CN103160781A - 模具钢表面多层梯度纳米复合类金刚石薄膜的制备方法 - Google Patents

模具钢表面多层梯度纳米复合类金刚石薄膜的制备方法 Download PDF

Info

Publication number
CN103160781A
CN103160781A CN2011104280525A CN201110428052A CN103160781A CN 103160781 A CN103160781 A CN 103160781A CN 2011104280525 A CN2011104280525 A CN 2011104280525A CN 201110428052 A CN201110428052 A CN 201110428052A CN 103160781 A CN103160781 A CN 103160781A
Authority
CN
China
Prior art keywords
die steel
gradient
target
metal
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011104280525A
Other languages
English (en)
Other versions
CN103160781B (zh
Inventor
张俊彦
张斌
强力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN201110428052.5A priority Critical patent/CN103160781B/zh
Publication of CN103160781A publication Critical patent/CN103160781A/zh
Application granted granted Critical
Publication of CN103160781B publication Critical patent/CN103160781B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种模具钢表面多层梯度纳米复合类金刚石薄膜的制备方法。该方法将经过常规前处理后的柱塞置于磁控溅射复合气相沉积系统的真空系统中,依次沉积多层梯度膜。多层梯度过渡层在制备的过程中对每一层都经过高温退火处理和氩离子表面刻蚀处理,以此来提高薄膜与基底的结合力,克服了模具钢表面常规类金刚石薄膜内应力高、附着力差等缺点。

Description

模具钢表面多层梯度纳米复合类金刚石薄膜的制备方法
技术领域
本发明涉及一种模具钢表面多层梯度纳米复合类金刚石薄膜的制备方法,具体说是采用物理气相沉积技术在模具钢表面获得梯度多层类金刚石纳米复合薄膜的制备方法。
背景技术
长期以来,模具钢由于其良好的耐腐蚀性和机械性在模具、刀具等方面,受到了广泛的关注。然而,随着现代工业的飞速发展,要求模具钢要有良好硬度,能在更高强度下具有更优异的摩擦磨损性能。然而遗憾的是,此类模具却很难达到这样高的要求。因此,为了改善模具钢的耐磨性,就要既保持模具钢具有高的硬度,又要具有高温高速下的优异的摩擦性能。对于高载高速磨损条件下的模具,要求其模具钢表面能形成一种薄而粘附性好的膜,保持润滑作用,减少模具和工件之间的粘咬、焊接等高温熔融磨损。
类金刚石涂层(DLC)作为一种新型固体润滑涂层,具有结构均匀、高硬度(硬度高于20GPa)、低摩擦磨损(干摩擦系数和油润滑摩擦系数小于0.1)和使用寿命长等优点,是模具钢表面保护处理的理想材料。如果能够将此薄膜沉积在模具钢表面,可大大改善模具钢的抗磨减摩性能,提高其使用寿命。但是,由于该合金钢与DLC的材质不同,两者在晶格匹配、热膨胀系数方面存在着很大的差异,导致DLC与模具钢的结合力下降,从而直接从模具钢表面脱落。此外,该模具钢在摩擦过程中会产生大量的热,从而使其温度升高,也就是说该模具钢通常都是在高温环境下工作的,那么高温摩擦性能高低将直接影响其使用寿命。
因此,如何提高类金刚石涂层与模具钢基体间的结合力和高温耐磨性能,在模具钢表面获得高硬度、良好结合强度以及具有优异高温抗磨和固体润滑特性的高性能类金刚石涂层是延长模具钢使用寿命的有效方法。
发明内容
本发明的目的是提供一种高硬度、高结合力和在高温摩擦状态下具有减摩自润滑性能的模具钢保护涂层及其表面加工方法,以此来改善模具钢与保护涂层的低结合力以及在高温摩擦过程中导致的高磨损等问题。
一种模具钢表面多层梯度纳米复合类金刚石薄膜的制备方法,其特征在于将经过常规前处理后的柱塞置于磁控溅射复合气相沉积系统的真空系统中,依次沉积以下多层梯度膜:
A将模具钢置于复合气相沉积真空系统中,进行氩等离子体溅射清洗,氩气气体流量为300~500sccm,偏压为1000V~1500V,处理时间为15~30min;
B溅射沉积Ti或Cr粘接层,金属Ti靶或Cr为阴极,工作气体为氩气,处理时间5~10min;
C溅射沉积TiN或CrN层,金属Ti靶或Cr靶为阴极,工作气体为氩气和氮气,偏压为600~800V,占空比为70~90%,金属Ti靶或Cr靶弧流控制在12~20A,处理时间为30~40min;
D磁控溅射沉积BN层,控制射频B靶电源功率为3000~5000W,偏压为-600V,真空比为80~90%,处理时间为15~30min;
E金属掺杂类金刚石梯度复合涂层沉积,沉积过程中,真空室的本底真空为1×10-3Pa,放电气压为0.45Pa,氩气和甲烷混合气氛,柱塞样品上施加600~1000V的负偏压,通过逐渐增加甲烷流量获得B含量梯度变化的金属掺杂类金刚石表层,处理时间为90~120min,自然冷却,最后在模具钢表面获得多层梯度类金刚石纳米复合薄膜。
模具钢表面多层复合类金刚石薄膜主要由以下几部分构成:模具钢基底,基底粘结层,中间金属氮化物和非金属氮化物渐变层,表面涂层材料。其中基底粘结层为Ti或Cr金属,中间渐变层为金属氮化物和非金属氮化物,表层为非金属氮化物掺杂的类金刚石薄膜。
本发明中所制备的薄膜的结构用拉曼光谱(Raman)、红外光谱(FTIR)、X-射线光电子能谱(XPS)和透射电子显微镜(TEM)进行了表征。结果表明,在不锈钢柱塞上成功制备出了多层梯度类金刚石纳米复合薄膜,此薄膜为无定形结构,并且具有高结合力和优良的高温摩擦磨损性能。
本发明具有以下优点:
采用本发明制得的多层梯度类金刚石纳米复合薄膜与模具钢表面牢固结合,且具有优异的高温抗磨与自润滑性能。其特点在于多层梯度过渡层在制备的过程中对每一层都经过高温退火处理和氩离子表面刻蚀处理,以此来提高薄膜与基底的结合力,克服了模具钢表面常规类金刚石薄膜内应力高、附着力差等缺点。本发明的模具钢表面加工方法属于真空等离子范畴,绿色环保,不会对环境造成污染。所采用的复合工艺稳定,可实现批量生产。
具体实施方式
实施例1
取2cm×2cm钢片按照以下步骤进行:
(1)将模具钢在丙酮和二氯甲烷溶液中依次进行超声清洗;
(2)将模具钢置于磁控溅射复合气相沉积系统的真空系统中,进行氩等离子体溅射清洗,氩气气体流量为300~500sccm,偏压为1000V~1500V,处理时间为15~30min;
(3)磁控溅射镀Ti粘接层,金属Ti靶为阴极,工作气体为氩气,处理时间10~15min。
(4)溅射沉积TiN层,金属Ti靶(为阴极,工作气体为氩气和氮气,偏压为600~800V,占空比为70~90%,金属Ti靶电流控制在12~20A,沉积时间为30~40min;
(5)磁控溅射沉积BN层,控制射频B靶电源功率为3000~5000W,偏压为-600V,占空比为80~90%,处理时间为15~30min;
(6)金属掺杂类金刚石梯度复合涂层沉积,沉积过程中,真空室的本底真空为1×10-3Pa,放电气压为0.45Pa,氩气和甲烷混合气氛,柱塞样品上施加600~1000V的负偏压,通过逐渐增加甲烷流量以及逐渐降低B靶电流获得B含量梯度变化的金属掺杂类金刚石表层,处理时间为90~120min,自然冷却,最后在模具钢表面获得多层梯度类金刚石纳米复合薄膜。
实施例2
取2cm×2cm钢片按照以下步骤进行:
(1)将模具钢进行除油清洗,然后在丙酮和二氯甲烷溶液中依次进行超声清洗;
(2)将模具钢置于磁控溅射复合气相沉积系统的真空系统中,进行氩等离子体溅射清洗,氩气气体流量为300~500sccm,偏压为1000V~1500V,处理时间为15~30min;
(3)溅射沉积Cr粘接层,金属Cr为阴极,工作气体为氩气,处理时间10~15min。
(4)溅射沉积CrN层,金属Cr靶为阴极,工作气体为氩气和氮气,偏压为600~800V,占空比为70~90%,金属Cr靶电流控制在12~20A,处理时间为30~40min;
(5)磁控溅射沉积BN层,控制射频B靶电源功率为3000~5000W,偏压为-600V,占空比为80~90%,处理时间为15~30min;
(6)金属掺杂类金刚石梯度复合涂层沉积,沉积过程中,真空室的本底真空为1×10-3Pa,放电气压为0.45Pa,氩气和甲烷混合气氛,模具钢表面上施加600~1000V的负偏压,通过逐渐增加甲烷流量获得B含量梯度变化的金属掺杂类金刚石表层,处理时间为90~120min,自然冷却,最后在模具钢表面获得多层梯度类金刚石纳米复合薄膜。
通过应用Raman,XPS,FTIR对实施例1和2制备的薄膜进行了表征,结果表明,表明薄膜具有典型的类金刚石碳薄膜的结构与特征。通过应用SRV-IV进行了摩擦实验,结果表明该薄膜具有优异的摩擦性能。在大气环境下,其摩擦系数低于0.1,而在汽油、柴油中的摩擦系数均在0.05以下,且磨损率都在10-8数量级范围内。

Claims (1)

1.一种模具钢表面多层梯度纳米复合类金刚石薄膜的制备方法,其特征在于将经过常规前处理后的柱塞置于磁控溅射复合气相沉积系统的真空系统中,依次沉积以下多层梯度膜:
A将模具钢置于复合气相沉积真空系统中,进行氩等离子体溅射清洗,氩气气体流量为300~500sccm,偏压为1000V~1500V,处理时间为15~30min;
B溅射沉积Ti或Cr粘接层,金属Ti靶或Cr为阴极,工作气体为氩气,处理时间5~10min;
C溅射沉积TiN或CrN层,金属Ti靶或Cr靶为阴极,工作气体为氩气和氮气,偏压为600~800V,占空比为70~90%,金属Ti靶或Cr靶弧流控制在12~20A,处理时间为30~40min;
D磁控溅射沉积BN层,控制射频B靶电源功率为3000~5000W,偏压为-600V,真空比为80~90%,处理时间为15~30min;
E金属掺杂类金刚石梯度复合涂层沉积,沉积过程中,真空室的本底真空为1×10-3Pa,放电气压为0.45Pa,氩气和甲烷混合气氛,柱塞样品上施加600~1000V的负偏压,通过逐渐增加甲烷流量获得B含量梯度变化的金属掺杂类金刚石表层,处理时间为90~120min,自然冷却,最后在模具钢表面获得多层梯度类金刚石纳米复合薄膜。
CN201110428052.5A 2011-12-16 2011-12-16 模具钢表面多层梯度纳米复合类金刚石薄膜的制备方法 Active CN103160781B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110428052.5A CN103160781B (zh) 2011-12-16 2011-12-16 模具钢表面多层梯度纳米复合类金刚石薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110428052.5A CN103160781B (zh) 2011-12-16 2011-12-16 模具钢表面多层梯度纳米复合类金刚石薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN103160781A true CN103160781A (zh) 2013-06-19
CN103160781B CN103160781B (zh) 2015-07-01

Family

ID=48584309

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110428052.5A Active CN103160781B (zh) 2011-12-16 2011-12-16 模具钢表面多层梯度纳米复合类金刚石薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN103160781B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105779946A (zh) * 2014-12-19 2016-07-20 中国科学院兰州化学物理研究所 轴承球滚动体全表面润滑耐磨涂层的批量制备方法
CN106282920A (zh) * 2016-08-31 2017-01-04 浙江工业大学 一种亚稳奥氏体不锈钢表面制备金刚石薄膜的方法
CN106435518A (zh) * 2016-10-21 2017-02-22 中南大学 一种高比表面积硼掺杂金刚石电极及其制备方法和应用
CN107304469A (zh) * 2016-04-23 2017-10-31 广东祖戈卫浴科技有限公司 一种不锈钢表面加硬处理技术
RU174874U1 (ru) * 2016-11-22 2017-11-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Режущий инструмент из твердого сплава с многослойным покрытием
CN108531905A (zh) * 2018-01-18 2018-09-14 合肥永信信息产业股份有限公司 一种高性能类金刚石复合涂层及其制备方法
WO2019119647A1 (zh) * 2017-12-20 2019-06-27 中国科学院兰州化学物理研究所 一种类富勒烯碳层/类石墨烯氮化硼多层复合超润滑薄膜的制备方法
CN110724923A (zh) * 2019-11-04 2020-01-24 吉林大学 一种表面梯度纳米结构离子注渗碳化钨层制备方法
CN111560592A (zh) * 2020-06-16 2020-08-21 中国科学院宁波材料技术与工程研究所 一种长效耐磨防雾镜片涂层及其制备方法与应用
CN111593316A (zh) * 2020-05-11 2020-08-28 南京岱蒙特科技有限公司 一种高比表面积超亲水的梯度硼掺杂金刚石电极及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787222A1 (fr) * 1994-11-07 1997-08-06 Stéphane Neuville Procede de depot d'un revetement protecteur de grande durete
CN1203444A (zh) * 1997-06-11 1998-12-30 三星电子株式会社 形成半导体器件接触塞的方法
US6586098B1 (en) * 2000-07-27 2003-07-01 Flex Products, Inc. Composite reflective flake based pigments comprising reflector layers on bothside of a support layer
CN101164931A (zh) * 2004-04-10 2008-04-23 鸿富锦精密工业(深圳)有限公司 模造玻璃模仁及其制造方法
CN101196694A (zh) * 2006-12-06 2008-06-11 国际商业机器公司 用于减少沉浸式光刻装置机械磨损的集成电路制造

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787222A1 (fr) * 1994-11-07 1997-08-06 Stéphane Neuville Procede de depot d'un revetement protecteur de grande durete
CN1203444A (zh) * 1997-06-11 1998-12-30 三星电子株式会社 形成半导体器件接触塞的方法
JPH1131745A (ja) * 1997-06-11 1999-02-02 Samsung Electron Co Ltd 半導体装置のコンタクトプラグ形成方法
KR100266749B1 (ko) * 1997-06-11 2000-09-15 윤종용 반도체 장치의 콘택 플러그 형성 방법
US6586098B1 (en) * 2000-07-27 2003-07-01 Flex Products, Inc. Composite reflective flake based pigments comprising reflector layers on bothside of a support layer
CN1440446A (zh) * 2000-07-27 2003-09-03 福来克斯产品公司 复合反射薄片基颜料,其制法和包含它们的着色剂
CN101164931A (zh) * 2004-04-10 2008-04-23 鸿富锦精密工业(深圳)有限公司 模造玻璃模仁及其制造方法
CN101196694A (zh) * 2006-12-06 2008-06-11 国际商业机器公司 用于减少沉浸式光刻装置机械磨损的集成电路制造

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
任侠: "等离子体化学气相沉积及其在沉积超硬膜方面的应用", 《物理》, no. 12, 24 December 1992 (1992-12-24) *
阎鹏勋等: "脉冲高能量密度等离子体薄膜制备与材料表面改性", 《物理》, no. 08, 24 August 2002 (2002-08-24) *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105779946B (zh) * 2014-12-19 2018-02-27 中国科学院兰州化学物理研究所 轴承球滚动体全表面润滑耐磨涂层的批量制备方法
CN105779946A (zh) * 2014-12-19 2016-07-20 中国科学院兰州化学物理研究所 轴承球滚动体全表面润滑耐磨涂层的批量制备方法
CN107304469A (zh) * 2016-04-23 2017-10-31 广东祖戈卫浴科技有限公司 一种不锈钢表面加硬处理技术
CN106282920A (zh) * 2016-08-31 2017-01-04 浙江工业大学 一种亚稳奥氏体不锈钢表面制备金刚石薄膜的方法
CN106282920B (zh) * 2016-08-31 2018-08-21 浙江工业大学 一种亚稳奥氏体不锈钢表面制备金刚石薄膜的方法
CN106435518A (zh) * 2016-10-21 2017-02-22 中南大学 一种高比表面积硼掺杂金刚石电极及其制备方法和应用
CN106435518B (zh) * 2016-10-21 2018-07-17 中南大学 一种高比表面积硼掺杂金刚石电极及其制备方法和应用
RU174874U1 (ru) * 2016-11-22 2017-11-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Режущий инструмент из твердого сплава с многослойным покрытием
US11225710B2 (en) 2017-12-20 2022-01-18 Lanzhou Institute Of Chemical Physics, Chinese Academy Of Sciences Method for preparing super-lubricative multi-layer composite fullerene-like carbon layer/graphene-like boron nitride thin film
WO2019119647A1 (zh) * 2017-12-20 2019-06-27 中国科学院兰州化学物理研究所 一种类富勒烯碳层/类石墨烯氮化硼多层复合超润滑薄膜的制备方法
CN108531905A (zh) * 2018-01-18 2018-09-14 合肥永信信息产业股份有限公司 一种高性能类金刚石复合涂层及其制备方法
CN110724923A (zh) * 2019-11-04 2020-01-24 吉林大学 一种表面梯度纳米结构离子注渗碳化钨层制备方法
CN111593316A (zh) * 2020-05-11 2020-08-28 南京岱蒙特科技有限公司 一种高比表面积超亲水的梯度硼掺杂金刚石电极及其制备方法和应用
CN111593316B (zh) * 2020-05-11 2022-06-21 南京岱蒙特科技有限公司 一种高比表面积超亲水的梯度硼掺杂金刚石电极及其制备方法和应用
CN111560592A (zh) * 2020-06-16 2020-08-21 中国科学院宁波材料技术与工程研究所 一种长效耐磨防雾镜片涂层及其制备方法与应用
CN111560592B (zh) * 2020-06-16 2022-03-08 中国科学院宁波材料技术与工程研究所 一种长效耐磨防雾镜片涂层及其制备方法与应用

Also Published As

Publication number Publication date
CN103160781B (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
CN103160781B (zh) 模具钢表面多层梯度纳米复合类金刚石薄膜的制备方法
CN108690956B (zh) 电弧离子镀-磁控溅射复合沉积高温耐磨减摩AlTiN纳米多层涂层及其制备方法和应用
CN111621752B (zh) AlCrSiN/AlCrN/AlCrON/AlCrN多层纳米复合涂层的制备工艺
CN107227441B (zh) 一种基于反应溅射迟滞效应的TiAlSiN涂层制备方法
CN106086806B (zh) 一种AlTiCrN高温耐磨涂层及其制备方法
WO2017156996A1 (zh) 一种钛合金切削用复合功能刀具涂层及其制备方法
CN106244986B (zh) 功能梯度的类金刚石碳薄膜及其制备方法和制品
CN104928638A (zh) 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
CN103212729B (zh) 一种具有CrAlTiN超晶格涂层的数控刀具及其制备方法
CN108251797B (zh) 一种钛合金切削刀具用TiAlN/CrN多层涂层及其制备方法
CN104862644A (zh) 一种高温耐磨Cr-CrN-CrMoAlN梯度纳米多层薄膜及其制备方法
CN109097731B (zh) 一种AlCrN/AlCrYN多元多层涂层及其制备方法和应用
CN106119783B (zh) 功能梯度的类金刚石碳薄膜及其制备方法和制品
CN103009697B (zh) 一种自润滑梯度复合超硬膜及其制备方法
CN104325738A (zh) 一种冷轧圆盘飞剪的硬质涂层及其制备方法
CN102021513A (zh) 一种基体表面的高韧性抗氧化减磨涂层及其制备方法
CN109023243B (zh) 一种超强韧、低摩擦碳基刀具涂层及其制备方法
CN107513690B (zh) 一种类金刚石/立方氮化硼多层复合涂层及其制备方法
CN112647040B (zh) 一种ta-c基多层耐磨刀具涂层及其制备方法
Yang et al. The effect of deposition parameters on the mechanical properties of Cr–C–N coatings
CN108118305B (zh) 一种强韧一体化类富勒烯碳氮多层复合薄膜及其制备方法
KR20230082022A (ko) HiPIMS에 의해 향상된 접착력을 갖는 경질 탄소 코팅 및 그 제조방법
CN107099778B (zh) 一种铝合金干式加工用非晶刀具涂层及其制备方法
Huang et al. Effects of C content on the microstructure, mechanical and tribological properties of TiAlSiCN coatings
CN103160796A (zh) 在钢铁表面制备类金刚石薄膜的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant