CN106282920B - 一种亚稳奥氏体不锈钢表面制备金刚石薄膜的方法 - Google Patents

一种亚稳奥氏体不锈钢表面制备金刚石薄膜的方法 Download PDF

Info

Publication number
CN106282920B
CN106282920B CN201610789664.XA CN201610789664A CN106282920B CN 106282920 B CN106282920 B CN 106282920B CN 201610789664 A CN201610789664 A CN 201610789664A CN 106282920 B CN106282920 B CN 106282920B
Authority
CN
China
Prior art keywords
stainless steel
metastable austenite
austenite stainless
diamond thin
steel surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610789664.XA
Other languages
English (en)
Other versions
CN106282920A (zh
Inventor
李晓
胡晓君
冯涛
章航程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201610789664.XA priority Critical patent/CN106282920B/zh
Publication of CN106282920A publication Critical patent/CN106282920A/zh
Application granted granted Critical
Publication of CN106282920B publication Critical patent/CN106282920B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/029Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0084Producing gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明提供了一种亚稳奥氏体不锈钢表面制备金刚石薄膜的方法,所述方法为:通过磁控溅射技术在经过喷砂处理的亚稳奥氏体不锈钢表面沉积Cr/CrN过渡层,再将表面沉积有Cr/CrN过渡层的奥氏体不锈钢先浸没于金刚石微粉的丙酮悬浮液中超声振荡,然后浸没于丙酮中超声振荡,干燥后,通过化学气相沉积工艺,在Cr/CrN过渡层上沉积金刚石薄膜,制得成品;本发明制备的金刚石薄膜具有良好的膜基结合强度,以HR‑150A洛氏硬度计在150Kgf压头作用下,压痕表面未出现裂纹或损伤。

Description

一种亚稳奥氏体不锈钢表面制备金刚石薄膜的方法
(一)技术领域
本发明涉及一种亚稳奥氏体不锈钢表面制备金刚石薄膜的方法。
(二)背景技术
金刚石具有许多优异的性能,如高硬度、高耐磨性、高弹性模量、良好的化学稳定性和生物相容性。将金刚石薄膜沉积于亚稳奥氏体不锈钢(主要指200系列Cr-Mn型奥氏体不锈钢和300系列Cr-Ni型奥氏体不锈钢等,在受载荷作用下会产生形变诱发马氏体现象的不锈钢)表面,可以发挥金刚石高热导率、高化学稳定性及良好生物稳定性等优异特性,在医疗器械和食品行业存在巨大的潜在应用,因而备受关注。
然而,在亚稳不锈钢表面制备出高结合力的金刚石薄膜是一件非常困难的事情。其原因有二:一是由于亚稳不锈钢中含有催化石墨相形成的铁和镍元素,使金刚石相难以形成;二是由于亚稳不锈钢的热膨胀系数与金刚石的热膨胀系数相差很大(不锈钢的热膨胀系数为19×10-6/K(0~800℃),金刚石的热膨胀系数为1×10-6/K(0~800℃)),在冷却过程中两者间会产生巨大的热应力,使高温下沉积的金刚石在降温过程中脱落。目前解决此问题的办法是在亚稳奥氏体不锈钢表面引进过渡层,该过渡层要求:(1)能阻隔化学气相沉积过程中铁和镍元素向外扩散,防止生成的金刚石石墨化;(2)能阻止碳往不锈钢内扩散,提高金刚石的形核率,并使不锈钢中的碳含量不致过度升高;(3)与基体和金刚石都具有良好的结合力,并具有良好的韧性,能缓和降温过程中薄膜中产生的热应力。目前,许多材料(包括Cr、Si、Al、Al/AlN和CrN等)已经被选为过渡层材料并进行了不锈钢表面金刚石涂层制备方面的研究。但是仅采用过渡层的方法,制备的金刚石膜还存在膜基结合力不高、容易脱落的问题。
(三)发明内容
喷砂是一种常见的表面处理工艺,主要用来清理零件表面的氧化皮、油污和使零件表面粗糙化,从而使表面沉积的涂层可以通过机械咬合提高结合力。亚稳奥氏体不锈钢存在形变诱发马氏体现象,即当不锈钢受到塑性变形时,奥氏体会向马氏体转变。马氏体不锈钢的热膨胀系数比奥氏体不锈钢的热膨胀系数小30%左右,在马氏体不锈钢上沉积的金刚石膜产生的热应力明显比奥氏体不锈钢上小。因此,本发明的目的是通过喷砂与过渡层联合使用,发挥马氏体相热膨胀系数小的特点,提供一种在亚稳奥氏体不锈钢表面制备具有高结合强度的金刚石薄膜的方法。
为实现上述目的,本发明采用如下技术方案:
一种亚稳奥氏体不锈钢表面制备金刚石薄膜的方法,所述方法按如下步骤进行:
(1)对亚稳奥氏体不锈钢表面进行喷砂处理,所述喷砂处理采用30~320目的玻璃砂,工作压力为0.1~0.5MPa,喷砂时间为1~30min。
所述的亚稳奥氏体不锈钢主要指200系列Cr-Mn型奥氏体不锈钢和300系列Cr-Ni型奥氏体不锈钢等,在受载荷作用下会产生形变诱发马氏体现象的不锈钢。具体的产品牌号包括201、202、301、304等。
经步骤(1)喷砂处理后,亚稳奥氏体不锈钢表层的马氏体相体积含量为20%~100%(以X射线衍射法检测其含量,检测深度为15μm左右),表面粗糙度为3.2~40μm。马氏体的热膨胀系数为13×10-6/k,比奥氏体的热膨胀系数小约32%,可以有效地降低冷却过程中金刚石中的热应力。
(2)通过磁控溅射技术在经过步骤(1)处理的亚稳奥氏体不锈钢表面沉积Cr/CrN过渡层,操作方法为:将经过步骤(1)处理的亚稳奥氏体不锈钢置于非平衡磁控溅射仪中,先用Ar等离子体清洗,基体(即所述的亚稳奥氏体不锈钢)偏压为400~500V,时间为20~30min;再沉积Cr层,基体偏压为60~100V,沉积时间为10~150min;然后在真空室中通入氮气,进行CrN反应磁控溅射沉积,N2的体积流量在90~1200min的沉积时间内从20sccm逐渐升高到30sccm(使CrN层中N含量沿厚度向外方向逐渐增加),得到表面沉积有Cr/CrN过渡层的奥氏体不锈钢。
所述Cr/CrN过渡层中,Cr层厚度为0.2~5μm,CrN层厚度为1.8~12μm。采用Cr层是为了增加过渡层与不锈钢基体的结合强度,这是因为Cr元素与基体的亲合力好。CrN层中N含量沿厚度向外方向逐渐增加是为了让涂层材料的物性逐渐过渡,降低涂层中的应力集中。
(3)将步骤(2)所得表面沉积有Cr/CrN过渡层的奥氏体不锈钢先浸没于金刚石微粉(W0.2~W2)的丙酮悬浮液(浓度0.005~0.02g/mL)中,20~80KHz超声振荡5~40min,再浸没于丙酮中,20~80KHz超声振荡1~30s,干燥(可采用吹风机吹干)后,通过化学气相沉积工艺(CVD),在沉积温度600~700℃、沉积气压1.3~6KPa、偏流1~4A、丙酮载气(即沉积过程中以氢气作为载气经过0℃丙酮产生气泡将丙酮气体引入反应室中)与氢气流量比为0.3~0.45:1、沉积时间60~180min的条件下,在Cr/CrN过渡层上沉积金刚石薄膜,制得成品。
本发明的有益效果体现在:本发明制备的金刚石薄膜具有良好的膜基结合强度,以HR-150A洛氏硬度计在150Kgf压头作用下,压痕表面未出现裂纹或损伤,金刚石薄膜与基体间具有良好的结合强度。而未经喷砂处理的不锈钢样品表面生长的金刚石薄膜,在同样的条件下,压痕表面出现裂纹,金刚石薄膜与基体的结合强度差。
(四)附图说明
图1:实施例1中金刚石薄膜Raman图;
图2:实施例1中金刚石薄膜表面形貌图;
图3:实施例1中喷砂不锈钢上沉积金刚石薄膜样品的洛氏压痕(150kgf);
图4:实施例1中镜面不锈钢上沉积金刚石薄膜样品的洛氏压痕(150kgf)。
(五)具体实施方式
下面通过具体实施例对本发明作进一步的说明,但本发明的保护范围并不仅限于此。
实施例1:
利用喷砂机(KJ-1010,康捷喷砂机械)对不锈钢304表面喷砂2分钟,砂子为80目的玻璃砂,工作压力为0.3MPa。喷砂后以激光共聚焦(LSM700,德国卡尔蔡司)检测其粗糙度为20.3μm,以X射线衍射仪(X’pert Pro,荷兰帕纳科公司)检测其表层马氏体相体积含量为53.2%。以非平衡磁控溅射仪(udp650,英国米巴涂层有限公司)在其上面沉积Cr/CrN涂层。先用Ar等离子体清洗,基体偏压为400V,时间为20min。然后沉积Cr层,基体偏压为60V,沉积时间为10min。再在真空室中通入氮气,进行CrN反应磁控溅射沉积,N2体积流量在90min的沉积时间内逐渐从20sccm升高到30sccm。沉积得到的Cr层厚度为0.2μm,CrN层厚度为1.8μm。然后以热丝化学气相沉积仪(JUHF CVD 001上海交通大学)在上面沉积金刚石涂层。沉积前,样品经过粒度为W1,浓度为0.01g/ml金刚石微粉的丙酮悬浮液中超声振荡30min,再在纯丙酮中超声10s,以吹风机吹干。再进行化学气相沉积工艺,沉积时间为60min,沉积温度为630℃,沉积气压为1.3KPa,偏流4A,丙酮载气与氢气流量比为0.4,制得成品。
图1为制备样品表面金刚石的Raman图,金刚石峰明显,说明制备的薄膜为金刚石膜。图2为沉积后样品表面形貌图,说明金刚石膜连续致密。图3为制备样品的洛氏压痕图,压痕表面未出现裂纹,说明膜基结合结合强度良好。图4为未经过喷砂样品(其他工艺过程与参数相同)的洛氏压痕图,可见压痕表面存在裂纹,说明膜基结合强度差。
实施例2:
利用喷砂机(KJ-1010,康捷喷砂机械)对不锈钢301表面喷砂1分钟,砂子为320目的玻璃砂,工作压力为0.1MPa。喷砂后以激光共聚焦(LSM700,德国卡尔蔡司)检测其粗糙度为3.2μm,以X射线衍射仪(X’pert Pro,荷兰帕纳科公司)检测其表层马氏体相体积含量为20%。以非平衡磁控溅射仪(udp650,英国米巴涂层有限公司)在其上面沉积Cr/CrN涂层。先用Ar等离子体清洗,基体偏压为500V,时间为30min。然后沉积Cr层,基体偏压为100V,沉积时间为150min。再在真空室中通入氮气,进行CrN反应磁控溅射沉积,N2体积流量在1200min的沉积时间内逐渐从20sccm升高到30sccm。沉积得到的Cr层厚度为5μm,CrN层厚度为12μm。然后以热丝化学气相沉积仪(JUHF CVD 001上海交通大学)在上面沉积金刚石涂层。沉积前,样品经过粒度为W2,浓度为0.02g/ml金刚石微粉的丙酮悬浮液中超声振荡5min,再在纯丙酮中超声30s,以吹风机吹干。再进行化学气相沉积工艺,沉积时间为180min,沉积温度为600℃,沉积气压为6KPa,偏流1A,丙酮载气与氢气流量比为为0.45,制得成品。
制备的金刚石薄膜在HR-150A洛氏硬度计上以150kgf压入,得到的压痕附近无裂纹,说明金刚石膜与基体间具有良好的结合强度。
实施例3:
利用喷砂机(KJ-1010,康捷喷砂机械)对不锈钢201表面喷砂1分钟,砂子为30目的玻璃砂,工作压力为0.5MPa。喷砂后以激光共聚焦(LSM700,德国卡尔蔡司)检测其粗糙度为40μm,以X射线衍射仪(X’pert Pro,荷兰帕纳科公司)检测其表层马氏体相体积含量为100%。以非平衡磁控溅射仪(udp650,英国米巴涂层有限公司)在其上面沉积Cr/CrN涂层。先用Ar等离子体清洗,基体偏压为450V,时间为25min。然后沉积Cr层,基体偏压为80V,沉积时间为90min。再在真空室中通入氮气,进行CrN反应磁控溅射沉积,N2体积流量在600min的沉积时间内逐渐从20sccm升高到30sccm。沉积得到的Cr层厚度为3μm,CrN层厚度为6μm。然后以热丝化学气相沉积仪(JUHF CVD 001上海交通大学)在上面沉积金刚石涂层。沉积前,样品经过粒度为W0.2浓度为0.005g/ml金刚石微粉的丙酮悬浮液中超声振荡40min,再在纯丙酮中超声1s,以吹风机吹干。再进行化学气相沉积工艺,沉积时间为120min,沉积温度为700℃,沉积气压为3KPa,偏流3A,丙酮载气与氢气流量比为0.3,制得成品。
制备的金刚石薄膜在HR-150A洛氏硬度计上以150kgf压入,得到的压痕附近无裂纹,说明金刚石膜与基体间具有良好的结合强度。

Claims (5)

1.一种亚稳奥氏体不锈钢表面制备金刚石薄膜的方法,其特征在于,所述方法按如下步骤进行:
(1)对亚稳奥氏体不锈钢表面进行喷砂处理,所述喷砂处理采用30~320目的玻璃砂,工作压力为0.1~0.5MPa,喷砂时间为1~30min;
(2)通过磁控溅射技术在经过步骤(1)处理的亚稳奥氏体不锈钢表面沉积Cr/CrN过渡层,操作方法为:将经过步骤(1)处理的亚稳奥氏体不锈钢置于非平衡磁控溅射仪中,先用Ar等离子体清洗,基体偏压为400~500V,时间为20~30min;再沉积Cr层,基体偏压为60~100V,沉积时间为10~150min;然后在真空室中通入氮气,进行CrN反应磁控溅射沉积,N2的体积流量在90~1200min的沉积时间内从20sccm逐渐升高到30sccm,得到表面沉积有Cr/CrN过渡层的奥氏体不锈钢;
(3)将步骤(2)所得表面沉积有Cr/CrN过渡层的奥氏体不锈钢先浸没于金刚石微粉的丙酮悬浮液中,20~80KHz超声振荡5~40min,再浸没于丙酮中,20~80KHz超声振荡1~30s,干燥后,通过化学气相沉积工艺,在沉积温度600~700℃、沉积气压1.3~6KPa、偏流1~4A、丙酮载气与氢气流量比为0.3~0.45:1、沉积时间60~180min的条件下,在Cr/CrN过渡层上沉积金刚石薄膜,制得成品。
2.如权利要求1所述的亚稳奥氏体不锈钢表面制备金刚石薄膜的方法,其特征在于,步骤(1)中,所述的亚稳奥氏体不锈钢为200系列Cr-Mn型奥氏体不锈钢或300系列Cr-Ni型奥氏体不锈钢。
3.如权利要求1所述的亚稳奥氏体不锈钢表面制备金刚石薄膜的方法,其特征在于,步骤(1)中,所述的亚稳奥氏体不锈钢的产品牌号为201、202、301或304。
4.如权利要求1所述的亚稳奥氏体不锈钢表面制备金刚石薄膜的方法,其特征在于,步骤(3)中,所述金刚石微粉的粒度为W0.2~W2。
5.如权利要求1所述的亚稳奥氏体不锈钢表面制备金刚石薄膜的方法,其特征在于,步骤(3)中,所述金刚石微粉的丙酮悬浮液的浓度为0.005~0.02g/mL。
CN201610789664.XA 2016-08-31 2016-08-31 一种亚稳奥氏体不锈钢表面制备金刚石薄膜的方法 Active CN106282920B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610789664.XA CN106282920B (zh) 2016-08-31 2016-08-31 一种亚稳奥氏体不锈钢表面制备金刚石薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610789664.XA CN106282920B (zh) 2016-08-31 2016-08-31 一种亚稳奥氏体不锈钢表面制备金刚石薄膜的方法

Publications (2)

Publication Number Publication Date
CN106282920A CN106282920A (zh) 2017-01-04
CN106282920B true CN106282920B (zh) 2018-08-21

Family

ID=57673317

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610789664.XA Active CN106282920B (zh) 2016-08-31 2016-08-31 一种亚稳奥氏体不锈钢表面制备金刚石薄膜的方法

Country Status (1)

Country Link
CN (1) CN106282920B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106868507A (zh) * 2017-03-10 2017-06-20 黑皇蜂针业(常州)有限公司 针钩件及表面镀有氮化铬层的针钩件的制备方法
CN107937914B (zh) * 2017-11-27 2019-12-24 浙江工业大学 一种在不锈钢表面的过渡层上制备金刚石薄膜的方法
CN110527971B (zh) * 2019-10-12 2021-10-26 浙江工业大学 一种以Cr/Cr-Si为过渡层在不锈钢表面制备金刚石薄膜的方法
CN110629193A (zh) * 2019-10-31 2019-12-31 浙江工业大学 一种在不锈钢表面制备金刚石薄膜的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052435A (ja) * 2004-08-11 2006-02-23 Tocalo Co Ltd 半導体加工装置用部材及びその製造方法
CN103160796A (zh) * 2011-12-16 2013-06-19 中国科学院兰州化学物理研究所 在钢铁表面制备类金刚石薄膜的方法
CN103160781A (zh) * 2011-12-16 2013-06-19 中国科学院兰州化学物理研究所 模具钢表面多层梯度纳米复合类金刚石薄膜的制备方法
CN104593724A (zh) * 2015-01-13 2015-05-06 上海应用技术学院 掺杂硅元素的类金刚石涂层的制备工艺
CN105256278A (zh) * 2015-11-13 2016-01-20 浙江工业大学 一种在不锈钢表面制备金刚石薄膜的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052435A (ja) * 2004-08-11 2006-02-23 Tocalo Co Ltd 半導体加工装置用部材及びその製造方法
CN103160796A (zh) * 2011-12-16 2013-06-19 中国科学院兰州化学物理研究所 在钢铁表面制备类金刚石薄膜的方法
CN103160781A (zh) * 2011-12-16 2013-06-19 中国科学院兰州化学物理研究所 模具钢表面多层梯度纳米复合类金刚石薄膜的制备方法
CN104593724A (zh) * 2015-01-13 2015-05-06 上海应用技术学院 掺杂硅元素的类金刚石涂层的制备工艺
CN105256278A (zh) * 2015-11-13 2016-01-20 浙江工业大学 一种在不锈钢表面制备金刚石薄膜的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Effect of sandblasting on adhesion strength of diamond coatings;Bi Zhang et al.;《Thin Solid Films》;19971231;第307卷;第23页3.Experimentation,4.Experimental results *

Also Published As

Publication number Publication date
CN106282920A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
CN106282920B (zh) 一种亚稳奥氏体不锈钢表面制备金刚石薄膜的方法
Matthews et al. Hybrid techniques in surface engineering
US4902535A (en) Method for depositing hard coatings on titanium or titanium alloys
US5009966A (en) Hard outer coatings deposited on titanium or titanium alloys
Höck et al. Wear resistance of prenitrided hardcoated steels for tools and machine components
CN107400874B (zh) 一种在不锈钢表面制备金刚石薄膜的方法
Fu et al. Mechanical properties of DLC coating sputter deposited on surface nanocrystallized 304 stainless steel
CN103938211A (zh) 一种低应力、耐腐蚀的多层类金刚石(dlc)薄膜的沉积方法
Sen Kinetics of titanium nitride coatings deposited by thermo-reactive deposition technique
Haubner et al. On the formation of diamond coatings on WC/Co hard metal tools
Zhao et al. Enhanced tribological and corrosion properties of DLC/CrN multilayer films deposited by HPPMS
Raveh et al. Mechanical and tribological properties of dual-frequency plasma-deposited diamond-like carbon
Tillmann et al. Influences of substrate pretreatments and Ti/Cr interlayers on the adhesion and hardness of CrAlSiN and TiAlSiN films deposited on Al2O3 and ZrO2-8Y2O3 thermal barrier coatings
Fu et al. Deposition of diamond coating on pure titanium using micro-wave plasma assisted chemical vapor deposition
JP2002371352A (ja) バナジウム系被膜の成膜方法
Zhao et al. Effect of the bias-graded increment on the tribological and electrochemical corrosion properties of DLC films
ES2345910T3 (es) Estructura multicapa de pelicula delgada, componente que comprende dicha estructura y su metodo de deposicion.
Li et al. Deposition of an adherent diamond film on stainless steel using Cr/CrAlN as an interlayer
CN106319518A (zh) 金刚石/金属碳化物复合涂层及其制备方法和应用
JP2005526905A (ja) 鉄ベース基材上にダイヤモンド被膜を形成する方法およびcvdダイヤモンド被膜を施すためのかかる鉄ベース基材の使用。
Peng et al. Effect of traceable nitrogen from low-pressure plasma nitriding on diamond growth over WC-co cemented carbides
CN110387534A (zh) 一种纳米金刚石涂层硬质合金材料的制备方法
JP2014214336A (ja) クロム含有金属材料及びクロム含有金属材料の製造方法
Almond Aspects of various processes for coating and surface hardening
Nanbu et al. Wear resistance of AISI316L steel modified by pre-FPP treated DLC coating

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant