CN103094527B - 一种降低锂离子电池负极材料首次充电不可逆容量损失的方法 - Google Patents

一种降低锂离子电池负极材料首次充电不可逆容量损失的方法 Download PDF

Info

Publication number
CN103094527B
CN103094527B CN201310010612.4A CN201310010612A CN103094527B CN 103094527 B CN103094527 B CN 103094527B CN 201310010612 A CN201310010612 A CN 201310010612A CN 103094527 B CN103094527 B CN 103094527B
Authority
CN
China
Prior art keywords
lithium ion
pole piece
ion battery
electrode
irreversible capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310010612.4A
Other languages
English (en)
Other versions
CN103094527A (zh
Inventor
蒋永
赵兵
陈丹丹
苏玲
刘瑞喆
凌学韬
焦正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Yisen Power Technology Co ltd
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201310010612.4A priority Critical patent/CN103094527B/zh
Publication of CN103094527A publication Critical patent/CN103094527A/zh
Application granted granted Critical
Publication of CN103094527B publication Critical patent/CN103094527B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种降低锂离子电池负极材料首次充电不可逆容量的方法,采用电化学沉积的方法在负极极片表面首先形成一层0.01~10μm的聚合物包覆层,这种包覆层为纳米或微米厚度、均匀致密的聚合物薄膜,可以有效阻止电解液与负极表面的直接接触,部分起到SEI膜的作用,由此来降低锂离子电池负极材料首次充电不可逆容量的损失。本发明从锂离子电池充放电过程及SEI膜的形成机理着手,以提高电池循环效率和可逆容量为目标,方法简单易操作,制备周期短、效率高,并可应用到以其他材料为负极的多种锂离子电池中。

Description

一种降低锂离子电池负极材料首次充电不可逆容量损失的方法
技术领域
本发明涉及一种降低锂离子电池负极材料首次充电不可逆容量方法,特别涉及一种采用电化学沉积改性负极极片来降低锂离子电池首次充电不可逆容量损失的方法。
背景技术
随着社会的不断发展,能源已经成为现代经济发展的命脉。随着不可再生能源的不断消耗,人类对可再生能源需求越来越大。锂离子电池可循环充放电、高比容量、长循环寿命的特点,受到越来越多的重视。
目前商品化锂离子电池一般采用能够可逆嵌脱锂离子的石墨或无定形炭作为负极材料。在锂离子电池首次充放电过程中,有机电解液会在碳负极表面发生还原、分解,形成一层电子绝缘、锂离子可导的钝化层(solid electrolyte intephase,简称SEI),从而导致了电池首次充放电过程中,存在巨大的不可逆容量(往往超过20%)。
由于锂离子的嵌入必然经由覆盖在碳负极上的SEI膜,因此SEI膜的特性包括它的电阻、阻止电解液进一步反应的能力、锂离子嵌入或电荷传递过程中的调整能力、以及一定的锂离子扩散能力等决定了锂离子嵌脱过程的动力学以及碳负极/电解液界面的稳定特性,从而决定了整个电池的性能,如循环寿命、自放电、额定速率以及电池的低温性能等。优良的SEI膜具有机溶剂不溶性,允许锂离子自由地进出电极而溶剂分子无法穿越,能够有效阻止有机电解液和碳负极的进一步反应以及溶剂分子共插对电极的破坏,提高了电池的循环效率和可逆容量等性能。
尽管SEI膜对电池有着不可或缺的作用,但其也是影响电池性能的重要因素。首先,SEI膜的形成会导致锂离子电池的不可逆容量损失,进而影响电池的能量密度。其次,如果形成的SEI膜不够均匀或致密,在电池循环过程中将影响电池的循环寿命和安全性能。因此,减少锂离子电池不可逆容量的损失,增强其安全性能和延长其循环寿命成为我们研究的重要内容。
发明内容
本发明的目的在于提供一种降低锂离子电池负极材料首次充电不可逆容量方法,从锂离子电池充放电过程及SEI膜的形成机理着手,电池装配前,首先在负极表面首先形成一层均匀、致密的聚合物包覆层。此聚合物层可以阻止电解液与负极表面的直接接触,部分起到SEI膜的作用,由此来降低锂离子电池负极材料首次充电不可逆容量的损失,从而达到提高电池循环效率和可逆容量的目的。
为达到上述目的,本发明采用如下技术方案:
一种降低锂离子电池负极材料首次充电不可逆容量损失的方法,采用电化学沉积的方法在负极极片表面形成一层0.01~10μm的聚合物包覆层,阻止电解液与负极表面的直接接触,包括如下步骤:
1)将碳负极材料:导电剂:粘结剂按质量比 85:10:5擀制极片,并压在铜网上作为负极极片;
2)配置电解液:配置一定浓度的聚合物单体与硫酸或氢氧化钠的混合溶液,通入惰性气体,并在磁力搅拌下均匀溶解;
3)循环伏安电沉积反应:将步骤1)所得到的极片作工作电极,铂片电极作对电极,饱和甘汞电极作参比电极,步骤2)所配溶液作为电解液,电压范围为-0.2V~1.5V,扫描速率为1~100mV/s,扫描段数为2~100段,在极片表面电沉积一层聚合物薄膜;
4)将制得的聚合物薄膜包覆的复合电极用去离子水冲洗,然后用乙醇或丙酮洗涤3~5次,45~100℃真空干燥,即得聚合物薄膜包覆的复合电极。
上述步骤1)中的导电剂为碳黑(Super P),粘结剂为聚四氟乙烯(PTFE)。
上述步骤2)中的聚合物单体为苯胺、苯酚、对二苯酚、对羟基苯磺酸钠中的一种。
上述步骤2)中聚合物单体为苯胺时,采用硫酸的水溶液;聚合物单体为苯酚、对二苯酚、对羟基苯磺酸钠时,采用氢氧化钠的甲醇溶液。
上述步骤2)中硫酸或氢氧化钠溶液的浓度为0.1~2.0 mol/L,聚合物单体的浓度为0.05~3.0 mol/L。
上述步骤2)中的惰性气体为氮气、氩气中的一种或其混合物。
与现有技术相比,本发明的方法具有以下优点:
1. 从锂离子电池充放电过程及SEI膜的形成机理着手,防止电解液与负极表面的直接接触,在负极表面首先形成一层类似SEI膜的聚合物层,减少电池首次不可逆容量的损失。
2. 制备工艺简单,对电池负极片进行简单的电沉积包覆改性即可实现,对电极本身无特殊的要求。
3. 聚合物层的厚度均匀可控,可通过调节电化学沉积的时间、电解液浓度、扫描速率控制包覆层的厚度及致密性。
4. 该方法制备周期短,效率高,可规模化应用,并可应用到以其他材料为负极的多种锂离子电池中。
附图说明
图1为实施例1电沉积聚苯胺的循环伏安曲线图。
图2为实施例1空白极片和电沉积聚苯胺后的红外图谱,其中:a为空白极片的红外图谱,b为极片表面电沉积聚苯胺后的红外图谱。
图3为实施例2极片表面电沉积聚苯酚后的SEM图。
图4为实施例4空白极片和电沉积聚对羟基苯磺酸钠改性极片的倍率性能图,充放电倍率分别为0.1C、0.2C、0.5C和1C。其中:a为空白极片的倍率充/放电容量,b为表面电沉积聚对羟基苯磺酸钠的极片倍率充/放电容量。
具体实施方式
下面通过实施例进一步说明本发明所提供的方法,本发明不限于此。
实施例1
将石墨化碳纤维,导电剂Super P,粘结剂PTFE按质量比85:10:5混合均匀后,在对辊机上擀制负极片,并将其压在铜集流体上作为负极空白极片。配置0.1 mol/L的硫酸和0.1 mol/L的苯胺溶液,通入氮气,并在磁力搅拌下均匀溶解。将所制得的负极空白极片作工作电极,Pt片电极作对电极,饱和甘汞电极作参比电极,将所配溶液作为电解液采用循环伏安的方法在极片表面电沉积一层聚苯胺(PANI)。扫描电压为-0.2~1.2 V,扫描速率为1 mV/s,扫描段数为100段。将制得的聚苯胺薄膜包覆的复合电极用去离子水冲洗,然后用丙酮洗涤3次,45℃真空干燥,即得聚苯胺薄膜包覆的复合电极。测得聚苯胺层的厚度为40nm~60nm之间。
电沉积聚苯胺的循环伏安曲线见图1所示,箭头方向为扫描方向,在此扫描范围内分别出现了3个氧化峰和一个还原峰,其中有一对对应的氧化还原峰,其他两个为不可逆氧化峰。3个氧化峰的位置分别为0.35 V、0.78 V、1.0 V,表明聚苯胺已经氧化生成。图2是电沉积聚苯胺的红外图谱,可以看出,3357 cm-1附近出现的吸收峰对应着N-H伸缩振动,1490 cm-1苯环特征峰是苯式结构N-B-N的特征吸收振动,1590 cm-1峰醌式结构N=B=N的吸收振动,是醌式结构的特征吸收峰,1475 cm-1附近的吸收峰是芳环上C-N伸缩振动的结果,1100, 870, 805 cm-1附近为苯环的弯曲振动吸收峰,均为苯环结构N-B-H的特征吸收峰。
将上述所制得的极片放在真空烘箱中,100 ℃烘烤8 h之后,装配成扣式半电池进行电性能测试(负极为锂片,电解液为1 mol/L LiPF6-DMC:EC(质量比=1:1))。电性能测试流程为0.1C充放电循环5周,接着0.2C充放电循环5周,再0.5C充放电循环5周,之后1C充放电循环5周。充放电测试显示:空白极片0.1C的首次放电/充电比容量分别为443.7/343.1 mAh/g,聚苯胺包覆后的极片首次放电/充电比容量为471.1/401.6 mAh/g,首次不可逆容量的损失从100.6 mAh/g降低到69.5 mAh/g。首次效率从77.3%提高至85.2%。1C放电比容量空白样为49.1 mAh/g,表面电沉积过聚苯胺的样品为82.3 mAh/g,说明表面沉积聚合物包覆层后,对电池的倍率放电性能也有较大改善。
实施例2
将石墨化中间相炭微球,导电剂Super P,粘结剂PTFE按质量比85:10:5混合均匀后,在对辊机上擀制负极片。将50 mmol/L苯酚,0.3 mol/L NaOH在磁力搅拌器搅拌下溶解在甲醇溶液。在三电极体系中,将所制极片作为工作电极,Pt片作为对电极,饱和甘汞电极作为参比电极,所配置苯酚溶液作为电解液,使用循环伏安方法在极片表面电沉积一层聚苯酚(PPO)。扫描电压范围为0~1.5V,扫描速率为10 mV/s,扫描段数为30段。所得聚合物层的厚度为35nm~50nm之间。
极片表面电沉积聚苯酚的SEM见图3所示,石墨化中间相炭微球颗粒已经被很好的遮盖住,在其极片表面形成一层均匀致密的膜。将上述所制得的极片放在真空烘箱中,100℃烘烤8h之后,装配成扣式半电池进行电性能测试(负极为锂片,电解液为1 mol/L LiPF6-DMC:EC(质量比=1:1))。0.1C充放电首次不可逆容量损失从64.1 mAh/g降低至47.3 mAh/g。
实施例3
将天然石墨,导电剂Super P,粘结剂PTFE按质量比85:10:5混合均匀后,在对辊机上擀制负极片。将3 mol/L对苯二酚,2 mol/L NaOH在磁力搅拌器搅拌下溶解在甲醇溶液。在三电极体系中,将所制极片作为工作电极,Pt片作为对电极,饱和甘汞电极作为参比电极,所配置对苯二酚溶液作为电解液,使用循环伏安方法在极片表面电沉积一层聚对苯二酚(PHQ)。扫描电压范围为0~1.5 V,扫描速率为25 mV/s,扫描段数为50段。所得聚合物层的厚度为8~10 μm之间。
将上述所制得的极片放在真空烘箱中,100℃烘烤8h之后,装配成扣式半电池进行电性能测试(负极为锂片,电解液为1 mol/L LiPF6-DMC:EC(质量比=1:1))。0.1C首次不可逆容量损失从62.5 mAh/g降低至41.3 mAh/g。
实施例4
将人造石墨,导电剂Super P,粘结剂PTFE按质量比85:10:5混合均匀后,在对辊机上擀制负极片。在手套箱中,将0.5 mol/L对羟基苯磺酸钠,0.5 mol/L NaOH在磁力搅拌器搅拌下溶解在甲醇溶液中。在三电极体系中,将所制极片作为工作电极,Pt片作为对电极,饱和甘汞电极作为参比电极,采用上述所配置的对羟基苯磺酸钠溶液作为电解液,采用循环伏安的方法在极片表面电沉积一层聚对羟基苯磺酸钠(PSPO)。扫描范围为0~1.5 V,扫描速率为100 mV/s,扫描段数为2段。所得聚合物的厚度为40 nm~70 nm之间。
将上述所制得的极片放在真空烘箱中,100℃烘烤8 h之后,装配成扣式半电池进行电性能测试(负极为锂片,电解液为1 mol/L LiPF6-DMC:EC(质量比=1:1))。空白极片和电沉积聚对羟基苯磺酸钠改性极片的倍率性能见图4,充放电测试显示:空白极片0.1C的首次放电/充电比容量分别为401.4/336.1 mAh/g,聚对羟基苯磺酸钠包覆后的极片首次放电/充电比容量为451.1/399.7 mAh/g,首次不可逆容量的损失从65.3 mAh/g降低到51.4 mAh/g。首次效率从83.7%提高至88.6%。1C放电比容量空白样为43.6 mAh/g,表面电沉积过聚对羟基苯磺酸钠的样品为70.7 mAh/g。

Claims (3)

1.一种降低锂离子电池负极材料首次充电不可逆容量损失的方法,其特征在于,采用电化学沉积的方法在负极极片表面形成一层0.01~10μm的聚合物包覆层,阻止电解液与负极表面的直接接触,包括如下步骤:
1)将碳负极材料:导电剂:粘结剂按质量比 85:10:5擀制极片,并压在铜网上作为负极极片;
2)配置电解液:配置一定浓度的聚合物单体与硫酸或氢氧化钠的混合溶液,通入惰性气体,并在磁力搅拌下均匀溶解;所述的聚合物单体为苯胺、苯酚、对二苯酚、对羟基苯磺酸钠中的一种;当聚合物单体为苯胺时,采用硫酸的水溶液;聚合物单体为苯酚、对二苯酚、对羟基苯磺酸钠时,采用氢氧化钠的甲醇溶液;所述的硫酸或氢氧化钠溶液的浓度为0.1~2.0 mol/L,所述的聚合物单体的浓度为0.05~3.0 mol/L;
3)循环伏安电沉积反应:将步骤1)所得到的负极极片作工作电极,铂片电极作对电极,饱和甘汞电极作参比电极,步骤2)所配溶液作为电解液,电压范围为-0.2V~1.5V,扫描速率为1~100mV/s,扫描段数为2~100段,在极片表面电沉积一层聚合物薄膜;
4)将制得的聚合物薄膜包覆的复合电极用去离子水冲洗,然后用乙醇或丙酮洗涤3~5次,45~100℃真空干燥,即得聚合物薄膜包覆的复合电极。
2.根据权利要求1所述的降低锂离子电池负极材料首次充电不可逆容量损失的方法,其特征在于,步骤1)中的导电剂为碳黑,Super P,粘结剂为聚四氟乙烯,PTFE。
3.根据权利要求1所述的降低锂离子电池负极材料首次充电不可逆容量损失的方法,其特征在于,步骤2)中的惰性气体为氮气、氩气中的一种或其混合物。
CN201310010612.4A 2013-01-12 2013-01-12 一种降低锂离子电池负极材料首次充电不可逆容量损失的方法 Active CN103094527B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310010612.4A CN103094527B (zh) 2013-01-12 2013-01-12 一种降低锂离子电池负极材料首次充电不可逆容量损失的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310010612.4A CN103094527B (zh) 2013-01-12 2013-01-12 一种降低锂离子电池负极材料首次充电不可逆容量损失的方法

Publications (2)

Publication Number Publication Date
CN103094527A CN103094527A (zh) 2013-05-08
CN103094527B true CN103094527B (zh) 2015-05-27

Family

ID=48206857

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310010612.4A Active CN103094527B (zh) 2013-01-12 2013-01-12 一种降低锂离子电池负极材料首次充电不可逆容量损失的方法

Country Status (1)

Country Link
CN (1) CN103094527B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3216072B1 (en) * 2014-11-07 2020-05-13 Silver H-Plus Technology Co., Ltd. Artificial sei cathode material and lithium secondary battery comprising the same
CN104614433A (zh) * 2015-02-13 2015-05-13 天津力神电池股份有限公司 一种石墨负极材料克容量的评价方法
CN106058151B (zh) * 2016-08-12 2019-02-12 深圳博磊达新能源科技有限公司 碳纳米管/纳米硫/聚苯胺复合电极、制备方法及应用
CN108110232B (zh) * 2017-12-06 2020-05-15 成都新柯力化工科技有限公司 一种锂电池硬碳负极的表面处理方法
CN113571677A (zh) * 2021-05-17 2021-10-29 兰州大学 一种提高碳基负极材料首次库伦效率的改性方法
CN114220944B (zh) * 2021-12-14 2024-04-26 天津巴莫科技有限责任公司 一种高分子薄膜修饰的正极极片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310553A (en) * 1991-05-31 1994-05-10 Alcatel Alsthom Compagnie Generale D'electricite Rechargeable electrochemical cell having a liquid electrolyte, and a lithium/carbon anode
CN1564355A (zh) * 2004-04-02 2005-01-12 北京科技大学 燃料电池中聚合物负载催化剂电极及其制备方法
CN101859886A (zh) * 2010-05-27 2010-10-13 深圳市德兴富电池材料有限公司 一种锂离子电池负极材料及其制备方法
CN101916846A (zh) * 2010-08-19 2010-12-15 深圳市贝特瑞新能源材料股份有限公司 锂离子电池负极复合材料及其制备方法
US8164881B2 (en) * 2006-05-31 2012-04-24 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Porous carbon electrode with conductive polymer coating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310553A (en) * 1991-05-31 1994-05-10 Alcatel Alsthom Compagnie Generale D'electricite Rechargeable electrochemical cell having a liquid electrolyte, and a lithium/carbon anode
CN1564355A (zh) * 2004-04-02 2005-01-12 北京科技大学 燃料电池中聚合物负载催化剂电极及其制备方法
US8164881B2 (en) * 2006-05-31 2012-04-24 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Porous carbon electrode with conductive polymer coating
CN101859886A (zh) * 2010-05-27 2010-10-13 深圳市德兴富电池材料有限公司 一种锂离子电池负极材料及其制备方法
CN101916846A (zh) * 2010-08-19 2010-12-15 深圳市贝特瑞新能源材料股份有限公司 锂离子电池负极复合材料及其制备方法

Also Published As

Publication number Publication date
CN103094527A (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
CN108520985B (zh) 一种提高锌电池循环寿命的方法及其应用
CN109980302B (zh) 一种水系锌离子电池胶体电解质及其制备方法和应用
CN105680091B (zh) 一种高性能全固态锂离子电池及其制备方法
CN103094527B (zh) 一种降低锂离子电池负极材料首次充电不可逆容量损失的方法
CN109103399B (zh) 一种锂硫电池用功能性隔膜及其制备方法和在锂硫电池中的应用
CN111490238B (zh) 一种苯基有机酸化合物修饰石墨负极材料及其制备方法
CN107749467B (zh) 一种梭形结构碳包覆磷化铁电极材料及其制备方法
WO2014134967A1 (zh) 一种锂离子电池正极膜及其制备和应用
Zeng et al. A novel iron-lead redox flow battery for large-scale energy storage
CN102983329B (zh) 导电聚合物/纳米金属粒子共包覆的磷酸铁锂正极材料的制备方法
CN103560233A (zh) 一种锂离子电池负极材料碳包覆的硅石墨及其制备方法
CN104201000B (zh) 一种高功率锂离子电容器及其制备方法
AU2015400449A1 (en) Doped conductive oxide and improved electrochemical energy storage device polar plate based on same
CN103928668B (zh) 一种锂离子电池及其正极材料的制备方法
CN108110240B (zh) 一种纳米多孔硅基复合物电极材料及其制备方法
CN105513828A (zh) 一种锂离子电容器复合负极片及其制备方法、锂离子电容器
CN102274965B (zh) 利用电聚合聚苯胺改善储氢合金粉末电化学性能的方法
Zhipeng et al. Hierarchical porous carbon toward effective cathode in advanced zinc-cerium redox flow battery
CN113270585A (zh) 一种电极材料及其制备方法和应用
CN104795564A (zh) 一种水溶液二次电池的正极材料、极片、二次电池和用途
CN105161690B (zh) 通过掺杂石墨烯和二氧化钛提高二硫化钼充放电循环能力的方法
CN113611823A (zh) 一种正极厚极片及其制备方法,锂离子电池
Liu et al. Influence of binder on impedance of lithium batteries: a mini-review
JP2015115233A (ja) マグネシウムイオン二次電池用負極、マグネシウムイオン二次電池
CN117393705A (zh) 一种制备高首次库伦效率有机负极材料的化学预锂化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230726

Address after: Room 226, building 2, No. 1919, Fengxiang Road, Baoshan District, Shanghai 201900

Patentee after: Shanghai YiSen Power Technology Co.,Ltd.

Address before: 200444 No. 99, upper road, Shanghai, Baoshan District

Patentee before: Shanghai University

TR01 Transfer of patent right