CN103199788A - 永磁同步电机转子位置观测器 - Google Patents

永磁同步电机转子位置观测器 Download PDF

Info

Publication number
CN103199788A
CN103199788A CN2013101380535A CN201310138053A CN103199788A CN 103199788 A CN103199788 A CN 103199788A CN 2013101380535 A CN2013101380535 A CN 2013101380535A CN 201310138053 A CN201310138053 A CN 201310138053A CN 103199788 A CN103199788 A CN 103199788A
Authority
CN
China
Prior art keywords
electromotive force
axle
measured value
back electromotive
phi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101380535A
Other languages
English (en)
Other versions
CN103199788B (zh
Inventor
王高林
张国强
李卓敏
李铁链
于泳
杨荣峰
徐殿国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology (Shenyang) Intelligent Industrial Technology Co.,Ltd.
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201310138053.5A priority Critical patent/CN103199788B/zh
Publication of CN103199788A publication Critical patent/CN103199788A/zh
Application granted granted Critical
Publication of CN103199788B publication Critical patent/CN103199788B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

永磁同步电机转子位置观测器,属于电机控制领域,本发明为解决现有模型法所获得的转子位置角观测值中含有6次谐波脉动观测误差问题。本发明包括滑模观测器、饱和函数处理模块、低通滤波器、标幺化处理模块、神经网络滤波器和锁相环,永磁同步电机的定子电压us经滑模观测器观测后输出定子电流观测值与定子电流值is的差值作为定子电流观测误差is,is经饱和函数处理模块处理后输出滑模控制矢量z,z经低通滤波器处理后输出反电动势矢量e,z反馈给滑模观测器作为其输入,e经标幺化处理模块处理后输出标幺后反电动势矢量
Figure DDA00003074921500012
经神经网络滤波器处理后输出反电动势观测矢量
Figure DDA00003074921500013
Figure DDA00003074921500014
经锁相环处理后输出永磁同步电机的转子位置观测值
Figure DDA00003074921500015
和转速观测值ωe

Description

永磁同步电机转子位置观测器
技术领域
本发明涉及永磁同步电机转子位置观测器,属于电机控制领域。
背景技术
近年来,永磁同步电机调速系统逐渐成为交流调速传动领域的研究热点。究其原因,与传统的异步电机相比,永磁同步电机的优点在于:结构简单、体积小、重量轻、运行可靠、功率密度高、调速性能好等,永磁同步电机已成为变频调速电气传动系统的理想选择,其应用领域十分广泛。按照永磁同步电机转子永磁体结构的不同,可以分为表贴式和内置式两种。
目前,在高性能永磁同步电机调速系统应用中,通常需要在电机轴端部安装光电编码器、旋转变压器或者霍尔传感器等机械位置检测元件来获取转子磁极位置信息,然而位置传感器的安装带来系统成本增加、体积增大、可靠性降低诸多问题,并且限制了永磁同步电机的应用场合。因此,研究低成本、强鲁棒性无位置传感器永磁同步电机控制方法,成了交流电机控制技术领域中的研究热点。按照永磁同步电机无位置传感器技术的适用范围,通常将其分成两类:一类是适用于中高速的无位置传感器技术,另一类是适用于低速(零速)的无位置传感器技术,分别是根据电机基频数学模型和凸极结构特性来实现的。适用于中高速的永磁同步电机无位置传感器技术通过基频激励的反电动势或者磁链模型来观测转子位置/速度信息,而不需要利用电机的凸极,这使得适用于中高速的无位置传感器技术应用更广泛,而且相对简单。目前,采用模型法的无传感器控制技术主要包括开环磁链法、扰动观测器法、滑模观测器法、有效磁链观测器法、扩展卡尔曼滤波器法、模型参考自适应法和基于人工智能理论方法等。
然而,采用模型法观测转子位置需要电机参数信息,参数的不确定性将会导致直流偏移转子位置观测误差。通过在线参数辨识能够一定程度上减小直流偏移转子位置误差,然而精确的参数辨识难以实现,同时增加了系统的复杂性。由于逆变器非线性和转子磁通空间谐波的影响,两相静止坐标下的反电动势会产生5次、7次谐波,进而导致转子位置观测误差中产生6次谐波脉动。传统的方法是采用平均电压方法进行逆变器非线性补偿,采用电感精确建模方法消除转子磁通空间谐波影响。然而,在实际应用过程中,逆变器非线性补偿和电感精确建模方法都不能有效减小6次谐波,消除其影响。直流偏移和6次谐波脉动转子位置观测误差的存在,恶化了无位置传感器永磁同步电机控制性能。因此,对于无位置传感器永磁同步电机控制系统,消除6次谐波脉动转子位置误差的影响至关重要。
发明内容
本发明目的是为了解决现有适用于中高速的无位置传感器永磁同步电机控制技术,即模型法,所获得的转子位置角观测值中含有6次谐波脉动观测误差问题,提供了一种永磁同步电机转子位置观测器。
本发明所述永磁同步电机转子位置观测器,它包括滑模观测器、饱和函数处理模块、低通滤波器、标幺化处理模块、神经网络滤波器和锁相环,
永磁同步电机的两相静止坐标系下的定子电压us经滑模观测器观测后输出定子电流观测值
Figure BDA00003074921300021
所述定子电流观测值与定子电流值is的差值作为定子电流观测误差is,所述定子电流观测误差is经饱和函数处理模块处理后输出两相静止坐标系下的滑模控制矢量z,所述滑模控制矢量z经低通滤波器处理后输出两相静止坐标系下的反电动势矢量e,所述滑模控制矢量z还反馈给滑模观测器作为其输入,所述反电动势矢量e经标幺化处理模块处理后输出标幺后反电动势矢量
Figure BDA00003074921300023
所述标幺后反电动势矢量
Figure BDA00003074921300024
经神经网络滤波器处理后输出反电动势观测矢量
Figure BDA00003074921300025
所述反电动势观测矢量
Figure BDA00003074921300026
经锁相环处理后输出永磁同步电机的转子位置观测值
Figure BDA00003074921300027
和转速观测值ωe,所述转子位置观测值反馈给神经网络滤波器作为其输入,所述转速观测值ωe还反馈给滑模观测器作为其输入;
其中:两相静止坐标系下的定子电压 u s = u α u β , uα为α轴定子电压,uβ为β轴定子电压;
定子电流观测值 i ^ S = i ^ α i ^ β ,
Figure BDA000030749213000211
为α轴定子电流观测值,为β轴定子电流观测值;
定子电流 i S = i α i β , iα为α轴定子电流,iβ为β轴定子电流;
滑模控制矢量 z = z α z β , zα为α轴滑模控制量,zβ为β轴滑模控制量;
反电动势矢量 e = e α e β , eα为α轴反电动势,eβ为β轴反电动势;
标幺后反电动势矢量 e ^ n = e nα e nβ , e为α轴标幺后反电动势,e为β轴标幺后反电动势;
反电动势观测矢量 e ^ af = e afα e afβ , eafα为α轴反电动势观测值,eafβ为β轴反电动势观测值。
本发明的优点:本发明所述永磁同步电机转子位置观测器提供一种基于递归最小二乘算法的神经网络滤波器方法进行反电动势5次、7次谐波检测、补偿,进而消除位置观测值6次谐波脉动误差。
本发明采用的基于递归最小二乘算法的神经网络滤波器消除转子位置观测值6次脉动误差方法,信号处理方法简单易行、可靠实用,动态性能好,能够有效抑制转子位置观测值6次脉动误差影响,提高了无位置传感器永磁同步电机控制性能;可以广泛地应用到永磁同步电机控制系统中,不需要额外硬件开销,可以获得较满意的控制性能。
附图说明
图1是本发明所述永磁同步电机转子位置观测器的原理框图;
图2是具体实施方式二的原理框图;
图3是具体实施方式三的原理框图;
图4是两相同步旋转轴系、两相静止轴系和三相静止轴系的相对关系示意图;
图5是当永磁同步电机转速给定值为600r/min,带50%额定负载时神经网络滤波器使能前后实验波形,神经网络滤波器在5s处使能;Disable标识的是非使能区域,Enable标识的是使能区域;
图6是当永磁同步电机转速给定值为600r/min,带50%额定负载时神经网络滤波器使能前稳态实验波形;
图7是当永磁同步电机转速给定值为600r/min,带50%额定负载时神经网络滤波器使能后稳态实验波形。
具体实施方式
具体实施方式一:下面结合图1说明本实施方式,本实施方式所述永磁同步电机转子位置观测器,它包括滑模观测器1、饱和函数处理模块2、低通滤波器3、标幺化处理模块4、神经网络滤波器5和锁相环6,
永磁同步电机的两相静止坐标系下的定子电压us经滑模观测器1观测后输出定子电流观测值所述定子电流观测值
Figure BDA00003074921300042
与定子电流值is的差值作为定子电流观测误差is,所述定子电流观测误差is经饱和函数处理模块2处理后输出两相静止坐标系下的滑模控制矢量z,所述滑模控制矢量z经低通滤波器3处理后输出两相静止坐标系下的反电动势矢量e,所述滑模控制矢量z还反馈给滑模观测器1作为其输入,所述反电动势矢量e经标幺化处理模块4处理后输出标幺后反电动势矢量
Figure BDA00003074921300043
所述标幺后反电动势矢量
Figure BDA00003074921300044
经神经网络滤波器5处理后输出反电动势观测矢量所述反电动势观测矢量
Figure BDA00003074921300046
经锁相环6处理后输出永磁同步电机的转子位置观测值
Figure BDA00003074921300047
和转速观测值ωe,所述转子位置观测值
Figure BDA00003074921300048
反馈给神经网络滤波器5作为其输入,所述转速观测值ωe还反馈给滑模观测器1作为其输入;
其中:两相静止坐标系下的定子电压 u S = u α u β , uα为α轴定子电压,uβ为β轴定子电压;
定子电流观测值 i ^ S = i ^ α i ^ β ,
Figure BDA000030749213000411
为α轴定子电流观测值,
Figure BDA000030749213000412
为β轴定子电流观测值;
定子电流 i S = i α i β , iα为α轴定子电流,iβ为β轴定子电流;
滑模控制矢量 z = z α z β , zα为α轴滑模控制量,zβ为β轴滑模控制量;
反电动势矢量 e = e α e β , eα为α轴反电动势,eβ为β轴反电动势;
标幺后反电动势矢量 e ^ n = e nα e nβ , e为α轴标幺后反电动势,e为β轴标幺后反电动势;
反电动势观测矢量 e ^ af = e afα e afβ , eafα为α轴反电动势观测值,eafβ为β轴反电动势观测值。
所述定子电流is根据公式
i s = i α i β = 2 3 1 - 1 2 - 1 2 0 3 2 - 3 2 i a i b i c 获取,
其中:ia、ib和ic为永磁同步电机的三相定子电流。
滑模控制矢量z按公式
z = k / &delta; &CenterDot; ( i ^ S - i S ) , | i ^ S - i S | < &delta; k &CenterDot; sign ( i ^ S - i S ) , | i ^ S - i S | > &delta; 获取,
其中:k为滑模增益,δ为饱和函数的边界层常数。
神经网络滤波器5输出反电动势观测矢量
Figure BDA00003074921300054
获取α轴反电动势观测值eafα时神经网络滤波器5的输入值为α轴标幺后反电动势e和转子位置观测值
Figure BDA00003074921300055
获取β轴反电动势观测值eafβ时神经网络滤波器5的输入值为β轴标幺后反电动势e和转子位置观测值
Figure BDA00003074921300056
通过标幺化处理模块4处理后消除转速变化对锁相环6的影响。
本发明中提及的所有角度均为电角度。
永磁同步电动机是交流同步电机调速系统的主要环节,参见图4所示,取转子永磁体基波励磁磁场轴线为d轴,q轴顺着旋转方向超前d轴90度,d-q轴系随同转子以角速度ωr一道旋转,它的空间坐标以d轴与参考轴A相轴间的角度
Figure BDA00003074921300057
来表示,规定A相所在轴——参考轴A相轴为零度。则转子初始位置角
Figure BDA00003074921300058
为初始时的转子磁场与参考轴A相轴之间的夹角。参考轴A相轴与两相静止坐标系下的α轴重合,β轴顺着旋转方向超前α轴90度。
具体实施方式二:下面结合图2说明本实施方式,本实施方式对实施方式一作进一步说明,获取α轴反电动势观测值eafα的过程为:
步骤a、取锁相环6输出的转子位置观测值
Figure BDA00003074921300061
正弦项乘以5倍增益
Figure BDA00003074921300062
7倍增益
Figure BDA00003074921300063
转子位置观测值余弦项乘以5倍增益
Figure BDA00003074921300065
7倍增益作为神经网络滤波器参考输入,
步骤b、神经网络滤波器5输出的上一周期α轴反电动势观测值eafα(n-1)分别乘以增益k11(n)、k12(n)、k21(n)和k22(n)获取四个乘积,
步骤c、将步骤b中所得四个乘积分别与其上一周期滤波器系数w11(n-1)、w12(n-1)、w21(n-1)和w22(n-1)相加,得到滤波器系数w11(n)、w12(n)、w21(n)和w22(n),
步骤d、将步骤c中上一周期滤波器系数w11(n-1)、w12(n-1)、w21(n-1)和w22(n-1)分别与
Figure BDA00003074921300068
Figure BDA00003074921300069
Figure BDA000030749213000610
相乘,并将相同频次所得乘积相加得到对应频次谐波观测值h1(n)和h2(n),
步骤e、α轴标幺后反电动势e减去h1(n)和h2(n),得到神经网络滤波器输出α轴反电动势观测值eafα
具体实施方式三:下面结合图3说明本实施方式,本实施方式是对实施方式一的进一步限定,获取β轴反电动势观测值eafβ的过程为:
步骤1、取锁相环6输出的转子位置观测值
Figure BDA000030749213000611
正弦项乘以5倍增益
Figure BDA000030749213000612
7倍增益
Figure BDA000030749213000613
转子位置观测值
Figure BDA000030749213000614
余弦项乘以5倍增益7倍增益
Figure BDA000030749213000616
作为神经网络滤波器参考输入,
步骤2、神经网络滤波器5输出的上一周期β轴反电动势观测值eafβ(n-1)分别乘以增益k11(n)、k12(n)、k21(n)和k22(n)获取四个乘积,
步骤3、将步骤2中所得四个乘积分别与其上一周期滤波器系数w11(n-1)、w12(n-1)、w21(n-1)和w22(n-1)相加,得到滤波器系数w11(n)、w12(n)、w21(n)和w22(n),
步骤4、将步骤3中上一周期滤波器系数w11(n-1)、w12(n-1)、w21(n-1)和w22(n-1)分别与
Figure BDA000030749213000617
Figure BDA000030749213000618
相乘,并将相同频次所得乘积相加得到对应频次谐波观测值h1(n)和h2(n),
步骤5、β轴标幺后反电动势e减去h1(n)和h2(n),得到神经网络滤波器输出β轴反电动势观测值eafβ
具体实施方式四:本实施方式是对实施方式二或三的进一步限定,增益k11(n)、k12(n)、k21(n)和k22(n)按公式
k 11 ( n ) = &Phi; 11 ( n ) &lambda; + r 11 ( n ) &Phi; 11 ( n ) k 12 ( n ) = &Phi; 12 ( n ) &lambda; + r 12 ( n ) &Phi; 12 ( n ) k 21 ( n ) = &Phi; 21 ( n ) &lambda; + r 21 ( n ) &Phi; 21 ( n ) k 22 ( n ) = &Phi; 22 ( n ) &lambda; + r 22 ( n ) &Phi; 22 ( n ) 获取,
其中:λ为遗忘因子,且λ为接近于1的常数,
参考输入: r 11 ( n ) = sin ( 5 &theta; e ) r 12 ( n ) = sin ( 7 &theta; e ) r 21 ( n ) = cos ( 5 &theta; e ) , r 22 ( n ) = cos ( 7 &theta; e )
Φ11(n)、Φ12(n)、Φ21(n)和Φ22(n)为中间变量,按照公式
&Phi; 11 ( n ) = P 11 ( n - 1 ) r 11 ( n ) &Phi; 12 ( n ) = P 12 ( n - 1 ) r 12 ( n ) &Phi; 21 ( n ) = P 21 ( n - 1 ) r 21 ( n ) &Phi; 22 ( n ) = P 22 ( n - 1 ) r 22 ( n ) 获取,
其中:P11为第一路逆相关矩阵,其初始值为0,
P12为第二路逆相关矩阵,其初始值为0,
P21为第三路逆相关矩阵,其初始值为0,
P22为第四路逆相关矩阵,其初始值为0,
且四路逆相关矩阵按公式
P 11 ( n ) = P 11 ( n - 1 ) - k 11 ( n ) &Phi; 11 ( n ) &lambda; P 12 ( n ) = P 12 ( n - 1 ) - k 12 ( n ) &Phi; 12 ( n ) &lambda; P 21 ( n ) = P 21 ( n - 1 ) - k 21 ( n ) &Phi; 21 ( n ) &lambda; P 22 ( n ) = P 22 ( n - 1 ) - k 22 ( n ) &Phi; 22 ( n ) &lambda;
进行更新,
式中P11(n-1)、P12(n-1)、P21(n-1)和P22(n-1)为上一周期的四个逆相关矩阵。
具体实施方式五:结合图2、图4至图7给出一个具体实施例。
本发明旨为通过基于递归最小二乘算法的神经网络滤波器消除模型法得到的转子位置角观测值中含有6次谐波脉动观测误差问题。下面根据图2进行详细说明:
由于神经网络滤波器结构对称,因此取虚线内部分做详细分析,递归最小二乘算法按步骤总结如下:
1、参数初始化:
P 11 ( 0 ) = P 21 ( 0 ) = 0.001 w 11 ( 0 ) = w 21 ( 0 ) = 0 - - - ( 1 )
λ=0.9982
式中,P11(0),P21(0)为逆相关矩阵初始值,w11(0),w21(0)为滤波器系数初始值,λ为遗忘因子,
2、增益计算:
k 11 ( n ) = &Phi; 11 ( n ) &lambda; + r 11 ( n ) &Phi; 11 ( n ) k 21 ( n ) = &Phi; 21 ( n ) &lambda; + r 21 ( n ) &Phi; 21 ( n ) - - - ( 2 )
式中,Φ11(n),Φ21(n)为中间变量,按照公式(3)进行计算,
&Phi; 11 ( n ) = P 11 ( n - 1 ) r 11 ( n ) &Phi; 21 ( n ) = P 21 ( n - 1 ) r 21 ( n ) - - - ( 3 )
式中, r 11 ( n ) = sin ( 5 &theta; ^ e ) , r 21 ( n ) = cos ( 5 &theta; ^ e ) , 为参考输入,
3、输出和偏差计算:
h 1 ( n ) = w 11 ( n - 1 ) r 11 ( n ) + w 21 ( n - 1 ) r 21 ( n ) e &alpha; ( n ) = e ^ n&alpha; - h 1 ( n ) - - - ( 4 )
4、神经网络滤波器系数更新:
w 11 ( n ) = w 11 ( n - 1 ) + k 11 ( n ) e &alpha; ( n ) w 21 ( n ) = w 21 ( n - 1 ) + k 21 ( n ) e &alpha; ( n ) - - - ( 5 )
5、逆相关矩阵更新:
P 11 ( n ) = P 11 ( n - 1 ) - k 11 ( n ) &Phi; 11 ( n ) &lambda; P 21 ( n ) = P 21 ( n - 1 ) - k 21 ( n ) &Phi; 21 ( n ) &lambda; - - - ( 6 )
式中,P11(n),P21(n)为逆相关矩阵初始值,
图5至图7为实验获得的波形图,实验在永磁同步电机对拖加载实验平台上进行,实验方法在5s时使能,图5中区域(1)(2)经放大后示于图6和图7,分别为神经网络滤波器使能前后波形,转子位置误差中6次脉动误差成功消除,实验结果验证了本发明方法的有效性。

Claims (7)

1.永磁同步电机转子位置观测器,其特征在于,它包括滑模观测器(1)、饱和函数处理模块(2)、低通滤波器(3)、标幺化处理模块(4)、神经网络滤波器(5)和锁相环(6),永磁同步电机的两相静止坐标系下的定子电压us经滑模观测器(1)观测后输出定子电流观测值
Figure FDA00003074921200011
所述定子电流观测值与定子电流值is的差值作为定子电流观测误差is,所述定子电流观测误差is经饱和函数处理模块(2)处理后输出两相静止坐标系下的滑模控制矢量z,所述滑模控制矢量z经低通滤波器(3)处理后输出两相静止坐标系下的反电动势矢量e,所述滑模控制矢量z还反馈给滑模观测器(1)作为其输入,所述反电动势矢量e经标幺化处理模块(4)处理后输出标幺后反电动势矢量
Figure FDA00003074921200013
所述标幺后反电动势矢量经神经网络滤波器(5)处理后输出反电动势观测矢量所述反电动势观测矢量
Figure FDA00003074921200016
经锁相环(6)处理后输出永磁同步电机的转子位置观测值
Figure FDA00003074921200017
和转速观测值ωe,所述转子位置观测值
Figure FDA00003074921200018
反馈给神经网络滤波器(5)作为其输入,所述转速观测值ωe还反馈给滑模观测器(1)作为其输入;
其中:两相静止坐标系下的定子电压 u S = u &alpha; u &beta; , uα为α轴定子电压,uβ为β轴定子电压;
定子电流观测值 i ^ S = i ^ &alpha; i ^ &beta; ,
Figure FDA000030749212000111
为α轴定子电流观测值,
Figure FDA000030749212000112
为β轴定子电流观测值;
定子电流 i S = i &alpha; i &beta; , iα为α轴定子电流,iβ为β轴定子电流;
滑模控制矢量 z = z &alpha; z &beta; , zα为α轴滑模控制量,zβ为β轴滑模控制量;
反电动势矢量 e e &alpha; e &beta; , eα为α轴反电动势,eβ为β轴反电动势;
标幺后反电动势矢量 e ^ n = e n&alpha; e n&beta; , e为α轴标幺后反电动势,e为β轴标幺后反电动势;
反电动势观测矢量 e ^ af = e af&alpha; e af&beta; , eafα为α轴反电动势观测值,eafβ为β轴反电动势观测值。
2.根据权利要求1所述永磁同步电机转子位置观测器,其特征在于,所述定子电流is根据公式
i s = i &alpha; i &beta; = 2 3 1 - 1 2 - 1 2 0 3 2 - 3 2 i a i b i c 获取,
其中:ia、ib和ic为永磁同步电机的三相定子电流。
3.根据权利要求1所述永磁同步电机转子位置观测器,其特征在于,滑模控制矢量z按公式
z = k / &delta; &CenterDot; ( i ^ S - i S ) , | i ^ S - i S | < &delta; k &CenterDot; sign ( i ^ S - i S ) , | i ^ S - i S | > &delta; 获取,
其中:k为滑模增益,δ为饱和函数的边界层常数。
4.根据权利要求1所述永磁同步电机转子位置观测器,其特征在于,神经网络滤波器(5)输出反电动势观测矢量
Figure FDA00003074921200024
获取α轴反电动势观测值eafα时神经网络滤波器(5)的输入值为α轴标幺后反电动势e和转子位置观测值获取β轴反电动势观测值eafβ时神经网络滤波器(5)的输入值为β轴标幺后反电动势e和转子位置观测值
Figure FDA00003074921200026
5.根据权利要求4所述永磁同步电机转子位置观测器,其特征在于,获取α轴反电动势观测值eafα的过程为:
步骤a、取锁相环(6)输出的转子位置观测值
Figure FDA00003074921200027
正弦项乘以5倍增益
Figure FDA00003074921200028
7倍增益
Figure FDA00003074921200029
转子位置观测值
Figure FDA000030749212000210
余弦项乘以5倍增益7倍增益
Figure FDA000030749212000212
作为神经网络滤波器参考输入,
步骤b、神经网络滤波器(5)输出的上一周期α轴反电动势观测值eafα(n-1)分别乘以增益k11(n)、k12(n)、k21(n)和k22(n)获取四个乘积,
步骤c、将步骤b中所得四个乘积分别与其上一周期滤波器系数w11(n-1)、w12(n-1)、w21(n-1)和w22(n-1)相加,得到滤波器系数w11(n)、w12(n)、w21(n)和w22(n),
步骤d、将步骤c中上一周期滤波器系数w11(n-1)、w12(n-1)、w21(n-1)和w22(n-1)分别与
Figure FDA00003074921200031
Figure FDA00003074921200032
相乘,并将相同频次所得乘积相加得到对应频次谐波观测值h1(n)和h2(n),
步骤e、α轴标幺后反电动势e减去h1(n)和h2(n),得到神经网络滤波器输出α轴反电动势观测值eafα
6.根据权利要求4所述永磁同步电机转子位置观测器,其特征在于,获取β轴反电动势观测值eafβ的过程为:
步骤1、取锁相环(6)输出的转子位置观测值
Figure FDA00003074921200033
正弦项乘以5倍增益
Figure FDA00003074921200034
7倍增益
Figure FDA00003074921200035
转子位置观测值
Figure FDA00003074921200036
余弦项乘以5倍增益
Figure FDA00003074921200037
7倍增益
Figure FDA00003074921200038
作为神经网络滤波器参考输入,
步骤2、神经网络滤波器(5)输出的上一周期β轴反电动势观测值eafβ(n-1)分别乘以增益k11(n)、k12(n)、k21(n)和k22(n)获取四个乘积,
步骤3、将步骤2中所得四个乘积分别与其上一周期滤波器系数w11(n-1)、w12(n-1)、w21(n-1)和w22(n-1)相加,得到滤波器系数w11(n)、w12(n)、w21(n)和w22(n),
步骤4、将步骤3中上一周期滤波器系数w11(n-1)、w12(n-1)、w21(n-1)和w22(n-1)分别与
Figure FDA00003074921200039
Figure FDA000030749212000310
相乘,并将相同频次所得乘积相加得到对应频次谐波观测值h1(n)和h2(n),
步骤5、β轴标幺后反电动势e减去h1(n)和h2(n),得到神经网络滤波器输出β轴反电动势观测值eafβ
7.根据权利要求5或6所述永磁同步电机转子位置观测器,其特征在于,增益k11(n)、k12(n)、k21(n)和k22(n)按公式
k 11 ( n ) = &Phi; 11 ( n ) &lambda; + r 11 ( n ) &Phi; 11 ( n ) k 12 ( n ) = &Phi; 12 ( n ) &lambda; + r 12 ( n ) &Phi; 12 ( n ) k 21 ( n ) = &Phi; 21 ( n ) &lambda; + r 21 ( n ) &Phi; 21 ( n ) k 22 ( n ) = &Phi; 22 ( n ) &lambda; + r 22 ( n ) &Phi; 22 ( n ) 获取,
其中:λ为遗忘因子,且λ为接近于1的常数,
参考输入: r 11 ( n ) = sin ( 5 &theta; e ) r 12 ( n ) = sin ( 7 &theta; e ) r 21 ( n ) = cos ( 5 &theta; e ) , r 22 ( n ) = cos ( 7 &theta; e )
Φ11(n)、Φ12(n)、Φ21(n)和Φ22(n)为中间变量,按照公式 &Phi; 11 ( n ) = P 11 ( n - 1 ) r 11 ( n ) &Phi; 12 ( n ) = P 12 ( n - 1 ) r 12 ( n ) &Phi; 21 ( n ) = P 21 ( n - 1 ) r 21 ( n ) &Phi; 22 ( n ) = P 22 ( n - 1 ) r 22 ( n ) 获取,
其中:P11为第一路逆相关矩阵,其初始值为0,
P12为第二路逆相关矩阵,其初始值为0,
P21为第三路逆相关矩阵,其初始值为0,
P22为第四路逆相关矩阵,其初始值为0,
且四路逆相关矩阵按公式
P 11 ( n ) = P 11 ( n - 1 ) - k 11 ( n ) &Phi; 11 ( n ) &lambda; P 12 ( n ) = P 12 ( n - 1 ) - k 12 ( n ) &Phi; 12 ( n ) &lambda; P 21 ( n ) = P 21 ( n - 1 ) - k 21 ( n ) &Phi; 21 ( n ) &lambda; P 22 ( n ) = P 22 ( n - 1 ) - k 22 ( n ) &Phi; 22 ( n ) &lambda;
进行更新,
式中P11(n-1)、P12(n-1)、P21(n-1)和P22(n-1)为上一周期的四个逆相关矩阵。
CN201310138053.5A 2013-04-19 2013-04-19 永磁同步电机转子位置观测器 Active CN103199788B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310138053.5A CN103199788B (zh) 2013-04-19 2013-04-19 永磁同步电机转子位置观测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310138053.5A CN103199788B (zh) 2013-04-19 2013-04-19 永磁同步电机转子位置观测器

Publications (2)

Publication Number Publication Date
CN103199788A true CN103199788A (zh) 2013-07-10
CN103199788B CN103199788B (zh) 2015-04-15

Family

ID=48722179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310138053.5A Active CN103199788B (zh) 2013-04-19 2013-04-19 永磁同步电机转子位置观测器

Country Status (1)

Country Link
CN (1) CN103199788B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103532448A (zh) * 2013-10-23 2014-01-22 东南大学 一种电动汽车驱动系统的控制方法
CN103795306A (zh) * 2014-03-05 2014-05-14 南车株洲电力机车研究所有限公司 基于永磁同步传动系统的转子位置获取方法及装置
CN105227010A (zh) * 2015-10-23 2016-01-06 哈尔滨工业大学 一种永磁同步电机无位置传感器位置观测误差谐波脉冲消除方法
CN105356798A (zh) * 2015-12-08 2016-02-24 无锡市艾克特电气有限公司 一种永磁同步电机开环控制方法
CN106788049A (zh) * 2017-04-05 2017-05-31 湖南工业大学 基于级联滑模观测器的无速度传感器转矩控制系统及方法
CN107919831A (zh) * 2017-11-15 2018-04-17 南京工程学院 一种基于动态参数辨识的飞轮储能系统的转子位置检测方法
US10236812B2 (en) 2015-12-02 2019-03-19 Thyssenkrupp Presta Ag Stray magnetic field compensation for a rotor position sensor
CN109600082A (zh) * 2018-10-25 2019-04-09 郑州大学 一种永磁同步电机转子位置全阶滑模观测装置及方法
US10693407B2 (en) 2016-03-17 2020-06-23 Baker Hughes Oilfield Operations, Llc Driver unit for an interior permanent magnet motor and a motor assembly using the same
CN111865158A (zh) * 2020-07-23 2020-10-30 郑州轻工业大学 一种自适应滑模增益永磁同步电机无速度传感器控制方法
CN113037163A (zh) * 2021-03-08 2021-06-25 上海工程技术大学 一种新型具有动态误差补偿的永磁同步电机位置观测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4300807A1 (en) * 2022-07-01 2024-01-03 Hamilton Sundstrand Corporation Permanent magnet motor control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127500A (zh) * 2006-08-17 2008-02-20 上海日立电器有限公司 直流变频控制器及其控制永磁同步电机转子速度的方法
CN101783637A (zh) * 2010-03-19 2010-07-21 哈尔滨工业大学 无刷直流电机的磁链自控式直接转矩控制方法
CN102055400A (zh) * 2010-10-22 2011-05-11 乌云翔 一种新型的风电全功率变流器的控制方法
CN102437813A (zh) * 2011-12-26 2012-05-02 中国东方电气集团有限公司 一种基于无速度传感器的永磁同步电机的转子角度、转速估计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127500A (zh) * 2006-08-17 2008-02-20 上海日立电器有限公司 直流变频控制器及其控制永磁同步电机转子速度的方法
CN101783637A (zh) * 2010-03-19 2010-07-21 哈尔滨工业大学 无刷直流电机的磁链自控式直接转矩控制方法
CN102055400A (zh) * 2010-10-22 2011-05-11 乌云翔 一种新型的风电全功率变流器的控制方法
CN102437813A (zh) * 2011-12-26 2012-05-02 中国东方电气集团有限公司 一种基于无速度传感器的永磁同步电机的转子角度、转速估计方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103532448A (zh) * 2013-10-23 2014-01-22 东南大学 一种电动汽车驱动系统的控制方法
CN103795306A (zh) * 2014-03-05 2014-05-14 南车株洲电力机车研究所有限公司 基于永磁同步传动系统的转子位置获取方法及装置
CN103795306B (zh) * 2014-03-05 2015-11-04 南车株洲电力机车研究所有限公司 基于永磁同步传动系统的转子位置获取方法及装置
US9837946B2 (en) 2014-03-05 2017-12-05 Crrc Zhuzhou Electric Locomotive Research Institute Co., Ltd. Method and device for acquiring rotor position based on permanent magnet synchronous drive system
CN105227010A (zh) * 2015-10-23 2016-01-06 哈尔滨工业大学 一种永磁同步电机无位置传感器位置观测误差谐波脉冲消除方法
CN105227010B (zh) * 2015-10-23 2017-11-17 哈尔滨工业大学 一种永磁同步电机无位置传感器位置观测误差谐波脉冲消除方法
US10236812B2 (en) 2015-12-02 2019-03-19 Thyssenkrupp Presta Ag Stray magnetic field compensation for a rotor position sensor
CN105356798B (zh) * 2015-12-08 2018-07-10 无锡市艾克特电气股份有限公司 一种永磁同步电机开环控制方法
CN105356798A (zh) * 2015-12-08 2016-02-24 无锡市艾克特电气有限公司 一种永磁同步电机开环控制方法
US10693407B2 (en) 2016-03-17 2020-06-23 Baker Hughes Oilfield Operations, Llc Driver unit for an interior permanent magnet motor and a motor assembly using the same
CN106788049A (zh) * 2017-04-05 2017-05-31 湖南工业大学 基于级联滑模观测器的无速度传感器转矩控制系统及方法
CN106788049B (zh) * 2017-04-05 2023-06-16 湖南工业大学 基于级联滑模观测器的无速度传感器转矩控制系统及方法
CN107919831A (zh) * 2017-11-15 2018-04-17 南京工程学院 一种基于动态参数辨识的飞轮储能系统的转子位置检测方法
CN109600082A (zh) * 2018-10-25 2019-04-09 郑州大学 一种永磁同步电机转子位置全阶滑模观测装置及方法
CN109600082B (zh) * 2018-10-25 2022-02-18 郑州大学 一种永磁同步电机转子位置全阶滑模观测装置及方法
CN111865158A (zh) * 2020-07-23 2020-10-30 郑州轻工业大学 一种自适应滑模增益永磁同步电机无速度传感器控制方法
CN111865158B (zh) * 2020-07-23 2022-04-01 郑州轻工业大学 一种自适应滑模增益永磁同步电机无速度传感器控制方法
CN113037163A (zh) * 2021-03-08 2021-06-25 上海工程技术大学 一种新型具有动态误差补偿的永磁同步电机位置观测方法

Also Published As

Publication number Publication date
CN103199788B (zh) 2015-04-15

Similar Documents

Publication Publication Date Title
CN103199788A (zh) 永磁同步电机转子位置观测器
CN103199779B (zh) 基于自适应滤波的内置式永磁同步电机转子位置观测装置及观测方法
CN105227010B (zh) 一种永磁同步电机无位置传感器位置观测误差谐波脉冲消除方法
CN103560738B (zh) 一种抑制位置脉动观测误差的永磁同步电机转子位置观测系统及其观测方法
CN103825525B (zh) 一种改进的无传感器永磁同步电机速度估测方法
CN101630938A (zh) 无位置传感器永磁同步电机转子初始位置辨识方法
Schroedl Sensorless control of permanent magnet synchronous motors
US20240204638A1 (en) Method and system for measuring flux-switching electric motor rotor angle on basis of linear hall sensors
CN102545744B (zh) 无轴承同步磁阻电机的位移估算方法、悬浮控制系统
CN103036499A (zh) 一种永磁电动机转子位置的检测方法
CN103051274A (zh) 基于变阻尼的二自由度永磁同步电机的无源性控制方法
Zhao et al. Back EMF-based dynamic position estimation in the whole speed range for precision sensorless control of PMLSM
CN101286725A (zh) 同步电机矢量控制系统中电机旋转速度和转子位置推测方法
CN102647132A (zh) 估计同步磁阻电机启动时的转子角度和速度的方法及设备
EP2493067B1 (en) Method and apparatus for estimating rotor angle of synchronous reluctance motor
Dalala et al. Enhanced vector tracking observer for rotor position estimation for PMSM drives with low resolution Hall-Effect position sensors
Oksuztepe et al. Sensorless vector control of PMSM with non-sinusoidal flux using observer based on FEM
Agrawal et al. Low speed sensorless control of PMSM drive using high frequency signal injection
García et al. Carrier signal injection alternatives for sensorless control of active magnetic bearings
CN103986399B (zh) 一种微网构建中的海浪发电系统位置检测方法
Xie Study on a rotor speed estimation algorithm of PMSG wind power system
CN114844396B (zh) Ipmsm无位置传感器mtpa控制方法
Wang et al. Adaptive sliding mode observer based on phase locked loop in sensorless control of permanent magnet linear synchronous motor
Agrawal et al. Sensorless permanent magnet synchronous motor drive: A review
CN103701391A (zh) 基于槽谐波提取的异步电机转速快速辨识方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190613

Address after: 150000 Heilongjiang Harbin Dalian economic and Trade Zone, the North Road and Xingkai Road intersection

Patentee after: HIT ROBOT GROUP Co.,Ltd.

Address before: 150001 No. 92 West straight street, Nangang District, Heilongjiang, Harbin

Patentee before: Harbin Institute of Technology

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220706

Address after: 150000 Ha Ping Road concentration area Dalian north road Jingbo road corner, economic development zone, Harbin City, Heilongjiang Province

Patentee after: Zhongan Xingrui Aviation Technology Co.,Ltd.

Address before: 150000 Heilongjiang Harbin Dalian economic and Trade Zone, the North Road and Xingkai Road intersection

Patentee before: HIT ROBOT GROUP Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220920

Address after: Room 502, No. 188-37, Jinzi Street, Shenfu Demonstration Zone, Shenyang City, Liaoning Province 110000

Patentee after: Harbin Institute of Technology (Shenyang) Intelligent Industrial Technology Co.,Ltd.

Address before: 150000 Ha Ping Road concentration area Dalian north road Jingbo road corner, economic development zone, Harbin City, Heilongjiang Province

Patentee before: Zhongan Xingrui Aviation Technology Co.,Ltd.

TR01 Transfer of patent right