TW201325721A - 儲氫複材與其形成方法 - Google Patents

儲氫複材與其形成方法 Download PDF

Info

Publication number
TW201325721A
TW201325721A TW100148816A TW100148816A TW201325721A TW 201325721 A TW201325721 A TW 201325721A TW 100148816 A TW100148816 A TW 100148816A TW 100148816 A TW100148816 A TW 100148816A TW 201325721 A TW201325721 A TW 201325721A
Authority
TW
Taiwan
Prior art keywords
hydrogen storage
composite
catalyst
hydrogen
carrier
Prior art date
Application number
TW100148816A
Other languages
English (en)
Other versions
TWI450764B (zh
Inventor
Chia-Hung Kuo
Chien-Yun Huang
Chun-Ju Huang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW100148816A priority Critical patent/TWI450764B/zh
Priority to CN201110449945.8A priority patent/CN103183313B/zh
Priority to US13/553,712 priority patent/US9174209B2/en
Publication of TW201325721A publication Critical patent/TW201325721A/zh
Application granted granted Critical
Publication of TWI450764B publication Critical patent/TWI450764B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Catalysts (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)

Abstract

本發明提供之儲氫複材之形成方法,包括:將觸媒粒子均勻披覆於載體之表面上,以形成複合觸媒;以及將複合觸媒鑲嵌至儲氫材料之表面上,以形成儲氫複材。

Description

儲氫複材與其形成方法
本發明係關於儲氫材料,更特別關於其採用的觸媒態樣。
氫能為潔淨的能源選擇,其關鍵技術之一就是安全且低成本地儲存與輸送氫氣。由於鋼瓶高壓氫氣儲運以及液態氫儲運的方式存在著儲氫密度低、安全性差、耗能、及成本高的問題,因此最具潛力的儲氫方式乃是以金屬或合金材料儲存氫。儲氫合金的原理是利用外界環境的溫度、及/或壓力改變,使合金吸收氫氣而形成合金氫化物。當需要利用氫氣時,再由合金氫化物釋放氫氣。儲放氫氣的過程如擴散、相變、及化合等階段,均受到熱效應與速度的限制而不易爆炸。
利用金屬氫化物作為儲氫媒介的優點為貯氫密度高、安全程度高、以及氫氣釋放純度高。然而目前儲氫合金的缺點在於高儲氫量的合金如鎂基合金,其吸放氫動力差,放氫操作溫度仍過高(鎂基合金一般需要300℃以上才能放氫),大幅降低其實用性。綜上所述,目前亟需可在較低的溫度下吸放氫的儲氫複材,以利未來氫能源之運用。
本發明一實施例提供一種儲氫複材,包括:複合觸媒,包括觸媒粒子均勻披覆於載體之表面上;以及儲氫材料;其中複合觸媒鑲嵌於儲氫材料之表面上。
本發明一實施例提供一種儲氫複材之形成方法,包括:將觸媒粒子均勻披覆於載體之表面上,以形成複合觸媒;以及將複合觸媒鑲嵌至儲氫材料之表面上,以形成儲氫複材。
本發明提供之儲氫複材之形成方法如下。首先,將觸媒粒子11均勻披覆於載體13表面上,以形成複合觸媒15,如第1圖所示。在本發明一實施例中,觸媒粒子11可為銀、鈀、鎳、鉻、金、鉑或銅,且觸媒粒子之尺寸介於10nm至100nm之間。若觸媒粒子11之尺寸過大,則催化活性較低。若觸媒粒子11之尺寸過小,則無法於合成的過程中穩定形成。在本發明一實施例中,載體13可為氧化鋁、氧化鈦、氧化鈮、氧化鈷或多孔碳材,且載體13之尺寸介於100nm至1μm之間。若載體13之尺寸過大,則披覆上去的金屬觸媒粒子較粗而降低催化活性。若載體13之尺寸過小,則不容易將金屬觸媒粒子披覆於載體表面。在本發明一實施例中,觸媒粒子11與載體13之重量比介於1:100至1:10之間。若觸媒粒子之比例過高,則觸媒顆粒不易均勻分散於載體表面而形成團聚、粗化。若觸媒粒子之比例過低,則催化活性較差。
將觸媒粒子11均勻披覆於載體13表面上,以形成複合觸媒15的方法可為無電鍍法。舉例來說,可先調配觸媒鹽類溶液作為化學鍍液,接著將表面已進行敏化處理後的載體含浸於化學鍍液中。之後加入還原劑使觸媒鹽類還原成金屬觸媒並披覆於載體表面上。藉由調整還原劑濃度、反應酸鹼值、反應時間、以及反應溫度,可控制披覆於載體表面的觸媒粒子之數量與尺寸,進而得到複合觸媒。敏化載體表面之敏化劑可為SnCl2。觸媒的鹽類溶液可為銀、鈀、鎳、鉻、金、鉑或銅之化合物(可能為鹵化物或錯合物)。還原劑可為葡萄糖、次磷酸鈉、或聯氨。還原劑濃度介於0.05M至0.5M之間。若還原劑之濃度過高,則會造成金屬觸媒粒子生成過快而導致其粒徑粗化或顆粒團聚。若還原劑之濃度過低,則還原能力不足,會造成金屬觸媒粒子的生成量過低。上述無電鍍的反應時間介於5分鐘至30分鐘之間。若無電鍍的反應時間過長,則生成的金屬觸媒數量太多而容易造成顆粒團聚或粗化。若無電鍍的反應時間過短,則生成的金屬觸媒數量過少,而造成催化活性不佳。上述無電鍍的反應溫度介於15℃至75℃之間。若無電鍍的反應溫度過高,則導致金屬觸媒生成速率過於劇烈而使生成量過高。若無電鍍的反應溫度過低,則造成反應速率過慢而不易生成觸媒粒子。在本發明一實施例中,可採用SnCl2之酸性溶液敏化氧化鋁載體,使Sn2+離子吸附至載體表面。接著將敏化後之氧化鋁載體加入由NaOH、NH4OH和AgNO3所形成的銀氨水溶液中,使Sn2+氧化成Sn4+而Ag+還原成Ag。接著可再加入還原劑葡萄糖,則使更多的Ag+還原並披覆於氧化鋁載體的表面上。以無電鍍法使離子還原為奈米等級的金屬粒子於載體表面上,可避免奈米觸媒於高溫熱處理下產生凝聚的問題。藉由均勻分散於載體表面的方式可維持觸媒的高比表面積,進而增加其反應活性。
接著將複合觸媒15鑲嵌至儲氫材料17之表面上,以形成儲氫複材19,如第2圖所示。儲氫材料17可為鎂、氫化鎂、或鎂基合金如Mg1-xAx,A係Li、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Al、Y、Zr、Nb、Mo、In、Sn、Si、B、C、或Be,且0<x0.3。在本發明一實施例中,複合觸媒15與儲氫材料17之重量比介於1:100至1:10。若複合觸媒15之比例過高,則會佔據整體材料系統中太多的重量而損失一些儲氫量。若複合觸媒15之比例過低,則對於儲放氫反應的催化活性不足。
將複合觸媒15鑲嵌至儲氫材料17之表面上,以形成儲氫複材19的方法可為高能球磨法。舉例來說,可將複合觸媒15與儲氫材料17置於球磨罐中,於氬氣下進行球磨製程以形成儲氫複材19。球磨珠可為碳化鎢或不鏽鋼,其直徑介於1mm至5mm之間。若球磨珠之直徑過小,則研磨能量較低而機械嵌合的效率較差。若球磨珠之直徑過大,則容易在研磨珠與研磨罐之間的空隙產生死角,而使部分粉體無法充分被磨珠撞擊而嵌合。球磨珠與複合觸媒15及儲氫材料17之重量比介於10:1至50:1之間。若複合觸媒15及儲氫材料17之比例過高,則研磨、嵌合的效率較差。若複合觸媒15及儲氫材料17之比例過低,則容易造成研磨珠的磨耗。球磨方式可為行星式旋轉、攪拌或振盪,且球磨製程歷時0.25至1.5小時。若球磨製程歷時過短,則機械嵌合的效果較差。若球磨製程歷時過長,則可能造成觸媒金屬從載體表面脫落,並與儲氫材料產生合金化。利用機械力研磨的撞擊方式,可將複合觸媒15直接鑲嵌於儲氫材料17的表面上,使觸媒可以發揮催化活性,讓儲氫材料17在較低的溫度下有效地進行放氫。由於已先行將觸媒粒子11披覆於載體13表面,除了有助於均勻分散觸媒粒子11外,更可形成保護界面,降低觸媒粒子11在高能球磨中與儲氫材料17合金化的可能性。此外,可進一步選用堅硬的奈米陶瓷粉體作為載體13,在球磨製程中可以充當助磨劑來撞擊儲氫合金,使儲氫複材19產生晶界與缺陷而有利氫原子擴散。當複合觸媒15透過機械力的方式與儲氫材料17的表面達成固相接合時,即可於兩相的交界處提供氫原子擴散的路徑,而有助於降低吸放氫的活化能能障。另一方面,鑲嵌於儲氫材料17表面的載體13之氧離子亦有機會在表面形成微弱的氫鍵吸引力,來幫助儲氫材料17儲存的氫由內部釋放出來。
為了讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數實施例配合所附圖示,作詳細說明如下:
【實施例】 實施例1
首先將α-Al2O3粉體進行敏化處理(Sensitization Processing)。敏化劑的調配是取0.4g的SnCl2溶解於34 ml的去離子水中,此時SnCl2會水解產生Sn(OH2)Cl白色沉澱,再滴入3ml之1N的HCl水溶液直至整體溶液澄清即可使用。而後將2g之α-Al2O3粉體(大明株式會社,TM-DAR)浸入上述調配好的敏化劑中,於室溫下攪拌5分鐘,使Sn2+離子吸附在α-Al2O3粉體表面上,再利用離心方式去除濾液以得敏化之α-Al2O3粉體。將敏化後的α-Al2O3粉體浸入由30mL之0.9N的NaOH( l )、35mL之2N的NH4OH( l )以及30mL之0.3N的AgNO3( l )所形成的銀氨水溶液中,並加入含有C6H12O6的還原劑溶液。這時粉體表面上的Sn2+離子會將銀離子還原而吸附在α-Al2O3粉體表面,而含C6H12O6的溶液則強化銀的還原反應,待反應5分鐘的時間後,將粉體以離心方式收集,則得到複合觸媒α-Al2O3/Ag,其X光繞射圖譜如第3A圖所示,且其TEM影像如第3B圖所示。
將上述複合觸媒α-Al2O3/Ag以機械力的方式,將其鑲嵌於氫化鎂的儲氫材料上。首先將氫化鎂與複合觸媒α-Al2O3/Ag以重量百分比92:8的比例混合後,再將混合後的粉體與碳化鎢磨球以球粉重量比32:1的方式填入碳化鎢研磨罐體中,並充填氬氣。將研磨罐置入震盪球磨機(SPEX CertiPrep,Inc.,8000M)中以30分鐘的時間進行球磨撞擊,進而將複合觸媒α-Al2O3/Ag鑲嵌於氫化鎂的表面上,形成儲氫複材。上述儲氫複材於140℃下之吸氫/放氫量對時間的曲線如第4圖所示。上述吸放氫測試採用Sievert系統,在密閉且固定的容積內放入儲氫材料,藉由量測充放氫過程中氣體壓力的變化量來推知儲放氫量。吸氫測試所採用的氫氣壓力為20 atm,放氫測試所採用的氫氣壓力低於1atm。由於本實驗的Sievert系統僅能量得吸氫曲線,故放氫的量測則是由材料於第一次吸氫後,讓材料於<1atm的壓力環境下充分放氫一天,而後量測其第二次吸氫曲線來判斷該材料的放氫量。
實施例2
首先將α-Al2O3粉體進行敏化處理(Sensitization Processing)。敏化劑的調配是取5g的SnCl2溶解於7.5 mL之37%的HCl( l )中,再將整體溶液以去離子水稀釋至50mL後即可使用。而後將2g之α-Al2O3粉體(大明株式會社,TM-DAR)浸入上述調配好的敏化劑中,於室溫下攪拌5分鐘,使Sn2+離子吸附在α-Al2O3粉體表面上,再利用離心方式去除濾液以得敏化之α-Al2O3粉體。將敏化後的α-Al2O3粉體浸入45mL的氯化鈀水溶液中,該溶液的調配乃是取1g的PdCl2溶解於30 ml之37%的HCl( l )中,再將整體溶液以去離子水稀釋至100mL後即可使用。這時粉體表面上的Sn2+離子會將鈀離子還原而吸附在α-Al2O3粉體表面,待反應5分鐘的時間後,將粉體以離心方式收集,則得到複合觸媒α-Al2O3/Pd,其X光繞射圖譜如第5A圖所示;其TEM分析影像則如第5B圖所示。在第5B圖中,虛線框51標示的深色部份為還原後的鈀金屬,而其餘淺色的部份為α-Al2O3粉體。
將上述複合觸媒α-Al2O3/Pd以機械力的方式,將其鑲嵌於氫化鎂的儲氫材料上。首先將氫化鎂與複合觸媒α-Al2O3/Pd以重量百分比92:8的比例混合後,再將混合後的粉體與碳化鎢磨球以球粉重量比32:1的方式填入碳化鎢研磨罐體中,並充填氬氣。將研磨罐置入震盪球磨機(SPEX CertiPrep,Inc.,8000M)中以30分鐘的時間進行球磨撞擊,進而將複合觸媒α-Al2O3/Pd鑲嵌於氫化鎂的表面上,形成儲氫複材。上述儲氫複材於140℃下之吸氫/放氫量對時間的曲線如第6圖所示。上述吸放氫測試採用Sievert系統,在密閉且固定的容積內放入儲氫材料,藉由量測充放氫過程中氣體壓力的變化量來推知儲放氫量。吸氫測試所採用的氫氣壓力為20 atm,放氫測試所採用的氫氣壓力低於1atm。放氫的量測是讓材料於第一次吸氫後,使材料於<1atm的壓力環境下充分放氫一天,而後量測其第二次吸氫曲線來判斷該材料的放氫量。
比較例1
取100重量份的氫化鎂置於140℃下,其吸氫/放氫量對時間的曲線如第4及6圖所示。由第4及6圖可知,未添加觸媒的氫化鎂在140℃下幾乎無法放氫,而表面鑲嵌有複合觸媒之氫化鎂則維持穩定的放氫量。上述吸放氫測試採用Sievert系統,在密閉且固定的容積內放入儲氫材料,藉由量測充放氫過程中氣體壓力的變化量來推知儲放氫量。吸氫測試所採用的氫氣壓力為20 atm,放氫測試所採用的氫氣壓力低於1atm。放氫的量測是讓材料於第一次吸氫後,使材料於<1atm的壓力環境下充分放氫一天,而後量測其第二次吸氫曲線來判斷該材料的放氫量。
雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
11...觸媒粒子
13...載體
15...複合觸媒
17...儲氫材料
19...儲氫複材
51...虛線框
第1圖係本發明一實施例中,複合觸媒的示意圖;
第2圖係本發明一實施例中,儲氫複材的示意圖;
第3A圖係本發明一實施例中,複合觸媒α-Al2O3/Ag之X光繞射圖譜;
第3B圖係本發明一實施例中,複合觸媒α-Al2O3/Ag之TEM影像;
第4圖係本發明之實施例與比較例之觸媒的吸氫/放氫量對時間的曲線圖;
第5A圖係本發明一實施例中,複合觸媒α-Al2O3/Pd之X光繞射圖譜;
第5B圖係本發明一實施例中,複合觸媒α-Al2O3/Pd之TEM影像;以及
第6圖係本發明之實施例與比較例之觸媒的吸氫/放氫量對時間的曲線圖。

Claims (14)

  1. 一種儲氫複材,包括:一複合觸媒,包括一觸媒粒子均勻披覆於一載體之表面上;以及一儲氫材料;其中該複合觸媒鑲嵌於該儲氫材料之表面上。
  2. 如申請專利範圍第1項所述之儲氫複材,其中該觸媒粒子包括銀、鈀、鎳、鉻、金、鉑、或銅,且該觸媒粒子之尺寸介於10nm至100nm之間。
  3. 如申請專利範圍第1項所述之儲氫複材,其中該載體包括氧化鋁、氧化鈦、氧化鈮、氧化鈷、或多孔碳材,且該載體之尺寸介於100nm至1μm之間。
  4. 如申請專利範圍第1項所述之儲氫複材,其中該複合觸媒中,該觸媒粒子與該載體之重量比介於1:100至1:10之間。
  5. 如申請專利範圍第1項所述之儲氫複材,其中該儲氫材料包括鎂、氫化鎂、或鎂基合金。
  6. 如申請專利範圍第1項所述之儲氫複材,其中該複合觸媒與該儲氫材料之重量比介於1:100至1:10之間。
  7. 一種儲氫複材之形成方法,包括:將一觸媒粒子均勻披覆於一載體之表面上,以形成一複合觸媒;以及將該複合觸媒鑲嵌至一儲氫材料之表面上,以形成一儲氫複材。
  8. 如申請專利範圍第7項所述之儲氫複材之形成方法,其中該觸媒粒子包括銀、鈀、鎳、鉻、金、鉑、或銅,且該觸媒粒子之尺寸介於10nm至100nm之間。
  9. 如申請專利範圍第7項所述之儲氫複材之形成方法,其中該複合觸媒中,該觸媒粒子與該載體之重量比介於1:100至1:10之間。
  10. 如申請專利範圍第7項所述之儲氫複材之形成方法,其中該載體包括氧化鋁、氧化鈦、氧化鈮、或氧化鈷,且該載體之尺寸介於100nm至1μm之間。
  11. 如申請專利範圍第7項所述之儲氫複材之形成方法,其中該複合觸媒與該儲氫材料之重量比介於1:100至1:10之間。
  12. 如申請專利範圍第7項所述之儲氫複材之形成方法,其中該儲氫材料包括鎂、氫化鎂、或鎂基合金。
  13. 如申請專利範圍第7項所述之儲氫複材之形成方法,其中將該觸媒粒子均勻披覆於該載體之表面上,以形成該複合觸媒之步驟係一無電鍍法。
  14. 如申請專利範圍第7所述之儲氫複材之形成方法,其中將該複合觸媒鑲嵌至該儲氫材料之表面上,以形成該儲氫複材之步驟係一高能球磨法。
TW100148816A 2011-12-27 2011-12-27 儲氫複材與其形成方法 TWI450764B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW100148816A TWI450764B (zh) 2011-12-27 2011-12-27 儲氫複材與其形成方法
CN201110449945.8A CN103183313B (zh) 2011-12-27 2011-12-29 储氢复合材料与其形成方法
US13/553,712 US9174209B2 (en) 2011-12-27 2012-07-19 Hydrogen storage composites and methods for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100148816A TWI450764B (zh) 2011-12-27 2011-12-27 儲氫複材與其形成方法

Publications (2)

Publication Number Publication Date
TW201325721A true TW201325721A (zh) 2013-07-01
TWI450764B TWI450764B (zh) 2014-09-01

Family

ID=48653603

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100148816A TWI450764B (zh) 2011-12-27 2011-12-27 儲氫複材與其形成方法

Country Status (3)

Country Link
US (1) US9174209B2 (zh)
CN (1) CN103183313B (zh)
TW (1) TWI450764B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI526396B (zh) * 2012-09-12 2016-03-21 財團法人工業技術研究院 儲氫複合材料及其形成方法
CN111774568B (zh) * 2020-06-12 2022-06-10 榆林学院 一种气化渣镁镍合金储氢复合材料的工业化生产装置
CN114477082B (zh) * 2021-12-28 2023-07-21 桂林电子科技大学 一种纳米Ni-Nb-O掺杂氢化镁的储氢材料及其制备方法和应用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3383692B2 (ja) 1993-02-22 2003-03-04 マツダ株式会社 複合水素吸蔵金属部材及びその製造方法
CN1245329C (zh) * 2003-06-10 2006-03-15 中国科学院大连化学物理研究所 含氢无机化合物水溶液制氢催化剂及制氢方法
JP5095909B2 (ja) * 2003-06-24 2012-12-12 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. 触媒組成物および析出方法
US7250386B2 (en) 2003-07-18 2007-07-31 Energy Conversion Devices, Inc. Quantum limit catalysts and hydrogen storage materials
US20050126663A1 (en) 2003-12-11 2005-06-16 Fetcenko Michael A. Catalyzed hydrogen desorption in Mg-based hydrogen storage material and methods for production thereof
TWI297284B (en) * 2004-12-06 2008-06-01 Ind Tech Res Inst Hydrogen storage composite and preparation thereof
US7951749B2 (en) 2005-10-11 2011-05-31 The Regents Of The University Of Michigan Enhancing hydrogen spillover and storage
CN101289161A (zh) * 2007-04-20 2008-10-22 中国科学院大连化学物理研究所 一种储氢材料的制备方法
CN101671788B (zh) * 2008-09-12 2013-06-19 财团法人工业技术研究院 镁基储氢材料纳米化方法
US9623393B2 (en) * 2008-10-31 2017-04-18 Asemblon, Inc. Dehydrogenation of cyclic thioethers
US20100240522A1 (en) 2009-03-23 2010-09-23 Tomoyuki Inui Catalyst exhibiting hydrogen spillover effect
CN101862686B (zh) * 2009-04-17 2014-04-16 财团法人工业技术研究院 用于催化放氢反应的催化剂的制造方法
CN101863454A (zh) * 2009-04-17 2010-10-20 财团法人工业技术研究院 固态氢燃料及其制造方法和使用方法
US20130084474A1 (en) * 2010-03-18 2013-04-04 Randell L. Mills Electrochemical hydrogen-catalyst power system
WO2012014225A2 (en) * 2010-07-26 2012-02-02 Council Of Scientific & Industrial Research An improved process for the storage delivery of hydrogen using catalyst
CN103460469A (zh) * 2011-04-05 2013-12-18 布莱克光电有限公司 以水为主的电化学氢催化剂动力系统

Also Published As

Publication number Publication date
CN103183313A (zh) 2013-07-03
TWI450764B (zh) 2014-09-01
US9174209B2 (en) 2015-11-03
CN103183313B (zh) 2014-10-15
US20130161559A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
Liu et al. Nitrogen‐doped graphene‐encapsulated nickel–copper alloy nanoflower for highly efficient electrochemical hydrogen evolution reaction
Zhou et al. Highly active NiCo alloy hexagonal nanoplates with crystal plane selective dehydrogenation and visible-light photocatalysis
US8591988B1 (en) Method of fabrication of anchored nanostructure materials
Chen et al. Large scale photochemical synthesis of M@ TiO 2 nanocomposites (M= Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect
Hua et al. Influence of calcination temperature on the structure and catalytic performance of Au/iron oxide catalysts for water–gas shift reaction
Lu et al. Synthesis and hydrogen storage properties of core–shell structured binary Mg@ Ti and ternary Mg@ Ti@ Ni composites
EP1522341A1 (en) Precious metal-metal oxide composite cluster
JP2005185956A (ja) 触媒粉末、排ガス浄化触媒、及び触媒粉末の製造方法
TWI450764B (zh) 儲氫複材與其形成方法
Liu et al. A co-precipitated Mg–Ti nano-composite with high capacity and rapid hydrogen absorption kinetics at room temperature
JP5569396B2 (ja) 触媒の製造方法
KR20130054062A (ko) 그래파이트로부터 금속-그래핀 나노복합체를 제조하는 방법
Kobayashi et al. Low-temperature chemical synthesis of intermetallic TiFe nanoparticles for hydrogen absorption
Liu et al. One-pot facile synthesis of reusable tremella-like M 1@ M 2@ M 1 (OH) 2 (M 1= Co, Ni, M 2= Pt/Pd, Pt, Pd and Au) three layers core–shell nanostructures as highly efficient catalysts
US11154843B1 (en) Methods of forming nano-catalyst material for fabrication of anchored nanostructure materials
CN109807324B (zh) 一种镍包覆六方氮化硼纳米片复合粉体的制备方法
US8974719B2 (en) Composite materials formed with anchored nanostructures
Wu et al. Effect of CeH2. 73-CeO2 composites on the desorption properties of Mg2NiH4
Chen et al. Advances in photochemical deposition for controllable synthesis of heterogeneous catalysts
CN108500285A (zh) 一种担载或非担载型过渡金属@h-BN核-壳纳米结构的制备方法
JP4114386B2 (ja) 超微粒子金属錫の製造方法および装置
TWI534076B (zh) 儲氫複材與其形成方法
Zhang et al. Facile synthesis of gold–platinum dendritic nanostructures with enhanced electrocatalytic performance for the methanol oxidation reaction
Lototsky et al. Palladium mixed-metal surface-modified AB5-type intermetallides enhance hydrogen sorption kinetics
Kharissova et al. Synthetic techniques and applications of activated nanostructurized metals: highlights up to 2008