び色素増感型太陽電池の好適な実施形態について詳細に説明する。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する。
【0022】
[第1実施形態]
図1は、本発明の色素増感型太陽電池の第1実施形態の基本構成を示す模式断面図である。なお、図1に示す色素増感型太陽電池20は、本発明の炭素電極の好適な一実施形態を対極CE1として備えている。
【0023】
図1に示す色素増感型太陽電池20は、主として、光電極10と、対極CE1と、スペーサSにより光電極10と対極CE1との間に形成される間隙に充填された電解質Eとから構成されている。また、図1に示す光電極10は、主として、受光面F2を有する半導体電極2と、当該半導体電極2の受光面F2上に隣接して配置された透明電極1とから構成されている。そして、半導体電極2は、受光面F2と反対側の裏面F22において電解質Eと接触している。
【0024】
この色素増感型太陽電池20は、透明電極1を透過して半導体電極2に照射される光によって半導体電極2内に吸着されている増感色素が励起され、この増感色素から半導体電極2へ電子が注入される。そして、半導体電極2において注入された電子は、透明電極1に集められて外部に取り出される。
【0025】
透明電極1の構成は特に限定されるものではなく、通常の色素増感型太陽電池に搭載される透明電極を使用できる。例えば、図1に示す透明電極1は、ガラス基板等の透明基板4の半導体電極2の側にいわゆる透明導電膜3をコートした構成を有する。この透明導電膜3としては、液晶パネル等に用いられる透明電極を用いればよい。
【0026】
例えば、フッ素ドープSnO2コートガラス、ITOコートガラス、ZnO:Alコートガラス、アンチモンドープ酸化スズ(SnO2−Sb)、等が挙げられる。また、酸化スズや酸化インジウムに原子価の異なる陽イオン若しくは陰イオンをドープした透明電極、メッシュ状、ストライプ状など光が透過できる構造にした金属電極をガラス基板等の基板上に設けたものでもよい。
【0027】
透明基板4としては、液晶パネル等に用いられる透明基板を用いてよい。具体的には透明なガラス基板、ガラス基板表面を適当に荒らすなどして光の反射を防止したもの、すりガラス状の半透明のガラス基板など光を透過するものが透明基板材料として挙げられる。なお、光を透過するものであれば材質はガラスでなくてもよく、透明プラスチック板、透明プラスチック膜、無機物透明結晶体などでもよい。
【0028】
図1に示す半導体電極2は、酸化物半導体粒子を構成材料とする酸化物半導体層からなる。半導体電極2に含有される酸化物半導体粒子は特に限定されるものではなく、公知の酸化物半導体等を使用することができる。酸化物半導体としては、例えば、TiO2,ZnO,SnO2,Nb25,In23,WO3,ZrO2,La23,Ta25,SrTiO3,BaTiO3等を用いることができる。これらの酸化物半導体の中でもアナターゼ型TiO2が好ましい。
【0029】
また、半導体電極2に含有される増感色素は、可視光領域および/または赤外光領域に吸収を持つ色素であれば特に限定されるものではない。より好ましくは、少なくとも200nm〜10μmの波長の光により励起されて電子を放出するものであればよい。このような増感色素としては、金属錯体や有機色素等を用いることができる。金属錯体としては銅フタロシアニン、チタニルフタロシアニン等の金属フタロシアニン、クロロフィルまたはその誘導体、ヘミン、ルテニウム、オスミウム、鉄及び亜鉛の錯体(例えば、シス−ジシアネート−N,N’−ビス(2、2’−ビピリジル−4、4’−ジカルボキシレート)ルテニウム(II))等が挙げられる。有機色素としては,メタルフリーフタロシアニン,シアニン系色素,メロシアニン系色素,キサンテン系色素,トリフェニルメタン系色素等を用いることができる。
【0030】
また、対極CE1は、電解質中に含有される酸化還元対(例えば、I3 -/I-等)の酸化体に電子を反応させて還元体を得る還元反応(例えば、I3 -をI-へ還元する還元反応)を速やかに進行させることを意図して以下に説明する構成を有している。
【0031】
すなわち、対極CE1は、平板状の基板6と、基板6の一方の面上に形成された炭素電極8とから構成されている。そして、対極CE1は、その炭素電極8が電解質Eに接触するように配置されている。なお、図1において、対極CE1は、充分な機械的強度が得られる場合には、炭素電極8自体のみからなる構成としてもよい。
【0032】
基板6は、炭素電極8の支持体となるものである。基板6の構成は特に限定されるものではなく、例えば、先に述べた透明基板4と同様のものを使用してよい。
【0033】
炭素電極8は、カーボンブラック状粒子と、グラファイト状粒子と、アナターゼ型の酸化チタン粒子よりも電気抵抗率の低い導電性酸化物粒子とを少なくとも構成材料として形成された多孔質の電極である。この多孔質の炭素電極8の細孔内には、電解質E(液体状或いはゲル状の電解質)が保持されている。
【0034】
ここで、炭素電極8の高い電子伝導性をより確実に得る観点から、カーボンブラック状粒子の含有質量W1と、グラファイト状粒子の含有質量W2と、導電性酸化物粒子の含有質量W3とが、下記式(1)及び下記式(2)で表される条件を同時に満たしていることが好ましい。
【0035】
0.05≦(W1/W2)≦0.4・・・(1)
0.05≦{W3/(W1+W2)}≦0.4・・・(2)
【0036】
式(1)において、(W1/W2)が0.05未満となると、電極面積が低下するため、電解質中に含有される酸化還元対(例えば、I3 -/I-等)の酸化体に電子を反応させて還元体を得る還元反応(例えば、I3 -をI-へ還元する還元反応)の速度が低下する傾向が大きくなる。また、式(1)において、(W1/W2)が0.4を超えると、電気伝導性が低下する傾向が大きくなる。
【0037】
また、式(2)において、{W3/(W1+W2)}が0.05未満となると、炭素電極8自体の機械的強度が低下し、炭素電極8の一部或いは全部の剥離が発生したり、炭素電極8中に亀裂が発生したりする傾向が大きくなる。また、式(2)において、{W3/(W1+W2)}が0.4を超えると、電子伝導性が低下する傾向が大きくなる。
【0038】
また、上述と同様に炭素電極8の高い電子伝導性をより確実に得る観点から、導電性酸化物粒子の電気抵抗率は1×10-2Ω・cm以下であることが好ましい。導電性酸化物粒子の電気抵抗率が1×10-2Ω・cmを超えると、充分な電子伝導性を得にくくなる傾向が大きくなる。
【0039】
更に、上述の条件を満たす導電性酸化物粒子としては、SnドープIn23、ZnドープIn23、SbドープSnO2、FドープSnO2、AlドープZnO、GaドープZnO、及び、In4Sn312からなる群より選択される少なくとも1種の粒子であることが好ましい。
【0040】
なお、炭素電極8の高い電子伝導性をより確実に得る観点から、SnドープIn23からなる粒子としては、この化合物中に含有されているSnの原子数とInの原子数との比(Snの原子数/Inの原子数)が0.01〜0.25であることが好ましい。また、ZnドープIn23からなる粒子としては、この化合物中に含有されているZnの原子数とInの原子数との比(Znの原子数/Inの原子数)が0.01〜0.25であることが好ましい。
【0041】
更に、SbドープSnO2からなる粒子としては、この化合物中に含有されているSbの原子数とSnの原子数との比(Sbの原子数/Snの原子数)が0.05〜0.55であることが好ましい。また、FドープSnO2からなる粒子としては、この化合物中に含有されているFの原子数とO(酸素原子)の原子数との比(Fの原子数/Oの原子数)が0.05〜0.50であることが好ましい。
【0042】
更に、AlドープZnOからなる粒子としては、この化合物中に含有されているAlの原子数とZnの原子数との比(Alの原子数/Znの原子数)が0.01〜0.25であることが好ましい。また、GaドープZnOからなる粒子としては、この化合物中に含有されているGaの原子数とZnの原子数との比(Gaの原子数/Znの原子数)が0.01〜0.25であることが好ましい。
【0043】
なお、多孔質の炭素電極である対極CE1中には、例えば、電極反応をより速やかに進行させる観点から、Pt微粒子等の触媒微粒子を分散担持してもよい。
【0044】
更に、電解質Eは、光励起され半導体への電子注入を果した後の色素を還元するための酸化還元種を含んでいれば特に限定されず、例えば、液状の電解質であってもよく、これに公知のゲル化剤(高分子或いは低分子のゲル化剤)を添加して得られるゲル状の電解質であってもよい。
【0045】
また、電解質Eに使用される液状電解質の溶媒としては、溶質成分を溶解できる化合物であれば特に制限はないが、電気化学的に不活性で、比誘電率が高くかつ粘度が低い溶媒(およびこれらの混合溶媒)に溶かしたものが好ましく、例えば、例えば,メトキシプロピオニトリルやアセトニトリルのようなニトリル化合物,γ−ブチロラクトンやバレロラクトンのようなラクトン化合物,エチレンカーボネートやプロピレンカーボネートのようなカーボネート化合物、炭酸プロピレン等が挙げられる。
【0046】
電解質Eに使用される液状電解質の溶質としては,半導体電極2に担持された色素や対極CEと電子の受け渡しを行える酸化還元対(I3 -/I-系の電解質、Br3 -/Br-系の電解質、ハイドロキノン/キノン系の電解質などのレドックス電解質)や、この電子の受け渡しを助長する作用を有する化合物等が挙げられ、これらがそれぞれ単独あるいは複数組み合せて含まれていてもよい。
【0047】
より具体的には、酸化還元対を構成する物質としては、例えば,ヨウ素,臭素,塩素などのハロゲン,ヨウ化ジメチルプロピルイミダゾリウム,ヨウ化テトラプロピルアンモニウム,ヨウ化リチウムのようなハロゲン化物などが挙げられる。電子の受け渡しを効率よく行うための添加剤としては、例えば、4−tert−ブチルピリジンが通常使用される。
【0048】
また、スペーサSの構成材料は特に限定されるものではなく、例えば、シリカビーズ等を用いることができる。
【0049】
また、電解質Eを密封する目的で光電極10、対極CE及びスペーサSを一体化するために使用する封止材としては、電解質Eの成分ができる限り外部に漏洩しないように封止できるものであればよく、特に制限されないが、例えば、エポキシ樹脂、シリコーン樹脂、エチレン/メタクリル酸共重合体,表面処理ポリエチレンからなる熱可塑性樹脂などを用いることができる。
【0050】
次に、図1に示した色素増感型太陽電池20の製造方法の一例について説明する。
【0051】
透明電極1を製造する場合は、ガラス基板等の基板4上に先に述べたフッ素ドープSnO2等の透明導電膜3をスプレーコートする等の公知の薄膜製造技術を用いて形成することができる。例えば、この他にも、真空蒸着法、スパッタリング法、CVD法及びゾルゲル法の公知の薄膜製造技術を用いて形成することができる。
【0052】
透明電極1の透明導電膜3上に半導体電極2を形成する方法としては、例えば、以下の方法がある。すなわち、先ず、所定の大きさ(例えば粒子径が10〜30nm程度)を有する酸化物半導体粒子を分散させた分散液を調製する。この分散液の溶媒は水、有機溶媒、または両者の混合溶媒など酸化物半導体粒子を分散できるものなら特に限定されない。また、分散液中には必要に応じて界面活性剤、粘度調節剤を加えてもよい。
【0053】
次に、分散液を透明電極1の透明導電膜3上に塗布し、次いで乾燥する。このときの塗布方法としてはバーコーター法、印刷法などを用いることができる。そして、乾燥した後、空気中、不活性ガス或いは窒素中で加熱、焼成して半導体電極2(多孔質半導体膜)を形成する。
【0054】
次に、半導体電極2中に浸着法等の公知の技術により増感色素を含有させる。増感色素は半導体電極2に付着(化学吸着、物理吸着または堆積など)させることにより含有させる。この付着方法は、例えば色素を含む溶液中に半導体電極2を浸漬するなどの方法を用いることができる。この際、溶液を加熱し還流させるなどして増感色素の吸着、堆積を促進することができる。なお、このとき、色素の他に必要に応じて、銀等の金属やアルミナ等の金属酸化物を半導体電極2中に含有させてもよい。
【0055】
なお、半導体電極2内に含まれる光電変換反応を阻害する不純物を除去する表面酸化処理を、各層それぞれの形成時毎、或いは、各層全てを形成した時などに公知の方法により適宜施してもよい。
【0056】
また、透明電極1の透明導電膜3上に半導体電極2を形成する他の方法としては、以下の方法がある。すなわち、透明電極1の透明導電膜3上にTiO2等の半導体を膜状に蒸着させる方法を用いてもよい。透明導電膜3上に半導体を膜状に蒸着させる方法としては公知の薄膜製造技術を用いることができる。例えば、電子ビーム蒸着、抵抗加熱蒸着、スパッタ蒸着、クラスタイオンビーム蒸着等の物理蒸着法を用いてもよく、酸素等の反応性ガス中で金属等を蒸発させ、反応生成物を透明導電膜3上に堆積させる反応蒸着法を用いてもよい。更に、反応ガスの流れを制御する等してCVD等の化学蒸着法を用いることもできる。
【0057】
対極CE1の製造方法も特に限定されず、例えば、以下の手法で形成することができる。すなわち、カーボンブラック状粒子と、グラファイト状粒子と、アナターゼ型の酸化チタン粒子よりも電気抵抗率の低い導電性酸化物粒子と、アセチルアセトン等の有機溶媒と、イオン交換水と、界面活性剤とを含むスラリー(或いはこのスラリーに増粘剤を添加したカーボンペースト)を調製し、これを平板状の基板6の一方の面上に塗布し乾燥させることにより形成してもよい。そして、乾燥後、必要に応じて焼結処理をおこなうことにより、基板6の一方の面上に炭素電極8を形成し対極CE1を完成する。なお、上記のスラリー(或いはペースト)の塗布、乾燥及び焼結の一連の作業を繰り返すことにより炭素電極8の厚さを調節することができる。
【0058】
このようにして光電極10及び対極CE1を作製した後は、図1に示すように、光電極10と、対極CEとをスペーサSを介して対向させるように組み上げる。このとき、スペーサSにより光電極10と対極CEとの間に形成される空間に電解質Eを充填し、色素増感型太陽電池20を完成させる。
【0059】
[第2実施形態]
図2は、本発明の色素増感型太陽電池の第2実施形態を示す模式断面図である。以下、図2に示す色素増感型太陽電池30について説明する。なお、上述の図1に示した色素増感型太陽電池20に関して説明した要素と同一の要素については同一の符号を付し、重複する説明は省略する。なお、図2に示す色素増感型太陽電池30は、本発明の炭素電極の好適な一実施形態を対極CE2として備えている。
【0060】
図2に示す色素増感型太陽電池30は、図1に示した光電極10を使用し、図1に示した対極CE1と同様の構成を有する対極CE2を使用している。そして、図1に示した色素増感型太陽電池20においてはスペーサSにより光電極10と対極CE1との間に形成される空間に電解質Eを充填したのに比較して、図2に示す色素増感型太陽電池30においては、光電極10と対極CE2との間に多孔体層PSを配置している。そして、対極CE2は、多孔体層PSに隣接して配置される炭素電極8と、この炭素電極8の多孔体層PSと反対側の面上に隣接して配置される基板6とから構成されている。
【0061】
この多孔体層PSは多数の細孔を有した構造を有しており、この多孔体層PSの内部には、図1に示した色素増感型太陽電池20に使用したものと同様の電解質E(液体状或いはゲル状の電解質)が充填されて保持されている。
【0062】
この多孔体層PSは、電解質Eを保持可能であり、電子伝導性を有さない多孔体であれば特に限定されない。例えば、ルチル型の酸化チタン粒子により形成した多孔体を使用してもよい。また、ルチル型の酸化チタン以外の構成材料としては、ジルコニア、アルミナ、シリカ等が挙げられる。更に、この多孔体層PSは、光電極10を透過する光を反射してその反射光を再び光電極10内に照射する光反射層としての機能も有している。これにより、光電極10における光の利用効率を向上させることができる。
【0063】
また、この電解質Eは半導体電極2内や、対極CE2の多孔質の炭素電極8にも保持されている。そして、図2に示す色素増感型太陽電池30の半導体電極2、多孔体層PS及び対極CEの側面は、電解質Eが、半導体電極2、多孔体層PS及び対極CE2の側面から外部に漏れることを防止するためにシール材5により被覆されている。
【0064】
また、シール材5としては、例えば、ポリエチレン等の熱可塑性樹脂フィルム、あるいはエポキシ系接着剤を使用することができる。
【0065】
更に、対極CE2は、図1に示した色素増感型太陽電池20の対極CE1と同じ構成を有している。対極CE2に配置される基板6は光電極10の透明電極1に使用される透明基板4と同様の基板を使用することができる。なお、図2において、対極CE2は、充分な機械的強度が得られる場合には、炭素電極8自体のみからなる構成としてもよい。
【0066】
次に、図2に示す色素増感型太陽電池30の製造方法の一例について説明する。先ず、図1に示した色素増感型太陽電池20と同様にして光電極10を作製する。次に、光電極10の半導体電極2を作製する場合と同様の手順により、光電極10の半導体電極2の面F22上に多孔体層PSを形成する。例えば、ルチル型の酸化チタン等の多孔体層PSの構成材料を含む分散液(スラリー)を調製し、これを半導体電極2の面F22上に塗布し乾燥させることにより形成してもよい。
【0067】
また、対極CE2についても、先に述べた対極CE1の場合と同様の方法により形成してもよい。また、先に述べた対極CE1の場合と同様の組成成分からなるスラリー(或いは、カーボンペースト)を調製し、これを多孔体層PSの面上に塗布し乾燥させることにより形成してもよい。この場合には、対極CE2の多孔体層PSの側と反対の側の面上に基板6を形成し、半導体電極2、多孔体層PS及び対極CE2の側面をシール材5で被覆して色素増感型太陽電池30を完成する。
【0068】
[第3実施形態]
図3は、本発明の色素増感型太陽電池の第3実施形態を示す模式断面図である。以下、図3に示す色素増感型太陽電池40について説明する。なお、上述の図1に示した色素増感型太陽電池20又は図2に示した色素増感型太陽電池30に関して説明した要素と同一の要素については同一の符号を付し、重複する説明は省略する。なお、図3に示す色素増感型太陽電池は、本発明の炭素電極の好適な一実施形態を対極CE3として備えている。
【0069】
図3に示す色素増感型太陽電池40は、以下に示す多孔体層PSの形状と対極CE3の形状以外は図2に示した色素増感型太陽電池30と同様の構成を有している。すなわち、図3に示す色素増感型太陽電池40の場合、多孔体層PSが半導体電極2の裏面F22を覆う部分の他に、半導体電極2の側面を密着して覆う鍔状の縁部分を有している。この鍔状の縁部分は、光電極10の透明電極1の受光面F1の法線方向に略平行となる方向にのびてその先端が透明電極1に接続されている。
【0070】
この透明電極1と多孔体層PSとの接続部についてより詳細に説明すると、この接続部において、透明電極1の透明導電膜3の部分は、例えばレーザスクライブ等の技術により完全に削りとられ、透明基板4の表面があらわれる深さの溝9が形成されている。そして、この溝9の部分に多孔体層PSの鍔状に形成された縁部分が挿入されている。
【0071】
また、対極CE3は多孔体層PSに隣接して配置される炭素電極8と、この炭素電極8の多孔体層PSと反対側の面上に隣接して配置される基板6とから構成されている。そして、この対極CE3にも、多孔体層PSの鍔状の縁部分を密着して覆うための鍔状の縁部分が形成されている。この対極CE3の鍔状の縁部分も、光電極10の透明電極1の受光面F1の法線方向に略平行となる方向にのびてその先端が透明電極1の透明導電膜3の表面に密着するように接続されている。
【0072】
また、半導体電極2の側面のうち多孔体層PSの鍔状の縁部分で覆われていない部分、及び、多孔体層PSの側面のうち、対極CE3の鍔状の縁部分で覆われていない部分は、図2に示した色素増感型太陽電池30に使用されているものと同様のシール材5を密着させて配置することによりシールされている。更に、対極CE3の鍔状の縁部分の外表面に対しても図2に示した色素増感型太陽電池30に使用されているものと同様のシール材5が密着するように配置されている。
【0073】
基板6とシール材5とを配置することにより、半導体電極2及び多孔体層PSのそれぞれの内部に含有されている電解質の電池40外部への逸散を充分に防止することができる。なお、必要に応じて、基板6と炭素電極8との間にもシール材5を密着させて配置しておいてもよい。これにより、対極CE3内部に含有されている電解質の電池40外部への逸散をより充分に防止することができる。
【0074】
以上のように、この色素増感型太陽電池40は、光電極10の透明電極1に多孔体層PSと対極CE3とがそれぞれ一体化された構成を有している。そして、多孔体層PSの鍔状の縁部分により、光電極10と対極CE3との電気的な接触が防止されている。なお、光電極10と対極CE3との電気的な接触(光電極10と対極CE3との間での電子移動)が充分に防止されるのであれば、図3において、多孔体層PSの鍔状の縁部分を設けずに、半導体電極2の側面と対極CE3の鍔状の縁部分の内側面とが見かけ接触している状態の構成としてもよい。この場合、溝9内には半導体電極2の構成材料が挿入される。
【0075】
この色素増感型太陽電池40は、光電極10を形成する際に、上記の溝9をレーザスクライブ等の公知の技術により形成し、多孔体層PS及び対極CE3の形成時にそれぞれ上述の鍔状の縁部分が形成されるように原料となるスラリー(或いはペースト)を塗布すること以外は図2に示した色素増感型太陽電池30と同様の製造方法により形成することができる。
【0076】
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
【0077】
例えば、本発明の色素増感型太陽電池は、例えば、図4に示す色素増感型太陽電池50のように、複数の電池を併設したモジュールの形態を有していてもよい。図4に示す色素増感型太陽電池50は、図2に示した色素増感型太陽電池30又は図3に示した色素増感型太陽電池40をそれぞれ複数個直列に併設する場合の一例を示している。
【0078】
図2に示した色素増感型太陽電池30に比較して、図4に示す色素増感型太陽電池50は、隣り合う太陽電池の単セルの光電極10間に設けられるシール材5と一方の単セル(以下、単セルAという)の光電極10との間に溝9が形成されている。
【0079】
この溝9は、単セルAの半導体電極2を、例えばレーザスクライブなどの技術により削りとることにより形成される。この溝9のうちのシール材5の近傍部分は、半導体電極2の部分を完全に除去して透明電極1の透明導電膜3の層があらわれる深さまで達している。また、この溝9のうちの単セルAの半導体電極2の近傍部分は、半導体電極2の部分と透明導電膜3の部分を完全に除去して、透明電極1の透明基板4の層があらわれる深さまで達している。
【0080】
そして、この溝のうちのシール材5の近傍部分には、隣り合う光電極10の透明導電膜3及び該透明導電膜3上の半導体電極2の部分同士が電気的に接触しないように、これらの部分の間に単セルAの多孔体層PSの鍔状に形成された縁部分が透明電極1の透明基板4に接触するようにして挿入されている。
【0081】
更に、この溝のうちの単セルAの半導体電極2の近傍部分、すなわち、単セルAの多孔体層PSとシール材5との間の部分には、単セルAの対極CEの鍔状に形成された縁部分が、もう一方の単セルAの透明電極1の透明導電膜3に接触するようにして挿入されている。この色素増感型太陽電池50は、図3に示した色素増感型太陽電池40と同様の製造方法により形成することができる。
【0082】
【実施例】
以下、実施例及び比較例を挙げて本発明の炭素電極及び色素増感型太陽電池について更に詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。
【0083】
(実施例1)
以下に示す手順により、図3に示した光電極10と同様の構成を有する光電極(ただし、半導体電極2を2層構造とした。)を作製し、更に、この光電極を用いた以外は図3に示した色素増感型太陽電池40と同様の構成を有する色素増感型太陽電池(半導体電極2の受光面F2の面積:cm2)を作製した。なお、2層構造を有する半導体電極2の各層について、透明電極1に近い側に配置される層を、「第1の層」、多孔体層PSに近い側に配置される層を「第2の層」という。
【0084】
先ず、市販のアナターゼ型の酸化チタン粒子(平均粒子径:25nm、以下、「P25」という)と、これと粒子径の異なるアナターゼ型の酸化チタン粒子(平均粒子径:200nm、以下、「P200」という)とを用い、P25とP200の合計の含有量が15質量%で、P25とP200との質量比が、P25:P200=30:70となるように、これらにアセチルアセトン、イオン交換水、界面活性剤(東京化成社製、商品名;「Triton−X」)を加え、混練して第2の層形成用のスラリー(P25の含有量;7.5質量%、P200の含有量;7.5質量%、以下、「スラリー1」とする)を調製した。
【0085】
次に、P200を使用せず、P25のみを使用したこと以外は前述のスラリー1と同様の調製手順により第1の層形成用のスラリー(P1の含有量;15質量%、以下、「スラリー2」とする)を調製した。
【0086】
一方、ガラス基板(透明導電性ガラス)上にフッ素ドープされたSnO2導電膜(膜厚:700nm)を形成した透明電極(厚さ:1.1mm)を準備した。そして、このSnO2導電膜上に、上述のスラリー2をバーコーダを用いて塗布し、次いで乾燥させた。その後、大気中、450℃の条件のもとで30分間焼成した。このようにして、透明電極上に、半導体電極2の第1の層を形成した。
【0087】
更に、スラリー1を用いて、上述と同様の塗布と焼成とを繰り返すことにより、第1の層上に、第2の層を形成した。このようにして、SnO2導電膜上に半導体電極2(受光面の面積;1.0cm2、層厚:10μm、第1の層の層厚:3μm、第2の層の層厚:7μm)を形成し、増感色素を含有していない状態の光電極10を作製した。
【0088】
その後、半導体電極の裏面に色素を以下のようにして吸着させた。先ず、増感色素としてルテニウム錯体[cis-Di(thiocyanato)-N,N'-bis(2,2'-bipyridyl-4,4'dicarboxylic acid)-ruthenium(II)]を用い、これのエタノール溶液(増感色素の濃度;3×10-4mol/L)を調製した。
【0089】
次に、この溶液に半導体電極を浸漬し、80℃の温度条件のもとで20時間放置した。これにより、半導体電極の内部に増感色素を約1.0×10-7mol/cm2吸着させた。次に、開放電圧Vocを向上させるために、ルテニウム錯体吸着後の半導体電極を4-tert-ブチルピリジンのアセトニトリル溶液に15分浸漬した後、25℃に保持した窒素気流中において乾燥させ、光電極10を完成させた。
【0090】
次に、図3に示したように、光電極10の透明導電膜3の所定の領域をレーザスクライブ処理を行って削り、溝9を形成し、透明基板4の表面を露出させた。
【0091】
次に、多孔体層PSを形成するためのスラリー(以下、「スラリー3」という)を以下の手順で調製した。すなわち、スラリー3は、市販の二酸化ケイ素(平均粒子径:40nm、以下、P1という)と市販のルチル型の酸化チタン(平均粒子径:400nm、以下、P2という)とを用い、P1とP2の合計の含有量が15質量%で、P1とP2との質量比が、P1:P2=35:65となるようにした以外は前述のスラリー1と同様の調製手順により多孔体層PS形成用のスラリー3を調製した。次いで、図3に示した状態となるように、光電極の裏面F22及び側面に対してこのスラリー3の塗布と焼結を繰り返すことにより、厚さ7μmの多孔体層PSを形成した。
【0092】
次に、対極CE3を次の手順により形成した。この対極を形成するためのスラリー(以下、「スラリー4」という)を、市販のカーボンブラック状粒子(平均粒径:40nm)、市販のグラファイト状粒子(平均粒径:5μm)、及び、SbドープSnO2粒子(平均粒径:8nm)を用い、カーボンブラック状粒子、グラファイト状粒子、及びSbドープSnO2粒子の質量比が、カーボンブラック状粒子:グラファイト状粒子:SbドープSnO2粒子=20:100:15となるようにした以外は前述のスラリー1と同様の調製手順により調製した。
【0093】
次いで、光電極10の形成手順と同様にして図3に示した状態となるようにこのスラリー4の塗布と焼結を繰り返し、多孔体層PSの面上に厚さ50μmの対極CE3を形成した。
【0094】
次に、溶媒となるγ−ブチロラクトンに、ヨウ化ジメチルプロピルイミダゾリウムと、ヨウ化リチウムと、4−tert−ブチルピリジンとを溶解させて液状電解質(ヨウ化ジメチルプロピルイミダゾリウムの濃度:0.6mol/L、ヨウ化リチウムの濃度:0.1mol/L4−tert−ブチルピリジン濃度:0.5mol/L)を調製した。
【0095】
次に、半導体電極の大きさに合わせた形状を有する三井デュポンポリケミカル社製のシール材S(商品名:「ハイミラン」,エチレン/メタクリル酸ランダム共重合体アイオノマーフィルム)を準備し、図3に示すように半導体電極2、多孔体層PS及び対極CE3の外部に露出した側面に配置し、熱溶着し、電池の筐体(電解質未充填)を得た。
【0096】
次に、電解質を予め設けておいた対極CE3の孔から筐体内に注入した後、孔をシール材Sと同素材の部材で塞ぎ、更に対極CE3の孔にこの部材を熱溶着させて孔を封止し、色素増感型太陽電池を完成させた。
【0097】
(実施例2)
以下に示す手順により、図1に示した色素増感型太陽電池20と同様の構成を有する色素増感型太陽電池(半導体電極2の受光面F2の面積:1cm2)を作製した。
【0098】
先ず実施例1と同様の作製手順及び条件により、実施例1と同様の構成を有する光電極10を作製した。次に、実施例1と同様の作製手順及び条件により、実施例1と同様の構成を有する液状の電解質を調製した。
【0099】
次に、光電極10に使用した透明基板4と同様の基板6を準備し、その片面に実施例1で調製したものと同様のスラリー4を塗布し、更に乾燥及び焼結を繰り返すことにより、基板6上に炭素電極8(厚さ:20μm)を形成し、図1示したものと同様の構成を有する対極CE1を作製した。
【0100】
半導体電極2の大きさに合わせた形状を有する三井デュポンポリケミカル社製のスペーサS(商品名:「ハイミラン」)を準備し、図1に示すように、光電極10と対極CE1とをスペーサSを介して対向させ、内部に実施例1で調製したものと同様の電解質を充填して図1示したものと同様の構成を有する色素増感型太陽電池20を完成させた。
【0101】
(比較例1)
対極CE3を形成する際に、SbドープSnO2粒子(平均粒径:8nm)のかわりにチタニア(アナターゼ型の酸化チタン)粒子(平均粒径:8nm)を用いたこと以外は、実施例1と同様の作製手順及び条件により、実施例1と同様の構成を有する色素増感型太陽電池を作製した。
【0102】
(比較例2)
対極CE1を形成する際に、SbドープSnO2粒子(平均粒径:8nm)のかわりにチタニア(アナターゼ型の酸化チタン)粒子(平均粒径:8nm)を用いたこと以外は、実施例2と同様の作製手順及び条件により、実施例2と同様の構成を有する色素増感型太陽電池を作製した。
【0103】
[電池特性評価試験]
以下の手順により電池特性評価試験を行ない、実施例1、実施例2、比較例1及び比較例2の色素増感型太陽電池のエネルギー変換効率η(%)を測定した。なお、色素増感型太陽電池のエネルギー変換効率η(%)は、下記式(A)で表される。ここで、下記式(A)中、P0は入射光強度[mWcm-2]、Vocは開放電圧[V]、Jscは短絡電流密度[mA・cm-2]、F.F.は曲線因子(Filling Factor)を示す。
η=100×(Voc×Jsc×F.F.)/P0…(A)
【0104】
電池特性評価試験は、ソーラーシミュレータ(ワコム製、商品名;「WXS−85−H型」)を用い、AMフィルター(AM1.5)を通したキセノンランプ光源からの疑似太陽光の照射条件を、10mW/cm2とする場合(いわゆる「0.1Sun」の照射条件)と、100mW/cm2とする場合(いわゆる「1Sun」の照射条件)の2つの測定条件の下で行った。
【0105】
各色素増感型太陽電池について、I−Vテスターを用いて室温にて電流−電圧特性を測定し、開放電圧(Voc/V)、短絡電流密度(Jsc/mA・cm-2)、曲線因子(F.F.)を求め、これらからエネルギー変換効率η0[%]を求めた。得られた結果を表1(0.1Sunの照射条件)及び表2(1Sunの照射条件)に示す。なお、表1に示す「Jsc@1Sun」とは、0.1Sunの照射条件のもとで実際に得られたJscを10倍した値を示す。
【0106】
【表1】
Figure 0004387652
【0107】
【表2】
Figure 0004387652
【0108】
表1及び表2に示した結果から明らかなように、実施例1及び実施例2の色素増感型太陽電池は、2つの照射条件の何れの場合にも優れたF.F.及びエネルギー変換効率ηを示すことが確認された。
【0109】
【発明の効果】
以上説明したように、本発明によれば、電極表面の電子移動反応を速やかに進行させることのできる電子伝導性の高い炭素電極を提供することができる。また、これを対極として備えることにより、電解質中に含有される酸化還元対(例えば、I3 -/I-等)の酸化体に電子を反応させて還元体を得る還元反応(例えば、I3 -をI-へ還元する還元反応)を速やかに進行させることが可能となるため、優れたエネルギー変換効率を有する色素増感型太陽電池を構成することができる。
【図面の簡単な説明】
【図1】本発明の色素増感型太陽電池の第1実施形態の基本構成を示す模式断面図である。
【図2】本発明の色素増感型太陽電池の第2実施形態の基本構成を示す模式断面図である。
【図3】本発明の色素増感型太陽電池の第3実施形態の基本構成を示す模式断面図である。
【図4】図2又は図3に示した色素増感型太陽電池を複数併設する場合の一例を示す模式断面図である。
【符号の説明】
1…透明電極、2…半導体電極、3…透明導電膜、4…透明基板、5…シール材、6・・・透明基板、8・・・炭素電極、9・・・レーザスクライブにより形成された溝、10…光電極,20,30,40,50…色素増感型太陽電池、CE1,CE2,CE3,CE4…対極、E…電解質、F1,F2,F3,…受光面、F22…半導体電極2の裏面、S…スペーサ、PS…多孔体層。

Claims (5)

  1. 細孔を有する多孔質の炭素電極であって、
    カーボンブラック状粒子と、グラファイト状粒子と、アナターゼ型の酸化チタン粒子よりも電気抵抗率の低い導電性酸化物粒子と、を構成材料として少なくとも含有しており、
    前記カーボンブラック状粒子の含有質量W1と、前記グラファイト状粒子の含有質量W2と、前記導電性酸化物粒子の含有質量W3とが、下記式(1)及び下記式(2)で表される条件を同時に満たしていること、を特徴とする炭素電極。
    0.05≦(W1/W2)≦0.4・・・(1)
    0.05≦{W3/(W1+W2)}≦0.4・・・(2)
  2. 前記導電性酸化物粒子の電気抵抗率は1×10−2Ω・cm以下であること、を特徴とする請求項1に記載の炭素電極。
  3. 導電性酸化物粒子は、SnドープIn、ZnドープIn、SbドープSnO、FドープSnO、AlドープZnO、GaドープZnO、及び、InSn12からなる群より選択される少なくとも1種の粒子であること、を特徴とする請求項1又は2に記載の炭素電極。
  4. 受光面を有する半導体電極と当該受光面上に隣接して配置された透明電極とを有する光電極と、対極とを有しており、前記半導体電極と前記対極とが電解質を介して対向配置された色素増感型太陽電池であって、
    前記対極が請求項1〜の何れか一項に記載の炭素電極であること、
    を特徴とする色素増感型太陽電池。
  5. 前記半導体電極と前記対極との間に絶縁性の多孔体材料からなる多孔体層が更に配置されており、当該多孔体層中に前記電解質が含有されていること、を特徴とする請求項に記載の色素増感型太陽電池。
JP2002294050A 2002-10-07 2002-10-07 炭素電極及びこれを備えた色素増感型太陽電池 Expired - Lifetime JP4387652B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002294050A JP4387652B2 (ja) 2002-10-07 2002-10-07 炭素電極及びこれを備えた色素増感型太陽電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002294050A JP4387652B2 (ja) 2002-10-07 2002-10-07 炭素電極及びこれを備えた色素増感型太陽電池

Publications (2)

Publication Number Publication Date
JP2004127849A JP2004127849A (ja) 2004-04-22
JP4387652B2 true JP4387652B2 (ja) 2009-12-16

Family

ID=32284773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002294050A Expired - Lifetime JP4387652B2 (ja) 2002-10-07 2002-10-07 炭素電極及びこれを備えた色素増感型太陽電池

Country Status (1)

Country Link
JP (1) JP4387652B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4684572B2 (ja) * 2004-04-07 2011-05-18 株式会社豊田中央研究所 炭素電極及びその製造方法、炭素電極製造用材料、並びに炭素電極を備えた色素増感型太陽電池
JP2006236960A (ja) * 2005-01-28 2006-09-07 Fujikura Ltd 色素増感太陽電池及びその製造方法
JP4897226B2 (ja) * 2005-03-02 2012-03-14 シャープ株式会社 色素増感型太陽電池および色素増感型太陽電池モジュール
DE112006002294T5 (de) * 2005-09-02 2008-10-30 Kyocera Corp. Lichtelektrische Umwandlungsvorrichtung und Verfahren zu deren Herstellung sowie lichtelektrische Energieerzeugungsvorrichtung
WO2007043533A1 (ja) * 2005-10-11 2007-04-19 Kyocera Corporation 光電変換装置及びその製造方法並びに光発電装置
KR101696939B1 (ko) 2008-10-29 2017-01-16 후지필름 가부시키가이샤 색소, 이것을 사용한 광전 변환 소자, 광전기 화학 전지, 및 색소의 제조 방법
TWI384026B (zh) * 2008-12-18 2013-02-01 Nat Univ Tsing Hua 染料敏化太陽能電池對電極複合材料基材
JP5524557B2 (ja) 2009-09-28 2014-06-18 富士フイルム株式会社 光電変換素子の製造方法、光電変換素子、および光電気化学電池
JP5620081B2 (ja) 2009-09-28 2014-11-05 富士フイルム株式会社 光電変換素子の製造方法
CN102214517B (zh) * 2010-04-07 2012-12-19 财团法人交大思源基金会 大面积太阳能电池的制造方法
DE102010027070A1 (de) * 2010-07-13 2012-01-19 Eberhard-Karls-Universität Tübingen Gas-Sensor und Verfahren zu seiner Herstellung
CN103165290A (zh) * 2011-12-14 2013-06-19 海洋王照明科技股份有限公司 一种染料敏化太阳能电池及其制备方法
JP6198407B2 (ja) * 2013-02-27 2017-09-20 大阪瓦斯株式会社 光電変換素子用ペースト組成物、並びにそれを用いた光電変換素子用電極及び光電変換素子
CN103480385B (zh) * 2013-09-13 2015-06-03 大连海事大学 一种负载型催化剂制备方法及其在染料敏化太阳能电池对电极上的应用

Also Published As

Publication number Publication date
JP2004127849A (ja) 2004-04-22

Similar Documents

Publication Publication Date Title
JP3717506B2 (ja) 色素増感型太陽電池モジュール
EP2432069B1 (en) Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP4046974B2 (ja) 光電極及びこれを備えた色素増感型太陽電池
WO2010044445A1 (ja) 色素増感太陽電池および色素増感太陽電池モジュール
JP2003217688A (ja) 色素増感型光電変換素子
WO2005112183A1 (ja) 光電変換素子、及び半導体電極
JP2004152613A (ja) 色素増感型太陽電池
JP5493369B2 (ja) 下地層形成用組成物、下地層の製造方法、光電極の製造方法及び太陽電池の製造方法
JP4387652B2 (ja) 炭素電極及びこれを備えた色素増感型太陽電池
JP4448478B2 (ja) 色素増感型太陽電池モジュール
JP4963165B2 (ja) 色素増感型太陽電池及び色素増感型太陽電池モジュール
JP4925605B2 (ja) 光電変換装置およびそれを用いた光発電装置
JP4777592B2 (ja) 対極及びこれを備えた色素増感型太陽電池
JP5189870B2 (ja) 電解液及び色素増感型太陽電池
JP4334960B2 (ja) 炭素電極並びにこれを備える電極及び色素増感型太陽電池
JP4322491B2 (ja) 色素増感型太陽電池の製造方法及び色素増感型太陽電池
JP4493921B2 (ja) 色素増感型太陽電池
JP4102054B2 (ja) 光電極及びこれを備えた色素増感型太陽電池
JP2006236807A (ja) 色素増感型太陽電池
JP2007073198A (ja) 色素増感型太陽電池
JP2007179822A (ja) 電極及びこれを対極に用いる色素増感型太陽電池
JP2005056613A (ja) 色素増感太陽電池および色素増感太陽電池モジュール
JP5189869B2 (ja) 電解液及び色素増感型太陽電池
JP2004253333A (ja) 色素増感型太陽電池
JP4808560B2 (ja) 酸化チタン粒子含有組成物、光電極の製造方法及び太陽電池の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091001

R150 Certificate of patent or registration of utility model

Ref document number: 4387652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term