CN1031257A - 降低钨-镍-铁合金机械特性值分散性的方法 - Google Patents

降低钨-镍-铁合金机械特性值分散性的方法 Download PDF

Info

Publication number
CN1031257A
CN1031257A CN88103710A CN88103710A CN1031257A CN 1031257 A CN1031257 A CN 1031257A CN 88103710 A CN88103710 A CN 88103710A CN 88103710 A CN88103710 A CN 88103710A CN 1031257 A CN1031257 A CN 1031257A
Authority
CN
China
Prior art keywords
powder
tungsten
alloy
nickel
ferro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN88103710A
Other languages
English (en)
Other versions
CN1013042B (zh
Inventor
劳伦特·布鲁尼歇尔兹
盖伊·尼可拉斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cime Bocuze SA
Original Assignee
Cime Bocuze SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cime Bocuze SA filed Critical Cime Bocuze SA
Publication of CN1031257A publication Critical patent/CN1031257A/zh
Publication of CN1013042B publication Critical patent/CN1013042B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Contacts (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

本发明涉及降低粉末烧结所得钨-镍-铁合金机 械性能分散性的方法,其中向合金中同步添加钴和 锰。而且可应用不同来源的钨粉,克服这些合金制造 过程中的某些条件波动并可提高某些性能如延伸率 和硬度。

Description

本发明涉及降低钨-镍-铁合金机械特性值分散性的方法。
本技术领域里的普通技术人员已知,用于制造平衡体,辐射和振动吸收体以及具有钻孔能力的抛物体应具有相当高的比重。
因此,为制得这些物体应用了所谓的“重”合金,其中主要含均匀分散在金属基质中的钨,而基质一般由粘结元素如镍和铁构成。这种合金已见于例如USP3888636。这些合金主要用粉末冶金法制得,即使其各组分呈粉态,经压缩成型,烧结并在必要时进行热处理和机械处理,从而可得其机械性能如断裂强度,弹性极限,延伸率和硬度达到所要求值的产品。
不过,已发现这些性能在不同的合金配料之间各不相同,甚至可能远远偏离所要求的值。
申请人对这些现象进行广泛深入的研究后发现,这种分散性基本上是因两种因素所致:
-一方面,是钨粉特性如其直径,形态和粒径分布,根据其制造条件的变化很大。事实上,特别是在粉末压缩期间,这种变化使产品达到不同的表观密度,从而导致后续处理过程中的状态变化;这又使所得合金机械性能各异。因此,在某些生产循环过程中,要根据粉末性能改变处理条件。尽管这种方式很有效,但要在每一循环过程中进行附加控制并使设备改型。
-另一方面,这种分散性还因粉末处理条件所致。事实上,本技术领域里的普通技术人员已知,偏离常规烧结温度±20℃并且处理炉中产品导出速度变化几毫米/分钟可使机械性能明显变化。此外,降低速度会使强度和硬度相应降低。
至于温度,20℃左右出现任何温度下降均会对延伸率产生不良影响。如果所显示的温度基本上不可能发生这种变化,则对于以极高速度送过烧结炉的产品,这也不会再出现相同的情况,因为这不会使整个炉长度上的热变化相同。但是,难以按工业规模控制这种速度变化,甚至可以肯定炉内温度总是对应于相同的温度梯度,因为衬料的绝热能力以及炉内的气相环境随着时间变化。
正是为了克服这些困难,申请人才开发了可降低各种特性粉末制成并经历变温处理条件的W-Ni-Fe合金机械性能分散性的方法,其中不用改变实际处理条件。
该方法的特征是同步将钴和锰加入初始粉末中。
因此本发明仅仅是将含85-99%(重量)钨,1-10%(重量)镍和1-10%(重量)铁的粉末与同步加入的钴粉和锰粉“掺杂”起来,这是因为对于这类合金来说钴单独使用时是一种促脆剂,会如图1所示导致合金延展性损失,图中根据粉末中钴的重量%含量示出了相应合金的断裂强度,弹性极限和延展性。
这种掺杂是按混合方式在将镍和铁加入钨时或在其后进行,可采本技术领域普通技术人员熟知的各种混合器。所加粉的粒径与钨相近即1-15μm    FISHER并优选为3-6μm以达到更高的机械性能。按优选方式,所加粉量应使最终粉末中含0.02-2%(重量)钴和0.02-2%(重量)锰。
掺杂粉然后进行以下处理:
用均衡或单轴压制机压制成适宜尺寸的产品;
在通风炉中于1000-1700℃下将该产品烧结1-10小时,然后还可根据产品的最终用途而进行以下处理:
于700-1300℃的部分真空条件下将烧结产品脱气2-20小时;
锻压约5-20%的脱气产品;
于300-1200℃加热的部分真空条件下使产品回火。
已发现加钴和锰几乎可消除因粉末的不同特性以及处理条件变化而引起的效应,同时又可提高所得合金的硬度和延展性。同时,还可扩大炉中温度和产品导出速度的操作范围。
本发明现用以下实施例详细说明,其结果已示于附图2,3,4和5中。
4种不同来源的钨粉配合料分别标为1,2,3和4,其中均含4.5%镍和2.5%铁,将每一种分成两份。其中之一按本发明与1%(重量)钴和1%(重量)锰掺杂起来,两部分均进行前述相同条件下的操作和处理。
以下每一步骤后测定产品的弹性极限Rp,断裂强度Rm和延伸率A%:烧结-脱气-锻压-回火,图2和3中分别标为A、B、C和D。
图2表明了现有技术中合金每一种粉特别是第4种测得值的分散性。
图3表明了本发明合金测得值的分组现象,实际上在合金制造过程的最后阶段这些值是一致的。这些结果表明可不考虑所用钨粉的来源。
此外,掺杂合金机械性能最终值基本上对应于具有更好特性未掺杂粉的最终值,即
Rp≈1100MPa,Rm≈1050MPa,A%≈8
另一组试验中,采用了与上述相同的粉末配合料,分成两部分,一部分未掺杂,标为a,另一部分按本发明掺杂,标为b。两部分均分成9份,标为1-9。每一份都进行上述处理,虽然烧结条件均不同,但对于相同标号的组份a和b相同。
通风炉中进行烧结的条件差别在于:
一方面是炉区和出口处的温度,可选为3个不同的值:一般烧结温度(1550℃左右);低温(1530℃左右)和高温(1570℃左右)。
另一方面是烧结炉中产品通过时的速度,可选为3个不同的值:一般速度(17mm/min);低速(11mm/min)和高速(26mm/min)。
每一份的温度和速度条件列于下表。
组份标号    温度(℃)    速度(mm/min)
1a-1b    11
2a-2b    1550    17
3a-3b    26
组份标号    温度(℃)    速度(mm/min)
4a-4b    11
5a-5b    1530    17
6a-6b    26
7a-7b    11
8a-8b    1570    17
9a-9b    26
测定回火后的每一种合金的断裂强度Rm(MPa),弹性极限Rp0.2(MPa),Vickers硬度,延伸率(%)。
图4中标明的是未掺杂组份a,图5中标明的掺杂组分b。可以看出,速度和温度差别使未掺杂产品出现很明显的机械性能分散性。相反,对于掺杂产品,可以注意到断裂强度和弹性极限值的分组现象,而硬度和延伸率几乎一致。而且,硬度和延伸率值明显得到了改善,与速度无关。
从以上可以明显看出本发明的优越性,除了抑制分散性而外,还可提高某些性能值,而又可不考虑速度和温度问题,这进而给生产周期以及生产设备带来更大的灵活性,并且可望提高生产能力,因为可加快炉中产品出料速度。

Claims (4)

1、降低用不同来源粉末于变温处理条件下进行处理的钨-镍-铁合金机械性能分散性的方法,其特征是向初始粉末中同步加钴和锰粉。
2、按权利要求1的方法,其特征是所加粉量应使最终粉中含0.02-2%(重量)钴和0.02-2%(重量)锰。
3、按权利要求1的方法,其特征是所加粉的FISHER粒度为1-15μm。
4、按权利要求3的方法,其特征是粒径为3-6μm。
CN88103710A 1987-06-23 1988-06-21 降低钨-镍-铁合金机械特性值分散性的方法 Expired CN1013042B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8709169A FR2617192B1 (fr) 1987-06-23 1987-06-23 Procede pour reduire la dispersion des valeurs des caracteristiques mecaniques d'alliages de tungstene-nickel-fer
FR8709169 1987-06-23

Publications (2)

Publication Number Publication Date
CN1031257A true CN1031257A (zh) 1989-02-22
CN1013042B CN1013042B (zh) 1991-07-03

Family

ID=9352646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN88103710A Expired CN1013042B (zh) 1987-06-23 1988-06-21 降低钨-镍-铁合金机械特性值分散性的方法

Country Status (21)

Country Link
US (1) US4931252A (zh)
EP (1) EP0297001B1 (zh)
JP (1) JPH08939B2 (zh)
KR (1) KR920004706B1 (zh)
CN (1) CN1013042B (zh)
AT (1) ATE68834T1 (zh)
AU (1) AU603229B2 (zh)
BR (1) BR8803055A (zh)
CA (1) CA1340873C (zh)
DE (1) DE3865753D1 (zh)
ES (1) ES2025320B3 (zh)
FR (1) FR2617192B1 (zh)
GR (1) GR3002979T3 (zh)
IL (1) IL86816A (zh)
IN (1) IN169594B (zh)
RU (1) RU1797627C (zh)
SG (1) SG12993G (zh)
TR (1) TR23644A (zh)
UA (1) UA13386A (zh)
YU (1) YU46262B (zh)
ZA (1) ZA884454B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834856A (zh) * 2017-01-16 2017-06-13 西安华山金属制品有限公司 一种W‑Ni‑Fe‑Y‑ZrB2多相合金材料及其制备方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019330A (en) * 1990-08-03 1991-05-28 General Electric Company Method of forming improved tungsten ingots
US5234487A (en) * 1991-04-15 1993-08-10 Tosoh Smd, Inc. Method of producing tungsten-titanium sputter targets and targets produced thereby
US5603073A (en) * 1991-04-16 1997-02-11 Southwest Research Institute Heavy alloy based on tungsten-nickel-manganese
US5328657A (en) * 1992-02-26 1994-07-12 Drexel University Method of molding metal particles
US5527376A (en) * 1994-10-18 1996-06-18 Teledyne Industries, Inc. Composite shot
US5713981A (en) * 1992-05-05 1998-02-03 Teledyne Industries, Inc. Composite shot
US6136105A (en) * 1998-06-12 2000-10-24 Lockheed Martin Corporation Process for imparting high strength, ductility, and toughness to tungsten heavy alloy (WHA) materials
US6527880B2 (en) 1998-09-04 2003-03-04 Darryl D. Amick Ductile medium-and high-density, non-toxic shot and other articles and method for producing the same
US7267794B2 (en) * 1998-09-04 2007-09-11 Amick Darryl D Ductile medium-and high-density, non-toxic shot and other articles and method for producing the same
US6270549B1 (en) 1998-09-04 2001-08-07 Darryl Dean Amick Ductile, high-density, non-toxic shot and other articles and method for producing same
US6248150B1 (en) 1999-07-20 2001-06-19 Darryl Dean Amick Method for manufacturing tungsten-based materials and articles by mechanical alloying
US6447715B1 (en) * 2000-01-14 2002-09-10 Darryl D. Amick Methods for producing medium-density articles from high-density tungsten alloys
US7217389B2 (en) * 2001-01-09 2007-05-15 Amick Darryl D Tungsten-containing articles and methods for forming the same
WO2003064961A1 (en) * 2002-01-30 2003-08-07 Amick Darryl D Tungsten-containing articles and methods for forming the same
US6749802B2 (en) 2002-01-30 2004-06-15 Darryl D. Amick Pressing process for tungsten articles
US7059233B2 (en) * 2002-10-31 2006-06-13 Amick Darryl D Tungsten-containing articles and methods for forming the same
US7000547B2 (en) 2002-10-31 2006-02-21 Amick Darryl D Tungsten-containing firearm slug
US7383776B2 (en) * 2003-04-11 2008-06-10 Amick Darryl D System and method for processing ferrotungsten and other tungsten alloys, articles formed therefrom and methods for detecting the same
US7422720B1 (en) 2004-05-10 2008-09-09 Spherical Precision, Inc. High density nontoxic projectiles and other articles, and methods for making the same
JP4916450B2 (ja) * 2005-11-28 2012-04-11 株式会社アライドマテリアル タングステン合金粒、それを用いた加工方法およびその製造方法
US8122832B1 (en) 2006-05-11 2012-02-28 Spherical Precision, Inc. Projectiles for shotgun shells and the like, and methods of manufacturing the same
US9046328B2 (en) 2011-12-08 2015-06-02 Environ-Metal, Inc. Shot shells with performance-enhancing absorbers
US10690465B2 (en) 2016-03-18 2020-06-23 Environ-Metal, Inc. Frangible firearm projectiles, methods for forming the same, and firearm cartridges containing the same
US10260850B2 (en) 2016-03-18 2019-04-16 Environ-Metal, Inc. Frangible firearm projectiles, methods for forming the same, and firearm cartridges containing the same
CN115011853A (zh) * 2022-06-17 2022-09-06 深圳艾利佳材料科技有限公司 延伸性高的钨合金及其制备工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888636A (en) * 1971-02-01 1975-06-10 Us Health High density, high ductility, high strength tungsten-nickel-iron alloy & process of making therefor
JPS4937806A (zh) * 1972-08-11 1974-04-08
US3988118A (en) * 1973-05-21 1976-10-26 P. R. Mallory & Co., Inc. Tungsten-nickel-iron-molybdenum alloys
US3979209A (en) * 1975-02-18 1976-09-07 The United States Of America As Represented By The United States Energy Research And Development Administration Ductile tungsten-nickel alloy and method for making same
US3979234A (en) * 1975-09-18 1976-09-07 The United States Of America As Represented By The United States Energy Research And Development Administration Process for fabricating articles of tungsten-nickel-iron alloy
DE3438547C2 (de) * 1984-10-20 1986-10-02 Dornier System Gmbh, 7990 Friedrichshafen Wärmebehandlungsverfahren für vorlegierte, zweiphasige Wolframpulver
US4762559A (en) * 1987-07-30 1988-08-09 Teledyne Industries, Incorporated High density tungsten-nickel-iron-cobalt alloys having improved hardness and method for making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834856A (zh) * 2017-01-16 2017-06-13 西安华山金属制品有限公司 一种W‑Ni‑Fe‑Y‑ZrB2多相合金材料及其制备方法

Also Published As

Publication number Publication date
CN1013042B (zh) 1991-07-03
EP0297001A1 (fr) 1988-12-28
ES2025320B3 (es) 1992-03-16
FR2617192B1 (fr) 1989-10-20
IL86816A (en) 1992-06-21
AU1825288A (en) 1989-01-05
UA13386A (uk) 1997-02-28
ATE68834T1 (de) 1991-11-15
BR8803055A (pt) 1989-01-10
SG12993G (en) 1993-05-21
AU603229B2 (en) 1990-11-08
US4931252A (en) 1990-06-05
FR2617192A1 (fr) 1988-12-30
TR23644A (tr) 1990-05-28
ZA884454B (en) 1989-03-29
IN169594B (zh) 1991-11-16
CA1340873C (fr) 2000-01-11
JPH01195247A (ja) 1989-08-07
YU46262B (sh) 1993-05-28
KR920004706B1 (ko) 1992-06-13
RU1797627C (ru) 1993-02-23
JPH08939B2 (ja) 1996-01-10
DE3865753D1 (de) 1991-11-28
EP0297001B1 (fr) 1991-10-23
IL86816A0 (en) 1988-11-30
GR3002979T3 (en) 1993-01-25
KR890000193A (ko) 1989-03-13
YU120188A (en) 1990-08-31

Similar Documents

Publication Publication Date Title
CN1031257A (zh) 降低钨-镍-铁合金机械特性值分散性的方法
CN1084393C (zh) 用作电阻加热元件的铁铝金属化合物
US4960563A (en) Heavy tungsten-nickel-iron alloys with very high mechanical characteristics
WO1996028580A1 (en) Stainless steel powders and articles produced therefrom by powder metallurgy
CN1013052B (zh) 管子与管板的连接方法
CN110267754B (zh) 粉末冶金用混合粉、烧结体及烧结体的制造方法
US3419383A (en) Producing pulverulent iron for powder metallurgy by multistage reduction
JP7039692B2 (ja) 粉末冶金用鉄基混合粉末および鉄基焼結体
US2902363A (en) Method of treating powdered metal
JPH01156449A (ja) モリブデン焼結体及びその製造方法
CN107419186A (zh) 一种螺旋齿轮的制造方法
JPS5913037A (ja) W−Ni−Fe焼結合金の製造方法
JPH0741882A (ja) 焼結チタン合金の製造方法
US2188873A (en) Making articles from powdered components
JPH05147916A (ja) 微細なタングステン系炭化物粉末の製造法
JP2001202841A (ja) Ag系−炭素系接点材料およびその製造方法
CN118422025B (zh) 一种增塑耐磨的合金材料及其制备方法
JPH11181540A (ja) 超微粒超硬合金
JPS5913580B2 (ja) オイルレス・チエ−ン用ブツシユの製造法
EP0024217A1 (en) Process for producing a compacted powder metal part
JPS63183145A (ja) 高硬度チタン−アルミニウム−バナジウム系合金およびその製造方法
CN110234448B (zh) 粉末冶金用混合粉、烧结体及烧结体的制造方法
JPS5980745A (ja) モリブデン基合金
RU2014957C1 (ru) Способ термомеханической обработки изделий из твердого сплава
JPH0436410A (ja) 複合焼結タングステン合金

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee