CN103151781B - 基于反馈线性化的有源电力滤波器自适应模糊控制方法 - Google Patents

基于反馈线性化的有源电力滤波器自适应模糊控制方法 Download PDF

Info

Publication number
CN103151781B
CN103151781B CN201310088915.8A CN201310088915A CN103151781B CN 103151781 B CN103151781 B CN 103151781B CN 201310088915 A CN201310088915 A CN 201310088915A CN 103151781 B CN103151781 B CN 103151781B
Authority
CN
China
Prior art keywords
fuzzy
adaptive
centerdot
control
active power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310088915.8A
Other languages
English (en)
Other versions
CN103151781A (zh
Inventor
侯世玺
费峻涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Campus of Hohai University
Original Assignee
Changzhou Campus of Hohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Campus of Hohai University filed Critical Changzhou Campus of Hohai University
Priority to CN201310088915.8A priority Critical patent/CN103151781B/zh
Publication of CN103151781A publication Critical patent/CN103151781A/zh
Application granted granted Critical
Publication of CN103151781B publication Critical patent/CN103151781B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Landscapes

  • Feedback Control In General (AREA)

Abstract

本发明公开了一种基于反馈线性化的有源电力滤波器自适应模糊控制方法,涉及有源电力滤波器的技术领域,针对电流环和电压环分别设计了独立的自适应控制器。电流环采用基于反馈线性化的有源电力滤波器自适应模糊控制器,综合利用了反馈线性化理论、模糊控制、滑模控制、自适应控制和李雅普诺夫稳定性理论,在保证全局稳定性的基础上,实现了谐波补偿的目的。电压环采用了自适应模糊PI控制,根据模糊规则,该控制策略能够自动调成PI参数,加强了系统的鲁棒性,改善系统的动态性能,确保了对指令电压的跟踪。

Description

基于反馈线性化的有源电力滤波器自适应模糊控制方法
技术领域:
本发明属于有源电力滤波技术领域,特别涉及一种基于反馈线性化的有源电力滤波器自适应模糊控制方法。
背景技术:
随着经济社会的快速发展和电力电子技术的广泛应用,各种非线性负载的应用迅速增长,这给人们带来便利的同时,也带来了严重的电能质量问题,诸如功率因数降低、电流电压波形畸变和相位失真等问题,所以必须对此进行有效的治理。目前主要采用外加滤波器的方式进行治理,滤波器分为无源滤波器和有源滤波器两种,由于无源滤波器存在只能补偿特定谐波等缺陷,所以现在对电能问题的治理主要集中在有源滤波器。有源滤波器是抑制电网谐波和补偿无功功率,改善电网供电质量的一种电力装置,与无源滤波器相比,它具有响应速度快,补偿特性不受电网阻抗的影响,并能提高电力系统的供电效率,因此受到了广泛的重视。
由于难以获得被控对象精确的数学模型,传统的控制方案难以达到理想的控制效果。智能自适应有源滤波器动态补偿和控制是有源电力滤波器(APF)控制系统研究的发展趋势。其中,反馈线性化理论能将非线性模型转化为线性模型,简化数学模型和控制器的设计。滑模变结构控制具有保持对系统结构不确定性、参数不确定性以及外界干扰等不确定因素的鲁棒性、快速响应等优点。模糊控制不依赖被控对象精确的数学模型,建模简单、控制精度高、非线性适应性强、鲁棒性强。因此,鉴于自适应控制,反馈线性化理论,滑模变结构控制,模糊控制相互之间具有很强的互补性,有必要综合运用。但是,迄今为止,存在的专利虽然都从不同的侧面对有源电力滤波器控制展开研究,但尚未有综合应用各种先进控制方法并基于李亚普诺夫分析方法对有源电力滤波器进行控制和动态补偿。
发明内容:
本发明为避免传统有源电力滤波器(APF)控制系统的不足,提供一种基于反馈线性化的有源电力滤波器自适应模糊控制方法,在保证全局稳定性的基础上,实现了谐波补偿的目的,并且加强了系统的鲁棒性,确保对指令电流的合理有效的跟踪。
本发明采用的技术方案是:
基于反馈线性化的有源电力滤波器自适应模糊控制方法,包括以下步骤:
1)根据电路理论和基尔霍夫定理得到有源电力滤波器的数学模型;
2)利用模糊控制、反馈线性化、滑模控制、自适应控制方法设计电流控制回路的基于反馈线性化的自适应模糊控制器,使补偿电流实时跟踪指令电流,达到消除谐波的目的;
3)设计电压控制回路的自适应模糊PI控制器,确保对指令电压的跟踪,加强系统的动态响应。
前述步骤1)中有源电力滤波器的数学模型为
di 1 dt = - R c L c i 1 + v 1 L c - v dc L c ( c 1 - 1 3 Σ m = 1 3 c m ) di 2 dt = - R c L c i 2 + v 2 L c - v dc L c ( c 2 - 1 3 Σ m = 1 3 c m ) di 3 dt = - R c L c i 3 + v 3 L c - v dc L c ( c 3 - 1 3 Σ m = 1 3 c m ) - - - ( 4 )
其中,v1,v2,v3分别为三相有源滤波器端电压,i1,i2,i3分别为三相补偿电流,vdc为直流侧电容电压,Lc为电感,Rc为电阻,t为时间,ck为开关函数,k=1,2,3。
前述开关函数指示IGBT的工作状态,定义为
其中,k=1,2,3。
前述步骤2)设计基于反馈线性化的自适应模糊控制器,具体为:
2-1)构造模糊系统,采用乘积推理机、单值模糊器和中心平均解模糊器,得到模糊系统的输出;
2-2)根据反馈线性化理论,设计自适应模糊控制器,并进行稳定性分析。
前述步骤2-1)构造模糊系统,得到模糊系统的输出具体为:
2-1-1)对每个变量xi,定义pi个模糊集合
2-1-2)采用模糊规则构造模糊系统,所述模糊规则为:R(j):如果x1的模糊集为x2的模糊集为……,xn的模糊集为那么,模糊系统的模糊集为
式中,li=1,2,...pi,i=1,2,...n,R(j):第j条模糊规则;
2-1-3)采用乘积推理机、单值模糊器和中心平均解模糊器,得到模糊系统的输出:
f ^ ( x | θ f ) = θ f T ξ ( x )
式中,ξ(x)为维向量,第l1...ln个元素为
δ l 1 . . . l n ( x ) = Π i = 1 n μ A i l i ( x i ) Σ l 1 = 1 p 1 . . . Σ l n = 1 p n ( Π i = 1 n μ A i l i ( x i ) ) , 为xi的隶属函数,集合
θ f ∈ R Π i = 1 n p i .
前述步骤2-2)设计自适应模糊控制器,具体为:
2-2-1)将反馈线性化理论作用于有源电力滤波器的数学模型,取变量x为三相补偿电流i1,i2,i3,函数 f ( x ) = - R c L c i k + v k L c , b = - v dc L c , u = c k - 1 3 Σ m = 1 3 c m , 则式(4)可写为
x · = f ( x ) + bu - - - ( 11 )
其中u为滑模控制律;
2-2-2)定义滑模面函数s(t),s(t)=qe(t)
其中q为滑模系数,e(t)为跟踪误差函数,e(t)=x-xm,xm为给定信号;
2-2-3)根据线性化反馈理论,设计滑模控制律u为
u = R - f ( x ) b - - - ( 13 )
R = x · m - ηsgn ( s ) , η > 0 - - - ( 14 )
η为sgn(s)的比例系数。
前述滑模控制律u中函数f(x)未知,故采用模糊系统逼近函数f(x),并增加一个补偿控制us,滑模控制律u调整为
u = R - f ^ ( x ) - u s b - - - ( 19 )
前述步骤2-2)中,对设计的自适应模糊控制器进行稳定性分析,采用基于李雅普诺夫方法,具体为:
2-2-a)模糊系统的向量θf T根据自适应律而变化,设计自适应率
θ f · = - rqsξ ( x ) - - - ( 20 )
其中,r为自适应参数;
2-2-b)定义李雅普诺夫函数V为
其中,θf *为最优参数;
2-2-c)对李雅普诺夫函数V进行求导,得到
其中,ω为最小逼近误差函数,且|ω|≤ωmax,ωmax为最小逼近误差的上界,
取补偿控制us≥supt≥0|ω|,则从而保证
其中,supt≥0|ω|表示取ω的绝对值的最大值。
前述步骤3)中,自适应模糊PI控制器采用两输入,两输出的模糊控制器;所述两输入采用三角形隶属度函数曲线;所述两输出采用梯形隶属度函数曲线。
由上说明的技术方案可以看出本发明的有益效果在:综合利用反馈线性化、模糊控制、滑模控制和李雅普诺夫理论设计的自适应模糊控制器,提高了系统对非线性负载变化和系统参数不匹配的鲁棒性和适应性,进一步确保了系统在负载电网环境下实时进行谐波补偿的能力。采用自适应模糊PI控制替代传统的PI控制来稳定直流侧电容电压,进一步提高了系统的鲁棒性,降低稳态误差,改善了系统的动态性能。
附图说明:
图1为并联型APF的主电路结构;
图2为基于反馈线性化的自适应模糊控制器原理框图;
图3为自适应模糊PI控制的结构框图;
图4为偏差和偏差变化率的隶属度函数图;
图5为输出Kp和Ki的隶属度函数图;
图6为变量x的隶属度函数;
图7为负载电流波形;
图8为电源电流波形;
图9为t=0s负载电流谐波分析;
图10为t=0s电源电流谐波分析;
图11为t=0.06s电源电流谐波分析;
图12为t=0.12s负载电流谐波分析;
图13为t=0.12s电源电流谐波分析;
图14为指令电流和补偿电流跟踪波形;
图15为补偿电流跟踪偏差的波形;
图16为自适应律仿真波形;
图17为直流侧电压波形。
其中,图1中的符号:
vs1,vs2,vs3——三相电源电压;is1,is2,is3——三相电源电流;iL1,iL2,iL3——负载电流;v1,v2,v3——三相有源滤波器端电压;i1,i2,i3——三相补偿电流;v1M,v2M,v3M,vMN——M点到a、b、c、N点的电压;idc——直流侧电容电流;Lc——电感;Rc——电阻;
图3中的符号:
——指令电压,vdc——直流侧电容电压,ΔI*——指令电压和直流侧电容电压的偏差经过自适应模糊PI控制器处理后叠加到谐波电流上的直流分量。
具体实施方式:
下面结合附图和具体实施方式对本发明作进一步说明:
基于反馈线性化的有源电力滤波器自适应模糊控制方法,包括以下步骤:
(一)根据电路理论和基尔霍夫定理得到有源电力滤波器的数学模型
本发明主要涉及并联电压型有源电力滤波器(APF),用来消除三相二极管桥式整流负载引起的谐波污染。其主电路结构如图1。
有源电力滤波器的基本工作原理是,通过检测补偿对象的电压和电流,经指令电流运算电路计算得出补偿电流的指令信号,该信号经补偿电流发生电路放大,得出补偿电流,补偿电流与负载电流中要补偿的谐波及无功等电流抵消,最终得到期望的电源电流。
根据电路理论和基尔霍夫定理可得到如下三个不同的公式:
v 1 = L c di 1 dt + R c i 1 + v 1 M + v MN v 2 = L c di 2 dt + R c i 2 + v 2 M + v MN v 3 = L c di 3 dt + R c i 3 + v 3 M + v MN - - - ( 1 )
其中,v1,v2,v3分别为三相有源滤波器端电压,i1,i2,i3分别为三相补偿电流,Lc为电感,Rc为电阻,t为时间,v1M,v2M,v3M,vMN分别为M点到a、b、c、N点的电压;
假设v1+v2+v3=0,i1+i2+i3=0,可以得到
v MN = - 1 3 Σ m = 1 3 v mM - - - ( 2 )
定义ck为开关函数,指示IGBT的工作状态,定义如下:
其中,k=1,2,3,
那么,vkM=ckvdc,其中,vdc为直流侧电容电压,结合式(1)和式(2),有源滤波器的数学模型的动力学方程可改写为
di 1 dt = - R c L c i 1 + v 1 L c - v dc L c ( c 1 - 1 3 Σ m = 1 3 c m ) di 2 dt = - R c L c i 2 + v 2 L c - v dc L c ( c 2 - 1 3 Σ m - 1 3 c m ) di 3 dt = - R c L c i 3 + v 3 L c - v dc L c ( c 3 - 1 3 Σ m = 1 3 c m ) - - - ( 4 )
以下的基于反馈线性化的自适应模糊控制器的设计就是基于公式(4)的模型。
(二)利用模糊控制、反馈线性化、滑模控制、自适应控制方法设计电流控制回路的基于反馈线性化的自适应模糊控制器,使补偿电流实时跟踪指令电流,达到消除谐波的目的,具体为
2-1)构造模糊系统,采用乘积推理机、单值模糊器和中心平均解模糊器,得到模糊系统的输出
自适应模糊控制是指具有自适应学习算法的模糊逻辑系统,其学习算法是依靠数据信息来调整模糊逻辑系统的参数,且可以保证控制系统的稳定性。
我们以模糊系统来逼近函数f(x)为例,介绍如何构造模糊系统
首先对每个变量xi(i=1,2,...,n),定义pi个模糊集合
然后,采用以下条模糊规则来构造模糊系统
第j条模糊规则R(j):如果x1的模糊集为x2的模糊集为……,xn的模糊集为那么模糊系统的模糊集为
式中,li=1,2,...pi,i=1,2,...n,
设模糊集的中心值为采用乘积推理机、单值模糊器和中心平均解模糊器,得到模糊系统的输出为
f ^ ( x | θ f ) = Σ l 1 = 1 p 1 . . . Σ l n = 1 p n y ‾ f l 1 . . . l n ( Π i = 1 n μ A i l i ( x i ) ) Σ l 1 = 1 p 1 . . . Σ l n = 1 p n ( Π i = 1 n μ A i l i ( x i ) )
式中,为变量xi的隶属函数,集合
令中心值为自由参数,放在集合中,引入向量ξ(x),则模糊系统
f ^ ( x | θ f ) = θ f T ξ ( x ) - - - ( 5 )
式中,ξ(x)为维向量,其第l1...ln个元素为
ξ l 1 . . . l n ( x ) = Π i = 1 n μ A i l i ( x i ) Σ l 1 = 1 p 1 . . . Σ l n = 1 p n ( Π i = 1 n μ A i l i ( x i ) )
2-2)根据反馈线性化理论,设计自适应模糊控制器
反馈线性化理论为:
考虑如下SISO系统:
x · = f ( x ) + g ( x ) β
y=h(x)  (6)
其中,变量x∈Rn,函数f(x),g(x):Rn→Rn(输入为n维常数,那么输出也是n维常数),函数h(x):Rn→Rn,β为线性化反馈控制律,y为SISO系统的输出,且f(0)=0,h(0)=0。
y · = ∂ h ∂ x x · = ∂ h ∂ x f ( x ) + ∂ h ∂ x g ( x ) β - - - ( 7 )
定义为 定义为
y · = f ~ ( x ) + g ~ ( x ) β
假设设计线性化反馈控制律β为:
β = R - f ~ ( x ) g ~ ( x ) - - - ( 8 )
则公式(7)变为线性系统
设位置指令为ym,取R为
R = y · m - α ( y - y m ) - - - ( 9 )
其中,α>0,为比例系数,
定义跟踪误差函数为e(t),对于输出y,e(t)=y-ym
则(9)式变为 e · + αe = 0 - - - ( 10 )
显然(10)为误差动态方程,跟踪误差函数e(t)以指数形式趋近于零。如果则e(t)在所有时间都为零。
下面我们主要介绍如何设计基于反馈线性化的自适应模糊控制器使其实现控制效果,并对设计的控制器进行系统的稳定性分析。如图2所示,
将上述反馈线性化理论作用于有源电力滤波器的数学模型式(4),则式(4)的3个方程可以写成以下形式:
x · = f ( x ) + bu - - - ( 11 )
其中,变量x对应三相补偿电流i1,i2,i3,函数 f ( x ) = - R c L c i k + v k L c , b = - v dc L c ,
u = c k - 1 3 Σ m = 1 3 c m ,
其中,k=1,2,3
控制的目标就是使变量x跟踪一个给定信号xm,对于变量x,跟踪误差函数e(t)为,
e(t)=x-xm
定义滑模面函数s(t)为s(t)=qe(t)  (12)
q为滑模系数
根据线性化反馈理论,将滑模控制律u设计为
u = R - f ( x ) b - - - ( 13 )
R = x · m - ηsgn ( s ) , η > 0 - - - ( 14 )
η是sgn(s)的比例系数
稳定性证明:
定义李雅普诺夫函数V
V = 1 2 s 2 - - - ( 15 )
V · = s s · = sq e · = sq ( x · - x · m ) - - - ( 16 )
= sq ( f ( x ) + bu - x · m )
将式(13)代入式(16),并结合式(14)得
V · = - sqηsgn ( s ) - - - ( 17 )
V · = - qη | s | - - - ( 18 )
那么 V · ≤ 0
因为函数f(x)未知,则滑模控制律u不可用,可采用模糊系统逼近函数f(x),同时为了确保控制效果,在滑模控制律u中增加一个补偿控制us
则滑模控制律u式(13)变为
u = R - f ^ ( x ) - u x b - - - ( 19 )
模糊系统的向量根据自适应律而变化,设计自适应律
θ · f = - rqsξ ( x ) - - - ( 20 )
r为自适应参数。
稳定性证明:
设存在最优参数
θ f * = arg min θ f ∈ Ω f [ sup | f ^ ( x | θ f x ∈ R n ) - f ( x ) | ] - - - ( 21 )
其中,Ωf为θf的集合;
定义最小逼近误差函数为ω为
ω = f ( x ) - f ^ ( x | θ f * ) - - - ( 22 )
|ω|≤ωmax  (23)
ωmax为最小逼近误差的上界;
s · = q e · = q ( x · - x · m ) = q [ f ( x ) + bu - x · m ]
= q [ f ( x ) + R - f ^ ( x ) - u s - x · m ]
= q [ f ^ ( x | θ f * ) - f ^ ( x ) - u s - ηsgn ( s ) + ω ] - - - ( 24 )
其中,
定义李雅普诺夫函数
则结合式(24)
其中,
将式(20)代入式(26)得
V · = - qη | s | + qs ( ω - u s ) ≤ - qη | s | + q | s | ( sup t ≥ 0 | ω | - u s ) - - - ( 27 )
取us≥supt≥0|ω|,则式(27)可写成
其中,supt≥0|ω|表示取ω的绝对值的最大值
那么我们就可以得到
V · ≤ 0 - - - ( 28 )
(三)设计电压控制回路的自适应模糊PI控制器,确保对指令电压的跟踪,加强系统的动态响应
PI控制算法作为一种传统的控制方法已经被广泛应用于有源电力滤波器控制中,但是它存在参数不能在线整定的缺点,从而影响其控制效果进一步提高。本节提出的自适应模糊PI控制是模糊控制和PI控制的结合,能够通过对PI调节器的参数进行自适应调节以实现对系统的控制,并且具有较强的鲁棒性和更理想的控制精度。自适应模糊PI控制的结构框图如图3所示。
我们使用的是一个两输入、两输出的模糊控制器,其中将偏差输入E和偏差变化率输入EC的模糊论域定为(-6,6),模糊子集为{NL,NM,NS,ZO,PS,PM,PL},采用三角形隶属度函数曲线,如图4所示,输出Kp和输出Ki的模糊论域定为(0,0.1),模糊子集为{S,L},采用梯形隶属度函数曲线,如图5所示。根据不同偏差E和偏差变化率EC下对输出Kp和Ki的自整定要求及专家经验,我们可以列出Kp和Ki的控制规则表如表1所示。
表1 模糊控制规则表
实施例
为了验证本发明的可行性,在Matlab下进行了仿真实验。仿真结果验证了基于反馈线性化的自适应模糊控制器和自适应模糊PI控制器的效果。
仿真参数选取如下:
滑模面函数s(t)为s=qe,其中滑模系数q=100,
对五种隶属函数进行模糊化:隶属函数μ=exp[-(x+4-(i-1)*1.6)2],i=1,…,6,如图6所示
自适应参数取r=10000,补偿控制us=2.5,sgn(s)的比例系数η=10。
模糊系统中向量θf取为, θ f = θ fa θ fb θ fc = θ fa 1 θ fa 2 θ fa 3 θ fa 4 θ fa 5 θ fa 6 θ fb 1 θ fb 2 θ fb 3 θ fb 4 θ fb 5 θ fb 6 θ fc 1 θ fc 2 θ fc 3 θ fc 4 θ fc 5 θ fc 6
电源电压vs1=vs2=vs3=110V,频率f=50Hz,非线性负载的电阻10Ω,电感2mH,补偿电路电感Lc=10mH,电容C=100μF。
本实施例中,0.04s时补偿电路接入开关闭合,有源滤波器开始工作,并在0.1s时接入一个相同的额外的非线性负载。补偿电流采用基于反馈线性化的自适应模糊控制,直流侧电容电压采用自适应模糊PI控制。
为了简单明了,波形图中只列出了A相电流。图7为负载电流波形,可见电路中存在着大量的谐波。如图8所示,当有源电力滤波器开始工作以后,电流在一个周期之内迅速接近正弦波,0.1s增加负载以后,电流也能达到很好的响应速度,最后稳定在正弦波。参见图9-图13的电流谐波分析,0s时电流的畸变率为24.71%(图9和图10),0.04s补偿电路接入开关闭合,在0.06s电流畸变率降低为为1.51%(图11),0.1s时接入一个相同的额外的非线性负载,0.12s负载电流的畸变率为22.24%(图12),但是电源电流的畸变率仅为1.36%(图13)。因此采用基于反馈线性化的自适应模糊控制的补偿电流控制方法的有源电力滤波器不仅能很好的消除由非线性负载产生的谐波,并且稳定性也满足了较高的要求。实验结果证明了基于反馈线性化的自适应模糊控制具有较好的快速响应和鲁棒性。
图14为补偿电流和指令电流波形,补偿电流跟踪偏差波形如图15所示,可以看到虽然0.04s,APF刚开始工作时,偏差有较大的波动,但在0.06s偏差很快趋近于零,0.1s增加一个非线性负载后也能在一个周期0.02s内偏差趋于稳定,整体来看补偿电流能很好的跟踪上指令电流,偏差也在合理的范围内,这样能达到消除谐波电流的目的。因此基于反馈线性化的自适应模糊控制作为电流跟踪控制的效果得到了明显的验证。图16为自适应律的仿真波形,可以看到0.04s和0.1s后基本都能趋于一个稳定值,没有发散的情况,说明了基于反馈线性化的自适应模糊控制能保证参数的全局稳定性。图17为直流侧电压波形,采用自适应模糊PI控制,可以看到虽然电压不是常数,有些许波动,但是在现实中是可以接受的,可以认为电压已经得到了很好的控制,0.1s后负载发生变化,电压也能较快的响应,反映了自适应模糊PI控制具有较好的鲁棒性。
以上已以较佳实施例公开了本发明,然其并非用以限制本发明,凡采用等同替换或者等效变换方式所获得的技术方案,均落在本发明的保护范围之内。

Claims (4)

1.基于反馈线性化的有源电力滤波器自适应模糊控制方法,其特征在于,包括以下步骤:
1)根据电路理论和基尔霍夫定理得到有源电力滤波器的数学模型;所述有源电力滤波器的数学模型为:
di 1 dt = - R c L c i 1 + v 1 L c - v dc L c ( c 1 - 1 3 Σ m = 1 3 c m ) di 2 dt = - R c L c i 2 + v 2 L c - v dc L c ( c 2 - 1 3 Σ m = 1 3 c m ) di 3 dt = - R c L c i 3 + v 3 L c - v dc L c ( c 3 - 1 3 Σ m = 1 3 c m ) - - - ( 4 )
其中,v1,v2,v3分别为三相有源滤波器端电压,i1,i2,i3分别为三相补偿电流,vdc为直流侧电容电压,Lc为电感,Rc为电阻,t为时间,ck为开关函数,k=1,2,3;
2)利用模糊控制、反馈线性化、滑模控制、自适应控制方法设计电流控制回路的基于反馈线性化的自适应模糊控制器,使补偿电流实时跟踪指令电流,达到消除谐波的目的;具体为:
2-1)构造模糊系统,采用乘积推理机、单值模糊器和中心平均解模糊器,得到模糊系统的输出;
2-2)根据反馈线性化理论,设计自适应模糊控制器,并进行稳定性分析;
所述步骤2-2)设计自适应模糊控制器,具体为:
2-2-1)将反馈线性化理论作用于有源电力滤波器的数学模型,取变量x为三相补偿电流i1,i2,i3,函数 f ( x ) = - R c L c i k + v k L c , b = - v dc L c , u = c k - 1 3 Σ m = 1 3 c m ,
则式(4)可写为
x · = f ( x ) + bu - - - ( 11 )
其中u为滑模控制律,cm为开关函数;
2-2-2)定义滑模面函数s(t),s(t)=qe(t)
其中q为滑模系数,e(t)为跟踪误差函数,e(t)=x-xm,xm为给定信号;
2-2-3)根据线性化反馈理论,设计滑模控制律u为
u = R - f ( x ) b - - - ( 13 )
R = x · m - ηsgn ( s ( t ) ) , η > 0 - - - ( 14 )
η为sgn(s(t))的比例系数;
所述滑模控制律u中函数f(x)未知,故采用模糊系统逼近函数f(x),并增加一个补偿控制us,滑模控制律u调整为
u = R - f ^ ( x ) - u s b - - - ( 19 ) ;
所述步骤2-2)中,对设计的自适应模糊控制器进行稳定性分析,采用基于李雅普诺夫方法,具体为:
2-2-a)模糊系统的向量θf T根据自适应律而变化,设计自适应率
θ · f = - rqs ( t ) ξ ( x ) - - - ( 20 )
其中,r为自适应参数,ξ(x)为模糊系统的输出中的维向量,pi为模糊系统的变量xi的模糊规则数;
2-2-b)定义李雅普诺夫函数V为
其中,θf *为最优参数;
2-2-c)对李雅普诺夫函数V进行求导,得到
其中,ω为最小逼近误差函数,且|ω|≤ωmax,ωmax为最小逼近误差的上界,
取补偿控制us≥supt≥0|ω|,则 V · ≤ - qη | s ( t ) | , 从而保证 V · ≤ 0 ,
其中,supt≥0|ω|表示取ω的绝对值的最大值;
3)设计电压控制回路的自适应模糊PI控制器,确保对指令电压的跟踪,加强系统的动态响应。
2.根据权利要求1所述的基于反馈线性化的有源电力滤波器自适应模糊控制方法,其特征在于,所述开关函数指示IGBT的工作状态,定义为
其中,k=1,2,3。
3.根据权利要求1所述的基于反馈线性化的有源电力滤波器自适应模糊控制方法,其特征在于,所述步骤2-1)构造模糊系统,得到模糊系统的输出具体为:
2-1-1)对每个变量xi,定义pi个模糊集合
2-1-2)采用模糊规则构造模糊系统,所述模糊规则为:R(j):如果x1的模糊集为x2的模糊集为……,xn的模糊集为那么,模糊系统的模糊集为
式中,li=1,2,...pi,i=1,2,...n,R(j):第j条模糊规则;
2-1-3)采用乘积推理机、单值模糊器和中心平均解模糊器,得到模糊系统的输出:
f · ( x | θ f ) = θ f T ξ ( x ) - - - ( 5 )
式中,ξ(x)为维向量,第l1...ln个元素为
ξ l 1 · · · l n ( x ) = Π i = 1 n μ A i l i ( x i ) Σ l 1 = 1 p 1 · · · Σ l n = 1 p n ( Π i = 1 n μ A i l i ( x i ) ) ,
为变量xi的隶属函数,集合
4.根据权利要求1所述的基于反馈线性化的有源电力滤波器自适应模糊控制方法,其特征在于,所述步骤3)中,自适应模糊PI控制器采用两输入,两输出的模糊控制器;所述两输入采用三角形隶属度函数曲线;所述两输出采用梯形隶属度函数曲线。
CN201310088915.8A 2013-03-19 2013-03-19 基于反馈线性化的有源电力滤波器自适应模糊控制方法 Expired - Fee Related CN103151781B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310088915.8A CN103151781B (zh) 2013-03-19 2013-03-19 基于反馈线性化的有源电力滤波器自适应模糊控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310088915.8A CN103151781B (zh) 2013-03-19 2013-03-19 基于反馈线性化的有源电力滤波器自适应模糊控制方法

Publications (2)

Publication Number Publication Date
CN103151781A CN103151781A (zh) 2013-06-12
CN103151781B true CN103151781B (zh) 2014-12-10

Family

ID=48549712

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310088915.8A Expired - Fee Related CN103151781B (zh) 2013-03-19 2013-03-19 基于反馈线性化的有源电力滤波器自适应模糊控制方法

Country Status (1)

Country Link
CN (1) CN103151781B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293965B (zh) * 2013-06-19 2016-08-24 河海大学常州校区 有源电力滤波器的反演控制方法
CN103311930A (zh) * 2013-06-19 2013-09-18 河海大学常州校区 有源滤波器的模糊pi参数自整定反馈线性化滑模控制方法
CN103293963B (zh) * 2013-06-19 2016-04-06 河海大学常州校区 有源电力滤波器自适应模糊反演跟踪控制方法
CN103595050B (zh) * 2013-11-22 2015-06-10 河海大学常州校区 模型参考自适应模糊控制的有源电力滤波器控制方法
CN104410074B (zh) * 2014-12-17 2016-11-09 电子科技大学 一种基于pi自适应的有源电力滤波器复合控制方法
CN104809296B (zh) * 2015-04-30 2017-09-19 河海大学 直流输电系统抗通信时延的鲁棒降维观测器设计方法
CN105140924B (zh) * 2015-09-24 2017-07-18 上海电力学院 一种混合型有源滤波器的非线性控制器设计方法
CN106406090B (zh) * 2016-09-13 2019-06-04 河海大学常州校区 基于模糊反演的有源电力滤波器fnn控制方法
CN106549399B (zh) * 2016-12-10 2018-11-02 三峡大学 一种基于滑模pi复合控制算法的并联apf直流侧电压控制方法
CN107831655B (zh) * 2017-10-23 2020-11-24 河海大学常州校区 微陀螺仪的分数阶自适应反演模糊滑模控制方法
CN109546660B (zh) * 2018-11-22 2021-03-02 中国航空综合技术研究所 基于神经滑模控制策略的有源电力滤波电路和控制方法
CN111241656B (zh) * 2019-12-28 2023-03-14 国网江西省电力有限公司电力科学研究院 一种配电变压器出口电压异常点检测算法
CN113363963B (zh) * 2021-05-20 2022-05-20 南昌大学 一种改进麻雀搜索算法优化三相sapf直流侧控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604848A (zh) * 2009-07-07 2009-12-16 东南大学 单级三相光伏并网系统的模糊滑模控制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604848A (zh) * 2009-07-07 2009-12-16 东南大学 单级三相光伏并网系统的模糊滑模控制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Adaptive Fuzzy Sliding Mode Control Design: Lyapunov Approach;H.F. Ho等;《Control Conference, 2004. 5th Asian (Volume:3 )》;20040723;第1502-1507页 *
H.F.Ho等.AdaptiveFuzzySlidingModeControlDesign:LyapunovApproach.《ControlConference 2004. 5th Asian (Volume:3 )》.2004 *
徐长波等.自适应模糊控制在三相三线有源电力滤波器中的应用.《第二十七届中国控制会议论文集》.2008,第402-405页. *
自适应模糊控制在三相三线有源电力滤波器中的应用;徐长波等;《第二十七届中国控制会议论文集》;20080718;第402-405页 *

Also Published As

Publication number Publication date
CN103151781A (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
CN103151781B (zh) 基于反馈线性化的有源电力滤波器自适应模糊控制方法
CN102856904B (zh) 基于模糊逼近的有源滤波器自适应模糊滑模控制方法
Fei et al. Fuzzy double hidden layer recurrent neural terminal sliding mode control of single-phase active power filter
Zainuri et al. DC‐link capacitor voltage control for single‐phase shunt active power filter with step size error cancellation in self‐charging algorithm
CN105610162B (zh) 一种有源电力滤波器自适应模糊滑模rbf神经网络控制方法
CN102832621B (zh) 三相并联型有源滤波器自适应rbf神经网络控制方法
CN104393756B (zh) 一种直流升压变换器系统控制方法
CN103293963B (zh) 有源电力滤波器自适应模糊反演跟踪控制方法
CN103560516B (zh) 一种并联混合型有源电力滤波器及其控制方法
CN104135003B (zh) 一种基于自抗扰和重复控制的有源电力滤波器控制方法
CN101847873B (zh) 一种新型有源滤波器的非线性控制方法
CN107147120A (zh) 有源电力滤波器rbf双神经网络自适应滑模控制方法
CN107579526A (zh) 一种基于反步滑模的电力弹簧电压控制方法
CN103441499B (zh) 三相并联型有源滤波器的线性化反馈神经滑模控制方法
CN103779865A (zh) 一种基于模型参考自适应模糊控制的有源电力滤波器控制方法
Chen et al. Dynamic sliding mode control of active power filter with integral switching gain
Puhan et al. A comparative analysis of shunt active power filter and hybrid active power filter with different control techniques applied for harmonic elimination in a single phase system
CN103311930A (zh) 有源滤波器的模糊pi参数自整定反馈线性化滑模控制方法
CN108400615A (zh) 一种光伏发电系统低电压穿越特性分析方法
CN105305448A (zh) 基于模糊pi复合控制的有源滤波器自抗扰控制方法
Jha et al. Neuro-Fuzzy based Controller for a Three-Phase Four-Wire Shunt Active Power Filter
CN106406090B (zh) 基于模糊反演的有源电力滤波器fnn控制方法
CN106374490B (zh) 基于动态面模糊滑模控制的有源电力滤波器控制方法
Zahariah et al. Harmonic mitigation in grid-connected distributed energy systems using PI and fuzzy logic controller
Fei et al. Adaptive fuzzy control with supervisory compensator for three-phase active power filter

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141210

Termination date: 20180319