CN103097558A - 用于处理液体流出物和回收金属的方法 - Google Patents

用于处理液体流出物和回收金属的方法 Download PDF

Info

Publication number
CN103097558A
CN103097558A CN201180043673XA CN201180043673A CN103097558A CN 103097558 A CN103097558 A CN 103097558A CN 201180043673X A CN201180043673X A CN 201180043673XA CN 201180043673 A CN201180043673 A CN 201180043673A CN 103097558 A CN103097558 A CN 103097558A
Authority
CN
China
Prior art keywords
amine
metal
treatment
liquid
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201180043673XA
Other languages
English (en)
Other versions
CN103097558B (zh
Inventor
萨洛芒·索利尼奥·埃韦林
罗伯托·马蒂奥利·席尔瓦
热拉尔多·路易斯·达席尔瓦
克劳森·德苏扎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vale SA
Original Assignee
Vale SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45567221&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN103097558(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Vale SA filed Critical Vale SA
Publication of CN103097558A publication Critical patent/CN103097558A/zh
Application granted granted Critical
Publication of CN103097558B publication Critical patent/CN103097558B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • C22B26/22Obtaining magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5272Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using specific organic precipitants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

本发明描述了一种用于处理液体流出物和回收金属的方法,其包括以下步骤:a)液体流出物均匀化;b)硫化物添加并以金属硫化物的形式沉淀金属;c)对从步骤(b)中产生的所述金属硫化物进行固/液分离并且形成不含金属的液相(10);所述用于处理液体流出物和回收金属的方法还包括以下步骤:d)向所述液相(10)中添加50至250g/L的胺溶液,从而以氢氧化镁(Mg(OH)2)的形式沉淀镁;和e)通过汽提和精馏回收胺。

Description

用于处理液体流出物和回收金属的方法
技术领域
本发明涉及用于处理液体流出物和回收金属的方法,其通过胺沉淀出镁的氢氧化物,然后使胺再生并且利用副产物镁和硫。
背景技术
处理液体和固体流出物的任何方法的主要目的是:(i)中和并适当地调节它们用于释放并返回到环境,和(ii)获得可再循环的副产物,使得它们可以以自家消费的形式使用和/或经由商品化用于第三方。
在开发镍铁红土矿中,有若干因素影响通过高压酸浸(HPAL)的镍生产方法:
·沉淀物的地质来源;
·矿石的矿物学组成;
·矿石的粒径分布;
·加工的操作条件;
·矿石准备系统、浸提、沉淀、溶剂提取和电解精炼的布置。
高压酸浸(HPAL)的方法主要推荐用于褐铁矿矿石,该矿石具有低量的镁-(一般限于4%,最大)-这是因为具有高镁含量的矿石高的硫酸消耗量。
在现有技术中已知的并且在图1中举例说明的通过HPAL生产镍的方法基本上包括以下步骤:(i)准备红土镍矿石,(ii)在压力下用硫酸浸提镍,(iii)使镍沉淀,(iv)再次浸提,(v)溶剂提取镍,和(vi)电解精炼用于产生阴极镍(具有99.95%纯度的金属镍)。由于钴在矿石中的显著存在,所以作为副产品还将以金属形式获得钴。
由于以下特征,该技术是用于从褐铁矿红土中提取镍和钴的最适当的方法:
·褐铁矿红土具有低镁含量,因此具有低的硫酸消耗量;
·由于低的硫酸成本及其低的比耗量,所以具有较低的运作成本;
·不需要干燥矿石碎破阶段,这是因为以浆料的形式使用总的红土(原矿-ROM);
·对关注金属的高选择性;
·二氧化硫排放低于环境标准;
·在矿石中含有的镍和钴的回收率超过90%。
通常在245至270℃的温度下在涂布钛的高压釜中进行压力浸提。在该方法中,进给高压釜的浆料包含之前用蒸汽加热过的约40至45%固体。在一些矿石中,由于存在的粘土状矿石的性质,该浓度可以限制在25至30%。浆料增稠的水平显著影响了高压釜的容量,这包括相当高的资本成本设备。浸提机制涉及在高温下酸溶出包含在原生矿物的基质中的镍和钴。在这些条件下,发生铁矿物的溶解,然后形成硫化物,在高温条件下该硫化物与水反应形成赤铁矿,从而使硫酸再生:
2FeOOH+3H2SO4=Fe2(SO4)3+4H2O
Fe2Si4O10(OH)2+3H2SO4=Fe2(SO4)3+4SiO2+4H2O
Fe2(SO4)3+2H2O=2Fe(OH)SO4+H2SO4
2Fe(OH)SO4+H2O=Fe2O3+2H2SO4
该方法的提取水平对镍而言达到了92至96%的值并且对钴而言达到了90至92%的值。一般而言,为了获得这样的提取程度,化学侵蚀后的反应浆料应呈现的残留游离酸浓度为30至50g/L。
浸提后,使来自高压釜的浆料在膨胀室(“闪蒸器(flash vessel)”)中减压并冷却至约100℃,使剩余的固体与液相分离。在以逆流(CCD)操作的倾析器中进行固-液分离,从而产生荷载有镍、钴、镁、锰、锌、铜、铁和其他金属的硫化物的液体。之后使液体中存在的镍和钴沉淀为硫化物(使用H2S)、碳酸盐(使用碳酸铵),或为氢氧化物(使用氧化镁-MgO)。对于硫化物(MSP-混合的硫化物沉淀)的情况,这些中间产物一般具有55%的(Ni+Co)含量;对于氢氧化物(MHP-混合的氢氧化物沉淀),具有40至45%的(Ni+Co)含量。也可以通过直接应用至来自倾析系统的液体的溶剂提取来回收这些金属。应注意,MSP方法使得有可能获得具有更高含量的有价值金属和最低水平的锰、镁和硫化物污染的产品。然而,通过MSP途径的生产涉及辅助装置的高资本成本,这是因为需要氢和硫化氢单元,所述的单元要求用于这些产品的复杂的安全和处理系统。
在接下来的步骤(精炼)中,中间产物(镍和钴的硫化物或氢氧化物)被再浸提并且从而溶解,然后经历纯化处理,例如(i)溶剂提取用于分离镍和钴以及(ii)电解(电解精炼)以达到更高纯度。
在通过HPAL途径从含有硅酸盐和碳酸镁的矿石中进行的镍生产方法中,液体流出物生成以250至400m3每吨产生的Ni的比例进行,其基本包含镁和硫酸盐以及少量的钴、锌、锰、镍、铁、铬等其他元素。表1显示了待处理的流出物的化学组成并且示出了显著含量的硫酸盐和镁。
表1-待处理的流出物的组成
包括旨在回收在浸提方法中使用的试剂和/或回收通过液体处理矿物产生的流出物中分散的金属的步骤的不同类型的流出物处理在现有技术中是已知的。
在这个意义上而言,文献GB1.520.175描述了通过将石灰或石灰岩用于镁和硫酸盐沉淀而从硫酸盐水溶液中回收金属(例如,镁)的方法。在该系统中,镁以氢氧化物的形式复合,其与硫酸钙共同沉淀。这两种元素的再利用分别是复杂的,因为它们具有细粒径和某些类似的物理特性,限制了物理分离的现有工业方法的使用。另外,回收在硫酸钙中包含的硫需要复杂的煅烧装置,该装置要求密集利用能量。在这方面,从成本、操作的便利性和装置的简单性的观点看,当与作为本发明的目的的本方法相比时,有一个主要的缺点,在本方法中使用胺进行镁沉淀。
在现有技术中已知的另一种方法在文献US2009/0148366中有所描述,其公开了从硫酸镁溶液中回收金属和氧化镁的方法。该方法利用蒸发使硫酸镁结晶,基于硫酸盐的期望水合程度,这要求实际上蒸发流出物中所含的所有水。如果使用真空,可在70℃至90℃的温度下进行该蒸发。在下一步骤中,为了使用镁,应煅烧硫酸镁沉淀物,从而使其变成氧化镁。该操作必须在升高的温度(700℃至800℃)下进行,这需要强烈的能量消耗。为了回收由该煅烧产生的气体中的硫(二氧化硫),必须首先使用催化剂床复合成三氧化硫,用于之后转化成硫酸。这些操作必须在复杂的且高成本的硫酸工厂中进行。
在现有技术中已知的另一种方法在文献US2009/0180945中有所描述,其公开了一种用于回收在来自酸浸提呈氢氧化镁和氧化镁形式的红土矿石的流出物中包含的镁和硫酸盐的系统。该方法将氨用作沉淀剂,以硫酸铵的形式回收硫。相比于使用胺的作为本发明目的的本方法,使用氨是主要的重大缺点,因为氨是高毒性气体,其难以处理并且一旦与硫酸盐结合使氨不能再生,而胺可在环境温度下以液体形式进行处理并且主要可以在本方法中再生以重新利用。
发明目的
本发明的目的是提供一种用于处理液体流出物并回收金属的方法,其通过胺使氢氧化镁沉淀,然后使胺再生以及利用镁和硫副产物。
发明内容
用于处理液体流出物并回收金属的方法包括以下步骤:
a)使所述液体流出物均匀化;
b)添加硫化物并且使金属以金属硫化物的形式沉淀;
c)对从步骤(b)中获得的所述金属硫化物进行固/液分离并且形成不含金属的液相;
作为本发明的目的的方法还包括以下步骤:
d)以50至250g/L的比率向所述液相中添加胺溶液,镁以氢氧化物-Mg(OH)2形式沉淀;和
e)通过汽提(esgotamento)和精馏回收所述胺。
附图说明
接下来将基于在附图中体现的样本制作更详细地描述本发明。附图示出:
图1是通过现有技术中已知的HPAL途径的镍生产方法的流程图;和
图2是作为本发明的目的的用于处理液体流出物并回收金属的方法的流程图。
具体实施方式
根据一个优选的实施方案并且如图2中可见,开发作为本发明目的的用于处理液体流出物并回收金属的方法以回收(i)镁和(ii)硫。前者,通常在镍提取湿法冶金方法本身中待再循环,用于农业目的(校正剂和肥料)和作为原材料用于工业。后者,以稀硫酸的形式可在浸提方法中再循环。
作为本发明目的的方法还使得能够移除剩余在液体流出物中的金属,例如锰(Mn)、锌(Zn)、钴(Co)、铜(Cu)等,由此为它们在工业过程中完全再循环创造了条件,以及为农业应用提供了另外的微量营养素生产,等等。
如图2的流程图中所例示的,在作为本发明目的的处理液体流出物并回收金属的方法中,在搅拌槽中接收液体流出物1用于均匀化。其后,均化的(均匀化的)流出物2接受Na2S和/或H2S形式的硫化物3的添加,用于使剩余的金属例如Ni、Co、Mn、Zn、Cu等以金属硫化物4的形式沉淀。在后续的步骤中,对所述硫化物进行固-液分离操作,从而产生富含金属硫化物的流5。适当地洗涤,在搅拌反应器中用氧气注入6使硫化物氧化,并且将所得溶液7进行结晶以获得各自的盐8,分级或混合,将其贮存并送以运输9。
将如此处理过的并且几乎不含金属的液相或液体流出物10转移至反应系统(包括搅拌槽),在搅拌槽中通过回收胺12和替换胺11的流与低沸点胺相接触,并且该反应的结果是氢氧化镁沉淀物的浆料13。在该步骤中,在25至70℃的温度下以50至250g/L的比率添加胺,固体含量是1至10%p/p,停留时间是0.5至2小时,悬浮液的再循环比率是5至40∶1。
将该浆料转至增稠器,通过底流14收回氢氧化镁,将其转移进行固-液分离并用水15洗涤,从而产生氢氧化镁饼16。对于与现有技术中已知方法不同的是,在作为本发明目的的方法中,使氢氧化镁单独沉淀,之后使用常规固/液分离器容易将其回收。
在操作的顺序中,使该饼经受干燥和煅烧,结果获得了氧化镁17,然后贮存,使部分再循环至镍提取的过程并且将剩余的商品化18。在反应系统中,胺/流出物比率必须维持在100至200g/L,基于镁溶液的含量,这是最佳的。使沉淀的氢氧化镁的浆料的一部分从增稠器的底流再循环至接触反应器,从而通过晶种促进Mg(OH)2晶体的生长。将来自沉淀反应器和来自干燥氢氧化镁的气流转移至胺吸收系统,自其返回用于在沉淀反应器中再处理。
增稠器的上清液液相19接下来到达经由蒸馏的胺回收步骤,其分两个步骤,通过汽提,其后通过精馏。
通过用连续供给的低压蒸汽27-1.5至3.0kgf/cm2(man.)将含有胺的弱酸溶液19加热至至多90至120℃的温度来进行胺汽提。其导致了包含弱酸和痕量胺的塔底物流21,将塔底物流21转移至活性炭柱,以移除包含的残留量的胺。将所得弱酸22转移至贮存区,并且从贮存区23再用于湿法冶金方法中。饱和的活性炭24接下来到达再生步骤,在再生步骤25后用添加新木炭26来重组。
蒸馏中的汽提步骤之后,富含胺的蒸汽流20接下来到达精馏步骤,其中将低压蒸汽28以1.5至3.0kgf/cm2(man.)的压力以连续供给方式再注入蒸馏柱27中。同样在该设备中,通过利用冷却水运行的热交换器29冷凝顶蒸汽流,从而产生了与在蒸馏装置中产生高品质胺12相关的3至51的回流。之后,将胺替换流11与回收胺流12一起进给到沉淀反应器中,关闭处理回路。
实施例
以实验室规模进行的作为本发明目的的方法的模拟测试显示,有可能获得适于在工业过程中再利用的具有商业价值的副产物(可再循环的固体)和回收酸水,这使得能够在液体流出物的排放方面实现零流出物的状况。在500ml烧杯中进行所述测定,将已知体积的二乙胺添加至已知质量的溶液(MgSO4水溶液,浓度是30g/LMg)中。伴随水的水解和OH-释放至溶液,发生Mg(OH)2的沉淀。表2示出了使用二乙胺(Et2NH)对氢氧化镁的沉淀测试的实验结果。
表2-对氢氧化镁的沉淀测试的结果
Figure BDA00002904139100071
如表2中的结果表明,增加二乙胺的量提供了从溶液中移除镁的提高,如通过Mg的回收率可见。然而,对于相对于阳离子Mg2+的化学计量质量添加等于125和150%的胺,镁的回收率没有显著变化。
在连接至反应器-结晶器的实验室蒸馏器中进行回收胺的测试,其目的在于通过分馏再循环胺并回收Mg(OH)2。在70℃的温度下通过具有恒温器的浴加热反应器。将蛇形冷凝器连接至反应器。将60℃的水注入冷凝器夹套,并借助蠕动泵再循环以保持温度恒定。接着将气体胺用于在H2SO4溶液(10%p/p)中鼓泡。然后分析酸溶液(所有回收胺的接受物)用于计算有机试剂的回收率。在整个实验中,将气流充入反应器中。在整个实验期间使用数字阅读器监测溶液的pH。使用在量上比化学计量值高50%的比率(胺/Mg)。因此,在蒸馏测试中使用的混合物包含:90mg/LMg;71.1g/L SO4 2-,162.2g/LEt2NH,pH=12。每个测定持续3小时。胺的平均回收率等于99.6%并且溶液的最终pH等于5.5。
表3示出在作为本发明目的的处理方法期间液体流出物的品质的演变。
表3-在本发明处理方法期间流出物的品质的演变
作为副产物获得以下:(i)氧化镁-MgO-煅烧Mg(OH)2之后,其具有适于在镍提取方法中再利用的品质,(ii)金属硫化物,作为原材料用于获得农业微量营养素,和(ii)酸水,适于在工业镍提取方法中再利用的目的。
通过蒸发回收再循环的胺(本方法的主要试剂),这有助于降低运作成本。
另外,与在现有技术中已知的方法相比,作为本发明目的的方法的另一个优点在于,所得的硫酸盐溶液在经过炭柱后构成了也在红土矿石本身的浸提方法中再利用的酸溶液。因此,以简单方式从含有这些元素的流出物中回收镁和硫。
本发明方法的另一个优点在于:当与本领域现有技术相比时,以沉淀的氢氧化镁的形式回收Mg,可将其容易地再循环至本方法的之前步骤,这构成了较低运作成本的可替换选择。因此,在来自炭柱中精炼操作的酸水中回收之前提及的硫。因此,伴随更简单的流程图和更低的运作成本,胺在较低温度下蒸发,允许再循环至在该方法步骤中回收的镁和硫的浸提操作中。
在这个意义上,一般来说,作为本发明目的的用于处理液体流出物的方法与现有技术相比表现出新的和创造性的特性:
a)为了回收和再循环的目的,使用低沸点胺(产生碱性条件并易于分离的物质),将胺直接应用于含有镁和硫化物的流出物的溶液;
b)为了在镍提取方法本身中再利用以及作为原材料用于农业和工业应用的目的,以沉淀的Mg(OH)2的形式移除可溶性镁(来源于镍铁红土的酸溶解)并将其转化成氧化镁MgO;
c)将液体流出物转化成低浓度酸水,该酸水具有这样的特征:使得其能够在处理回路中再利用,提供“零流出物”状况中的操作,并且显著降低工业复合体中替换水的消耗;
d)移除液体流出物中剩余的金属(Co、Mn、Ni、Zn、Cu等)并将其作为原材料在生产农业目的的微量营养素中再利用;
e)扩展与镍有关的其他矿产资源的使用;和
f)另外,该处理液体流出物的方法具有主要的操作灵活性并且可以以模块化方式实施。
已经描述了优选实施方案的实施例,应理解,本发明的范围涵盖其他可能的变化,本发明仅受所附权利要求书的内容的限制,潜在的等同手段也包括在其中。

Claims (9)

1.一种用于处理液体流出物和回收金属的方法,包括以下步骤:
a)使所述液体流出物均匀化;
b)添加硫化物并且使金属以金属硫化物的形式沉淀;
c)对从步骤(b)中获得的所述金属硫化物进行固/液分离并且形成不含金属的液相(10);
所述用于处理液体流出物和回收金属的方法的特征在于还包括以下步骤:
d)以50至250g/L的比率向所述液相(10)中添加胺溶液,镁以氢氧化物-Mg(OH)2形式沉淀;和
e)通过汽提和精馏回收所述胺。
2.根据权利要求1所述的用于处理液体流出物和回收金属的方法,其特征在于:在步骤(d)中在25至70℃的温度下向所述液相(10)中添加所述胺溶液,固体含量是1至10%p/p,停留时间是0.5至2小时,浆料的再循环比率是5至40∶1。
3.根据权利要求1所述的用于处理液体流出物和回收金属的方法,其特征在于:在步骤(d)中添加的所述胺来自回收胺(12)和替换胺(11)的流。
4.根据权利要求1所述的用于处理液体流出物和回收金属的方法,其特征在于:在步骤(d)之后且在步骤(e)之前,将氢氧化镁沉淀物的浆料(13)导入增稠器。
5.根据权利要求4所述的用于处理液体流出物和回收金属的方法,其特征在于:将氢氧化镁从所述增稠器中收回,转移至固/液分离器并用水洗涤。
6.根据权利要求5所述的用于处理液体流出物和回收金属的方法,其特征在于:对经洗涤的氢氧化镁进行干燥和煅烧的步骤,从而形成氧化镁。
7.根据权利要求1所述的用于处理液体流出物和回收金属的方法,其特征在于:在步骤(e)中,通过低压蒸汽、优选1至10kgf/cm2的低压蒸汽加热来汽提胺,获得由弱酸和痕量酰胺形成的塔底物流(21)以及富胺蒸汽流(20)。
8.根据权利要求7所述的用于处理液体流出物和回收金属的方法,其特征在于:将由弱酸和痕量酰胺形成的塔底物流(21)转移至活性炭柱,其中残留的胺被移除并且所得弱酸(22)被转移用于贮存。
9.根据权利要求7所述的用于处理液体流出物和回收金属的方法,其特征在于:将富胺蒸汽流(20)送入所述精馏步骤,该精馏步骤中其接收低压蒸汽流并且通过热交换器进行冷凝,从而产生高品质回收胺(12)。
CN201180043673.XA 2010-08-09 2011-08-09 用于处理液体流出物和回收金属的方法 Active CN103097558B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
BRPI1003193-6 2010-08-09
BRPI1003193A BRPI1003193B1 (pt) 2010-08-09 2010-08-09 processo para tratamento de efluentes líquidos e recuperação de metais
PCT/BR2011/000274 WO2012019265A1 (pt) 2010-08-09 2011-08-09 Processo para tratamento de efluentes líquidos e recuperação de metais

Publications (2)

Publication Number Publication Date
CN103097558A true CN103097558A (zh) 2013-05-08
CN103097558B CN103097558B (zh) 2015-04-29

Family

ID=45567221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180043673.XA Active CN103097558B (zh) 2010-08-09 2011-08-09 用于处理液体流出物和回收金属的方法

Country Status (14)

Country Link
US (1) US9410223B2 (zh)
EP (1) EP2604712B1 (zh)
JP (1) JP5752794B2 (zh)
KR (1) KR101843598B1 (zh)
CN (1) CN103097558B (zh)
AU (1) AU2011288945B2 (zh)
BR (1) BRPI1003193B1 (zh)
CA (1) CA2811452C (zh)
CL (1) CL2013000410A1 (zh)
EA (1) EA023878B1 (zh)
MX (1) MX2013001599A (zh)
PE (1) PE20131206A1 (zh)
WO (1) WO2012019265A1 (zh)
ZA (1) ZA201301249B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104372377A (zh) * 2014-10-23 2015-02-25 昆明绩驰环保科技有限公司 一种锌电解液中锌镁的循环蒸发结晶分离方法
CN113046574A (zh) * 2021-03-17 2021-06-29 沈阳有色金属研究院有限公司 一种利用铜电解脱铜后液处理粗氢氧化钴制备高纯镍、钴产品的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108178372A (zh) * 2017-12-29 2018-06-19 攀枝花钢企欣宇化工有限公司 一种除去氯化尾气吸收废盐中钒的方法
CN110697998B (zh) * 2019-11-12 2022-04-22 东江环保股份有限公司 氧化铜生产废水的处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1520175A (en) * 1975-04-02 1978-08-02 Inco Ltd Process for the recovery of metals from solution
US20060228279A1 (en) * 2005-04-07 2006-10-12 Finlay Campbell Process for recovery of nickel and cobalt from laterite ore
CN1924046A (zh) * 2006-08-25 2007-03-07 四川大学 从高镁磷矿中回收镁的工艺方法
CN101426755A (zh) * 2006-03-08 2009-05-06 普拉克生化公司 制备有机胺-乳酸复合物的方法
US20090148366A1 (en) * 2005-12-22 2009-06-11 Eric Girvan Roche Magnesium Oxide Recovery
US20090180945A1 (en) * 2008-01-15 2009-07-16 Vale Inco Limited Liquid and solid effluent treatment process

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587088A (en) * 1995-08-01 1996-12-24 Bader; Mansour S. Precipitation and separation of inorganic species from aqueous solutions
JP3780356B2 (ja) * 1999-12-28 2006-05-31 太平洋セメント株式会社 石油系燃焼灰の処理方法
US7392848B1 (en) 2005-05-27 2008-07-01 Bader Mansour S Methods to produce sulfate-free saline water and gypsum

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1520175A (en) * 1975-04-02 1978-08-02 Inco Ltd Process for the recovery of metals from solution
US20060228279A1 (en) * 2005-04-07 2006-10-12 Finlay Campbell Process for recovery of nickel and cobalt from laterite ore
US20090148366A1 (en) * 2005-12-22 2009-06-11 Eric Girvan Roche Magnesium Oxide Recovery
CN101426755A (zh) * 2006-03-08 2009-05-06 普拉克生化公司 制备有机胺-乳酸复合物的方法
CN1924046A (zh) * 2006-08-25 2007-03-07 四川大学 从高镁磷矿中回收镁的工艺方法
US20090180945A1 (en) * 2008-01-15 2009-07-16 Vale Inco Limited Liquid and solid effluent treatment process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104372377A (zh) * 2014-10-23 2015-02-25 昆明绩驰环保科技有限公司 一种锌电解液中锌镁的循环蒸发结晶分离方法
CN104372377B (zh) * 2014-10-23 2017-04-05 云南煜锜环保科技有限公司 一种锌电解液中锌镁的循环蒸发结晶分离方法
CN113046574A (zh) * 2021-03-17 2021-06-29 沈阳有色金属研究院有限公司 一种利用铜电解脱铜后液处理粗氢氧化钴制备高纯镍、钴产品的方法
CN113046574B (zh) * 2021-03-17 2022-07-29 沈阳有色金属研究院有限公司 一种利用铜电解脱铜后液处理粗氢氧化钴制备高纯镍、钴产品的方法

Also Published As

Publication number Publication date
MX2013001599A (es) 2013-10-28
AU2011288945A1 (en) 2013-03-28
EP2604712A4 (en) 2014-11-19
PE20131206A1 (es) 2013-10-13
EA201390226A1 (ru) 2013-08-30
WO2012019265A1 (pt) 2012-02-16
EP2604712A1 (en) 2013-06-19
CA2811452A1 (en) 2012-02-16
CL2013000410A1 (es) 2013-09-06
US9410223B2 (en) 2016-08-09
EP2604712B1 (en) 2017-10-11
EA023878B1 (ru) 2016-07-29
BRPI1003193B1 (pt) 2019-09-10
CN103097558B (zh) 2015-04-29
KR101843598B1 (ko) 2018-03-29
JP5752794B2 (ja) 2015-07-22
US20130343972A1 (en) 2013-12-26
ZA201301249B (en) 2014-02-26
JP2013540889A (ja) 2013-11-07
KR20130136972A (ko) 2013-12-13
CA2811452C (en) 2018-01-02
AU2011288945B2 (en) 2015-05-14
BRPI1003193A2 (pt) 2012-05-02

Similar Documents

Publication Publication Date Title
FI123376B (fi) Arvokkaiden nikkeli- ja kobolttiosien talteenotto sulfidimalmin kellutusrikasteesta kloridiavusteisella hapettavalla paineuutolla rikkihapossa
Agatzini-Leonardou et al. Hydrometallurgical process for the separation and recovery of nickel from sulphate heap leach liquor of nickeliferrous laterite ores
US8961649B2 (en) System and method for extracting base metal values from oxide ores
CA2707830C (en) Liquid and solid effluent treatment process
CA2752254C (en) Magnesium recycling and sulphur recovery in leaching of lateritic nickel ores
Wang et al. A novel technology of molybdenum extraction from low grade Ni–Mo ore
CN102859012B (zh) 处理含镍原料的方法
JPS5921929B2 (ja) マンガン団塊を処理してその中に含まれる有価物質を抽出する方法
CN105308195A (zh) 用于回收金属的方法
Sinha et al. Recovery of high value copper and zinc oxide powder from waste brass pickle liquor by solvent extraction
US20110056333A1 (en) Process For Atmospheric Leaching Of Laterite Ores Using Hypersaline Leach Solution
CN103097558B (zh) 用于处理液体流出物和回收金属的方法
CN104862503B (zh) 从红土镍矿中提取钪的方法
WO2008080209A1 (en) Process for recovery of nickel and cobalt from an ion-exchange resin eluate and product
Lei et al. A process for beneficiation of low-grade manganese ore and synchronous preparation of calcium sulfate whiskers during hydrochloric acid regeneration
CN107739829A (zh) 红土镍矿冶炼中和渣中镍元素、钴元素、铜元素及锌元素的回收方法
CN101134566B (zh) 硫化镍精矿制备氨基磺酸镍工艺
CN110036123A (zh) 在湿法冶金工艺中经由磁铁矿的形成来控制铁的方法
CN112626337B (zh) 一种含钴的铜萃余液处理工艺
Eghtesad Optimization of magnesium removal from hydrometallurgical leach liquors by struvite formation
CN103937974A (zh) 一种从橄榄石-蛇纹石矿中提取矿物的工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant