CN103086720A - 一种反应烧结氮化硅-氮化硼复相陶瓷的快速氮化制备方法 - Google Patents

一种反应烧结氮化硅-氮化硼复相陶瓷的快速氮化制备方法 Download PDF

Info

Publication number
CN103086720A
CN103086720A CN2013100301485A CN201310030148A CN103086720A CN 103086720 A CN103086720 A CN 103086720A CN 2013100301485 A CN2013100301485 A CN 2013100301485A CN 201310030148 A CN201310030148 A CN 201310030148A CN 103086720 A CN103086720 A CN 103086720A
Authority
CN
China
Prior art keywords
boron nitride
silicon nitride
preparation
complex phase
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013100301485A
Other languages
English (en)
Inventor
杨万利
史忠旗
乔冠军
金海云
金志浩
李延军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN2013100301485A priority Critical patent/CN103086720A/zh
Publication of CN103086720A publication Critical patent/CN103086720A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

本发明公开了一种反应烧结氮化硅-氮化硼复相陶瓷的快速氮化制备方法,采用反应烧结工艺,以硅粉和六方氮化硼粉为基本原料,氧化锆粉作为催化剂,氧化钇为烧结助剂;本发明公开的制备方法可在2.3~5.5小时的较短时间内氮化烧结制备出完全氮化的氮化硅-氮化硼复合材料;相比较于传统工艺,本方法所获得的氮化硅-氮化硼复相陶瓷具有低成本、尺寸不收缩,工艺简单的优势;而且氮化率接近百分之百,力学性能优异;该方法适宜制备复杂形状、大规模工业化推广的陶瓷元件,在工程实际中具有显著的应用潜质。

Description

一种反应烧结氮化硅-氮化硼复相陶瓷的快速氮化制备方法
技术领域:
本发明涉及了一种反应烧结氮化硅-氮化硼复相陶瓷的制备方法,具体涉及一种反应烧结氮化硅-氮化硼复相陶瓷的快速氮化制备方法。
背景技术:
氮化硅(Si3N4)-六方氮化硼(h-BN)复相陶瓷作为一种典型的强弱界面结合的复合材料在高温结构和功能领域具有广泛的应用前景,因其具有良好的高温力学性能、低的热膨胀系数、抗氧化以及优异的电气特性。特别是由于片层结构的六方氮化硼(俗称白石墨)引入到氮化硅基体后,这种复合材料展现出优异的抗熔融有色金属腐蚀及润湿能力,以及良好的抗热震特性。因此,在有色金属冶金等行业的一些核心元件中具有极大的应用潜质(L.Mouradoff,“Interaction between liquid aluminium and non-oxide ceramics(AlN,Si3N4,SiC)”,Corrosion of Advanced Ceramics,113,(1996)177)。例如:内加热器及热电偶保护管、低压铸造升液管,铝液电磁流槽、坩埚、导管及搅拌杆等。另一方面,由于氮化硼的引入也降低体系的弹性模量,因而使复合材料具有优良可加工性能,可以制备高精密度及复杂形状的元件,进一步拓展了应用空间。对于常规的Si3N4/h-BN复相陶瓷,由于氮化硅等原材料成本以及后期工艺成本均比普通陶瓷要高,因而工业化应用通常采用硅直接氮化的反应烧结工艺(RBSN)制备复合材料。然而,这一工艺要求预烧结体被加热到临近硅熔点温度附近氮化;同时由于硅-氮反应的高放热性,导致工艺的氮化时间特别长,甚至达到60小时以上,严重抵消了其成本优势。因此,寻找一种快速氮化的工艺克服传统反应烧结制备复合材料的固有缺陷就成为工程应用的一个难点。
发明内容:
本发明针对上述问题,提供了一种反应烧结氮化硅-氮化硼复相陶瓷的快速氮化制备方法,本发明制备方法有效的缩短了氮化时间,极大地降低了工艺的难度和成本;制备的复相陶瓷仍具有近净尺寸、尺寸不收缩,可加工等优势。
为达到上述目的,本发明采用如下技术方案予以实现:
一种反应烧结氮化硅-氮化硼复相陶瓷的快速氮化制备方法,其特征在于,包括以下的步骤:
步骤1:将中位粒径为5~30微米的硅粉,用质量浓度为10~15%的稀盐酸进行酸洗处理12~24小时,然后用去离子水清洗并干燥,得到预氮化的硅粉;
步骤2:将步骤1获得的预氮化的硅粉与六方氮化硼、氧化锆和氧化钇粉混合得到基本原料,所述基本原料中各组分的重量百分比为:硅30~70%;六方氮化硼10~60%;氧化锆5~10%;氧化钇5~10%;然后以重量为基本原料1~2倍的无水乙醇为介质球磨12-24小时,得到混合均匀的浆料,随后将浆料在60~80℃的真空干燥箱内干燥8~14小时,过筛网分散得到粉料,随后将粉料在模具中模压成厚度为5~10mm的素坯,并将素坯等静压处理,得到预烧结体;
步骤3:将步骤1获得的预烧结体置入真空烧结炉中,用0.5~1h快速升温到1100℃的起始氮化温度,通入流通氮气,始终保持0.10~0.14MPa的微正压氮气氛;以5~20℃/分钟的升温速率从1100℃升高到1400℃氮化,并保温1~2小时;然后以5~30℃/分钟的升温速率从1400℃升高到1550℃烧结处理,并保温1~2小时。最终,用2.3~5.5小时氮化烧结时间得到反应烧结氮化硅-氮化硼复相陶瓷。
步骤2所述的过筛网,筛网的目数为200目。
步骤2所述的将素坯等静压处理,压力为150~200MPa。
与现有技术相比,本发明的有益效果在于:采用快速氮化工艺制备的复相陶瓷仍具有近净尺寸、尺寸不收缩,可加工等优势,适合制备大型复杂形状的陶瓷元件;而且由于添加的ZrO2的催化作用,使整体氮化时间从传统的60小时缩短到仅有2.3~5.5小时,极大地降低了工艺的难度和成本;同时,本发明所获得的反应烧结氮化硅-氮化硼复相陶瓷的氮化率依然达到95%以上,得到孔隙率介于16.8~43.6%之间结构,仍具有较好的抗弯强度和断裂韧性等力学性能。
附图说明:
图1是本发明的工艺流程图。
图2是实施例3的反应烧结氮化硅-氮化硼复相陶瓷的扫描电镜图。
图3是实施例3的反应烧结氮化硅-氮化硼复相陶瓷的X射线衍射图。
具体实施方式:
以下结合附图及具体实施例对本发明作进一步详细说明。
实施例1:
如图1所示,本实施例一种反应烧结氮化硅-氮化硼复相陶瓷的快速氮化制备方法,工艺如下:首先将中位粒径5微米的硅粉,用质量浓度为10%的稀盐酸进行酸洗处理12小时,然后用去离子水清洗并干燥,得到的预氮化的硅粉与六方氮化硼、氧化锆和氧化钇粉混合,各组分的重量百分比为:硅30%;六方氮化硼60%;氧化锆5%;氧化钇5%;然后以重量为基本原料1倍的无水乙醇为介质球磨12小时,得到混合均匀的浆料,随后将浆料在60℃的真空干燥箱内干燥8小时,随后过目数为200目筛网分散得到粉料,随后将粉料在模具中模压成厚度为5mm的素坯,并将素坯等静压200MPa处理;将获得的预烧结体置入真空烧结炉中,用0.5h快速升温到1100℃的起始氮化温度,通入流通氮气,始终保持0.10MPa的微正压氮气氛;以20℃/分钟的升温速率从1100℃升高到1400℃氮化,并保温1小时;然后以30℃/分钟的升温速率从1400℃升高到1550℃烧结处理,并保温1小时;用时2.3小时得到反应烧结氮化硅-氮化硼复相陶瓷。
经测定本实施例制备的反应烧结氮化硅-氮化硼复相陶瓷,氮化率达到98.74%,孔隙率为43.6%,抗弯强度为77.3MPa,维氏硬度为226HV,断裂韧性为1.64MPa·m1/2
实施例2:
如图1所示,本实施例一种反应烧结氮化硅-氮化硼复相陶瓷的快速氮化制备方法,工艺如下:首先将中位粒径15微米的硅粉,用浓度为10%的稀盐酸进行酸洗处理12小时,然后用去离子水清洗并干燥,得到的预氮化的硅粉将与六方氮化硼、氧化锆、氧化钇粉混合,各组分的重量百分比为:硅50%;六方氮化硼40%;氧化锆5%;氧化钇5%;然后以重量为基本原料1倍的无水乙醇为介质球磨12小时,得到混合均匀的浆料,随后将浆料在60℃的真空干燥箱内干燥10小时,随后过目数为200目筛网分散得到粉料,随后将粉料在模具中模压成厚度约7mm的素坯,并将素坯等静压200MPa处理;将获得的预烧结体置入真空烧结炉中,用0.5h快速升温到1100℃的起始氮化温度、通入流通氮气,始终保持0.12MPa的微正压氮气氛;以15℃/分钟的升温速率从1100℃升高到1400℃氮化,并保温1小时;然后以20℃/分钟的升温速率从1400℃升高到1550℃烧结处理,并保温1小时;仅用时约2.5小时得到反应烧结氮化硅-氮化硼复相陶瓷。
经测定本实施例制备的反应烧结氮化硅-氮化硼复相陶瓷,氮化率达到96.49%,孔隙率为32.2%,抗弯强度为96.5MPa,维氏硬度为453HV,断裂韧性为2.35MPa·m1/2
实施例3:
如图1所示,本实施例一种反应烧结氮化硅-氮化硼复相陶瓷的快速氮化制备方法,工艺如下:首先将中位粒径20微米的硅粉,用质量浓度为15%的稀盐酸进行酸洗处理24小时,然后用去离子水清洗并干燥,得到的预氮化的硅粉将与六方氮化硼、氧化锆、氧化钇粉混合,各组分的重量百分比为:硅70%;六方氮化硼20%;氧化锆5%;氧化钇5%;然后以重量为基本原料2倍的无水乙醇为介质球磨24小时,得到混合均匀的浆料,随后将浆料在60℃的真空干燥箱内干燥12小时,随后过目数为200目筛网分散得到粉料,随后将粉料在模具中模压成厚度为7mm的素坯,并将素坯等静压200MPa处理;将获得的预烧结体置入真空烧结炉中,用1h快速升温到1100℃的起始氮化温度、通入流通氮气,始终保持0.12MPa的微正压氮气氛;以15℃/分钟的升温速率从1100℃升高到1400℃氮化,并保温1小时;然后以20℃/分钟的升温速率从1400℃升高到1550℃烧结处理,并保温1小时;用时2.5小时得到反应烧结氮化硅-氮化硼复相陶瓷。
经测定本实施例制备的反应烧结氮化硅-氮化硼复相陶瓷,氮化率达到96.06%,孔隙率为21.7%,抗弯强度为173.9MPa,维氏硬度为572HV,断裂韧性为2.81MPa·m1/2
利用X射线衍射分析(XRD)仪及扫描电子显微镜对所得到的材料进行表征,图2是反应烧结氮化硅-氮化硼复相陶瓷的扫描电镜图,可以看出:复相陶瓷主要由β态氮化硅和片层结构六方氮化硼组成,已经形成了较为致密的结构,六方氮化硼以及氧化物添加剂的液相主要分布在晶界附近。而且片层结构六方氮化硼在β-氮化硅晶粒生长过程中受到原位体积膨胀的压缩效应,大多被挤压变形细化,因此克服了常压烧结复相陶瓷固有的六方氮化硼卡房结构缺陷,形成了结构更致密、力学性能更高的复合材料。图3是反应烧结氮化硅-氮化硼复相陶瓷1400℃氮化后及1550℃烧结后的X射线衍射图。从1400℃的谱线可以看出:材料的主晶相是α及β态氮化硅和六方氮化硼,存在少量的Si2N2O、ZrO2和ZrN晶相,没有残余硅的衍射峰被发现,如果考虑到原始成分中的杂质含量对氮化率表征的影响,这一实施例说明已经达到了完全氮化,ZrO2及其ZrN转化在其中扮演着催化剂的角色。从1550℃的谱线可以看出:材料的主晶相是β态氮化硅和六方氮化硼,少量的ZrO2和Zr0.72Y0.28O1.862晶相。没有α态氮化硅、Si2N2O和ZrN晶相的衍射峰。复相陶瓷已经形成了完全烧结的材料。
实施例4:
如图1所示,本实施例一种反应烧结氮化硅-氮化硼复相陶瓷的快速氮化制备方法,工艺如下:首先将中位粒径30微米的硅粉,用质量浓度为15%的稀盐酸进行酸洗处理24小时,然后用去离子水清洗并干燥,得到的预氮化的硅粉将与六方氮化硼、氧化锆、氧化钇粉混合,各组分的重量百分比为:硅70%;六方氮化硼10%;氧化锆10%;氧化钇10%;然后以重量为基本原料2倍的无水乙醇为介质球磨24小时,得到混合均匀的浆料,随后将浆料在80℃的真空干燥箱内干燥14小时,随后过目数为200目筛网分散得到粉料,随后将粉料在模具中模压成厚度为10mm的素坯,并将素坯等静压150MPa处理;将获得的预烧结体置入真空烧结炉中,用1h快速升温到1100℃的起始氮化温度、通入流通氮气,始终保持0.14MPa的微正压氮气氛。以5℃/分钟的升温速率从1100℃升高到1400℃氮化,并保温2小时;然后以5℃/分钟的升温速率从1400℃升高到1550℃烧结处理,并保温2小时。用时5.5小时得到反应烧结氮化硅-氮化硼复相陶瓷。
经测定本实施例制备的反应烧结氮化硅-氮化硼复相陶瓷,氮化率达到95.10%,孔隙率为16.8%,抗弯强度为232.4MPa,维氏硬度为849HV,断裂韧性为2.36MPa·m1/2
采用快速氮化工艺制备的反应烧结氮化硅-氮化硼复相陶瓷仍具有普通反应烧结的力学性能及优势;而且由于添加的ZrO2的催化作用,使整体氮化时间从传统的60小时缩短到仅有2.3~5.5小时,极大地降低了工艺的难度和成本,在工程应用中具有显著的意义。

Claims (3)

1.一种反应烧结氮化硅-氮化硼复相陶瓷的快速氮化制备方法,其特征在于:包括以下的步骤:
步骤1:将中位粒径为5~30微米的硅粉,用质量浓度为10~15%的稀盐酸进行酸洗处理12~24小时,然后用去离子水清洗并干燥,得到预氮化的硅粉;
步骤2:将步骤1获得的预氮化的硅粉与六方氮化硼、氧化锆和氧化钇粉混合得到基本原料,所述基本原料中各组分的重量百分比为:硅30~70%;六方氮化硼10~60%;氧化锆5~10%;氧化钇5~10%;然后以重量为基本原料1~2倍的无水乙醇为介质球磨12-24小时,得到混合均匀的浆料,随后将浆料在60~80℃的真空干燥箱内干燥8~14小时,过筛网分散得到粉料,随后将粉料在模具中模压成厚度为5~10mm的素坯,并将素坯等静压处理,得到预烧结体;
步骤3:将步骤2获得的预烧结体置入真空烧结炉中,用0.5~1h快速升温到1100℃的起始氮化温度,通入流通氮气,始终保持0.10~0.14MPa的微正压氮气氛;以5~20℃/分钟的升温速率从1100℃升高到1400℃氮化,并保温1~2小时;然后以5~30℃/分钟的升温速率从1400℃升高到1550℃烧结处理,并保温1~2小时;最终,用2.3~5.5小时氮化烧结时间得到反应烧结氮化硅-氮化硼复相陶瓷。
2.根据权利要求1所述的反应烧结氮化硅-氮化硼复相陶瓷的快速氮化制备方法,其特征在于:步骤2所述的过筛网,筛网的目数为200目。
3.根据权利要求1所述的反应烧结氮化硅-氮化硼复相陶瓷的快速氮化制备方法,其特征在于:步骤2所述的将素坯等静压处理,压力为150~200MPa。
CN2013100301485A 2013-01-25 2013-01-25 一种反应烧结氮化硅-氮化硼复相陶瓷的快速氮化制备方法 Pending CN103086720A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013100301485A CN103086720A (zh) 2013-01-25 2013-01-25 一种反应烧结氮化硅-氮化硼复相陶瓷的快速氮化制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013100301485A CN103086720A (zh) 2013-01-25 2013-01-25 一种反应烧结氮化硅-氮化硼复相陶瓷的快速氮化制备方法

Publications (1)

Publication Number Publication Date
CN103086720A true CN103086720A (zh) 2013-05-08

Family

ID=48199915

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013100301485A Pending CN103086720A (zh) 2013-01-25 2013-01-25 一种反应烧结氮化硅-氮化硼复相陶瓷的快速氮化制备方法

Country Status (1)

Country Link
CN (1) CN103086720A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104163633A (zh) * 2014-07-04 2014-11-26 广东工业大学 一种低成本、快速制备高导热Si3N4陶瓷的方法
CN105236753A (zh) * 2015-08-20 2016-01-13 西安交通大学 一种硼硅酸盐玻璃/h-BN复相陶瓷及其制备方法
CN108409336A (zh) * 2018-05-28 2018-08-17 江苏东浦精细陶瓷科技股份有限公司 氮化硅陶瓷及其制备方法
WO2023083251A1 (zh) * 2021-11-10 2023-05-19 衡阳凯新特种材料科技有限公司 陶瓷组合物、氮化硅陶瓷材料及其制备方法和陶瓷制品
CN117142863A (zh) * 2023-10-31 2023-12-01 山东鹏程陶瓷新材料科技有限公司 一种氮化硼陶瓷承烧板及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4412008A (en) * 1980-02-23 1983-10-25 Nippon Kokan Kabushiki Kaisha Composite sinter of silicon nitride/boron nitride and method for manufacturing thereof
CN1810720A (zh) * 2006-02-24 2006-08-02 中国科学院上海硅酸盐研究所 一种高热导氮化硅陶瓷的制备方法
CN1903789A (zh) * 2006-07-28 2007-01-31 北京科技大学 自蔓延反应烧结Si3N4/BN复相可加工陶瓷的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4412008A (en) * 1980-02-23 1983-10-25 Nippon Kokan Kabushiki Kaisha Composite sinter of silicon nitride/boron nitride and method for manufacturing thereof
CN1810720A (zh) * 2006-02-24 2006-08-02 中国科学院上海硅酸盐研究所 一种高热导氮化硅陶瓷的制备方法
CN1903789A (zh) * 2006-07-28 2007-01-31 北京科技大学 自蔓延反应烧结Si3N4/BN复相可加工陶瓷的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
《中国博士学位论文全文数据库 工程科技Ⅰ辑》 20110615 袁磊 "利用反应烧结法制备Si3N4复合材料及其多孔材料的研究" 47-49 , *
《稀有金属材料与工程》 20110630 韩涛等 "低纯度Si 粉催化法反应烧结制备Si3N4 陶瓷及其性能" 265-267 第40卷, *
袁磊: ""利用反应烧结法制备Si3N4复合材料及其多孔材料的研究"", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *
韩涛等: ""低纯度Si 粉催化法反应烧结制备Si3N4 陶瓷及其性能"", 《稀有金属材料与工程》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104163633A (zh) * 2014-07-04 2014-11-26 广东工业大学 一种低成本、快速制备高导热Si3N4陶瓷的方法
CN105236753A (zh) * 2015-08-20 2016-01-13 西安交通大学 一种硼硅酸盐玻璃/h-BN复相陶瓷及其制备方法
CN105236753B (zh) * 2015-08-20 2018-04-17 西安交通大学 一种硼硅酸盐玻璃/h‑BN复相陶瓷及其制备方法
CN108409336A (zh) * 2018-05-28 2018-08-17 江苏东浦精细陶瓷科技股份有限公司 氮化硅陶瓷及其制备方法
WO2023083251A1 (zh) * 2021-11-10 2023-05-19 衡阳凯新特种材料科技有限公司 陶瓷组合物、氮化硅陶瓷材料及其制备方法和陶瓷制品
CN117142863A (zh) * 2023-10-31 2023-12-01 山东鹏程陶瓷新材料科技有限公司 一种氮化硼陶瓷承烧板及其制备方法

Similar Documents

Publication Publication Date Title
JP2671945B2 (ja) 超塑性炭化ケイ素焼結体とその製造方法
CN103086720A (zh) 一种反应烧结氮化硅-氮化硼复相陶瓷的快速氮化制备方法
CN102503503B (zh) 一种浸渍强化碳化硅可加工复相陶瓷的制备方法
CN106800420B (zh) 一种碳化硅晶须原位复合刚玉高温陶瓷材料及其制备方法
CN108409336A (zh) 氮化硅陶瓷及其制备方法
CN103274693A (zh) 一种具有新型孔壁结构的多孔碳化硅陶瓷及其制备方法
CN110698201A (zh) 一种陶瓷及其制备方法
CN112624793A (zh) 一种氧化铝基多孔陶瓷材料的制备方法
CN104591738A (zh) 一种高韧性碳化硼陶瓷及其制备方法
CN1673173A (zh) 一种纳米晶添加氧化铝陶瓷材料及低温液相烧结方法
JP3607939B2 (ja) 炭化ケイ素−窒化ホウ素複合材料の反応合成
CN101734920A (zh) 一种氮化钛多孔陶瓷及其制备方法
JPH01188454A (ja) 高強度複合セラミック焼結体
CN108546131B (zh) 氮化硅多孔陶瓷的制备方法
CN113956024B (zh) 一种抗热震复相陶瓷材料
US4889834A (en) SiC-Al2 O3 composite sintered bodies and method of producing the same
CN111018495A (zh) 一种钛酸铝增强方镁石复相陶瓷材料
CN115073186A (zh) 一种氮化硅陶瓷烧结体及其制备方法
CN113105216A (zh) 一种注塑成型的锆铝复合陶瓷及其制备方法
CN108358628B (zh) 一种莫来石-氧化锆复合陶瓷及其制备方法
JP3932349B2 (ja) 非酸化物系窒化ホウ素複合材料の反応合成
CN113173800B (zh) 一种β-Sialon多孔陶瓷及其制备方法
CN115180932B (zh) 基于高钠工业氧化铝原位合成莫来石多孔陶瓷及制备方法
CN114644513B (zh) 一种莫来石红外透明陶瓷的制备方法
JPH0688832B2 (ja) 多結晶セラミックス製品及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130508