CN103183313B - 储氢复合材料与其形成方法 - Google Patents

储氢复合材料与其形成方法 Download PDF

Info

Publication number
CN103183313B
CN103183313B CN201110449945.8A CN201110449945A CN103183313B CN 103183313 B CN103183313 B CN 103183313B CN 201110449945 A CN201110449945 A CN 201110449945A CN 103183313 B CN103183313 B CN 103183313B
Authority
CN
China
Prior art keywords
hydrogen storage
composite
hydrogen
catalyst
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110449945.8A
Other languages
English (en)
Other versions
CN103183313A (zh
Inventor
郭家宏
黄蒨芸
黄军儒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN103183313A publication Critical patent/CN103183313A/zh
Application granted granted Critical
Publication of CN103183313B publication Critical patent/CN103183313B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • B01J35/23
    • B01J35/393
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

本发明提供一种储氢复合材料,包括:复合催化剂,包括催化剂粒子均匀披覆于载体的表面上;以及储氢材料;其中复合催化剂镶嵌于储氢材料的表面上。本发明还提供的一种储氢复合材料的形成方法,包括:将催化剂粒子均匀披覆于载体的表面上,以形成复合催化剂;以及将复合催化剂镶嵌至储氢材料的表面上,以形成储氢复合材料。

Description

储氢复合材料与其形成方法
技术领域
本发明是涉及储氢复合材料,及其形成方法。
背景技术
氢能为洁净的能源选择,其关键技术之一就是安全且低成本地储存与输送氢气。由于钢瓶高压氢气储运以及液态氢储运的方式存在着储氢密度低、安全性差、耗能、及成本高的问题,因此最具潜力的储氢方式乃是以金属或合金材料储存氢。储氢合金的原理是利用外界环境的温度、及/或压力改变,使合金吸收氢气而形成合金氢化物。当需要利用氢气时,再由合金氢化物释放氢气。储放氢气的过程如扩散、相变、及化合等阶段,均受到热效应与速度的限制而不易爆炸。
利用金属氢化物作为储氢媒介的优点为贮氢密度高、安全程度高、以及氢气释放纯度高。然而目前储氢合金的缺点在于高储氢量的合金如镁基合金,其吸放氢动力差,放氢操作温度仍过高(镁基合金一般需要300℃以上才能放氢),大幅降低其实用性。综上所述,目前亟需可在较低的温度下吸放氢的储氢复合材料,以利未来氢能源的运用。
发明内容
本发明的目的在于提供一种可在较低的温度下吸放氢的储氢复合材料。
本发明一实施例提供一种储氢复合材料,包括:复合催化剂,包括催化剂粒子均匀披覆于载体的表面上;以及储氢材料;其中复合催化剂镶嵌于储氢材料的表面上。
本发明一实施例提供一种储氢复合材料的形成方法,包括:将催化剂粒子均匀披覆于载体的表面上,以形成复合催化剂;以及,将复合催化剂镶嵌至储氢材料的表面上,以形成储氢复合材料。
本发明的优点在于:本发明提供的储氢复合材料可在较低的温度下进行吸放氢,有利于氢能源的运用。
附图说明
图1是本发明一实施例中的复合催化剂的示意图;
图2是本发明一实施例中的储氢复合材料的示意图;
图3A是本发明实施例1中的复合催化剂α-Al2O3/Ag的X光衍射图谱;
图3B是本发明实施例1中的复合催化剂α-Al2O3/Ag的TEM影像;
图4是本发明的实施例1与比较例1的催化剂的吸氢/放氢量对时间的曲线图;
图5A是本发明实施例2中的复合催化剂α-Al2O3/Pd的X光衍射图谱;
图5B是本发明实施例2中的复合催化剂α-Al2O3/Pd的TEM影像;以及
图6是本发明的实施例2与比较例1的催化剂的吸氢/放氢量对时间的曲线图;
其中,主要元件符号说明:
11~催化剂粒子;         13~载体;
15~复合催化剂;         17~储氢材料;
19~储氢复合材料;       51~虚线框。
具体实施方式
本发明提供的储氢复合材料的形成方法如下。首先,将催化剂粒子11均匀披覆于载体13表面上,以形成复合催化剂15,如图1所示。在本发明一实施例中,催化剂粒子11可为银、钯、镍、铬、金、铂或铜组成的粒子,且催化剂粒子的尺寸介于10nm至100nm之间。若催化剂粒子11的尺寸过大,则催化活性较低。若催化剂粒子11的尺寸过小,则无法于合成的过程中稳定形成。在本发明一实施例中,载体13可为氧化铝、氧化钛、氧化铌、氧化钴或多孔碳材,且载体13的尺寸介于100nm至1μm之间。若载体13的尺寸过大,则披覆上去的金属催化剂粒子较粗而降低催化活性。若载体13的尺寸过小,则不容易将金属催化剂粒子披覆于载体表面。在本发明一实施例中,催化剂粒子11与载体13的重量比介于1∶100至1∶10之间。若催化剂粒子的比例过高,则催化剂颗粒不易均匀分散于载体表面而形成团聚、粗化。若催化剂粒子的比例过低,则催化活性较差。
将催化剂粒子11均匀披覆于载体13表面上,以形成复合催化剂15的方法可为无电镀法。举例来说,可先调配催化剂的盐类溶液作为化学镀液,接着将表面已进行敏化处理后的载体含浸于化学镀液中。之后加入还原剂使催化剂的盐类还原成金属催化剂并披覆于载体表面上。通过调整还原剂浓度、反应酸碱值、反应时间、以及反应温度,可控制披覆于载体表面的催化剂粒子的数量与尺寸,进而得到复合催化剂。敏化载体表面的敏化剂可为SnCl2。催化剂的盐类可为银、钯、镍、铬、金、铂或铜的化合物(可能为卤化物或络合物)。还原剂可为葡萄糖、次磷酸钠、或联氨。还原剂浓度介于0.05M至0.5M之间。若还原剂的浓度过高,则会造成金属催化剂粒子生成过快而导致其粒径粗化或颗粒团聚。若还原剂的浓度过低,则还原能力不足,会造成金属催化剂粒子的生成量过低。上述无电镀的反应时间介于5分钟至30分钟之间。若无电镀的反应时间过长,则生成的金属催化剂数量太多而容易造成颗粒团聚或粗化。若无电镀的反应时间过短,则生成的金属催化剂数量过少,而造成催化活性不佳。上述无电镀的反应温度介于15℃至75℃之间。若无电镀的反应温度过高,则导致金属催化剂生成速率过于剧烈而使生成量过高。若无电镀的反应温度过低,则造成反应速率过慢而不易生成催化剂粒子。在本发明一实施例中,可采用SnCl2的酸性溶液敏化氧化铝载体,使Sn2+离子吸附至载体表面。接着将敏化后的氧化铝载体加入由NaOH、NH4OH和AgNO3所形成的银氨水溶液中,使Sn2+氧化成Sn4+而Ag+还原成Ag。接着可再加入还原剂葡萄糖,则使更多的Ag+还原并披覆于氧化铝载体的表面上。以无电镀法使离子还原为纳米等级的金属粒子于载体表面上,可避免纳米催化剂于高温热处理下产生凝聚的问题。通过均匀分散于载体表面的方式可维持催化剂的高比表面积,进而增加其反应活性。
接着将复合催化剂15镶嵌至储氢材料17的表面上,以形成储氢复合材料19,如图2所示。储氢材料17可为镁、氢化镁、或镁基合金,如Mg1-xAx,A是Li、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Al、Y、Zr、Nb、Mo、In、Sn、Si、B、C、或Be,且0<x≤0.3。在本发明一实施例中,复合催化剂15与储氢材料17的重量比介于1∶100至1∶10。若复合催化剂15的比例过高,则会占据整体材料系统中太多的重量而损失一些储氢量。若复合催化剂15的比例过低,则对于储放氢反应的催化活性不足。
将复合催化剂15镶嵌至储氢材料17的表面上,以形成储氢复合材料19的方法可为高能球磨法。举例来说,可将复合催化剂15与储氢材料17置于球磨罐中,于氩气下进行球磨制程以形成储氢复合材料19。球磨珠可为碳化钨或不锈钢,其直径介于1mm至5mm之间。若球磨珠的直径过小,则研磨能量较低而机械嵌合的效率较差。若球磨珠的直径过大,则容易在研磨珠与研磨罐之间的空隙产生死角,而使部分粉体无法充分被磨珠撞击而嵌合。球磨珠与复合催化剂15及储氢材料17的重量比介于10∶1至50∶1之间。若复合催化剂15及储氢材料17的比例过高,则研磨、嵌合的效率较差。若复合催化剂15及储氢材料17的比例过低,则容易造成研磨珠的磨耗。球磨方式可为行星式旋转、搅拌或振荡,且球磨制程历时0.25至1.5小时。若球磨制程历时过短,则机械嵌合的效果较差。若球磨制程历时过长,则可能造成催化剂金属从载体表面脱落,并与储氢材料产生合金化。利用机械力研磨的撞击方式,可将复合催化剂15直接镶嵌于储氢材料17的表面上,使催化剂可以发挥催化活性,让储氢材料17在较低的温度下有效地进行放氢。由于已先行将催化剂粒子11披覆于载体13表面,除了有助于均匀分散催化剂粒子11外,更可形成保护界面,降低催化剂粒子11在高能球磨中与储氢材料17合金化的可能性。此外,可进一步选用坚硬的纳米陶瓷粉体作为载体13,在球磨制程中可以充当助磨剂来撞击储氢合金,使储氢复合材料19产生晶界与缺陷而有利氢原子扩散。当复合催化剂15通过机械力的方式与储氢材料17的表面达成固相接合时,即可于两相的交界处提供氢原子扩散的路径,而有助于降低吸放氢的活化能能障。另一方面,镶嵌于储氢材料17表面的载体13的氧离子也有机会在表面形成微弱的氢键吸引力,来帮助储氢材料17储存的氢由内部释放出来。
为了让本发明的上述和其它目的、特征、和优点能更明显易懂,下文特举数实施例配合所附附图,作详细说明如下:
【实施例】
实施例1
首先将α-Al2O3粉体进行敏化处理(Sensitization Processing)。敏化剂的溶液的调配是取0.4g的SnCl2溶解于34ml的去离子水中,此时SnCl2会水解产生Sn(OH2)Cl白色沉淀,再滴入3ml的1N的HCl水溶液直至整体溶液澄清即可使用。而后将2g的α-Al2O3粉体(大明株式会社,TM-DAR)浸入上述调配好的敏化剂溶液中,于室温下搅拌5分钟,使Sn2+离子吸附在α-Al2O3粉体表面上,再利用离心方式去除滤液以得敏化的α-Al2O3粉体。将敏化后的α-Al2O3粉体浸入由30mL的0.9N的NaOH(l)、35mL的2N的NH4OH(l)以及30mL的0.3N的AgNO3(l)所形成的银氨水溶液中,并加入含有C6H12O6的还原剂溶液。这时粉体表面上的Sn2+离子会将银离子还原而吸附在α-Al2O3粉体表面,而含C6H12O6的溶液则强化银的还原反应,待反应5分钟的时间后,将粉体以离心方式收集,则得到复合催化剂α-Al2O3/Ag,其X光衍射图谱如图3A所示,且其TEM影像如图3B所示。
将上述复合催化剂α-Al2O3/Ag以机械力的方式,将其镶嵌于氢化镁的储氢材料上。首先将氢化镁与复合催化剂α-Al2O3/Ag以重量比92∶8的比例混合后,再将混合后的粉体与碳化钨磨球以球粉重量比32∶1的方式填入碳化钨研磨罐体中,并充填氩气。将研磨罐置入震荡球磨机(SPEXInc.,8000M)中以30分钟的时间进行球磨撞击,进而将复合催化剂α-Al2O3/Ag镶嵌于氢化镁的表面上,形成储氢复合材料。上述储氢复合材料于140℃下的吸氢/放氢量对时间的曲线如图4所示。上述吸放氢测试采用Sievert系统,在密闭且固定的容积内放入储氢材料,通过测量充放氢过程中气体压力的变化量来推知储放氢量。吸氢测试所采用的氢气压力为20atm,放氢测试所采用的氢气压力低于1atm。由于本实验的Sievert系统仅能量得吸氢曲线,故放氢的测量则是由材料于第一次吸氢后,让材料于<1atm的压力环境下充分放氢一天,而后测量其第二次吸氢曲线来判断该材料的放氢量。
实施例2
首先将α-Al2O3粉体进行敏化处理。敏化剂溶液的调配是取5g的SnCl2溶解于7.5mL的37%的HCl(l)中,再将整体溶液以去离子水稀释至50mL后即可使用。而后将2g的α-Al2O3粉体(大明株式会社,TM-DAR)浸入上述调配好的敏化剂溶液中,于室温下搅拌5分钟,使Sn2+离子吸附在α-Al2O3粉体表面上,再利用离心方式去除滤液以得敏化的α-Al2O3粉体。将敏化后的α-Al2O3粉体浸入45mL的氯化钯水溶液中,该溶液的调配乃是取1g的PdCl2溶解于30ml的37%的HCl(l)中,再将整体溶液以去离子水稀释至100mL后即可使用。这时粉体表面上的Sn2+离子会将钯离子还原而吸附在α-Al2O3粉体表面,待反应5分钟的时间后,将粉体以离心方式收集,则得到复合催化剂α-Al2O3/Pd,其X光衍射图谱如图5A所示;其TEM分析影像则如图5B所示。在图5B中,虚线框51标示的深色部份为还原后的钯金属,而其余浅色的部份为α-Al2O3粉体。
将上述复合催化剂α-Al2O3/Pd以机械力的方式,将其镶嵌于氢化镁的储氢材料上。首先将氢化镁与复合催化剂α-Al2O3/Pd以重量百分比92∶8的比例混合后,再将混合后的粉体与碳化钨磨球以球粉重量比32∶1的方式填入碳化钨研磨罐体中,并充填氩气。将研磨罐置入震荡球磨机(SPEXInc.,8000M)中以30分钟的时间进行球磨撞击,进而将复合催化剂α-Al2O3/Pd镶嵌于氢化镁的表面上,形成储氢复合材料。上述储氢复合材料于140℃下的吸氢/放氢量对时间的曲线如图6所示。上述吸放氢测试采用Sievert系统,在密闭且固定的容积内放入储氢材料,通过测量充放氢过程中气体压力的变化量来推知储放氢量。吸氢测试所采用的氢气压力为20atm,放氢测试所采用的氢气压力低于1atm。放氢的测量是让材料于第一次吸氢后,使材料于<1atm的压力环境下充分放氢一天,而后测量其第二次吸氢曲线来判断该材料的放氢量。
比较例1
取100重量份的氢化镁置于140℃下,其吸氢/放氢量对时间的曲线如图4及图6所示。由图4及图6可知,未添加催化剂的氢化镁在140℃下几乎无法放氢,而表面镶嵌有复合催化剂的氢化镁则维持稳定的放氢量。上述吸放氢测试采用Sievert系统,在密闭且固定的容积内放入储氢材料,通过测量充放氢过程中气体压力的变化量来推知储放氢量。吸氢测试所采用的氢气压力为20atm,放氢测试所采用的氢气压力低于1atm。放氢的测量是让材料于第一次吸氢后,使材料于<1atm的压力环境下充分放氢一天,而后测量其第二次吸氢曲线来判断该材料的放氢量。
虽然本发明已以数个较佳实施例揭露如上,然其并非用以限定本发明,任何熟习此技艺者,在不脱离本发明的精神和范围内,当可作任意的更动与润饰,因此本发明的保护范围当视后附的权利要求书所界定的范围为准。

Claims (14)

1.一种储氢复合材料,包括:
一复合催化剂,包括一催化剂粒子均匀披覆于一载体的表面上;以及
一储氢材料;
其中所述复合催化剂镶嵌于所述储氢材料的表面上。
2.如权利要求1所述的储氢复合材料,其中所述催化剂粒子为银、钯、镍、铬、金、铂、或铜的粒子,且所述催化剂粒子的尺寸介于10nm至100nm之间。
3.如权利要求1所述的储氢复合材料,其中所述载体为氧化铝、氧化钛、氧化铌、氧化钴、或多孔碳材,且所述载体的尺寸介于100nm至1μm之间。
4.如权利要求1所述的储氢复合材料,其中所述复合催化剂中,所述催化剂粒子与所述载体的重量比介于1∶100至1∶10之间。
5.如权利要求1所述的储氢复合材料,其中所述储氢材料为镁、氢化镁、或镁基合金。
6.如权利要求1所述的储氢复合材料,其中所述复合催化剂与所述储氢材料的重量比介于1∶100至1∶10之间。
7.一种储氢复合材料的形成方法,包括:
将一催化剂粒子均匀披覆于一载体的表面上,以形成一复合催化剂;以及
将所述复合催化剂镶嵌至一储氢材料的表面上,以形成一储氢复合材料。
8.如权利要求7所述的储氢复合材料的形成方法,其中所述催化剂粒子为银、钯、镍、铬、金、铂、或铜的粒子,且该催化剂粒子的尺寸介于10nm至100nm之间。
9.如权利要求7所述的储氢复合材料的形成方法,其中所述复合催化剂中,所述催化剂粒子与所述载体的重量比介于1∶100至1∶10之间。
10.如权利要求7所述的储氢复合材料的形成方法,其中所述载体为氧化铝、氧化钛、氧化铌、或氧化钴,且所述载体的尺寸介于100nm至1μm之间。
11.如权利要求7所述的储氢复合材料的形成方法,其中所述复合催化剂与所述储氢材料的重量比介于1∶100至1∶10之间。
12.如权利要求7所述的储氢复合材料的形成方法,其中所述储氢材料为镁、氢化镁、或镁基合金。
13.如权利要求7所述的储氢复合材料的形成方法,其中所述将催化剂粒子均匀披覆于载体的表面上,以形成复合催化剂的步骤是无电镀法。
14.如权利要求7所述的储氢复合材料的形成方法,其中将所述复合催化剂镶嵌至储氢材料的表面上,以形成储氢复合材料的步骤是高能球磨法。
CN201110449945.8A 2011-12-27 2011-12-29 储氢复合材料与其形成方法 Active CN103183313B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW100148816 2011-12-27
TW100148816A TWI450764B (zh) 2011-12-27 2011-12-27 儲氫複材與其形成方法

Publications (2)

Publication Number Publication Date
CN103183313A CN103183313A (zh) 2013-07-03
CN103183313B true CN103183313B (zh) 2014-10-15

Family

ID=48653603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110449945.8A Active CN103183313B (zh) 2011-12-27 2011-12-29 储氢复合材料与其形成方法

Country Status (3)

Country Link
US (1) US9174209B2 (zh)
CN (1) CN103183313B (zh)
TW (1) TWI450764B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI526396B (zh) * 2012-09-12 2016-03-21 財團法人工業技術研究院 儲氫複合材料及其形成方法
CN111774568B (zh) * 2020-06-12 2022-06-10 榆林学院 一种气化渣镁镍合金储氢复合材料的工业化生产装置
CN114477082B (zh) * 2021-12-28 2023-07-21 桂林电子科技大学 一种纳米Ni-Nb-O掺杂氢化镁的储氢材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1565958A (zh) * 2003-06-10 2005-01-19 中国科学院大连化学物理研究所 含氢无机化合物水溶液制氢催化剂及制氢方法
CN101289161A (zh) * 2007-04-20 2008-10-22 中国科学院大连化学物理研究所 一种储氢材料的制备方法
CN101671788A (zh) * 2008-09-12 2010-03-17 财团法人工业技术研究院 镁基储氢材料纳米化方法
CN101862686A (zh) * 2009-04-17 2010-10-20 财团法人工业技术研究院 用于催化放氢反应的催化剂的制造方法
CN101863454A (zh) * 2009-04-17 2010-10-20 财团法人工业技术研究院 固态氢燃料及其制造方法和使用方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3383692B2 (ja) 1993-02-22 2003-03-04 マツダ株式会社 複合水素吸蔵金属部材及びその製造方法
JP5095909B2 (ja) * 2003-06-24 2012-12-12 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. 触媒組成物および析出方法
US7250386B2 (en) 2003-07-18 2007-07-31 Energy Conversion Devices, Inc. Quantum limit catalysts and hydrogen storage materials
US20050126663A1 (en) 2003-12-11 2005-06-16 Fetcenko Michael A. Catalyzed hydrogen desorption in Mg-based hydrogen storage material and methods for production thereof
TWI297284B (en) * 2004-12-06 2008-06-01 Ind Tech Res Inst Hydrogen storage composite and preparation thereof
US7951749B2 (en) 2005-10-11 2011-05-31 The Regents Of The University Of Michigan Enhancing hydrogen spillover and storage
US9623393B2 (en) * 2008-10-31 2017-04-18 Asemblon, Inc. Dehydrogenation of cyclic thioethers
US20100240522A1 (en) 2009-03-23 2010-09-23 Tomoyuki Inui Catalyst exhibiting hydrogen spillover effect
US20130084474A1 (en) * 2010-03-18 2013-04-04 Randell L. Mills Electrochemical hydrogen-catalyst power system
WO2012014225A2 (en) * 2010-07-26 2012-02-02 Council Of Scientific & Industrial Research An improved process for the storage delivery of hydrogen using catalyst
CA2830364A1 (en) * 2011-04-05 2012-10-11 Blacklight Power, Inc. H2o-based electrochemical hydrogen-catalyst power system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1565958A (zh) * 2003-06-10 2005-01-19 中国科学院大连化学物理研究所 含氢无机化合物水溶液制氢催化剂及制氢方法
CN101289161A (zh) * 2007-04-20 2008-10-22 中国科学院大连化学物理研究所 一种储氢材料的制备方法
CN101671788A (zh) * 2008-09-12 2010-03-17 财团法人工业技术研究院 镁基储氢材料纳米化方法
CN101862686A (zh) * 2009-04-17 2010-10-20 财团法人工业技术研究院 用于催化放氢反应的催化剂的制造方法
CN101863454A (zh) * 2009-04-17 2010-10-20 财团法人工业技术研究院 固态氢燃料及其制造方法和使用方法

Also Published As

Publication number Publication date
TW201325721A (zh) 2013-07-01
CN103183313A (zh) 2013-07-03
US9174209B2 (en) 2015-11-03
US20130161559A1 (en) 2013-06-27
TWI450764B (zh) 2014-09-01

Similar Documents

Publication Publication Date Title
Yamada et al. Catalytic application of shape-controlled Cu 2 O particles protected by Co 3 O 4 nanoparticles for hydrogen evolution from ammonia borane
Zhou et al. Catalysis based on nanocrystals with well‐defined facets
Chang et al. Fe3O4 nanoparticles coated with Ag-nanoparticle-embedded metal–organic framework MIL-100 (Fe) for the catalytic reduction of 4-nitrophenol
Zheng et al. A facile general strategy for synthesis of palladium-based bimetallic alloyed nanodendrites with enhanced electrocatalytic performance for methanol and ethylene glycol oxidation
Zhou et al. Highly active NiCo alloy hexagonal nanoplates with crystal plane selective dehydrogenation and visible-light photocatalysis
Eom et al. Characterization of hydrogen generation for fuel cells via borane hydrolysis using an electroless-deposited Co–P/Ni foam catalyst
US20070153390A1 (en) Powdery catalyst, exhaust-gas purifying catalyzer, and powdery catalyst production method
JPWO2011027864A1 (ja) 光還元触媒並びにそれを用いたアンモニアの合成方法および水中の窒素酸化物低減方法
EP0979532A1 (en) Hydrogen storage materials
Chen et al. Core-shell ZnO@ Cu2O encapsulated Ag NPs nanocomposites for photooxidation-adsorption of iodide anions under visible light
CN103183313B (zh) 储氢复合材料与其形成方法
Wei et al. Synthesis of bifunctional non-noble monolithic catalyst Co-WP/carbon cloth for sodium borohydride hydrolysis and reduction of 4-nitrophenol
Izgi et al. Hydrogen production by using Ru nanoparticle decorated with Fe3O4@ SiO2–NH2 core-shell microspheres
CN103170636A (zh) 一种固相化学反应制备纳米金属单质的方法
CN106881110A (zh) 一种适用于水汽共存一氧化碳氧化的钯催化剂的制备方法
JP5569396B2 (ja) 触媒の製造方法
Xiong et al. One-pot synthesis of ultrafine Ni0. 13Co0. 87P nanoparticles on halloysite nanotubes as efficient catalyst for hydrogen evolution from ammonia borane
Miao et al. Mesoporous face-centered-cubic In4Ni alloy nanorices: Superior catalysts for hydrazine dehydrogenation in aqueous solution
Özkar Magnetically separable transition metal nanoparticles as catalysts in hydrogen generation from the hydrolysis of ammonia borane
Pei et al. ISOBAM-stabilized Ni2+ colloidal catalysts: high catalytic activities for hydrogen generation from hydrolysis of KBH4
WO2014025049A1 (ja) 固体担体担持鉄族固溶体型合金複合体及びそれを用いた触媒
CN110523417A (zh) 一种基于Cu-BTC合成的碳壳包覆合金催化剂及其制备方法
Xu et al. Thermo-responsive catalysts based on bimetallic alloyed Pt-Pd supported on mesoporous silica: Controllable hydrogen generation from ammonia borane
Huang et al. Facile synthesis of carbon supported Pt–Cu nanomaterials with surface enriched Pt as highly active anode catalyst for methanol oxidation
CN108500285A (zh) 一种担载或非担载型过渡金属@h-BN核-壳纳米结构的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant