CN103080319B - 在植物中制造dha和其他lc-pufa - Google Patents

在植物中制造dha和其他lc-pufa Download PDF

Info

Publication number
CN103080319B
CN103080319B CN201180035255.6A CN201180035255A CN103080319B CN 103080319 B CN103080319 B CN 103080319B CN 201180035255 A CN201180035255 A CN 201180035255A CN 103080319 B CN103080319 B CN 103080319B
Authority
CN
China
Prior art keywords
pufa
nucleotide sequence
sequence
plant
promotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201180035255.6A
Other languages
English (en)
Other versions
CN103080319A (zh
Inventor
T.A.沃尔什
A.O.默洛
D.加乔特
P.G.罗斯勒
S.贝万
J.M.库纳
J.G.梅茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DSM IP Assets BV
Corteva Agriscience LLC
Original Assignee
DSM IP Assets BV
Dow AgroSciences LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DSM IP Assets BV, Dow AgroSciences LLC filed Critical DSM IP Assets BV
Priority to CN201510664546.1A priority Critical patent/CN105296511A/zh
Publication of CN103080319A publication Critical patent/CN103080319A/zh
Application granted granted Critical
Publication of CN103080319B publication Critical patent/CN103080319B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1288Transferases for other substituted phosphate groups (2.7.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6432Eicosapentaenoic acids [EPA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6434Docosahexenoic acids [DHA]

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rheumatology (AREA)
  • Nutrition Science (AREA)
  • Immunology (AREA)
  • Diabetes (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Hematology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Pain & Pain Management (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Obesity (AREA)

Abstract

本发明提供重组宿主生物体(譬如植物),该生物体系以容许和/或增进宿主生物体中PUFAs生产的多不饱和脂肪酸(PUFA)合成酶系统与一或多个辅助蛋白(譬如PPTase和/或ACoAS)之基因修饰。本发明亦关于制造和使用该类生物体(譬如用以获得PUFAs)的方法以及由该类生物体获得的产品(譬如油和/或籽)。

Description

在植物中制造DHA和其他LC-PUFA
发明领域
本发明大致上关于重组宿主生物体(譬如植物),该生物体系以容许和/或增进宿主生物体中PUFAs生产的多不饱和脂肪酸(PUFA)合成酶系统与一或多个辅助蛋白之基因修饰。本发明亦关于制造和使用该类生物体(譬如用以获得PUFAs)的方法以及由该类生物体获得的产品(譬如油与籽)。
发明背景
多不饱和脂肪酸(PUFAs)被认为有益于营养应用、药学应用、工业应用、及其它目的。然而,来自天然来源(譬如鱼油)或来自化学合成的PUFAs现有供应就长期商业需求而言并不足够。
衍生自植物(譬如油籽作物)的蔬菜油较便宜且没有和鱼油相关的污染议题。然而,在商业开发植物与植物油发现的PUFAs通常不包括较饱和或较长链PUFAs,并仅通常包括诸如亚油酸(十八个碳,带有2个双键,在Δ9与12位置--18:2Δ9,12)与亚麻酸(18:3Δ9,12,15)之脂肪酸。
已说明了藉由修饰植物内源产生的脂肪酸以在植物中产生较不饱和或较长链的PUFAs。举例来说,已说明了以编码脂肪酸延长酶和/或去饱和酶的不同个别基因对植物进行基因修饰,结果生成含有大量较长链与较不饱和PUFAs—例如二十碳五烯酸(EPA)—但亦含有大量混合短链与较不饱和PUFAs的叶或籽(Qietal.,NatureBiotech.22:739(2004);WO04/071467;Abbadietal.,PlantCell16:1(2004);NapierandSayanova,ProceedingsoftheNutritionSociety64:387-393(2005);Robertetal.,FunctionalPlantBiology32:473-479(2005);U.S.Appl.Pub.No.2004/0172682)。
芸薹属(Brassica)包括芥花(canola)-世界上最重要油籽作物之一以及生长在温带地区的最重要油籽作物。芥花传统上具有油菜(Brassicanapus,由芜菁(Brassicarapa)与甘蓝(Brassicaoleracea)种间杂交所衍生的品种)的特征,其中芥酸与硫化葡萄糖苷已经由常规育种去除或显著减少。大部分芥花油系生产为供人类食用的蔬菜油形式。亦有将芥花油用于工业应用的增长中市场。
衍生自特定种类芥花籽的食用与工业油质量系取决于其组成脂肪酸,因为脂肪酸不饱和性的种类与份量就饮食与工业应用而言皆有意涵。常规芥花油含有约60%油酸(C18:1)、约20%亚油酸(C18:2)及约10%亚麻酸(18:3)。常规芥花通常内含的多不饱和亚麻酸水平系非所欲的,因为该油极易氧化,氧化速率受到几个因素影响,包括氧的存在、曝露至光与热、油内固有或外加抗氧化剂与促氧化剂的存在。反复油炸(诱导氧化)或长期储存(自发氧化)造成的氧化导致走味与腐败。氧化亦会改变芥花油的润滑与黏稠性质。
相对于常规芥花油,展现降低多不饱和脂肪酸水平并增加单元不饱和油酸水平的油和较高氧化稳定性有关。个别脂肪酸对氧化的易感性取决于其不饱和度。于是,亚麻酸—其拥有三个碳-碳双键—的氧化速率是油酸—其仅有一个双键—的25倍,是亚油酸的2倍,其有两个双键。亚油酸与亚麻酸亦对味道与气味影响最大,因该等容易形成过氧化氢。
高油酸油(≥70%油酸)在储存、油炸与精炼期间较不易氧化,并可加热至较高温而不生烟,使其更适宜作为烹饪油。具有籽油中的油酸(C18:1)超过70%(以重量计)且亚麻酸(C18:3)低于3.5%(以重量计)之脂肪酸配置的市售芥花品种例子为NexeraTM品种,由DowAgroSciencesLLC(Indianapolis,IN)发售,该品种产生"ω-9油",一种非氢化之高油酸、低亚麻酸油,目前在餐厅与餐饮业用于众多应用,包括油炸、快炒、烘焙、喷雾及用于色拉酱。
发明概要
本领域对于有效率并有效地在植物、植物籽或植物油中制造一定数量(譬如商业数量)的较长链或较不饱和PUFAs以及在植物、植物籽或植物油的该PUFAs中富含一定数量的脂质(譬如三酸甘油酯(TAG)与磷脂(PL))之较便宜方法有所需求。一种如本案所述藉由提供以多不饱和脂肪酸(PUFA)合成酶和一或多个辅助蛋白之基因改造的重组宿主生物体在宿主生物体(譬如植物)中提供并增进PUFA制造的系统是本领域做法的重要替代方案。
本发明系指涉一种基因改造植物(譬如芸薹属)、其子代、籽、细胞、组织或部位,其包含:(i)编码多不饱和脂肪酸(PUFA)合成酶系统(譬如藻类PUFA合成酶系统)之核酸序列,该系统系制造至少一PUFA;及(ii)编码磷酸泛酰巯基乙胺基转移酶(PPTase)之核酸序列,该酶系将磷酸泛酰巯基乙胺基辅助因子转移至PUFA合成酶系统(譬如藻类PUFA合成酶系统)ACP域。在某些具体例中,该基因改造植物、其子代、籽、细胞、组织或部位系来自经济重要芸薹属物种(譬如油菜或芥菜(Brassicajuncea))。在某些具体例中,PUFA合成酶系统系包含和SEQIDNO:1之氨基酸序列至少60%至99%相同的氨基酸序列或包含SEQIDNO:1之氨基酸序列。在某些具体例中,编码PUFA合成酶系统之核酸序列系包含和SEQIDNO:6之核酸序列至少60%至99%相同的核酸序列或包含SEQIDNO:6之核酸序列。在某些具体例中,PUFA合成酶系统系包含和SEQIDNO:2之氨基酸序列至少60%至99%相同之氨基酸序列或包含SEQIDNO:2之氨基酸序列。在某些具体例中,编码PUFA合成酶系统之核酸序列系包含和SEQIDNO:7之核酸序列至少60%至99%相同的核酸序列或包含SEQIDNO:7之核酸序列。在某些具体例中,PUFA合成酶系统系包含和SEQIDNO:3之氨基酸序列至少60%至99%相同的氨基酸序列或包含SEQIDNO:3之氨基酸序列。在某些具体例中,编码PUFA合成酶系统之核酸序列系包含和SEQIDNO:8之核酸序列至少60%至99%相同的核酸序列或包含SEQIDNO:8之核酸序列。在某些具体例中,PUFA合成酶系统系包含SEQIDNOs:1、2、或3或其任意组合之氨基酸序列。在某些具体例中,编码PUFA合成酶系统之核酸序列系包含SEQIDNOs:6、7或8或其任意组合之核酸序列。
在某些具体例中,PPTase系包含和SEQIDNO:5至少60%至99%相同的氨基酸序列或包含SEQIDNO:5之氨基酸序列。在某些具体例中,编码PPTase之核酸序列系和SEQIDNO:10之核酸序列至少60%至99%相同或包含SEQIDNO:10之核酸序列。
在某些具体例中,(i)与(ii)之核酸序列系包含于单一重组表达载体。在某些具体例中,(i)与(ii)之核酸序列系可操作地连接至籽特异性启动子。在某些具体例中,(i)与(ii)之核酸序列系可操作地连接至选自由PvDlec2、Pv菜豆素、LfKCS3及FAE1所构成之群组的启动子。
在某些具体例中,该基因改造植物(譬如产生芥花油的芸薹属物种)、其子代、籽、细胞、组织或部位又包含(iii)编码酰基-CoA合成酶(ACoAS)之核酸序列,该酶系催化长链PUFA游离脂肪酸(FFA)转换成酰基-CoA。在某些具体例中,ACoAS系包含和SEQIDNO:4至少60%至99%相同之氨基酸序列或包含SEQIDNO:4之氨基酸序列。在某些具体例中,ACoAS系包含和SEQIDNO:9之核酸序列至少60%至99%相同的核酸序列或包含SEQIDNO:9之核酸序列。在某些具体例中,编码ACoAS之核酸序列系包含SEQIDNO:34之核酸序列。在某些具体例中,(i)、(ii)和/或(iii)之核酸序列系包含于单一重组表达载体。在某些具体例中,(i)、(ii)和/或(iii)之核酸序列系可操作地连接至籽特异性启动子。在某些具体例中,(i)、(ii)和/或(iii)之核酸序列系可操作地连接至选自由下列所构成之群组的启动子:PvDlec2、LfKCS3及FAE1。
在某些具体例中,该基因改造植物(譬如芸薹属)、其子代、细胞、组织或部位又包含编码乙酰基CoA羧化酶(ACCase)之核酸序列和/或编码第2型二酰基甘油酯酰基转移酶(DGAT2)之核酸序列。
本发明系指涉一种分离核酸分子,其包含选自下列之核酸序列:SEQIDNOs:6-10与SEQIDNO:34、重组表达载体pDAB7361、重组表达载体pDAB7362、重组表达载体pDAB7363、重组表达载体pDAB7365、重组表达载体pDAB7368、重组表达载体pDAB7369、重组表达载体pDAB7370、重组表达载体pDAB100518、重组表达载体pDAB101476、重组表达载体pDAB9166、重组表达载体pDAB9167、重组表达载体pDAB7379、重组表达载体pDAB7380、重组表达载体pDAB9323、重组表达载体pDAB9330、重组表达载体pDAB9337、重组表达载体pDAB9338、重组表达载体pDAB9344、重组表达载体pDAB9396、重组表达载体pDAB101412、重组表达载体pDAB7733、重组表达载体pDAB7734、重组表达载体pDAB101493、重组表达载体pDAB109507、重组表达载体pDAB109508、重组表达载体pDAB109509、重组表达载体pDAB9151、重组表达载体pDAB108207、重组表达载体pDAB108208、重组表达载体pDAB108209、重组表达载体pDAB9159、重组表达载体pDAB9147、重组表达载体pDAB108224、或重组表达载体pDAB108225。
在某些具体例中,得自该基因改造植物、其子代、籽、细胞、组织或部位的籽油系包含可检测量的DHA(十二碳六烯酸(C22:6,n-3))和/或EPA(二十碳五烯酸(C20:5,n-3))。在某些具体例中,该籽油系包含0.01%至15%DHA、0.05%至10%DHA、或0.05%至5%DHA。在某些具体例中,该籽油系包含0.01%至5%EPA、0.05%至5%EPA、或0.05%至1%EPA。在其它具体例中,在籽油中发现的可检测量DHA和/或EPA亦可在得自该基因改造植物的粮食和/或膳食中发现。在某些具体例中,可检测量DHA和/或EPA系于具有包含-以重量计—70%或更多油酸(C18:1)和/或4%或更少亚麻酸(C18:3)之脂肪酸含量的芸薹属物种籽油中发现。
本发明系指涉一种油或一种籽,该等系得自本案所述基因改造植物(譬如芸薹属)、其子代、细胞、组织或部位。本发明系指涉一种食品,其包含得自本案所述基因改造植物、其子代、细胞、组织或部位之油。本发明亦指涉一种功能食品,其包含得自本案所述基因改造植物、其子代、细胞、组织或部位之油,或得自本案所述基因改造植物、其子代、细胞、组织或部位之籽。本发明系指涉一种医药产品,其包含得自本案所述基因改造植物、其子代、细胞、组织或部位之油。
本发明系指涉一种制造包含至少一LC-PUFA之油的方法,该方法系包含从本案所述基因改造植物(譬如芸薹属)、其子代、细胞、组织或部位或从本案所述基因改造植物(譬如芸薹属)、其子代、细胞、组织或部位之籽回收油。本发明亦指涉一种制造包含至少一LC-PUFA之油的方法,该方法系包含栽种本案所述基因改造植物(譬如芸薹属)、其子代、细胞、组织或部位。本发明亦指涉一种在籽油中制造至少一LC-PUFA的方法,该方法系包含从本案所述基因改造植物(譬如芸薹属)、其子代、细胞、组织或部位之籽回收油。
本发明系指涉一种在籽油中制造至少一PUFA的方法,该方法系包含栽种本案所述基因改造植物(譬如芸薹属)、其子代、细胞、组织或部位。本发明亦指涉一种提供含有至少一PUFA之补充品或治疗产品给一个体的方法,该方法包含提供本案所述基因改造植物(譬如芸薹属)、其子代、细胞、组织或部位、本案所述之油、本案所述之籽、本案所述之食品、本案所述之功能食品、本案所述之医药产品给该个体。在某些具体例中,该具体例所包含的PUFA为DHA和/或EPA。
本发明系指涉一种制造本案所述基因改造植物(譬如芸薹属)、其子代、细胞、组织或部位的方法,该方法系包含以下列转化植物或植物细胞(i)编码PUFA合成酶系统(譬如藻类PUFA合成酶系统)之核酸序列,该系统系制造至少一多不饱和脂肪酸(PUFA);及(ii)编码磷酸泛酰巯基乙胺基转移酶(PPTase)之核酸序列,该酶系将磷酸泛酰巯基乙胺基辅助因子转移至PUFA合成酶系统(譬如藻类PUFA合成酶系统)ACP域。在某些具体例中,该方法又包含以下列转化植物或植物细胞:(iii)编码酰基-CoA合成酶(ACoAS)之核酸序列,该酶系催化长链PUFA游离脂肪酸(FFA)转换成酰基-CoA。
附图简述
本发明各种具体例可由下列详细说明、图式、及随附序列说明更完整地理解。
图1绘示编码PUFAOrfA的9个重复域各者之重新设计DNA序列的ClustalW(于VectorNTI之比对)。
图2展示pDAB7361的质粒图谱。
图3展示pDAB7362的质粒图谱。
图4展示pDAB7363的质粒图谱。
图5展示来自芥花事件5197[14]-032.002的T1籽之单一籽分析DHA含量。
图6展示以OrfA、OrfB与OrfC特异性血清探测来自芥花事件5197[14]-032.002的晚期(>30DAP)发育中T1籽之萃取物的SDS-PAGE蛋白质印迹法结果。
图7A展示从DHA生产芥花事件5197[14]-032.002.Sx002之授粉后日数15、20、25、30、35与42收集的发育中T2籽样本的脂质含量。
图7B藉由蛋白质印迹法展示OrfA、OrfB与OrfC多肽存在于DHA生产芥花事件5197[14]-032.002.Sx002之萃取物。
图8展示芥花事件5197[14]-032.002之温室生长T1植物的纯合T2植物的LC-PUFA含量。
图9展示六个纯合品系的单一T2籽分析LC-PUFA的总结。
图10展示来自两个T1品系与未转化ω-9Nexera710之正逆杂交(reciprocalcross)的所得亲代与F1杂交籽的DHA含量。
图11展示衍生自芥花事件5197[13]-010.001之六十个个别T1植物的pat基因拷贝数。
图12展示在以授粉后日数(DAP)表示的各别6个时点使用原始强度值之空白未转化ω-9Nexera710品系中感兴趣基因的表达图样。
图13展示在以DAP表示的各别6个时点使用正规化强度值之空白未转化ω-9Nexera710品系中感兴趣基因的表达图样。
图14展示在以DAP表示的各别6个时点使用原始强度值之纯合子事件5197[14]-032.002品系中感兴趣基因的表达图样。
图15展示在以DAP表示的各别6个时点使用正规化强度值之纯合子事件5197[14]-032.002品系中感兴趣基因的表达图样。
图16展示以薄层层析法(TLC)测量之成熟转基因芥花籽的PUFA合成酶活性。
图17展示参考肽彼此相对的计算比例,其系来自在有与无共同表达HetI之大肠杆菌表达的OrfA,及于芥花事件5197[14]-032.002表达的OrfA。
图18展示apo2-9肽对六个参考肽各者的计算比例,其系来自在有与无HetI之大肠杆菌表达的OrfA,及于转基因芥花事件5197[14]-032.002表达的OrfA。
图19展示pDAB7365的质粒图谱。
图20展示pDAB7368的质粒图谱。
图21展示pDAB7369的质粒图谱。
图22展示pDAB7370的质粒图谱。
图23展示pDAB100518的质粒图谱。
图24展示pDAB101476的质粒图谱。
图25展示pDAB101477的质粒图谱。
图26展示pDAB9166的质粒图谱。
图27展示pDAB9167的质粒图谱。
图28展示pDAB7379的质粒图谱。
图29展示pDAB7380的质粒图谱。
图30展示pDAB9323的质粒图谱。
图31展示pDAB9330的质粒图谱。
图32展示pDAB9337的质粒图谱。
图33展示pDAB9338的质粒图谱。
图34展示pDAB9344的质粒图谱。
图35展示pDAB9396的质粒图谱。
图36展示pDAB101412的质粒图谱。
图37展示pDAB7733的质粒图谱。
图38展示pDAB7734的质粒图谱。
图39展示pDAB101493的质粒图谱。
图40展示pDAB109507的质粒图谱。
图41展示pDAB109508的质粒图谱。
图42展示pDAB109509的质粒图谱。
图43展示pDAB9151的质粒图谱。
图44展示pDAB108207的质粒图谱。
图45展示pDAB108208的质粒图谱。
图46展示pDAB108209的质粒图谱。
图47展示pDAB9159的质粒图谱。
图48展示pDAB9147的质粒图谱。
图49展示pDAB108224的质粒图谱。
图50展示pDAB108225的质粒图谱。
图51例示以pDAB101493、pDAB7362、pDAB7369、pDAB101412或pDAB7380转化之个别转基因拟南芥事件的T2籽的DHA与LC-PUFA含量。
发明详述
本案所用"多不饱和脂肪酸"或"PUFA"等词系指带有由至少16个碳、至少18个碳、至少20个碳、或22或更多个碳构成之碳链并带有至少3或更多个双键、4或更多个双键、5或更多个双键、或6或更多个双键的脂肪酸,其中双键皆为顺式构型。
本案所用"长链多不饱和脂肪酸"或"LC-PUFAs"等词系指由18个及更多碳链长度、20个及更多碳链长度、含有3或更多个双键、或是22或更多个碳带有至少3或更多个双键、4或更多个双键、5或更多个双键、或6或更多个双键所组成的脂肪酸。ω-6系列的LC-PUFAs包括但不限于γ-亚麻酸(C18:3)、双-升-γ-亚麻酸(C20:3n-6)、花生四烯酸(C20:4n-6)、肾上腺酸(亦称二十二碳四烯酸或DTA)(C22:4n-6)、及二十二碳五烯酸(C22:5n-6)。ω-3系列的LC-PUFAs包括但不限于α-亚麻酸(C18:3)、二十碳三烯酸(C20:3n-3)、二十碳四烯酸(C20:4n-3)、二十碳五烯酸(C20:5n-3)、二十二碳五烯酸(C22:5n-3)、及二十二碳六烯酸(C22:6n-3)。LC-PUFAs亦包括带有大于22个碳及4或更多个双键的脂肪酸,包括但不限于C28:8(n-3)。
本案所用"PUFA合成酶"或"PUFA合成酶系统"或"SzPUFA"或"hSzThPUFA"等词系指制造多不饱和脂肪酸(PUFAs)且尤其是长链PUFAs(LC-PUFAs)的酶系统还有该酶在复合体中的任何域。PUFA合成酶一词系包括但不限于用于制造PUFAs的PUFAPKS系统或类PKS系统。
本案所用"磷酸泛酰巯基乙胺基转移酶"或"PPTase"或"NoHetI"一词系指藉由将辅助因子(譬如4-磷酸泛酰巯基乙胺)从辅酶A(CoA)转移至存在于PUFA合成酶系统的一或多个ACP域来活化PUFA合成酶系统的酶。
本案所用"酰基-CoA合成酶"或"ACoAS"或"SzACS-2"一词系指催化长链多不饱和游离脂肪酸(FFA)转换成酰基-CoA的酶。
本案所用"植物"一词系包括但不限于植物的任何子代、细胞、组织、或部位。
"保健品"意指由植物分离、纯化、浓缩、或制造的产品,其提供生理帮助或提供对疾病的防护,包括补充有该类产品的加工食品,连同由已进行基因工程以含有加强水平之该类生理活性成分的作物制造的食品。
"功能食品"意指下列食品:(a)外观相似于或可为作为一部分日常饮食食用的常规食品及(b)凭借修饰通常存在于未修饰食品中的成分比例而具有加强营养值和/或特定饮食帮助。
"多核苷酸"与"核酸"等词系意图涵盖单数核酸还有复数核酸、核酸分子或其片段、变体或衍生物、或构建体,譬如信使RNA(mRNA)或质粒DNA(pDNA)。多核苷酸或核酸可含有全长cDNA序列之核苷酸序列、或其片段,包括未翻译5'与3'序列及编码序列。多核苷酸或核酸可由任何聚核糖核苷酸或聚脱氧核糖核苷酸构成,该等可为未修饰RNA或DNA或经修饰RNA或DNA。举例来说,多核苷酸或核酸可由单/双链DNA、混合有单/双链区的DNA、单/双链RNA、及混合有单/双链区的RNA、包含可为单链或更通常为双链或混合有单/双链区之DNA与RNA的杂交分子所构成。该等用词亦囊括多核苷酸或核酸的化学性、酶性、或代谢性修饰形式。
多核苷酸或核酸序列可称作"分离",其中彼等系从其原生环境被移出。举例来说,包含在载体内的编码具有二羟酸脱水酶活性之多肽或多肽片段的异源性多核苷酸或核酸就本发明目的而言被视为分离。分离多核苷酸或核酸的另外例子系包括维持于异源宿主细胞内的重组多核苷酸或于溶液中的(部分地或实质上)纯化多核苷酸或核酸。根据本发明之分离多核苷酸或核酸又包括以合成方式制造的该类分子。呈DNA聚合物形式的分离多核苷酸或核酸可包含一或多个cDNA片段、基因组DNA或合成DNA。
"基因"一词系指能够表达特定蛋白、选择性地包括编码序列之前(5'无编码序列)与之后(3'无编码序列)的调控序列的核酸或其片段。
用于本案时,"编码区"一词系指编码特定氨基酸序列的DNA序列。"适宜调控序列"系指位于编码序列上游(5'无编码序列)、内部、或下游(3'无编码序列)的核苷酸序列,其影响相关编码序列的转录、RNA处理或稳定性、或翻译。调控序列可包括启动子、翻译前导序列、内含子、聚腺苷酸识别序列、RNA处理位点、效应物结合位置、及茎环结构。
用于本案时,"多肽"一词意图涵盖单数"多肽"还有复数"多肽"及其片段并指称由以酰胺键(亦习知为肽键)线性联结之单体(氨基酸)所组成的分子。"多肽"一词系指由二或多个氨基酸所组成的任何链或多链,并非指称特定长度产物。于是,肽、二肽、三肽、寡肽、蛋白、氨基酸链、或用于指称由二或多个氨基酸所组成之任何链或多链的任何其它用词系包括在"多肽"定义内,而"多肽"一词可代替任一该等用词或互换使用。多肽可衍生自天然生物来源或以重组科技制造,但不一定由指定核酸序列翻译。可以任何方式生成,包括化学合成。
"分离"多肽或或其片段、变体或衍生物意指不在其天然环境的多肽。不需特殊程度的纯化。举例来说,分离多肽可从其原生或自然环境移出。在宿主细胞中表达的重组制得多肽与蛋白就本发明目的而言被视为分离,以任何适宜技术分离、分割、或是部分或实质上纯化的原生或重组多肽亦然。
用于本案时,"原生"系指多核苷酸、基因或多肽在自然界被发现-连同其本身调控序列,倘若存在的话-的形式。
用于本案时,"内源性"系指多核苷酸、基因或多肽在其位于生物体或生物体基因组内的天然位置的原生形式。"内源性多核苷酸"系包括在其位于生物体基因组内的天然位置的原生多核苷酸。"内源性基因"系包括在其位于生物体基因组内的天然位置的原生基因。"内源性多肽"系包括在其位于生物体内的天然位置的原生多肽。
用于本案时,"异源性"系指不是在宿主生物体内正常发现而是引进宿主生物体内的多核苷酸、基因或多肽。"异源性多核苷酸"系包括以异于对应原生多核苷酸的形式再次引进来源生物体内的原生编码区、或其之一部分。"异源性基因"系包括以异于对应原生基因的形式再次引进来源生物体内的原生编码区、或其之一部分。举例来说,异源性基因可包括以包括非原生调控区的嵌合基因之一部分再次引进原生宿主的原生编码区。"异源性多肽"系包括以异于对应原生多肽的形式再次引进来源生物体内的原生多肽。
用于本案时,"修饰"一词系指改变本案所揭示的多核苷酸造成该多核苷酸编码之多肽的活性降低、实质上消除或消除,还有改变本案所揭示的多肽造成该多肽的活性降低、实质上消除或消除。该类改变可以本领域熟知方法进行,包括但不限于删除、突变(譬如自发诱变、随机诱变、突变加成基因导致的诱变、或转位子诱变)、取代、插入、负调控、更动细胞位置、更动多核苷酸或多肽状态(譬如甲基化、磷酸化或泛素化)、移除辅助因子、引进反义RNA/DNA、引进干扰RNA/DNA、化学修饰、共价修饰、以UV或X-光照射、同源重组、有丝分裂重组、启动子置换法、和/或该等之组合。决定哪个核苷酸或氨基酸残基可被修饰的指引可藉由下列找到:比对特定多核苷酸或多肽和同源—譬如酵母或细菌—多核苷酸或多肽的序列,并使高度同源区(保守区)或共同序列内进行的修饰数量最大化。
本案所用"衍生物"一词系指本发明揭示序列之修饰。该类修饰的举例为取代、插入、和/或删除和本案所揭示编码序列的核酸序列相关的一或多个碱基,其保留、稍微更动、或增进油籽作物品种中本案所揭示编码序列的功能。该类衍生物可由本领域技术人员轻易决定,举例来说,使用计算机仿真技术以预测与最佳化序列结构。"衍生物"一词于是亦包括和本案所揭示编码序列具有实质序列同源性之核酸序列,由此使得其能具有用于制造本发明LC-PUFAs之揭示功能性。
用于本案时,"变体"一词系指藉由使用譬如重组DNA技术,例如诱变所创造的氨基酸插入、删除、突变、及取代而异于本发明明确列举多肽之多肽。决定哪个氨基酸残基可被置换、添加、或删除而不破坏感兴趣活性的指引可藉由下列找到:比对特定多肽和同源多肽的序列,并使高度同源区(保守区)内进行的氨基酸序列改变数量减至最少或以共同序列置换氨基酸。
或者,编码该等相同或类似多肽的重组多核苷酸变体可利用基因密码的"冗余性"来合成或选择。可引进各式密码子取代-例如产生各式限制位点的沉默改变-以最佳化克隆到表达用质粒或病毒载体内。多核苷酸序列的突变可反映在多肽或加至该多肽以修饰多肽任何部分特性的其它肽域。
氨基酸"取代"可为以具有相似结构和/或化学特性的另一氨基酸置换一氨基酸的结果,亦即保守的氨基酸置换,或该等可为以具有相异结构和/或化学特性的氨基酸置换一氨基酸的结果,亦即非保守的氨基酸置换。"保守的"氨基酸取代可以涉及残基的极性、电荷、溶解度、疏水性、亲水性、或两性本质之相似性为基础进行。举例来说,非极性(疏水)氨基酸系包括丙氨酸、亮氨酸、异亮氨酸、缬氨酸、脯氨酸、苯丙氨酸、色氨酸及甲硫氨酸;极性中性氨基酸系包括甘氨酸、丝氨酸、苏氨酸、半胱氨酸、酪氨酸、天冬酰胺、及谷氨酰胺;带正电(碱性)氨基酸系包括精氨酸、离氨酸、及组氨酸;及带负电(酸性)氨基酸系包括天冬氨酸与谷氨酸。或者,"非保守"氨基酸取代可藉由选择任一该等氨基酸的极性、电荷、溶解度、疏水性、亲水性、或两性本质之相异性进行。"插入"或"删除"可在重组蛋白结构上或功能上耐受之变化范围内。容许的变化可藉由使用重组DNA技术在多肽分子内系统性地插入、删除、或取代氨基酸并检验所得重组变体的活性而以实验方式决定。
"启动子"一词系指能够控制编码序列或功能性RNA表达的DNA序列。一般而言,编码序列位于启动子序列的3'。启动子整体可衍生自原生基因、或由衍生自存在于自然界的不同启动子的不同单元组成、或甚至包含合成DNA片段。本领域技术人员系理解不同启动子可导引位于不同组织或细胞种类、或于不同发展阶段、或响应不同环境或生理条件的基因表达。在大多数时间使基因在大部分细胞种类内表达的启动子通常称作"构成启动子"。又认知到既然在大部分情况中,调控序列的确切边界并无完整定义,故不同长度的DNA片段可具有相等的启动子活性。
"可操作地连接(operablylinked)"一词系指在单一核酸片段上的核酸序列关联性,所以一者的功能系受另一者影响。举例来说,启动子系和编码序列可操作地连接,如果该启动子能够招致该编码序列的表达(譬如该编码序列系受到该启动子的转录控制)。编码序列可以同义或反义方向可操作地连接至调控序列。
本案所用"表达"一词系指衍生自本发明核酸片段之有义(mRNA)或反义RNA的转录与稳定聚积。表达亦可指mRNA翻译至多肽。
本案所用"过度表达"一词系指高于相同或相关基因内源性表达的表达。倘若异源性基因表达高于相仿内源性基因之表达,则该异源性基因为过度表达。
用于本案时,"转化"一词系指将核酸或片段送进宿主生物体,产生基因稳定的遗传。含有转化核酸片段的宿主生物体称作"转基因"或"重组"或"转化"生物体。
本案所用"质粒"与"载体"用词系指额外的染色体单元,其经常携带不为细胞中央代谢一部分的基因且通常呈环状双链DNA分子形式。该类单元可为自主复制序列、基因组整合序列、噬菌体或核苷酸序列、线形或环状、由单-或双-链DNA或RNA构成、衍生自任何来源,其中众多核苷酸序列已联合或重组至一个能够把启动子片段与选定基因产物的DNA序列连同适当3'未翻译序列引进细胞的独特构型。
用于本案时,"密码子简并性"一词系指基因密码允许核苷酸序列变动而不影响被编码多肽的氨基酸序列的本质。本领域技术人员深知特定宿主细胞在使用核苷酸密码子指定给定的氨基酸时展现的"密码子-偏倚"。因此,当为了增进在一宿主细胞中的表达而合成一基因时,所欲的是俾使该基因的密码子使用频率接近该宿主细胞的较佳密码子使用频率来设计基因。
"密码子-最佳化"一词—指称供各式宿主转化之基因或核酸分子的编码区—系指更动基因或核酸分子编码区的密码子,以反映宿主生物体的典型密码子使用而无更动该DNA所编码的多肽。该类最佳化包括以该生物体基因中较常使用的一或多个密码子置换至少一个、或不止一个、或相当数量的密码子。
包含编码任何多肽链之氨基酸的密码子的核苷酸序列倾向系容许编码该基因的序列中出现变化。由于各密码子由三个核苷酸构成,而包含核苷酸的DNA系限于四个特定碱,所以有64个可能的核苷酸组合,当中61个系编码氨基酸(剩余三个密码子编码结束翻译的信号)。展示哪个密码子编码哪个氨基酸的"基因密码"在本案系以表1再现。结果,许多氨基酸系被不止一个密码子指定。举例来说,氨基酸丙氨酸与脯氨酸被四个三联体编码,丝氨酸与精氨酸被六个,但色氨酸与甲硫氨酸却只被一个三联体编码。此简并性使得DNA碱组合能大幅变动而无更动DNA编码蛋白的氨基酸序列。
表1.标准基因密码
许多生物体在使用特定密码子为正在延长之肽链插入特定氨基酸编码系有所偏倚。密码子偏好、或密码子偏倚—生物体之间密码子使用的差异—系由基因密码简并性所给予,在许多生物体当中系查有实据。密码子偏倚经常和信使RNA(mRNA)的翻译效率有关,而据信其尤其取决于被翻译的密码子特性及特定转移RNA(tRNA)分子的可取得性。选定tRNAs在细胞中的主导性大致上反映了肽合成最常使用的密码子。因此,以密码子最佳化为基础,可量身订作基因,以最佳化给定生物体中的基因表达。
鉴于可取得各式各样动物、植物与微生物物种的大量基因序列,遂有可能计算密码子使用的相对频率。密码子使用表可轻易取得并可以众多方式改编。参阅Nakamuraetal.Nucl.AcidsRes.28:292(2000)。藉由利用此表或类似表格,本领域技术人员可将频率应用至任何给定多肽序列,并产生编码该多肽之密码子-最佳化编码区的核酸片段,而其使用所给定物种最适用的密码子。本发明系关于OrfA、OrfB、嵌合OrfC、PPTase和/或本发明其它辅助蛋白的密码子最佳化形式,如本案进一步说明者。
就本领域所习知的"一致性百分比"一词是二或多个多肽序列或二或多个多核苷酸序列之间的关联性,由比对序列决定。在本领域中,"一致性"亦意指多肽或多核苷酸序列之间的序列相关性程度,视情况由该类序列字符串之间配对来决定。"一致性"与"相似性"可以习知方法轻易计算,包括但不限于该等揭示于下列者:1)ComputationalMolecularBiology(Lesk,A.M.,Ed.)OxfordUniversity:NY(1988);2)Biocomputing:InformaticsandGenomeProjects(Smith,D.W.,Ed.)Academic:NY(1993);3)ComputerAnalysisofSequenceData,PartI(Griffin,A.M.,andGriffin,H.G.,Eds.)Humania:NJ(1994);4)SequenceAnalysisinMolecularBiology(vonHeinje,G.,Ed.)Academic(1987);及5)SequenceAnalysisPrimer(Gribskov,M.andDevereux,J.,Eds.)Stockton:NY(1991)。
决定一致性的方法系设计成给予受测序列最佳配对。决定一致性与相似性的方法系编入公开计算机程序。序列比对与一致性百分比的计算可使用,举例来说,Vector套件的AlignX程序(Invitrogen,Carlsbad,CA)或LASERGENE生物信息计算套件的MegAlignTM程序(DNASTARInc.,Madison,WI)进行。序列的多重比对系使用"Clustal比对法"进行,其涵盖数种算法,包括"ClustalV比对法",其对应于标记为ClustalV之比对法(由HigginsandSharp,CABIOS.5:151-153(1989);Higgins,D.G.etal.,Comput.Appl.Biosci.,8:189-191(1992)揭示)并于LASERGENE生物信息计算套件的MegAlignTM程序(DNASTARInc.)找到。就多重比对而言,默认值相当于GAPPENALTY=10与GAPLENGTHPENALTY=10。使用Clustal法对蛋白序列进行配对比对并计算一致性百分比的预设参数为KTUPLE=1、GAPPENALTY=3、WINDOW=5及DIAGONALSSAVED=5。就核酸而言,该等参数为KTUPLE=2、GAPPENALTY=5、WINDOW=4及DIAGONALSSAVED=4。在使用ClustalV程序比对序列后,藉由检视同一程序中的"序列距离"表格有可能得到"一致性百分比"。此外,可取得"ClustalW比对法"并对应于标记为ClustalW之比对法(HigginsandSharp,CABIOS.5:151-153(1989);Higgins,D.G.etal.,Comput.Appl.Biosci.8:189-191(1992)所说明)且于LASERGENE生物信息计算套件的MegAlignTMv6.1程序(DNASTARInc.)找到。多重比对的预设参数(GAPPENALTY=10、GAPLENGTHPENALTY=0.2、延迟DivergenSeqs(%)=30、DNA过渡重量=0.5、蛋白加权矩阵=Gonnet系列、DNA加权矩阵=IUB)。在使用ClustalW程序比对序列后,藉由检视同一程序中的"序列距离"表格有可能得到"一致性百分比"。
本领域技术人员系充分理解许多水平之序列一致性可用于辨识来自其它物种的多肽,其中该类多肽具有相同或相似功能或活性。一致性百分比的有用例子包括但不限于:60%、65%、70%、75%、80%、85%、90%、或95%、或可用于说明本发明介于60%至100%之任何整数百分比,例如60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%。适宜的核酸片段不仅具有上述同源性,亦通常编码具有至少50个氨基酸、至少100个氨基酸、至少150个氨基酸、至少200个氨基酸、及至少250个氨基酸之多肽。
"序列分析软件"一词指的是可用于分析核苷酸或氨基酸序列的任何计算机算法或软件程序。"序列分析软件"可在市面上购得或独立发展。具代表性的序列分析包括但不限于:1.)GCG套件程序(WisconsinPackage版本9.0,GeneticsComputerGroup(GCG),Madison,WI);2.)BLASTP、BLASTN、BLASTX(Altschuletal.,J.Mol.Biol.,215:403-410(1990));3.)DNASTAR(DNASTAR,Inc.Madison,WI);4.)Sequencher(GeneCodesCorporation,AnnArbor,MI);及5.)并入Smith-Waterman算法的FASTA程序(W.R.Pearson,Comput.MethodsGenomeRes.,[Proc.Int.Symp.](1994),MeetingDate1992,111-20。Editor(s):Suhai,Sandor.Plenum:NewYork,NY)。在本申请案背景内,将理解到当序列分析软件用于分析时,分析结果将以参照程序"默认值"为基础,除非另有注明。用于本案时,"默认值"将意指初次启始时原本加载软件的任何一组数值或参数。
本案使用的标准重组DNA与分子克隆技术系为本领域所熟知并说明于譬如Sambrooketal.,MolecularCloning:ALaboratoryManual,ThirdEdition,ColdSpringHarborLaboratoryPress,ColdSpringHarbor,NY(2000);以及Silhavyetal.,ExperimentswithGeneFusions,ColdSpringHarborLaboratoryPress,ColdSpringHarbor,NY(1984);以及Ausubeletal.,CurrentProtocolsinMolecularBiology,由GreenePublishingAssoc.与Wiley-Interscience出版(1987迄今)。
本案揭示之重组宿主的基因操作可使用基因技术与筛选标准执行并可在适用于基因操作的任何宿主细胞中进行。在某些具体例中,本案揭示之重组宿主细胞可为任何可用于基因修饰与重组基因表达的生物体或微生物宿主。在某些具体例中,重组宿主可以是但不限于任何高等植物-包括双子叶与单子叶植物—和食用植物,包括作物植物及使用其油之植物。于是,可选择任何植物物种或植物细胞,以下将进一步说明。
本发明之油可获自籽油中产生DHA和/或EPA的芸薹属物种芥花培育种,其中该油具有包含—以重量计—70%或更多油酸(C18:1)和/或4%或更少亚麻酸(C18:3)之脂肪酸含量。该类油有益心脏健康并具有供餐饮服务与消费包装品应用之加强稳定性。该类油亦减少氢化需求并提供相较于食品工业所用大豆油、棕榈油与许多其它油之营养优势。该类油的氧化稳定性可藉由添加抗氧化剂与本领域习知之加工添加剂来进一步增加。
本发明之油亦可用于非烹饪或饮食方法与组合。若干该等用途可为工业、美容或医疗。本发明之油亦可用于本发明之油所适合的任何应用。一般而言,本发明之油可用于置换譬如各式应用中的矿物油、酯类、脂肪酸、或动物脂肪,例如润滑剂、润滑添加剂、金属加工液、液压油、及阻燃液压油。本发明之油亦可用作制造改性油之方法的材料。使本发明之油改性的技术例子包括分馏、氢化、更动油的油酸或亚麻酸含量、及本领域技术人员习知的其它改性技术。
本发明之油的美容用途例子系包括用作为美容组成物中的软化剂;作为凡士林替代物;作为皂的组成部分、或作为制造皂之方法的材料;作为口服治疗液的组成部分;作为老化治疗组成物的组成部分;及作为皮肤或头发气胶泡沫制剂的组成部分。
此外,本发明之油可用于医疗应用。举例来说,本发明之油可用于防止感染的保护屏障且富含ω-9脂肪酸之油可用于增加移植物存活率(U.S.Pat.No.6,210,700)。
应理解的是前述系本发明之油所适用非烹饪用途的非设限例。如先前所述,本发明之油与改性油可用于置换譬如本领域技术人员习知之所有应用的矿物油、酯类、脂肪酸、或动物脂肪。
PUFA合成酶系统
在真核生物体中合成长链PUFAs(LC-PUFAs)的"标准"或"古典"途径涉及中等链长饱和或单元不饱和脂肪酸的延长与去饱和且已被描述。经由PUFA合成酶系统合成长链PUFAs的途径亦被描述且与该"标准"途径非常不同。明确地说,PUFA合成酶利用丙二酰基-CoA作为碳源并制造最终PUFA而无释放任何明显数量的中间物。再者,凭借PUFA合成酶,适当顺式双键系于合成期间使用不需氧的机制添加。在某些具体例中,NADPH系用作为合成循环的还原剂。
本发明系关于经基因改造以表达PUFA合成酶系统(内源性或藉由基因操作)的宿主生物体(譬如植物)。在某些具体例中,经基因改造以表达PUFA合成酶系统的生物体—其中该生物体并不自然地(内源性、无基因修饰)表达该类系统、或至少该生物体带有的特定PUFA合成酶或其部分系经基因改造—在本案可称作"异源性"宿主生物体,就以PUFA合成酶或以生物体非内源性表达的另一蛋白修饰该生物体而言。本发明之基因修饰可用于增进内源性表达PUFA合成酶系统之宿主生物体的PUFA生产,其中该生物体不以不同PUFA合成酶或其部分进一步修饰。
根据本发明之PUFA合成酶系统可包含数个多功能蛋白(并可包括单一功能蛋白,尤其是来自海洋细菌的PUFA合成酶系统),该等可一同作用,以实行脂肪酸链的迭代加工还有非迭代加工,包括在选定循环中的顺反异构化与烯酰还原反应。该等蛋白在本案亦可称作核心PUFA合成酶酶复合体或核心PUFA合成酶系统。该等蛋白内含的域与基序的一般功能在本领域已个别习知且已就来自海洋细菌与真核生物体之各式PUFA合成酶系统详细描述(参阅譬如U.S.专利号6,140,486;U.S.专利号6,566,583;Metzetal.,Science293:290-293(2001);U.S.Appl.Pub.No.2002/0194641;U.S.Appl.Pub.No.2004/0235127;U.S.Appl.Pub.No.2005/0100995及WO2006/135866)。可发现域如同单一蛋白(譬如域与蛋白为同义)或如同单一蛋白中二或更多个(多重)域之一,如上文所提及者。来自海洋细菌与破囊壶菌(Thraustochytrium)成员的各式PUFA合成酶的域架构,以及包含该类PUFA合成酶之基因与蛋白的结构与功能特征已被描述(参阅譬如U.S.专利号6,140,486;U.S.专利号6,566,583;Metzetal.,Science293:290-293(2001);U.S.Appl.Pub.No.2002/0194641;U.S.Appl.Pub.No.2004/0235127;U.S.Appl.Pub.No.2005/0100995及WO2006/135866)。
具有PUFA合成酶活性的多核苷酸、基因与多肽的众多例子已为本领域所习知并可用于本案揭示之基因改造宿主。可用于本发明的PUFA合成酶蛋白或域可包括细菌与非细菌PUFA合成酶。非细菌PUFA合成酶系来自或衍生自非为细菌之生物体-例如真核生物-的系统。细菌PUFA合成酶系描述于,举例来说,U.S.Appl.Pub.No.2008/0050505。本发明之基因改造植物可合并非细菌PUFA合成酶功能域和细菌PUFA合成酶功能域、还有来自其它PKS系统(第I型迭代或模块、第II型、或第III型)或FAS系统PUFA合成酶功能域或蛋白来制造。
在某些具体例中,本发明之PUFA合成酶系统系包含通常内含在三或更多个蛋白上的至少下列生物活性域(a)至少一个烯酰基-ACP还原酶(ER)域;(b)(多个)多重酰基携带蛋白(ACP)域(譬如至少一至四个、较佳至少五个ACP域,在某些具体例中高达六、七、八、九、十、或多于十个ACP域);(c)至少两个β-酮酰基-ACP合成酶(KS)域;(d)至少一个酰基转移酶(AT)域;(e)至少一个β-酮酰基-ACP还原酶(KR)域;(f)至少两个FabA-样β-羟酰基-ACP脱水酶(DH)域;(g)至少一个链长因子(CLF)域;(h)至少一个丙二酰基-CoA:ACP酰基转移酶(MAT)域。在某些具体例中,根据本发明之PUFA合成酶系统亦包含含有脱水酶(DH)保守活性位点基序之至少一区。
在某些具体例中,PUFA合成酶系统系包含至少下列生物活性域(a)至少一个烯酰基-ACP还原酶(ER)域;(b)至少五个酰基携带蛋白(ACP)域;(c)至少两个β-酮酰基-ACP合成酶(KS)域;(d)至少一个酰基转移酶(AT)域;(e)至少一个β-酮酰基-ACP还原酶(KR)域;(f)至少两个FabA-样β-羟酰基-ACP脱水酶(DH)域;(g)至少一个链长因子(CLF)域;及(h)至少一个丙二酰基-CoA:ACP酰基转移酶(MAT)域。在某些具体例中,根据本发明之PUFA合成酶系统亦包含含有脱水酶(DH)保守活性位点基序-非为FabA-样DH域的一部分-之至少一区或域。该等域各者的结构与功能特征系详细说明于U.S.Appl.Pub.No.2002/0194641;U.S.Appl.Pub.No.2004/0235127;U.S.Appl.Pub.No.2005/0100995;U.S.Appl.Pub.No.2007/0245431及WO2006/135866。
形成核心裂殖壶菌(Schizochytrium)PUFA合成酶系统的有三个开放读码区且先前已说明于,譬如U.S.Appl.Pub.No.2007/0245431。各开放读码区的域结构系如下列。
裂殖壶菌开放读码区A(OrfA或Pfa1):OrfA为8730个核苷酸之序列(不包括终止密码子),其编码2910个氨基酸之序列。在OrfA内有十二个域(a)一个β-酮酰基-ACP合成酶(KS)域;(b)一个丙二酰基-CoA:ACP酰基转移酶(MAT)域;(c)九个酰基携带蛋白(ACP)域;及(d)一个酮还原酶(KR)域。编码OrfA、来自裂殖壶菌ATCC20888与ATCC20888子株-称作裂殖壶菌N230D株—两者的基因组DNA克隆(质粒)已被分离并测序。
基因组克隆pJK1126(称作pJK1126OrfA基因组克隆,呈含有来自裂殖壶菌ATCC20888之"OrfA"基因的大肠杆菌质粒载体形式)系于Jun.8,2006寄存在美国典型培养物保藏中心(ATCC),10801UniversityBoulevard,Manassas,Va.20110-2209USA,并发给ATCC登录号PTA-7648。
基因组克隆pJK306(称作pJK306OrfA基因组克隆,呈含有来自裂殖壶菌N230D之OrfA基因5′部分的大肠杆菌质粒形式(和pJK320有2.2kB重迭))系于Jun.8,2006寄存在美国典型培养物保藏中心(ATCC),10801UniversityBoulevard,Manassas,Va.20110-2209USA,并发给ATCC登录号PTA-7641。
基因组克隆pJK320(称作pJK320OrfA基因组克隆,呈含有来自裂殖壶菌N230D之OrfA基因3'部分的大肠杆菌质粒形式(和pJK306有2.2kB重叠))系于Jun.8,2006寄存在美国典型培养物保藏中心(ATCC),10801UniversityBoulevard,Manassas,Va.20110-2209USA,并发给ATCC登录号PTA-7644。
裂殖壶菌开放读码区B(OrfB或Pfa2):OrfB为6177个核苷酸之序列(不包括终止密码子),其编码2059个氨基酸之序列。在OrfB内有四个域:(a)一个-酮酰基-ACP合成酶(KS)域;(b)一个链长因子(CLF)域;(c)一个酰基转移酶(AT)域;及(d)一个烯酰基ACP-还原酶(ER)域。编码OrfB、来自裂殖壶菌ATCC20888与ATCC20888子株-称作裂殖壶菌N230D株—两者的基因组DNA克隆(质粒)已被分离并测序。
基因组克隆pJK1129(称作pJK1129OrfB基因组克隆,呈含有来自裂殖壶菌ATCC20888之"OrfB"基因的大肠杆菌质粒载体形式)系于Jun.8,2006寄存在美国典型培养物保藏中心(ATCC),10801UniversityBoulevard,Manassas,Va.20110-2209USA,并发给ATCC登录号PTA-7649。
基因组克隆pJK324(称作pJK324OrfB基因组克隆,呈含有来自裂殖壶菌N230D之OrfB基因序列的大肠杆菌质粒形式)系于Jun.8,2006寄存在美国典型培养物保藏中心(ATCC),10801UniversityBoulevard,Manassas,Va.20110-2209USA,并发给ATCC登录号PTA-7643。
裂殖壶菌开放读码区C(OrfC或Pfa3):OrfC为4506个核苷酸之序列(不包括终止密码子),其编码1502个氨基酸之序列。在OrfC内有三个域:(a)两个FabA-样-羟基酰基-ACP脱水酶(DH)域;及(b)一个烯酰基ACP-还原酶(ER)域。编码OrfC、来自裂殖壶菌ATCC20888与ATCC20888子株-称作裂殖壶菌N230D株—两者的基因组DNA克隆(质粒)已被分离并测序。
基因组克隆pJK1131(称作pJK1131OrfC基因组克隆,呈含有来自裂殖壶菌ATCC20888之"OrfC"基因的大肠杆菌质粒载体形式)系于Jun.8,2006寄存在美国典型培养物保藏中心(ATCC),10801UniversityBoulevard,Manassas,Va.20110-2209USA,并发给ATCC登录号PTA-7650。
基因组克隆pBR002(称作pBR002OrfC基因组克隆,呈含有来自裂殖壶菌N230D之OrfC基因序列的大肠杆菌质粒载体形式)系于Jun.8,2006寄存在美国典型培养物保藏中心(ATCC),10801UniversityBoulevard,Manassas,Va.20110-2209USA,并发给ATCC登录号PTA-7642。
此外,形成核心破囊壶菌PUFA合成酶的有三个开放读码区且先前已有说明。各开放读码区的域结构系如下列。
破囊壶菌23B开放读码区A(OrfA):OrfA为8433个核苷酸之序列(不包括终止密码子),其编码2811个氨基酸之序列。下列域出现在Th.23BOrfA(a)一个β-酮酰基-ACP合成酶(KS)域;(b)一个丙二酰基-CoA:ACP酰基转移酶(MAT)域;(c)八个酰基携带蛋白(ACP)域;及(d)一个β-酮酰基-ACP还原酶(KR)域。
基因组克隆Th23BOrfA_pBR812.1(称作Th23BOrfA_pBR812.1基因组克隆,呈含有来自破囊壶菌23B之OrfA基因序列的大肠杆菌质粒载体形式)系于Mar.1,2007寄存在美国典型培养物保藏中心(ATCC),10801UniversityBoulevard,Manassas,Va.20110-2209USA,并发给ATCC登录号PTA-8232。基因组克隆Th23BOrfA_pBR811(称作Th23BOrfA_pBR811基因组克隆,呈含有来自破囊壶菌23B之OrfA基因序列的大肠杆菌质粒载体形式)系于Mar.1,2007寄存在美国典型培养物保藏中心(ATCC),10801UniversityBoulevard,Manassas,Va.20110-2209USA,并发给ATCC登录号PTA-8231。
破囊壶菌23B开放读码区B(OrfB):OrfB为5805个核苷酸之序列(不包括终止密码子),其编码1935个氨基酸之序列。下列域出现在Th.23BOrfB(a)一个β-酮酰基-ACP合成酶(KS)域;(b)一个链长因子(CLF)域;(c)一个酰基转移酶(AT)域;及(d)一个烯酰基-ACP还原酶(ER)域。基因组克隆Th23BOrfB_pBR800(称作Th23BOrfB_pBR800基因组克隆,呈含有来自破囊壶菌23B之OrfB基因序列的大肠杆菌质粒载体形式)系于Mar.1,2007寄存在美国典型培养物保藏中心(ATCC),10801UniversityBoulevard,Manassas,Va.20110-2209USA,并发给ATCC登录号PTA-8227。
破囊壶菌23B开放读码区C(OrfC):OrfC为4410个核苷酸之序列(不包括终止密码子),其编码1470个氨基酸之序列。下列域出现在Th.23BOrfC:(a)两个FabA-样β-羟酰基-ACP脱水酶(DH)域,均具有FabA蛋白(催化反式-2-癸烯酰基-ACP的合成并将此产物可逆地异构至顺式-3-癸烯酰基-ACP的酶)同源性;及(b)一个烯酰基-ACP还原酶(ER)域,其具有对裂殖壶菌OrfB的ER域之高度同源性。基因组克隆Th23BOrfC_pBR709A(称作Th23BOrfC_pBR709A基因组克隆,呈含有来自破囊壶菌23B之OrfC基因序列的大肠杆菌质粒载体形式)系于Mar.1,2007寄存在美国典型培养物保藏中心(ATCC),10801UniversityBoulevard,Manassas,Va.20110-2209USA,并发给ATCC登录号PTA-8228.
嵌合或杂交PUFA合成酶系统:在某些具体例中,PUFA合成酶系统包含选自任何本案所述者之域,其中该等域被结合(譬如混合与配对),以形成符合本案所述最低要求的完整PUFA合成酶系统。在某些具体例中,本发明之基因改造生物体可以另一PUFA合成酶系统的至少一个域或其生物活性片段进一步修饰。在某些具体例中,PUFA合成酶系统的任何域可从其天然结构来修饰,以修饰或加强PUFA合成酶系统中该域的功能(譬如修饰该系统所产生的PUFA种类或其比例)。用以制造嵌合PUFA合成酶系统之该类域混合系说明于本案参照之专利与出版品。
在某些具体例中,PUFA合成酶系统包含裂殖壶菌PUFA合成酶系统,其中来自裂殖壶菌PUFA合成酶系统的OrfC系以来自破囊壶菌23B的OrfC置换。在某些具体例中,该类来自破囊壶菌23B的嵌合OrfC系编码就裂殖壶菌密码子使用而言最佳化的核酸序列。作为该样嵌合OrfC的非设限例子,质粒pThOrfC-synPS(称作pThOrfC-synPS,呈含有"完美针法"合成破囊壶菌23BPUFAPKSOrfC、密码子经最佳化以于裂殖壶菌或其它异源性宿主表达的大肠杆菌质粒载体形式)系于Mar.1,2007寄存在美国典型培养物保藏中心(ATCC),10801UniversityBoulevard,Manassas,Va.20110-2209USA,并发给ATCC登录号PTA-8229(亦参阅U.S.Appl.Pub.No.2008/0022422)。
可用于本发明基因改造生物体之PUFA合成酶基因与多肽的其它例子包括但不限于本案进一步说明之方法所生成的下列密码子-最佳化序列:SEQIDNO:1(SzPUFAOrfAv3蛋白);SEQIDNO:2(SzPUFAOrfBv3蛋白);SEQIDNO:3(hSzThPUFAOrfCv3蛋白);SEQIDNO:6(SzPUFAOrfA基因);SEQIDNO:7(SzPUFAOrfBv3基因);及SEQIDNO:8(hSzThPUFAOrfCv3基因),还有该类序列的活性变体、部分、片段、或衍生物,其中该类基因系编码—或该类多肽或蛋白系具有—PUFA合成酶活性。本发明系包括分离之多核苷酸或多肽,其包含一或多个该类序列或由一或多个该类序列构成。
可用于本发明基因改造生物体之PUFA合成酶基因与多肽的其它例子包括但不限于具有本案所述任一PUFA合成酶或序列之60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或100%序列一致性的PUFA合成酶基因或多肽。有用范围可在任何该等数值之间挑选(举例来说,60%至99%、65%至95%、70%至95%、75%至95%、80%至95%、85%至95%、或90%至99%)。可用于本发明基因改造生物体之PUFA合成酶基因与多肽的另外其它例子包括但不限于本案所述任一PUFA合成酶或序列的活性变体、部分、片段、或衍生物,其中该类基因系编码—或该类多肽系具有—PUFA合成酶活性。
在某些具体例中,PUFA合成酶系统可为藻类PUFA合成酶。在某些具体例中,PUFA合成酶系统可包含和SEQIDNO:1之氨基酸序列至少60%至99%相同的氨基酸序列。在某些具体例中,PUFA合成酶系统可包含SEQIDNO:1之氨基酸序列。在某些具体例中,编码PUFA合成酶系统之核酸序列可包含和SEQIDNO:6之核酸序列至少60%至99%相同的核酸序列。在某些具体例中,编码PUFA合成酶系统之核酸序列可包含SEQIDNO:6之核酸序列。在某些具体例中,PUFA合成酶系统可包含和SEQIDNO:2之氨基酸序列至少80%相同的氨基酸序列。在某些具体例中,PUFA合成酶系统可包含SEQIDNO:2之氨基酸序列。在某些具体例中,编码PUFA合成酶系统之核酸序列可包含和SEQIDNO:7之核酸序列至少80%相同的核酸序列。在某些具体例中,编码PUFA合成酶系统之核酸序列可包含SEQIDNO:7之核酸序列。在某些具体例中,PUFA合成酶系统可包含和SEQIDNO:3之氨基酸序列至少80%相同的氨基酸序列。在某些具体例中,PUFA合成酶系统系包含SEQIDNO:3之氨基酸序列。在某些具体例中,编码PUFA合成酶系统之核酸序列系包含和SEQIDNO:8之核酸序列至少80%相同的核酸序列。在某些具体例中,编码PUFA合成酶系统之核酸序列系包含SEQIDNO:8之核酸序列。
在某些具体例中,PUFA合成酶系统系包含SEQIDNO:1、2、或3或其任意组合之氨基酸序列。在某些具体例中,PUFA合成酶系统系包含SEQIDNO:6、7或8或其任意组合之核酸序列。
在某些具体例中,其它PUFA合成酶基因和/或多肽的序列可在文献及在本领域技术人员熟知的生物信息数据库使用本案所揭示及本领域可取得之序列来辨识。举例来说,该类序列可以习知PUFA合成酶基因或多肽序列经由BLAST搜寻公开数据库来辨识。在该类方法中,一致性可以ClustalW比对法为基础,使用GAPPENALTY=10、GAPLENGTHPENALTY=0.1、及Gonnet250系列的蛋白加权矩阵之预设参数。
此外,本案揭示或本领域习知的PUFA合成酶基因或多肽序列可用于辨识自然界的其它PUFA合成酶同系物。举例来说,本案揭示之各个PUFA合成酶核酸片段可用于分离编码同源蛋白之基因。使用序列相关操作流程分离同源基因系为本领域所熟知。序列相关操作流程的例子包括但不限于(1)核酸杂交方法;(2)DNA与RNA扩增方法,以核酸扩增技术的各式用途为例[譬如聚合酶链反应(PCR),Mullisetal.,U.S.专利号4,683,202;接合酶链反应(LCR),Tabor,S.etal.,Proc.Acad.Sci.USA82:1074(1985);或链替代扩增法(SDA),Walkeretal.,Proc.Natl.Acad.Sci.U.S.A.,89:392(1992)];及(3)构建基因库并以互补筛选的方法。
所有该等方法可由本领域技术人员利用编码目标蛋白之习知或已辨识序列来轻易实行。在某些具体例中,位于目标PUFA合成酶编码序列周围的DNA序列亦可用于某些修饰程序且可由本领域技术人员在公开数据库中轻易找到。创造基因突变的方法很常见且为本领域所熟知并可应用至创造突变物之工作。
磷酸泛酰巯基乙胺基转移酶
磷酸泛酰巯基乙胺基转移酶(PPTases)是一个特点在于脂肪酸合成、聚酮合成、及非核糖体肽合成的酶家族。尤其,存在于PUFA合成酶酶的ACP域需要以来自辅酶A的辅助因子(4-磷酸泛酰巯基乙胺)接附至酰基携带蛋白(ACP)来活化。此辅助因子的接附系藉由PPTases执行。假使宿主生物体的内源性PPTases无法活化PUFA合成酶ACP域,则必须提供能够执行该功能的PPTase。许多PPTases的序列系为习知,并已测定晶体结构(譬如Reuteretal.,EMBOJ.18:6823-31(1999))还有就活性而言重要之氨基酸残基的突变分析(Mofidetal.,Biochemistry43:4128-36(2004))。
先前已验证将本案所述OrfAACP域识别为受质的异源性PPTase的一个例子是念珠藻属(Nostocsp.)PCC7120(旧称鱼腥藻(Anabaenasp.)PCC7120)的HetI蛋白。HetI系存在于习知负责合成长链羟基-脂肪酸的念珠藻属基因群,长链羟基-脂肪酸是出现在该生物体异型细胞的糖脂层的成分(BlackandWolk,J.Bacteriol.176:2282-2292(1994);Campbelletal.,Arch.Microbiol.167:251-258(1997))。HetI似乎活化存在于该群之蛋白HglE的ACP域。HglE的两个ACP域与裂殖壶菌OrfA中发现的ACP域及其它PUFA合成酶具有高度序列同源性。
在某些具体例中,PUFA合成酶可被视为包括至少一个4'-磷酸泛酰巯基乙胺基转移酶(PPTase)域,或该类域可被视为PUFA合成酶的辅助域或蛋白。PPTases结构与功能特征已详述于,举例来说,U.S.Appl.Pub.No.2002/0194641;U.S.Appl.Pub.No.2004/0235127;及U.S.Appl.Pub.No.2005/0100995。
具PPTase活性之基因与多肽的众多例子为本领域所习知并可用于本发明之基因改造生物体,倘若该等能够活化所使用特定PUFA合成酶的ACP域。可用于本发明之基因改造生物体的基因与多肽例子可包括但不限于本案进一步说明的下列密码子-最佳化序列:SEQIDNO:5(NoHetIv3蛋白)与SEQIDNO:10(NoHetIv3基因)。
可用于本发明基因改造生物体之PPTase基因与多肽的其它例子包括但不限于具有本案所述任一PPTases或序列之60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或100%序列一致性的PPTase基因或多肽。有用范围可在任何该等数值之间挑选(举例来说,60%至99%、65%至95%、70%至95%、75%至95%、80%至95%、85%至95%、90%至99%)。可用于本发明基因改造生物体之PPTase基因与多肽的另外其它例子包括但不限于本案所述任一PPTase序列的活性变体、片段、部分、或衍生物,其中该类基因系编码-或该类多肽系具有-PPTase活性。
在某些具体例中,PPTase可为藻类PPTase。在某些具体例中,PPTase可包含和SEQIDNO:5之氨基酸序列至少60%至99%相同的氨基酸序列。在某些具体例中,PPTase可包含SEQIDNO:5之氨基酸序列。在某些具体例中,编码藻类PPTase之核酸序列可包含和SEQIDNO:10之核酸序列至少60%至99%相同的核酸序列。在某些具体例中,编码藻类PPTase之核酸序列可包含SEQIDNO:10之核酸序列。
在本发明某些具体例中,PPTase可提供用于在异源性宿主中制造和/或累积PPTase。
在某些具体例中,编码PPTase的基因和/或多肽可用于辨识另一PPTase基因和/或多肽序列和/或可用于辨识其它细胞的PPTase同系物。该类PPTase编码序列可在,举例来说,文献和/或在本领域技术人员熟知的生物信息数据库中辨识。举例来说,使用生物信息学在另一细胞种类中辨识PPTase编码序列可经由BLAST(如上文所揭示)以习知PPTase编码DNA与多肽序列—例如任何本案提供者—搜寻公开数据库来达成。一致性可以ClustalW比对法为基础,使用GAPPENALTY=10、GAPLENGTHPENALTY=0.1、及Gonnet250系列的蛋白加权矩阵之预设参数。
在某些具体例中,基因改造植物(譬如芸薹属)、其子代、细胞、组织、或部位系于单一重组表达载体中含有(i)与(ii)之核酸序列。
酰基-CoA合成酶
本发明系提供酰基-CoA合成酶(ACoAS)蛋白,其催化长链PUFA游离脂肪酸(FFA)转换成酰基-CoA。PUFA合成酶—裂殖壶菌—之PUFAs的内源性制造者拥有一或多个能将其PUFA合成酶的游离脂肪酸产物转换成酰基-CoA的AcoASs。这是很明显的,依照大量PUFAs堆积在此生物体的该等部分的事实。是以,裂殖壶菌、还有内源性含有PUFA合成酶(譬如其它破囊壶菌)的其它生物体或可将PUFAFFAs转换成酰基-CoAs的其它生物体(例如假微型海链藻(Thalassiosirapseudonana)或寇氏隐甲藻(Crypthecodiniumcohnii))可代表编码容许或增加在异源性宿主表达的PUFA合成酶产物累积的酶的基因来源。其它ACoAS序列已描述于U.S.Appl.Pub.No.2007/0245431。
具ACoAS活性之基因与多肽的众多例子为本领域所习知并可用于本发明之基因改造生物体。可用于本发明之基因改造生物体的基因与多肽例子可包括但不限于本案进一步说明的下列密码子-最佳化序列:SEQIDNO:4(SzACS-2v3蛋白)与SEQIDNO:9(hSzThACS-2v3基因)。
可用于本发明基因改造生物体之ACoAS基因与多肽的其它例子包括但不限于具有本案所述任一ACoAS或序列之60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或100%序列一致性的ACoAS基因或多肽。有用范围可在任何该等数值之间挑选(举例来说,60%至99%、65%至95%、70%至95%、75%至95%、80%至95%、85%至95%、90%至99%)。可用于本发明基因改造生物体之ACoAS基因与多肽的另外其它例子包括但不限于本案所述任一ACoAS序列的活性变体、片段、部分、或衍生物,其中该类基因系编码—或该类多肽系具有—ACoAS活性。
在某些具体例中,ACoAS可为藻类AcoAS。在某些具体例中,ACoAS可包含和SEQIDNO:4之氨基酸序列至少60%至99%相同的氨基酸序列。在某些具体例中,ACoAS可包含SEQIDNO:4之氨基酸序列。在某些具体例中,编码藻类ACoAS之核酸序列可包含和SEQIDNO:9之核酸序列至少60%至99%相同的核酸序列。在某些具体例中,编码藻类ACoAS之核酸序列可包含SEQIDNO:9之核酸序列。在某些具体例中,编码AcoAS之核酸序列系包含SEQIDNO:34之核酸序列。
在本发明某些具体例中,ACoAS可提供用于在异源性宿主中制造和/或累积AcoAS,还有在同源性宿主中制造和/或累积AcoAS。
在某些具体例中,编码ACoAS的基因和/或多肽可用于辨识另一ACoAS基因和/或多肽序列和/或可用于辨识其它细胞的ACoAS同系物。该类ACoAS编码序列可在,举例来说,文献和/或在本领域技术人员熟知的生物信息数据库中辨识。举例来说,使用生物信息学在另一细胞种类中辨识ACoAS编码序列可经由BLAST(如上文所揭示)以习知ACoAS编码DNA与多肽序列-例如任何本案提供者搜寻公开数据库来达成。一致性可以ClustalW比对法为基础,使用GAPPENALTY=10、GAPLENGTHPENALTY=0.1、及Gonnet250系列的蛋白加权矩阵之预设参数。
在某些具体例中,基因改造植物(譬如芸薹属)、其子代、细胞、组织、或部位系包含内含于单一重组表达载体之(i)、(ii)或(iii)核酸序列、或该等之任意组合。在某些具体例中,(i)、(ii)或(iii)核酸序列、或该等之任意组合系受到一或多个籽特异性启动子控制和/或内含于单一重组表达载体。
制造基因改造生物体的方法
为制造明显高产量的一或多个所欲多不饱和脂肪酸,一生物体(譬如植物)可被基因改造,以将PUFA合成酶引进该植物。本发明亦关于改善或增进该类基因修饰效率的方法,尤其,改善或增进PUFA合成酶终产物,譬如(多个)PUFA的制造和/或累积的方法。
在基因改造生物体-包括但不限于植物-内表达基因的方法为本领域所习知。在某些具体例中,欲表达之PUFA合成酶基因的编码区可如下所述为目标宿主细胞进行密码子最佳化。在重组宿主细胞—包括但不限于植物细胞—内表达基因可需要操作地连接至感兴趣编码区的启动子、和/或转录终止子。众多启动子可用于构建基因载体,包括但不限于籽特异性启动子(譬如PvDlec2、LfKCS3与FAE1)。可用于本发明的启动子其它非设限例系包括揭示于WO1992/18634的酰基携带蛋白启动子;菜豆的β-豆类球蛋白启动子与截短版本,揭示于Slightometal.(Proc.Natl.Acad.Sci.U.S.A.80:1897-1901;1983);Sengupta-Gopalanetal.(Proc.Nat.Acad.Sci.82:3320-3324;1985);vanderGeestetal.(PlantMol.Biol.33:553-557;1997),及Bustosetal.(EMBOJ.10:1469-1479;1991)。
在本发明某些具体例中,重组载体为以基因工程造出(譬如人工制造)的核酸分子,其系用作为操作中选核酸序列的工具并用于将该类核酸序列引进宿主细胞。重组载体因而适用于克隆、测序、和/或操作中选核酸序列,例如藉由表达和/或传送中选核酸序列进入宿主细胞以形成重组细胞。该类载体通常含有异源性核酸序列,其为非于欲克隆或传送核酸序列邻近自然发现的核酸序列,尽管该载体亦可含有于本发明核酸分子邻近自然发现或有益于本发明核酸分子表达的调控核酸序列(譬如启动子、未翻译区)。载体可为RNA或DNA、原核或真核,通常为质粒。载体可维持如同染色体外单元(譬如质粒)或可整合至重组生物体(譬如微生物或植物)的染色体。整个载体可留在宿主细胞原位内,或在某条件下,质粒DNA可被删除,余留本发明之核酸分子。整合核酸分子可受到染色体启动子控制、受到原生或质粒启动子控制、或受到数个启动子组合控制。核酸分子的单一或多个拷贝可整合至染色体。本发明之重组载体可含有至少一个可选择标记。
在某些具体例中,用于本发明之重组核酸分子的重组载体为表达载体。在该类具体例中,编码欲制造产物(譬如PUFA合成酶)之核酸序列被插入重组载体,以制造重组核酸分子。该编码欲制造蛋白的核酸序列系以可操作地连接核酸序列至载体内的调控序列而能使核酸序列在重组宿主细胞内转录与翻译的方式被插入载体。
可用于转化各式各样宿主生物体与细胞的载体很常见并揭示于文献。通常,载体含有可选择标记及容许在所欲宿主中自动复制或染色体整合的序列。此外,适宜载体可包含含转录启始控制的启动子区及转录终止控制区,在该等之间可插入编码区DNA片段,以提供插入编码区之表达两控制区均可衍生自转化宿主细胞的同源基因,但可理解该类控制区亦可衍生自非为被选作生产宿主之特定物种原生的基因。
本发明系包括表达本案所述并例示的一或多个酰基-CoA合成酶与本案所述PUFA合成酶连同外源性PPTase,该等可单独或和任何一或多个本案所述策略(譬如下列任一、二、三、或四者:密码子最佳化、胞器靶向、加强PUFA合成酶竞争丙二酰基CoA(譬如抑制FAS)和/或表达一或多个酰基转移酶或相关酶)合并利用,以增加异源性宿主的PUFA制造和/或累积。
本发明某些具体例系关于针对宿主一或多个胞器之靶向表达合成酶酶、PPTase、和/或任何一或多个辅助蛋白和/或靶向基因修饰。举例来说,在某些具体例中,PUFA合成酶系统与PPTase之表达可靶向植物质体。在某些具体例中,PUFA合成酶与PPTase之表达系靶向细胞质。在某些具体例中,PUFA合成酶与PPTase之表达系靶向植物质体与细胞质两者。在该等具体例任一者中,其它目标可指涉质体或细胞质。
在某些具体例中,酰基-CoA合成酶系于细胞质表达,以将DHA和/或其它LC-PUFA游离脂肪酸转换成酰基-CoAs,其继而可被酰基转移酶利用。
一例示质体靶向序列系衍生自油菜酰基-ACP硫酯酶并描述于U.S.Appl.Pub.No.2007/0245431。各式其它质体靶向序列为本领域所习知并可用于异源性宿主为植物或植物细胞且其中靶向质体系为所欲之具体例。
本发明系包括使用胞器靶向(譬如植物的质体或叶绿体)连同表达本案所述PUFA合成酶与外源性PPTase,该等可单独或和任何一或多个本案所述策略(譬如下列任一、二、三、或四者:密码子最佳化、加强PUFA合成酶竞争丙二酰基CoA(譬如抑制FAS)、表达一或多个酰基-CoA合成酶、和/或表达一或多个酰基转移酶或相关酶)合并利用,以增加异源性宿主的PUFA制造和/或累积。
基因产物靶向质体或叶绿体系受到信息序列控制,信息序列系于各式蛋白的密码子终端发现并在运送期间被切除以生成成熟蛋白(譬如说到叶绿体靶向,参阅譬如Comaietal.,J.Biol.Chem.263:15104-15109(1988))。该等信息序列可稠合至异源性基因产物,以致使异源性产物运进叶绿体(vandenBroecketal.Nature313:358-363(1985))。编码适当信息序列的DNA可从编码习知为叶绿体定域化之RUBISCO蛋白、CAB蛋白、EPSP合成酶酶、GS2蛋白及许多其它蛋白的cDNAs分离。
在本发明某些具体例中,本发明所运用蛋白之定域化系引导至次细胞隔室,举例来说,引导至质体或叶绿体。蛋白可藉由在其氨基端包括叶绿体转运肽(CTP)而引导至叶绿体。同样地,蛋白可藉由在其N端包括质体转运或信息肽而引导至质体。
自然发生的叶绿体靶向蛋白—合成为较大前体蛋白,含有将前体引导至叶绿体运送机构之氨基端叶绿体靶向肽—为本领域所熟知。叶绿体靶向肽一般被位于叶绿体胞器里的特定内蛋白酶切除,于是从前体将靶向之成熟且较佳活性酶释放至叶绿体环境。编码适用于引导基因或基因产物靶向植物细胞叶绿体或质体的肽之序列例子系包括矮牵牛属EPSPSCTP、阿拉伯芸薹属EPSPSCTP2与内含子及其它本领域本领域技术人员习知者。该类靶向序列系为将所欲表达蛋白传送至最有效作用之细胞结构、或藉由将所欲表达蛋白传送至聚集所欲表型功能必要之细胞过程的细胞区域而提供。叶绿体靶向肽的特定例系本领域熟知者并包括拟南芥核酮糖双磷酸羧化酶小型亚基ats1A转运肽、拟南芥EPSPS转运肽、及玉蜀黍(Zeamaize)核酮糖双磷酸羧化酶小型亚基转运肽。
最佳化转运肽系说明于,举例来说,vandenBroecketal.,Nature,313:358-363(1985)。原核与真核信息序列系揭示于,举例来说,Michaelisetal.,Ann.Rev.Microbiol.36:425(1982)。可用于本发明的转运肽额外例子系包括叶绿体转运肽,例如该等述于VonHeijneetal.,PlantMol.Biol.Rep.9:104-126(1991);Mazuretal.,PlantPhysiol.85:1110(1987);Vorstetal.,Gene65:59(1988)。Chen&Jagendorf(J.Biol.Chem.268:2363-2367(1993))已说明使用叶绿体转运肽运送异源性转基因。所用此肽为来自皱叶烟草之rbcS基因的转运肽(Poulsenetal.Mol.Gen.Genet.205:193-200(1986))。在本案作用为将异源性蛋白定域于叶绿体的一个CTP系衍生自油菜酰基-ACP硫酯酶。
将基因定域于叶绿体或质体的另择方式系包括叶绿体或质体转化作用。可制造仅有叶绿体DNA被更动以并入本申请案预想分子的重组植物。于叶绿体作用的启动子为本领域所习知(Hanley-Bowdenetal.,TrendsinBiochemicalSciences12:67-70(1987))。获得含有插入异源性DNA之叶绿体的细胞的方法与组合已述于,举例来说,Danielletal.(U.S.专利号5,693,507)与Maligaetal.(U.S.专利号5,451,513)。
策略组合
根据本发明,在制造用于制造并累积一或多个目标PUFAs之异源性宿主时,可使用本案所述用于改善在宿主中制造和/或累积PUFAs的任一或多个(任何组合)策略。确实,可预期各式策略组合将会加成或增效并提供改良之PUFAs制造和/或累积,相较于缺少一或多个该类策略。确实,实施例系提供在宿主生物体中制造PUFAs的例示策略。
使用本案所述该等修饰组合、或任何其它修饰或修饰组合的任何植物或植物细胞系涵盖在本发明内。在某些具体例中,该类植物系经进一步基因改造,以表达本案所述辅助蛋白,以改善宿主(譬如AcoAS、GPAT、LPAAT、DAGAT或乙酰基CoA羧化酶(ACCase))制造和/或累积PUFAs(或PUFA合成酶的其它生物活性产物)。再者,使用本案所述任何修饰或修饰组合的任何宿主细胞或生物体系涵盖在本发明内,衍生自该类细胞或生物体的任何产物—包括包含目标PUFAs之籽或油—亦然。
在某些具体例中,根据本发明以基因改造的植物(譬如植物宿主细胞)系包括但不限于任何高等植物—包括双子叶与单子叶植物—和尤其食用植物,包括作物植物及尤其使用其油之植物。该类植物可包括但不限于,举例来说:芥花、大豆、油菜籽、亚麻籽、玉米、红花、向日葵和烟草。于是,可选择任何植物物种或植物细胞。在具体例中,本案所用植物细胞及由彼等栽种或衍生的植物包括但不限于获自下列的细胞:芥花(Brassicanapus);油菜(Brassicanapus);印度芥(Brassicajuncea);衣索匹亚芥(Brassicacarinata);芜菁(Brassicarapa);甘蓝(Brassicaoleracea);大豆(Glycinemax);亚麻籽/亚麻(Linumusitatissimum);玉蜀黍(玉米)(Zeamays);红花(Carthamustinctorius);向日葵(Helianthusannuus);烟草(Nicotianatabacum);拟南芥、巴西胡桃(Betholettiaexcelsa);蓖麻子(Ricinuscommunis);椰子(Cocusnucifera);芫荽(Coriandrumsativum);棉花(Gossypiumspp.);花生(Arachishypogaea);荷荷巴(Simmondsiachinensis);油棕(Elaeisguineeis);橄榄(Oleaeurpaea);水稻(Oryzasativa);南瓜(Cucurbitamaxima);大麦(Hordeumvulgare);小麦(Triticumaestivum);及浮萍(Lemnaceaesp.)。在某些具体例中,植物物种的基因背景可有所不同。
本案所用"植物部位"系包括植物的任何部位,包括但不限于籽(包括成熟籽与未成熟籽)、花粉、胚胎、花、果、芽、叶、根、茎、培植体等等。在某些具体例中,基因改造植物具有由其常态(譬如野生型或自然发生)形式修饰(譬如突变或改变)之基因组,俾使达成所欲结果(譬如经增多或修饰之PUFA合成酶和/或使用PUFA合成酶制造和/或累积所欲产物)。在某些具体例中,植物基因修饰可使用古典育种和/或分子基因技术来完成。制造转基因植物的方法—其中编码所欲氨基酸序列的重组核酸分子系并入该植物基因组—为本领域所习知。在某些具体例中,根据本发明以基因改造的植物为适用于动物—包括人类—食用的植物。
来自该等植物的植物系—就特定所欲特点最佳化,譬如抗病性、易于植物转化、油内容物或配置等等—可被制造、选择或辨识。在某些具体例中,植物系可经由植物育种、或经由诸如标记辅助育种与耕作之方法选择。在某些具体例中,可使用植物细胞培养物,举例来说,并不长成分化植物及使用普通农业做法栽培,而是生长维持于液态培养基。
在某些具体例中,植物可为油籽植物,其中该油籽、和/或油籽内的油系含有PUFA合成酶制造的PUFAs。在某些具体例中,该类油可含有可检测量的至少一个目标或主要PUFA,其为PUFA合成酶的产物。在某些具体例中,该类油可实质上不含非目标或主要PUFA产物且非为野生型植物内源FAS系统自然制造(譬如野生型植物经由FAS系统制造某些较短或中链PUFAs,例如18碳PUFAs,但作为以PUFA合成酶系统基因修饰的结果,将有该植物制造的新或额外脂肪酸)之中间物或副产物。
说到制造基因改造植物,植物基因工程方法系本领域所熟知。举例而言,已发展许多植物转化方法,包括用于双子叶植物还有单子叶植物的生物与物理转化操作流程(譬如Goto-Fumiyukietal.,NatureBiotech17:282-286(1999);Mikietal.,MethodsinPlantMolecularBiologyandBiotechnology,Glick,B.R.andThompson,J.E.Eds.,CRCPress,Inc.,BocaRaton,pp.67-88(1993)。此外,可取得用于植物细胞或组织转化的载体与试管内培养方法及植物再生,举例来说,于Gruberetal.,MethodsinPlantMolecularBiologyandBiotechnology,Glick,B.R.andThompson,J.E.Eds.,CRCPress,Inc.,BocaRaton,pp.89-119(1993)。
本发明涉及包含选自SEQIDNOs:6-10之核酸序列的分离核酸分子还有包含该类序列如本案所述修饰或突变的分离核酸分子。本发明涉及包含选自SEQIDNOs:1-5之氨基酸序列的分离多肽还有包含该类序列如本案所述修饰或突变的分离多肽。
本发明系包括重组表达载体pDAB7361。本发明系包括重组表达载体pDAB7362。本发明系包括重组表达载体pDAB7363。本发明系包括重组表达载体pDAB7365。本发明系包括重组表达载体pDAB7368。本发明系包括重组表达载体pDAB7369。本发明系包括重组表达载体pDAB7370。本发明系包括重组表达载体pDAB100518。本发明系包括重组表达载体pDAB101476。本发明系包括重组表达载体pDAB9166。本发明系包括重组表达载体pDAB9167。本发明系包括重组表达载体pDAB7379。本发明系包括重组表达载体pDAB7380。本发明系包括重组表达载体pDAB9323。本发明系包括重组表达载体pDAB9330。本发明系包括重组表达载体pDAB9337。本发明系包括重组表达载体pDAB9338。本发明系包括重组表达载体pDAB9344。本发明系包括重组表达载体pDAB9396。本发明系包括重组表达载体pDAB101412。本发明系包括重组表达载体pDAB7733。本发明系包括重组表达载体pDAB7734。本发明系包括重组表达载体pDAB101493。本发明系包括重组表达载体pDAB109507。本发明系包括重组表达载体pDAB109508。本发明系包括重组表达载体pDAB109509。本发明系包括重组表达载体pDAB9151。本发明系包括重组表达载体pDAB108207。本发明系包括重组表达载体pDAB108208。本发明系包括重组表达载体pDAB108209。本发明系包括重组表达载体pDAB9159。本发明系包括重组表达载体pDAB9147。本发明系包括重组表达载体pDAB108224。本发明系包括重组表达载体pDAB108225。
用于本案时,"转染"一词系用于指称外源性核酸分子(譬如重组核酸分子)可藉以插入细胞的任何方法。"转化"一词可和"转染"一词互换使用,当该词系用于指称将核酸分子引进微生物细胞,例如藻类、细菌与酵母,或引进植物细胞。在微生物与植物系统中,"转化"一词系用于描述由于微生物或植物获取外源性核酸所造成的遗传改变并和"转染"一词基本上同义。在某些具体例中,转染技术包括但不限于转化、粒子轰击、扩散、主动运输、槽式超音波震碎法、电穿孔、显微注射、脂质体转染、吸附、感染和原生质体融合。
用于将表达载体引进植物的广为利用方法系以农杆菌的天然转化系统为基础。Horschetal.,Science227:1229(1985)。根瘤农杆菌与毛状根农杆菌为习知可用于基因转化植物细胞的植物病原性土壤细菌。根瘤农杆菌与毛状根农杆菌的Ti与Ri质粒分别携带负责植物基因转化的基因。Kado,C.I.,Crit.Rev.Plant.Sci.10:1(1991)。亦可取得用于农杆菌媒介基因传递的农杆菌载体系统与方法的说明,举例来说,Gruberetal.,supra,Mikietal.,supra,Moloneyetal.,PlantCellReports8:238(1989)及U.S.专利号4,940,838与5,464,763。
植物转化的另一习知方法为微弹丸媒介转化,其中DNA系携带在微弹丸表面上。在此方法中,表达载体系藉由将微弹丸加速到足以穿透植物细胞壁与膜的速度之基因枪装置引进植物组织。Sanfordetal.,Part.Sci.Technol.5:27(1987),Sanford,J.C.,TrendsBiotech.6:299(1988),Sanford,J.C.,Physiol.Plant79:206(1990),Kleinetal.,Biotechnology10:268(1992)。
用于将DNA物理运输至植物的又另一方法是超音波震碎目标细胞。Zhangetal.,Bio/Technology9:996(1991)。又,脂质体或原生质球状体融合已用于将表达载体引进植物。Deshayesetal.,EMBOJ.,4:2731(1985),Christouetal.,ProcNatl.Acad.Sci.USA84:3962(1987)。使用CaCl2沈淀法、聚乙烯醇或聚-L-鸟氨酸使原生质体直接摄入DNA亦经报导。Hainetal.,Mol.Gen.Genet.199:161(1985)与Draperetal.,PlantCellPhysiol.23:451(1982)。原生质体及全细胞与组织的电穿孔亦有描述。Donnetal.,AbstractsofVIIthInternationalCongressonPlantCellandTissueCultureIAPTC,A2-38,p.53(1990);D'Halluinetal.,PlantCell4:1495-1505(1992)与Spenceretal.,PlantMol.Biol.24:51-61(1994)。此外,亦可可用碳化硅晶须(Kaepleretal.,1990,PlantCellReports)与,举例来说,使用浸花方法之植物转化(CloughandBent,PlantJ.16:735-743(1998))。实际植物转化方法可视为转化所选植物物种与所选植物细胞种类(譬如育苗所衍生的细胞种类,例如胚轴与子叶或胚胎组织)稍微变动。
将基因构建体引进植物细胞后,可使植物细胞生长并于诸如芽与根之分化组织出现后,可产生成熟植物。在某些具体例中,可产生复数种植物。植物再生的方法论系本领域技术人员所习知者并可于,举例来说,PlantCellandTissueCulture,1994,VasilandThorpeEds.KluwerAcademicPublishers及于PlantCellCultureProtocols(MethodsinMolecularBiology111,1999HallEdsHumanaPress)找到。
在某些具体例中,本案所述基因改造植物可培养于发酵培养基或栽种于适宜培养基,例如土壤。在某些具体例中,高等植物的适宜生长培养基可包括任何植物用生长培养基,包括但不限于土壤、砂、支持根生长的任何其它颗粒培养基(譬如蛭石、珍珠石等等)或水耕法,还有使高等植物生长最佳化的适宜光线、水与营养补充品。
本领域技术人员会了解使用重组DNA技术可改善转染核酸分子的表达控制,其系藉由操作—举例来说—宿主细胞内的核酸分子拷贝数、该等核酸分子转录的效率、所得转录物的翻译效率、及翻译后修饰的效率。此外,启动子序列可经基因工程改造,以改善相较于原生启动子之表达水平。可用于控制核酸分子表达的重组技术包括但不限于将核酸分子整合至一或多个宿主细胞染色体、将载体稳测序列添加至质粒、取代或修饰转录控制信号(譬如启动子、操纵子、增强子)、取代或修饰翻译控制信号(譬如核糖体结合位点、Shine-Dalgarno序列)、修饰核酸分子以对应宿主细胞的密码子使用、及删除使转录物不稳定的序列。
在某些具体例中,植物可包括习知生产用作药品、香料、保健品、功能食品成分或美容活性试剂之化合物的该等植物或经基因工程改造以生产该等化合物/试剂的植物。
本发明该等具体例皆应用于本案所述任何基因改造生物体及制造与使用该类生物体的方法之讨论。
基因改造生物体的产物
在某些具体例中,本发明之基因改造生物体系制造一或多个多不饱和脂肪酸,其包括但不限于EPA(C20:5,n-3)、DHA(C22:6,n-3)、DPA(C22:5,n-6或n-3)、ARA(C20:4,n-6)、GLA(C18:3,n-6)、ALA(C18:3,n-3)、和/或SDA(C18:4,n-3)),而在某些具体例中,一或多个较长链PUFAs包括但不限于EPA(C20:5,n-3)、DHA(C22:6,n-3)、DPA(C22:5,n-6或n-3)、或DTA(C22:4,n-6)、或该等之任何组合。在某些具体例中,本发明之基因改造植物系制造一或多个多不饱和脂肪酸,其包括但不限于EPA(C20:5,n-3)、DHA(C22:6,n-3)、和/或DPA(C22:5,n-6或n-3)、或该等之任何组合。
在某些具体例中,基因改造生物体系经基因改造以重组表达PUFA合成酶系统与PPTase的植物,如本案所述者。在某些具体例中,该类植物系经进一步基因改造,以表达本案所述辅助蛋白,以改善宿主(譬如AcoAS、GPAT、LPAAT、DAGAT或ACCase)制造和/或累积PUFAs(或PUFA合成酶的其它生物活性产物)。
本发明某些具体例系包括制造由所欲链长组成并带有所欲双键数量的多不饱和脂肪酸以及—推而广之—包含该等PUFAs的油籽与获自本案所述基因改造植物的油(譬如获自该类植物的油或籽)。本发明可制造的PUFAs例子包括但不限于DHA(二十二碳六烯酸(C22:6,n-3))、ARA(二十碳四烯酸或花生四烯酸(C20:4,n-6))、DPA(二十二碳五烯酸(C22:5,n-6或n-3))、及EPA(二十碳五烯酸(C20:5,n-3))、及该等之任何组合。藉由本发明人经由使用制造PUFAs的PUFA合成酶系统所发展的基因改造植物,本发明容许制造具商业价值之富含一或多个所欲(目标或主要)PUFAs的脂质。
在某些具体例中,衍生自特定生物体的给定PUFA合成酶系统会制造(多个)特定PUFA,俾使选择来自特定生物体的PUFA合成酶系统将造成产生指定的目标或主要PUFAs。在某些具体例中,PUFAs比例可视特定PUFA合成酶系统的选择及该系统如何响应表达的特定条件而有差异。举例来说,使用来自破囊壶菌23B(ATCCNo.20892)的PUFA合成酶亦可造成产生DHA与DPAn-6作为目标或主要PUFAs;然而,在破囊壶菌23B的情况中,DHA对DPAn-6的比例为约10:1(并可介于约8:1至约40:1),但在裂殖壶菌中,该比例通常为约2.5:1。在某些具体例中,给定PUFA合成酶可藉由混合来自不同PUFA合成酶的蛋白与域来修饰,或吾人可修饰给定PUFA合成酶的域或蛋白,以改变目标PUFA产物和/或比例。
在某些具体例中,提到制造PUFAs之酶系统的"中间产物"或"副产物"时系指该酶系统由于制造系统的(多个)目标或主要PUFA的缘故所制造的任何产物,尤其是脂肪酸产物,但该等并非(多个)主要或目标PUFA。在某些具体例中,中间物或副产物可包括非目标脂肪酸,彼等系野生型植物所自然产生、或母代植物用作指定基因修饰接受者,但现在被分类成中间物或副产物,因为彼等由于基因修饰的缘故产生-相较于野生型植物所自然产生、或母代植物用作指定基因修饰接受者之水平-较大水平。在某些具体例中,一个酶系统的主要或目标PUFA可为不同酶系统的中间物,其中主要或目标产物为不同的PUFA。举例来说,在使用标准途径制造EPA时,诸如GLA、DGLA与SDA之脂肪酸系作为中间产物大量产生(譬如U.S.Appl.Pub.No.2004/0172682)。同样地,亦以U.S.Appl.Pub.No.2004/0172682例示,在使用标准途径制造DHA时,除上述脂肪酸外,ETA与EPA(注意到是以上第一个例子的目标PUFA)可大量产生并可以相对于总脂肪酸产物、比目标PUFA本身更大量地出现。
在某些具体例中,为制造明显高产量之一或多个所欲多不饱和脂肪酸,植物可经基因改造,以将PUFA合成酶系统引进该植物。植物并非习知内源性地含有PUFA合成酶,因此,本发明代表制造带有独特脂肪酸制造能力之植物的机会。本发明提供基因工程改造植物,以于相同植物中制造一或多个PUFAs,其包括但不限于EPA、DHA、DPA(n3或n6)、ARA、GLA、SDA等等,包括彼等之任何组合。本发明赋予创造呈各式比例与形式之众多"订制油"当中任一者的能力。在某些具体例中,使用来自本案所述特定海洋生物体之PUFA合成酶系统可扩展PUFA生产的范围并在用于栽种大部分作物植物的温度范围内成功地制造该类PUFAs。
在某些具体例中,合成PUFAs之系统"实质上不含"中间物或副产物、或不具有以实质份量存在之中间物或副产物意指基因改造植物(和/或植物部位和/或籽油馏分)由于引进或存在制造PUFAs(譬如并非野生型植物所产生或母代植物用作指定基因修饰接受者)之酶系统的缘故所产生的任何中间物或副产物脂肪酸(非目标PUFAs)可以少于约10重量%该植物制造的总脂肪酸,更佳少于约9%、更佳少于约8%、更佳少于约7%、更佳少于约6%、更佳少于约5%、更佳少于约4%、更佳少于约3%、更佳少于约2%、更佳少于约1重量%该植物制造的总脂肪酸,更佳少于约0.5重量%该植物制造的总脂肪酸之量存在。
在某些具体例中,本发明基因改造植物或获自本发明基因改造植物之油或籽系包含可检测量的DHA(二十二碳六烯酸(C22:6,n-3))或EPA(二十碳五烯酸(C20:5,n-3))。在某些具体例中,本发明基因改造植物或获自本发明基因改造植物之油或籽系包含0.01%、0.02%、0.03%、0.04%、0.05%、0.06%、0.07%、0.08%、0.09%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%或15%DHA。有用范围可在任何该等数值之间挑选,举例来说,0.01-15%、0.05-10%与1-5%DHA。
在某些具体例中,本发明基因改造植物或获自本发明基因改造植物之油或籽系包含0.01%、0.02%、0.03%、0.04%、0.05%、0.06%、0.07%、0.08%、0.09%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、或10%EPA。有用范围可在任何该等数值之间挑选,举例来说,0.01-10%、0.05-5%与0.1-5%EPA。
在某些具体例中,当PUFA合成酶系统的目标产物为长链PUFA—例如DHA、DPA(n-6或n-3)或EPA—时,未以实质份量存在于以该类PUFA合成酶系统基因改造的植物总脂质之中间物或副产物可包括但不限于:γ-亚麻酸(GLA;18:3,n-6);硬脂四烯酸(STA或SDA;18:4,n-3);双高-γ-亚麻酸(DGLA或HGLA;20:3,n-6)、花生四烯酸(ARA,C20:4,n-6);二十碳三烯酸(ETA;20:3,n-9)及各式其它中间物或副产物,例如20:0;20:1(Δ5);20:1(Δ11);20:2(Δ8,11);20:2(Δ11,14);20:3(Δ5,11,14);20:3(Δ11,14,17);蜜酒酸(20:3;Δ5,8,11);或20:4(Δ5,1,14,17)。
根据本发明对植物进行基因修饰可致使该植物制造一或多个PUFAs。在某些具体例中,该植物所制造的PUFA配置与PUFAs比例不一定和衍生PUFA合成酶之生物体所制造的PUFA配置与PUFAs比例相同。
在某些具体例中,本发明基因改造植物可经基因工程改造,以经由PUFA合成酶之活性制造PUFAs。在某些具体例中,PUFAs可经由从该植物萃取化合物的纯化方法回收。在某些具体例中,PUFAs可藉由采集该植物来回收。在某些具体例中,PUFAs可藉由从该植物(譬如从油籽)采集油或从该植物采集籽来回收。在某些具体例中,该植物亦可以其天然状态被食用或进一步加工成可食用产品。
在某些具体例中,本发明基因改造植物可制造一或多个多不饱和脂肪酸。在某些具体例中,该植物可制造(譬如于其成熟籽,假使为油籽植物,或油籽植物的籽油)至少一个PUFA(目标PUFA),其中累积PUFAs之植物或植物部位(譬如成熟籽,假使该植物为油籽植物,或油籽植物的籽油)的总脂肪酸配置系包含可检测量的此PUFA或PUFAs。在某些具体例中,目标PUFA系至少20个碳的PUFA并包含至少3个双键,更佳至少4个双键,甚至更佳至少5个双键。在某些具体例中,目标PUFA可为植物非自然产生的PUFA。在某些具体例中,累积PUFAs之植物或植物部位(包括植物籽油)的总脂肪酸配置系包含占总脂肪酸重量之至少0.1%的(多个)目标PUFA、占植物制造的总脂肪酸重量之至少0.2%、至少0.3%、至少0.4%、至少0.5%、至少1%、至少1.5%、至少2%、至少2.5%、至少3%、至少3.5%、至少4%、至少4.5%、至少5%、至少5.5%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、多于75%的至少一个多不饱和脂肪酸(目标PUFA或PUFAs),或0.1%至75%之任何百分比,或大于75%(至多100%或100%)—以0.1%增量—之(多个)目标PUFA。
作为本案一般性使用,提到PUFA制造的百分比份量系以占生物体(植物)制造的总脂肪酸重量计,除非另有说明。在某些具体例中,植物制造之总脂肪酸系以气相层析(GC)分析测定脂肪酸甲酯(FAME)制备物的重量百分比呈现,但总脂肪酸的测定不限于此方法。
在某些具体例中,本发明植物(和/或植物部位和/或籽油馏分)内的总脂肪酸可含有占植物制造的总脂肪酸重量之少于10%、少于9%、少于8%、少于7%、少于6%、少于5%、少于4%、少于3%、少于2%、少于1%之选自下列的任何一或多个脂肪酸:γ-亚麻酸(GLA;18:3,n-6);硬脂四烯酸(STA或SDA;18:4,n-3);双高-γ-亚麻酸(DGLA或HGLA;20:3,n-6)、花生四烯酸(ARA,C20:4,n-6);二十碳三烯酸(ETA;20:3,n-9)及各式其它脂肪酸,例如20:0;20:1(Δ5);20:1(Δ11);20:2(Δ8,11);20:2(Δ11,14);20:3(Δ5,11,14);20:3(Δ11,14,17);蜜酒酸(20:3;Δ5,8,11);或20:4(Δ5,1,14,17)。
本发明系包括本案所述植物制造的任何籽,还有本发明植物或籽制造的任何油。本发明亦包括使用本案所述该植物、籽或油制造的任何产物。
本发明基因改造生物体相关之用途与产品
本发明系包括一种藉由栽种或培育详述于上文之本发明基因改造生物体(譬如植物)来制造PUFAs的方法。在某些具体例中,该类方法系包括,举例来说,将本案先前所述并根据本发明具有基因修饰之植物栽种在适宜环境—例如土壤—的步骤。
本发明系包括一种制造包含至少一PUFA之油的方法,该方法系包含从本发明基因改造植物或从本发明基因改造植物之籽回收油。本发明系包括一种制造包含至少一PUFA之油的方法,该方法系包含栽种本发明基因改造植物。本发明系包括一种在籽油中制造至少一PUFA的方法,该方法系包含从本发明基因改造植物之籽回收油。本发明系包括一种在籽油中制造至少一PUFA的方法,该方法系包含栽种本发明基因改造植物。
本发明系包括一种提供含有至少一PUFA之补充品或治疗产品给一个体的方法,该方法包含提供本发明之基因改造植物、本发明之油、本发明之籽、本发明之食品、本发明之功能食品、或本发明之医药产品给该个体。本发明亦包括一种制造本发明基因改造植物的方法,该方法系包含以下列转化植物或植物细胞:(i)编码藻类PUFA合成酶系统之核酸序列,该酶系制造至少一多不饱和脂肪酸(PUFA);及(ii)编码磷酸泛酰巯基乙胺基转移酶(PPTase)之核酸序列,该酶系将磷酸泛酰巯基乙胺基辅助因子转移至藻类PUFA合成酶系统ACP域。在某些具体例中,该方法又包含以下列转化植物或植物细胞:(iii)编码酰基-CoA合成酶(ACoAS)之核酸序列,该酶系催化长链PUFA游离脂肪酸(FFA)转换成酰基-CoA。
在某些具体例中,该类方法的PUFA为DHA或EPA。
本发明又包括本案所述任何生物体或其部位(譬如植物、植物部位(譬如油籽)、或其制备物或馏分),还有本案所述生物体制造的任何油。本发明亦包括使用本案所述该生物体、其部位、或油制造的任何产品。
本发明系关于一种修饰含有至少一个脂肪酸之产品的方法,该方法包含将一生物体、其部位、或根据本发明并如本案所述之基因改造生物体(譬如如本案所述经基因改造的植物)制造的油添加至该产品。以此方法制造的任何产品或大致上含有任何生物体、其部位、或来自本案所述生物体的油亦涵盖在本发明内。
在某些具体例中,该产品系选自由下列构成之群组:食品、膳食补充品、医药配方、人乳化动物奶、婴儿配方及保健功能食品。适宜的医药配方包括但不限于消炎配方、化疗剂、活性赋形剂、骨质疏松药物、抗抑郁剂、抗惊厥剂、抗幽门螺旋杆菌药物、治疗神经退化性疾病的药物、治疗退化性肝病的药物、抗生素、以及降胆固醇配方。在某些具体例中,该产品系用于治疗选自由下列所构成之群组的病况:慢性发炎、急性发炎、肠胃不适、癌症、恶病质、心血管再度狭窄症、神经退化性疾病、肝退化病症、血脂病症、骨质疏松、骨关节炎、自体免疫疾病、子痫前症、早产、年龄相关黄斑部病变、肺部病症、及过氧溶酶体病症。
在某些具体例中,该产品为食品或功能食品。适宜的食品包括但不限于精制烘焙制品、面包和面包卷、早餐谷物、加工和未加工的奶酪、调味品(西红柿酱、蛋黄酱等)、乳制品(牛奶、优格)、布丁和明胶点心、碳酸饮料、茶、饮料粉混合料、加工鱼产品、水果基底饮料、口香糖、硬糖果、冷冻乳制品、加工肉品、坚果和坚果基底涂酱、面食、加工家禽产品、肉汁和酱料、洋芋片和其它薄片或脆片、巧克力和其它糖果、汤和汤混合料、大豆基底产品(譬如牛奶、饮料、奶霜、增白剂)、植物油基底涂酱、及蔬菜基底饮料。
在本发明某些具体例中,该产品为动物用饲料或膳食组成物、或饲料或膳食组成物的添加剂。动物一词系包括所有动物,包括人类。动物的非设限例有非反刍动物(譬如猪、家畜、或鱼)、及反刍动物(譬如牛、羊与马。饲料或饲料组成物意指适用于或意图用于供动物摄食的任何化合物、制备物、混合物、或组成物。
在某些具体例中,相较于常规油,基因改造植物、籽或油(譬如芥花)系包含降低水平之多不饱和脂肪酸与增高水平之单元不饱和油酸。该类植物、籽或油可展现,举例来说,高度氧化稳定性。在某些具体例中,基因改造植物、籽或油系包含高油酸油背景(譬如70%、75%、80%、85%、90%、95%、96%、97%、98%或99%油酸)。该类植物、籽或油可以,举例来说,在储存、油炸和/或精炼期间较不易氧化,和/或可加热至较高温而不生烟,使其更适宜作为烹饪油。在某些具体例中,基因改造植物、籽或油系包含如本案所述之DHA份量及高油酸油背景(譬如大于或等于70%之份量,包括70%、75%、80%、85%、90%、95%、96%、97%、98%、及99%油酸及其任何范围)。在某些具体例中,基因改造植物、籽或油系包含如本案所述之DHA份量及低亚麻酸背景(譬如少于或等于10%之份量,包括9.5%、9%、8.5%、8%、7.5%、7%、6.5%、6%、5.5%、5%、4.5%、4%、3.5%、3%、2.5%、2%、1.5%、1%、0.05%、0.02%、或0.01%亚麻酸及其任何范围)。在某些具体例中,基因改造植物、籽或油系包含如本案所述之DHA份量、高油酸油背景(譬如以大于或等于70%之份量存在,包括70%、75%、80%、85%、90%、95%、96%、97%、98%、及99%油酸及其任何范围)、及低亚麻酸背景(譬如少于或等于10%之份量,包括9.5%、9%、8.5%、8%、7.5%、7%、6.5%、6%、5.5%、5%、4.5%、4%、3.5%、3%、2.5%、2%、1.5%、1%、0.05%、0.02%、或0.01%亚麻酸及其任何范围)。在某些具体例中,该类基因改造植物、籽或油(譬如芥花)可并入本案所述产品。
本发明其它目的、优点及新颖特征将于本领域技术人员检阅下列实施例后变得显明,该等实施例并无意图设限。
实施例
实施例1
PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶OrfC、酰基-CoA合成酶与4'磷酸泛酰巯基乙胺基转移酶HetI之密码子最佳化
编码来自裂殖壶菌属ATCC_20888之PUFAOrfA(GenBankID:AF378327,GI:158518688)、来自裂殖壶菌属ATCC_20888之PUFAOrfB(GenBankID:AF378328,GI:158518690)、来自裂殖壶菌属ATCC_20888与破囊壶菌之嵌合PUFAOrfC(U.S.Appl.Pub.No.2008/0022422)(″嵌合OrfC"或"杂交OrfC")、来自裂殖壶菌属ATCC_20888之酰基-CoA合成酶(U.S.Appl.Pub.No.2007/0245431)、及来自念珠藻属PCC7120之4'磷酸泛酰巯基乙胺基转移酶HetI(GenBankID:P37695,GI:20141367)编码区的DNA序列分析显示数个序列基序含有可能不利于最佳化植物表达的非最佳化密码子组合。使编码PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶嵌合OrfC、酰基-CoA合成酶与4'磷酸泛酰巯基乙胺基转移酶HetI蛋白的(多个)基因设计最佳化,以生成本质上更"像植物"的DNA序列,其中序列修饰不妨碍翻译或因非最佳化密码子组合而造成mRNA的不稳定。
由于基因密码冗余性/简并性(譬如某些氨基酸被不止一个密码子指定)所赋予的可塑性,不同生物体或生物体种类的基因组演化造成了同义密码子的差别用法。此"密码子偏倚"反映在蛋白编码区的平均碱基组合。举例来说,具相对低G+C含量之基因组的生物体系利用较多于同义密码子第三位点具有A或T的密码子,而该等具较高G+C含量者则利用较多于第三位点具有G或C的密码子。再者,据认为出现在mRNA内的"少量"密码子可能降低该mRNA的绝对翻译速率,尤其在对应于该少量密码子的带电tRNA的相对丰度极低时。此推论的延伸是由个别少量密码子造成的翻译速率缩减在多重少量密码子时至少会相加。因此,具相对高含量的少量密码子的mRNA会有相应低的翻译速率。此速率系由相应低水平的编码蛋白反映。
在以基因工程改造编码PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶嵌合OrfC、酰基-CoA合成酶与4'磷酸泛酰巯基乙胺基转移酶HetI蛋白之基因以于芥花(或其它植物,例如稻米、烟草、玉蜀黍、棉花或大豆)表达时,芥花的密码子用法系于公开数据库获取(表2)。
表2.油菜(芥花)基因编码区的同义密码子表达(C与G栏)。植物最佳化合成基因设计的经平衡偏倚密码子代表组之数值系于D与H栏。
*DNU=不使用
为平衡一氨基酸之剩余密码子选择的分布,各密码子的加权平均表达系使用下式计算(表2):
C1的加权平均%=1/(%C1+%C2+%C3+等等)x%C1x100,其中C1为所涉密码子且%C2、%C3等等代表表2之芥花其余同义密码子%值的平均(相关密码子的平均%值从C与G栏取得)。
各密码子的加权平均%值系提供于表2的D与H栏。
在设计供植物表达之编码区时,植物所偏好的主要(″首选")密码子被决定,还有偏好密码子的第二、第三、第四等等选择,倘若存在多重选择。然后设计编码PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶OrfC、酰基-CoA合成酶与4'磷酸泛酰巯基乙胺基转移酶HetI之基本上相同氨基酸序列的新DNA序列,但藉由以植物(第一偏好、第二偏好、第三偏好、或第四偏好等等)密码子取代以指定氨基酸序列内各位点氨基酸而异于原始DNA序列(编码PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶嵌合OrfC、酰基-CoA合成酶与4'磷酸泛酰巯基乙胺基转移酶HetI)。
随后以序列修饰所创造的限制酶位点分析新序列。随后以第一、第二、第三、或第四选择的偏好密码子置换来修饰辨识位点。随后进一步分析并修饰该序列,以降低TA或GC二联体的频率。
该等序列的分析显示新DNA序列系基本上编码PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶嵌合OrfC、酰基-CoA合成酶与4'磷酸泛酰巯基乙胺基转移酶HetI蛋白的氨基酸序列,但分别使用在芥花基因发现的常用密码子的经平衡密码子分布来设计在芥花中的最佳化表达。尤其,新DNA序列系藉由以植物(第一偏好、第二偏好、第三偏好、或第四偏好)密码子取代以指定蛋白氨基酸序列内各位点之适当氨基酸而异于编码PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶嵌合OrfC、酰基-CoA合成酶与4'磷酸泛酰巯基乙胺基转移酶HetI之原始DNA序列。
植物最佳化DNA序列设计系使用表2、D与H栏构建的芥花密码子偏好表对SEQIDNO:1、SEQIDNO:2、SEQIDNO:3、SEQIDNO:4与SEQIDNO:5之蛋白序列进行反翻译来启始。酰基-CoA合成酶的蛋白序列(SEQIDNO:4)系由原始序列修改;其中第二个氨基酸丙氨酸从蛋白中被移除。随后藉由补偿密码子改变(同时维持整体加权平均密码子表达)修饰初始序列,以移除或添加限制酶识别位点、移除高度稳定的链内二级结构、并移除可能不利于植物之克隆操作或改造基因表达的其它序列。随后以该等修饰可能创造的限制酶识别位点再次分析DNA序列。进一步以第一、第二、第三、或第四选择的偏好密码子置换相关密码子来修饰辨识位点。序列内可能影响感兴趣基因转录或翻译的其它位点系包括外显子:内含子交接处(5'或3')、多聚A添加信号、或RNA聚合酶终止信号。进一步分析并进一步修饰该经修饰序列,以降低TA或CG二联体的频率,并增加TG或CT二联体的频率。除该等二联体外,具有多于约六个[G+C]或[A+T]连续残基的序列基序可能影响序列转录或翻译。因此,该等序列基序亦藉由以第一或第二选择等等的密码子置换其它选择的偏好密码子。罕用密码子在基因设计时不以实质程度被包括在内,仅在—相较于密码子组合本身—有必要迁就不同设计准则(譬如添加或删除限制酶识别位点)时使用。
PUFA合成酶OrfA所编码的蛋白系包含10个重复的"脯氨酸-丙氨酸"域,其尺寸介于17至29个氨基酸。穿插在脯氨酸-丙氨酸重复段之间的是9个较长的重复序列域,其包含87个氨基酸。该等重复的氨基酸序列仅在4个位点有变动,在各变动位点仅有两个氨基酸选择。使用ClustalW计算机程序分析9个重复段的氨基酸序列生成100%之同源性数值与95.4%之一致性数值。在DNA层次,编码9个重复段的序列为100%同源、89.7%一致,在编码各重复段的261个碱基中仅27个位点有变动(27个改变中有23个是"沉默"差异,其中相同氨基酸的同义密码子被互换)。
标准的基因设计方法就此尺寸的多重重复段而言无法轻易适应发展新的密码子偏倚DNA序列,因为吾人必须持续地平衡个别重复段中的所有密码子选择和其余8个重复段中相同位点的密码子选择,以避免生成高度相关的DNA序列。就87个残基的重复段各者而言,有超过4.5x1043种编码相同氨基酸序列的可能DNA序列(以序列中各氨基酸的同义密码子数量相乘计得)。于是,为生成一致性编码DNA序列,有极大的计算可用空间。下列流程说明用于(于计算机)生成个别重复段各者之多重序列设计的方法,接着批次比对所有序列版本,以辨识代表编码该等重复段之高度分化序列组:
步骤1:取出编码各重复氨基酸域之原生DNA序列作为单独序列。
步骤2:将作为单独序列之个别重复DNA序列导入基因设计程序(譬如OPTGENETM,OcimumBiosolutions,Hyderabad,India)。步骤3-5系于各序列分开执行。
步骤3:使用标准基因密码翻译DNA序列。
步骤4:使用标准基因密码与适当密码子偏倚表对该翻译蛋白序列进行反翻译。在此实施例中系使用汇集530个油菜蛋白编码区的偏倚密码子表,各生成序列的代号为"nap"(指"napus")加上版本数目。于是,重复段1的第一个反翻译密码子偏倚序列系称作"rpt1napl"。在此例中,此方法系进行10次,以生成10个编码重复1之蛋白序列的DNA序列版本。
步骤5:将10个序列版本输出到相应数量的文字文件。
步骤6:对其余重复序列域各者重复步骤3-5。在此例中,生成总共90个"nap"序列版本(各重复单元有10个)。
步骤7:将90个序列文件导入ClustalW程序Mega3.1(于Megasoftware获取)并使用所有90个序列作为输入执行多重序列比对。因为该等序列为蛋白编码区的片段,比对系以不容许间隔执行。待ClustalW比对之后,进化树被组成并形象化,以目视挑选该蛋白中九个重复域各者的十个密码子最佳化序列当中一者。各选测序列版本系从树的最深度分歧部分选出。
步骤8:将各重复域的选测序列以就各特定重复段而言之恰当位点并入编码整个蛋白的密码子最佳化DNA序列。
步骤9:执行整个密码子最佳化序列—包括单独设计的分化重复单元—的最终分析,以确保没有非所欲之基序、限制酶识别位点等等。
崭新设计的芥花最佳化PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶OrfC、酰基-CoA合成酶与4'磷酸泛酰巯基乙胺基转移酶HetIDNA序列系分别列于SEQIDNO:6、SEQIDNO:7、SEQIDNO:8、SEQIDNO:9与SEQIDNO:10。该等密码子最佳化序列在说明书通篇系识作版本3(v3)。标记为版本2(v2)的序列系描述原始非密码子最佳化序列。
所得DNA序列具有较高密码子多样性、所欲碱基组合、含有按策略置放的限制酶识别位点且无可能干扰基因转录或mRNA产物翻译的序列。表3、表4、表5、表6与表7系呈现在原始基因中找到的PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶嵌合OrfC、酰基-CoA合成酶与4'磷酸泛酰巯基乙胺基转移酶HetI蛋白编码区的密码子组合、植物最佳化版本及由表2的D与H栏计算的植物最佳化序列密码子组合建议的比对。
表3.PUFAOrfA密码子组合
表4.PUFAOrfB密码子组合
表5.PUFA嵌合OrfC密码子组合
表6.酰基-CoA合成酶密码子组合
表7.磷酸泛酰巯基乙胺基转移酶HetI密码子组合
在完成编码区序列的密码子最佳化后,将额外核苷酸序列加至最佳化编码区序列。将有助于克隆的限制位点;Kozak序列与额外终止密码子加至植物最佳化编码序列。此外,第二系列的PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶嵌合OrfC、酰基-CoA合成酶与磷酸泛酰巯基乙胺基转移酶HetI编码序列系设计成含有来自拟南芥核酮糖双磷酸羧化酶小链1A(GenBankID:NM_202369.2)的叶绿体靶向序列。将此序列SEQIDNO:11加至PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶嵌合OrfC与磷酸泛酰巯基乙胺基转移酶HetI之前述编码序列。将SEQIDNO:6、SEQIDNO:7、SEQIDNO:8、及SEQIDNO:10的初始甲硫氨酸移除并置换成叶绿体靶向序列。含有该叶绿体靶向序列的序列在说明书通篇系识别为版本4(v4)。
将第二个叶绿体转运肽加至PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶嵌合OrfC、酰基-CoA合成酶与磷酸泛酰巯基乙胺基转移酶HetI编码序列。该等编码序列系设计成含有来自酰基-ACP-硫酯酶(GenBankID:X73849.1)的叶绿体靶向序列。将此序列—SEQIDNO:38—加至PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶嵌合OrfC与磷酸泛酰巯基乙胺基转移酶HetI之前述编码序列。将SEQIDNO:6、SEQIDNO:7、SEQIDNO:8、SEQIDNO:9及SEQIDNO:10的初始甲硫氨酸移除并置换成叶绿体靶向序列。含有该叶绿体靶向序列的序列在说明书通篇系识别为版本5(v5)。
一旦在纸上或计算机设计好植物-最佳化DNA序列,序列上精确地对应于所设计序列的实际DNA分子即可在实验室中被合成。该类合成DNA分子可被克隆或操作,就好像该等系衍生自天然或原生来源。包含含有上述额外序列之SEQIDNO:6、SEQIDNO:7、SEQIDNO:8、SEQIDNO:9与SEQIDNO:10的DNA片段的合成系由商业供货商执行(GeneartAg,Regensburg,Germany)。随后如实施例2、3、与4所述将合成DNA克隆置入表达载体并转化至农杆菌与芥花。
运用此方法连同PUFA合成酶OrfA编码序列之密码子最佳化导致选择足够分化的重复脯氨酸-丙氨酸序列,以避免重复序列不稳定性。该等序列系从进化树的最深分枝(即离此序列组中另一者最远)挑选。对所有配对组合进行Smith-Wasserman整体比对且同源性范围系为74-81%,可能同位数为76-77%(表8)。
表8.PUFAOrfA重复段之选定密码子-最佳化序列的Smith-Wasserman同源性
9个重复域的选定9个新设计编码区的ClustalW比对(VectorNTI,Invitrogen,Carlsbad,CA)展示于第1图。总言之,该等序列为93.1%同源、61.7%相同,相较于100%同源及89.7%相同之原始序列。可藉由使用超过10个序列迭代并运用计算机程序或数学算法从中挑选(而非目视选择序列)达到更大序列多样性。然而,所例示序列系高度分化、并产生稳定的含多核苷酸片段之核苷酸。
实施例2
pDAB7361、pDAB7362、pDAB7363及额外构建体之质粒构建
构建pDAB7361
pDAB7361质粒(第2图;SEQIDNO:35)系使用多重位点网关(Gateway)重组L-R反应(Invitrogen,Carlsbad,CA)构建。pDAB7361含有如下列之三个PUFA合成酶植物转录单元(PTUs)、一个酰基-CoA合成酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、及草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有截短的菜豆植物血凝素-L基因启动子(PvDlec2启动子v2;GenBank登录号X06336)、拟南芥AT2S3基因5'未翻译区(2S5'UTR;GenBank登录号NM_118850)、裂殖壶菌多不饱和脂肪酸合成酶开放读码区A(SzPUFAOrfAv2)与拟南芥2S白蛋白基因3'未翻译区终止子v1(At2SSSP终止子v1;GenBank登录号M22035)。第二个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、裂殖壶菌多不饱和脂肪酸合成酶开放读码区B(SzPUFAOrfBv3)与At2SSSP终止子v1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、裂殖壶菌与破囊壶菌多不饱和脂肪酸合成酶开放读码区C(hSzThPUFAOrfCv3)与At2SSSP终止子v1。酰基-CoA合成酶PTUPvDlec2启动子v2、2S5'UTR、裂殖壶菌酰基-CoA合成酶(SzACS-2v3)与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvDlec2启动子v2、2S5'UTR、念珠藻属4'磷酸泛酰巯基乙胺基转移酶HetI(NoHetIv3)与At2SSSP终止子v1。
将质粒pDAB7355、pDAB7335、pDAB7336、pDAB7339与pDAB7333重组,以形成pDAB7361。明确地说,上述五个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。pDAB7333—除了其它调控单元,例如超驱动序列(Toroetal.,PNAS85(22):8558-8562;1988)与T链边界序列(T-DNA边界A与T-DNA边界B;Gardneretal.,Science231:725-727;1986与WO2001/025459A1)以外—亦含有草胺膦乙酰基转移酶PTU:木薯叶脉花叶病毒启动子(CsVMV启动子v2;Verdagueretal.,PlantMolecularBiology31:1129-1139;1996)、草胺膦乙酰基转移酶(PATv5;Wohllebenetal.,Gene70:25-37;1988)与根瘤农杆菌ORF13'未翻译区(AtuORF13'UTRv4;Huangetal.,J.Bacteriol.172:1814-1822;1990)。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB7362
pDAB7362质体(第3图;SEQIDNO:36)系使用多重位点网关重组L-R反应构建。pDAB7362含有三个PUFA合成酶PTUs、一个酰基-CoA合成酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU序列与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv3与At2SSSP终止子v1。第二个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfBv3与At2SSSP终止子v1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv3与At2SSSP终止子v1。酰基-CoA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzACS-2v3基因与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvDlec2启动子v2、2S5'UTR、NoHetIv3与At2SSSP终止子v1。
将质体pDAB7334、pDAB7335、pDAB7336、pDAB7339与pDAB7333重组,以形成pDAB7362。明确地说,上述五个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。pDAB7333-除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外-亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB7363
pDAB7363(第4图;SEQIDNO:37)系使用多重位点网关L-R重组反应构建。pDAB7363含有三个PUFA合成酶PTUs、一个酰基-CoA合成酶PTU与一个磷酸泛酰巯基乙胺基转移酶PTU序列。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv4与At2SSSP终止子v1。第二个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfBv4与At2SSSP终止子v1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv4与At2SSSP终止子v1。酰基-CoA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzACS-2v3基因与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvDlec2启动子v2、2S5'UTR、NoHetIv4与At2SSSP终止子v1。此外,所有PTUs亦含有拟南芥核酮糖双磷酸羧化酶小链1A叶绿体靶向序列,以标记"v4"指示。
将质粒pDAB7340、pDAB7341、pDAB7342、pDAB7344与pDAB7333重组,以形成pDAB7363。明确地说,上述五个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB7365
pDAB7365为二元质粒,其被构建含有原生、非密码子最佳化版本的SzPUFAOrfAv2、SzPUFAOrfBv2、hSzThPUFAOrfCv2、SzACS-2v2、与NoHetIv2。pDAB7365质粒(第19图;SEQIDNO:39)系使用多重位点网关L-R重组反应构建。pDAB7365含有三个PUFA合成酶PTUs、一个酰基-CoA合成酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv2与At2SSSP终止子v1。第二个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfBv2与At2SSSP终止子v1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfCv2与At2SSSP终止子v1。酰基-CoA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzACS-2v2基因与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvDlec2启动子v2、2S5'UTR、NoHetIv2与At2SSSP终止子v1。
将质粒pDAB7355、pDAB7356、pDAB7357、pDAB7360与pDAB7333重组,以形成pDAB7365。明确地说,上述五个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv2、SzPUFAOrfBv2、SzPUFAOrfCv2、SzACS-2v2、NoHetIv2。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试六个PTUs的合并。
构建pDAB7368
pDAB7368为二元质粒,其被构建含有原生、非密码子最佳化版本的SzPUFAOrfAv2、SzPUFAOrfBv2、hSzThPUFAOrfCv2、与NoHetIv2。此构建体不含SzACS-2编码序列。pDAB7368质粒(第20图;SEQIDNO:40)系使用多重位点网关L-R重组反应构建。pDAB7368含有三个PUFA合成酶PTUs、一个酰基-CoA合成酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv2与At2SSSP终止子v1。第二个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfBv2与At2SSSP终止子v1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfCv2与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvDlec2启动子v2、2S5'UTR、NoHetIv2与At2SSSP终止子v1。
将质粒pDAB7355、pDAB7356、pDAB7357、pDAB7359与pDAB7333重组,以形成pDAB7368。明确地说,上述五个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv2、SzPUFAOrfBv2、SzPUFAOrfCv2、NoHetIv2。pDAB7333-除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外-亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB7369
pDAB7369为二元质粒,其被构建含有再建造、密码子最佳化版本的SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、与NoHetIv3。此构建体不含SzACS-2编码序列PTU。pDAB7369质粒(第21图;SEQIDNO:41)系使用多重位点网关L-R重组反应构建。pDAB7369含有三个PUFA合成酶PTUs、一个酰基-CoA合成酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv3与At2SSSP终止子v1。第二个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfBv3与At2SSSP终止子v1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv3与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvDlec2启动子v2、2S5'UTR、NoHetIv3与At2SSSP终止子v1。
将质粒pDAB7334、pDAB7335、pDAB7336、pDAB7338与pDAB7333重组,以形成pDAB7369。明确地说,上述四个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、NoHetIv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB7370
pDAB7370为二元质粒,其被构建含有再建造、密码子最佳化版本的SzPUFAOrfAv4、SzPUFAOrfBv4、hSzThPUFAOrfCv4、与NoHetIv4,该等含有接合至编码序列氨基端之核酮糖双磷酸羧化酶小链1A(标记为SSU-TPv1)。此构建体不含SzACS-2编码序列PTU。pDAB7370质粒(第22图;SEQIDNO:42)系使用多重位点网关L-R重组反应构建。pDAB7370含有三个PUFA合成酶PTUs、一个酰基-CoA合成酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv4与At2SSSP终止子v1。第二个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfBv4与At2SSSP终止子v1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv4与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvDlec2启动子v2、2S5'UTR、NoHetIv4与At2SSSP终止子v1。
将质粒pDAB7340、pDAB7341、pDAB7342、pDAB7343与pDAB7333重组,以形成pDAB7370。明确地说,上述四个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv4、SzPUFAOrfBv4、hSzThPUFAOrfCv4、NoHetIv4。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB100518
pDAB100518为二元质粒,其被构建含有再建造、密码子最佳化版本的SzPUFAOrfAv5、SzPUFAOrfBv5、hSzThPUFAOrfCv5、与NoHetIv5,该等含有接合至编码序列氨基端之来自酰基-ACP-硫酯酶的叶绿体转运肽(标记为硫酯酶转运肽)。此外,该质粒含有没有叶绿体转运肽的SzACS-2v3编码序列PTU。pDAB100518质粒(第23图;SEQIDNO:43)系使用多重位点网关L-R重组反应构建。pDAB100518含有三个PUFA合成酶PTUs、一个酰基-CoA合成酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv5与At2SSSP终止子v1。第二个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfBv5与At2SSSP终止子v1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv5与At2SSSP终止子v1。酰基-CoA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzACS-2v3基因与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvDlec2启动子v2、2S5'UTR、NoHetIv5与At2SSSP终止子v1。
将质粒pDAB100517、pDAB100514、pDAB100511、pDAB100515与pDAB7333重组,以形成pDAB100518。明确地说,上述五个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv5、SzPUFAOrfBv5、hSzThPUFAOrfCv5、SzACS-2v3、NoHetIv5。pDAB7333-除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外-亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有六个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试六个PTUs的合并。
构建pDAB101476
pDAB101476为二元质粒,其被构建含有再建造、密码子最佳化版本的SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、与NoHetIv3。SzACS-2v2基因序列为原生、非密码子最佳化版本。pDAB101476质粒(第24图;SEQIDNO:44)系使用多重位点网关L-R重组反应构建。pDAB101476含有三个PUFA合成酶PTUs、一个酰基-CoA合成酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv3与At2SSSP终止子v1。第二个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfBv3与At2SSSP终止子v1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv3与At2SSSP终止子v1。酰基-CoA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzACS-2v2基因与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvDlec2启动子v2、2S5'UTR、NoHetIv3与At2SSSP终止子v1。
将质粒pDAB7334、pDAB7335、pDAB7336、pDAB101471与pDAB7333重组,以形成pDAB101476。明确地说,上述五个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、SzACS-2v2、NoHetIv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外-亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有六个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试六个PTUs的合并。
构建pDAB101477
pDAB101477为二元质粒,其被构建含有再建造、密码子最佳化版本的SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、与NoHetIv3。pDAB101477质粒(第25图;SEQIDNO:45)系使用多重位点网关L-R重组反应构建。pDAB101477含有三个PUFA合成酶PTUs、一个酰基-CoA合成酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv3与At2SSSP终止子v1。第二个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfBv3与At2SSSP终止子v1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv3与At2SSSP终止子v1。酰基-CoA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzACS-2v4基因与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvDlec2启动子v2、2S5'UTR、NoHetIv3与At2SSSP终止子v1。
将质粒pDAB7334、pDAB7335、pDAB7336、pDAB101472与pDAB7333重组,以形成pDAB101477。明确地说,上述五个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、SzACS-2v4、NoHetIv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有六个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试六个PTUs的合并。
实施例3
制造质粒pDAB7361、pDAB7362、pDAB7363的农杆菌菌株
使用标准电穿孔技术将pDAB7361、pDAB7362与pDAB7363质粒转化至根瘤农杆菌。明确地说,以pDAB7361、pDAB7362或pDAB7363质粒对根瘤农杆菌菌株Z707S(Hepburnetal.J.Gen.Microbiol.131:2961-2969(1985))进行电穿孔。将含有该等质粒的农杆菌转化菌落挑出并使用限制酶消化确认。将含有pDAB7361、pDAB7362或pDAB7363的农杆菌菌株以甘油库存液储存于-80°C。
实施例4
芥花之农杆菌媒介转化
农杆菌制备
沾一圈含有pDAB7361、pDAB7362或pDAB7363的农杆菌菌株甘油库存液,用来划在含有链霉素(100mg/ml)与壮观霉素(50mg/ml)之YEP(Bacto牌蛋白胨20.0gm/L与酵母萃取物10.0gm/L)盘上并于28°C培育2日。随后沾一圈2日划菌盘,将其培育至带有链霉素(100mg/ml)与壮观霉素(50mg/ml)之150mL改性YEP液,置入(多个)无菌500mL振荡培养瓶并于28°C以200rpm振荡。将培养液再悬浮于M-培养基(LS盐、3%葡萄糖、改性B5维生素、1μM裂殖素、1μM2,4-D、pH5.8)并在芥花胚轴转化前先稀释至适当密度(50Klett单位)。
芥花转化
籽萌芽:将芥花籽(品种Nexera710)置于10%Clorox中进行表面杀菌10分钟并以无菌蒸馏水润洗三次(在此过程期间,籽系置于钢制过滤器内)。将籽种植在置于Phytatray牌浅盘之1/2MS芥花培养基中等待萌芽(1/2MS、2%蔗糖、0.8%琼脂),每个Phytatray牌浅盘有25颗籽并放入Percival牌恒温恒湿箱,将生长机制调为25°C,光周期为16小时照光、8小时黑暗;并待萌芽5天。
预处理:在第5天,将~3mm胚轴片段以无菌方式切下,丢弃根芽部分(在切除过程期间将该等置于10ml无菌milliQ水中,以避免胚轴干掉)。将胚轴片段水平地置于无菌过滤纸上与愈伤组织诱导培养基MSK1D1(MS、1mg/l裂殖素、1mg/l2,4-D、3%蔗糖、0.7%Phytagar牌琼脂)上共3日,置于Percival牌恒温恒湿箱中将生长机制调为22-23°C(光周期为16小时照光、8小时黑暗)预处理。
和农杆菌共同培养:在农杆菌处理前一天,培育装有含适当抗生素之YEP培养基的烧瓶。将胚轴片段从滤纸转到含有10ml液体M培养基的100x25mm空培养皿,以避免胚轴片段干掉。在此阶段使用抹刀铲起片段并传送。用微液管将液体M培养基移除并将40ml农杆菌悬浮液加至该培养皿(500个片段用40ml农杆菌溶液)。让培养皿周期性旋转,处理片段30分钟,使胚轴维持浸在农杆菌溶液内。在处理期结束时,以微液管将农杆菌溶液移至废弃烧杯、灭菌并丢弃(将农杆菌溶液完全移除,以避免农杆菌过度生长)。用镊子将处理过的胚轴传回带有滤纸含MSK1D1的原始浅盘(小心确保片段不干掉)。将胚轴片段连同控制片段放回Percival牌恒温恒湿箱,降低光强度(以铝箔盖住该等盘),并使经整理胚轴和农杆菌共同培养3天。
在选择性培养基上进行愈伤组织诱导:共同培养3天后,用镊子将胚轴片段个别地传送到愈伤组织诱导培养基MSK1D1H1(MS,1mg/l裂殖素、1mg/l2,4-D、0.5gm/lMES、5mg/lAgNO3、300mg/l特泯菌、200mg/l卡苯尼西林、1mg/l好必思、3%蔗糖、0.7%Phytagar牌琼脂)上。胚轴片段系锚接在培养基上而非埋入培养基。
选择与芽再生:在愈伤组织诱导培养基7天后,将产生愈伤组织的胚轴片段传送到带有选择性MSB3Z1H1的1号芽再生培养基(MS、3mg/lBAP、1mg/lZeatin、0.5gm/lMES、5mg/lAgNO3、300mg/l特泯菌(Timentin)、200mg/l卡苯尼西林(Carbenicillin)、1mg/l好必思(Herbiace)、3%蔗糖、0.7%Phytagar牌琼脂)。14天后,将带芽胚轴传送到带有增强选择性MSB3Z1H3的2号再生培养基(MS、3mg/lBAP、1mg/lZeatin、0.5gm/lMES、5mg/lAgNO3、300mg/l特泯菌、200mg/l卡苯尼西林、3mg/l好必思、3%蔗糖、0.7%Phytagar牌琼脂)。
芽延长:14天后,将带芽片段传送到芽延长培养基MSMESH5(MS、300mg/l特泯菌、5mg/l好必思、2%蔗糖、0.7%TC琼脂)。将已延长的芽分离并传送到MSMESH5。14天后,将第一轮未延长的剩余芽置于MSMESH5上并传送到相同组合的新鲜选择性培养基。在此阶段将所有剩余胚轴片段丢弃。
2周后将在MSB3Z1H3培养基上延长的芽分离并传送到MSMESH5培养基。将第一轮在MSMESH5上未延长的剩余芽分离并传送到相同组合的新鲜选择性培养基。在此阶段将所有剩余胚轴片段丢弃。
根诱生:14天后,将芽传送到MSMEST培养基(MS、0.5g/lMES、300mg/l特泯菌、2%蔗糖、0.7%TC琼脂,以诱生根。将第一回传送到MSMEST培养基上的未生根芽再以第二或第三回传送到MSMEST培养基上,直到获得生根植物为止。将第一回传送到MSMEST培养基上未延长或生根的芽再以第二或第三回传送到MSMEST培养基上,直到获得生根植物为止。
PCR分析:在芽于MSMESH5培养基上培养至少14天后将PCR样本分离。将来自绿芽的叶组织以PCR测试PAT可选择标记基因的存在。将全部褪绿芽丢弃而不经受PAT试验。保留PCR反应呈阳性的样本并使芽留在MSMEST培养基上以延长发展根。根据PCR试验呈阴性的芽则丢弃。
将在MSMESH5或MSMEST上生根及PCR-阳性的植物移种至土壤。健化之后,T0芥花植物被进一步分析含有所有转基因PTU盒之事件,随后将植物转至温室、栽种至成熟并采收籽供额外分析。
实施例5
转基因芥花之拷贝数分析及编码区检测
选自实施例4的T0植物被进一步分析,以辨识含有各转基因PTU表达盒的植物。执行Invader与水解探针试验,以初步筛选推定转化的T0植物样本,以辨识含有PAT表达盒的事件。完成PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶嵌合OrfC、酰基-CoA合成酶与4'磷酸泛酰巯基乙胺基转移酶HetI基因表达盒的后续PCR分析,以进一步辨识含有来自用于转化植物之二元载体的各基因表达盒PTU的植物。选出含有全部PTUs的事件以进展至T1植物。
将组织样本收集在96孔收集盘并冷冻干燥2天。以Kleco牌组织粉碎机及钨珠(Kleco,Visalia,CA)进行组织离解。在组织离解后,使用DNeasy96植物试剂盒(Qiagen,Germantown,MD)根据制造商建议的操作流程以高通量规格分离基因组DNA。
以Quant-ITPicoGreenDNA试验试剂盒(MolecularProbes,Invitrogen,Carlsbad,CA)量化gDNA。使用Biorobot3000自动化液体处理器(Qiagen,Germantown,MD)将量化gDNA调整至10ng/μl以供试验或调整至2ng/μl以供水解探针试验。
用于芥花pat分析的惯常试验系由ThirdWaveTechnologies(Madison,WI)所发展。首先在95°C培育10分钟使置于96-孔板规格的gDNA样本(7.5μl,10ng/μlgDNA)变性,随后冷却至周遭温度。接着,将7.5μl预混物(供pat用的3μl探针混合物与HMG内部参考基因(Weng,2005)WengH.etal.,(2005).J.AOACInt.88(2):577-84.、3.5μlCleavaseXIFRET混合物、及1μlCleavaseXI酶/MgCl2溶液)加至各孔并以矿物油覆盖样本。将盘密封并于BioRadTetrad热循环器中以63°C培育1小时。在以荧光盘式读取仪读取之前使该等盘冷却至周遭温度。所有盘含有1份拷贝、2份拷贝与4份拷贝标准品还有野生型对照样本及不含样本的空白孔。
对FAM(λ485-528nm)与RED(λ560-620nm)通道两者收集读数并藉由将样本原始信号除以无模板原始信号决定各样本来自该等之各通道超过零的倍数(fold)(即背景值)。由此数据建构标准曲线并用线性回归分析决定最佳拟合曲线。使用由此拟合线识得的参数,随后估计各样本的明显pat拷贝数。
以水解探针试验-类似于试验-测定转基因拷贝数系使用480系统(RocheAppliedScience,Indianapolis,IN)藉由实时PCR执行。该试验系使用探针设计软件2.0版为pat与内部参考基因HMG所设计。为了扩增,480探针预混物(RocheAppliedScience,Indianapolis,IN)系以1X最终浓度于含有0.4μM的各引物与0.2μM的各探针的10μL体积复合反应中制备(表8)。以于60°C扩展35秒进行两步骤扩增反应,同时采集荧光。所有样本皆进行三回并将平均循环临界(Ct)值用于各样本分析。
实时PCR数据分析系使用软件1.5版本、使用相对定量模块并以ΔΔCt方法为基础执行。为此,来自单一拷贝校准物与习知2份拷贝核对物的gDNA样本系包括在各次操作(和该等用于上述Invader试验者相同)。
包含在T0植物事件内的其余基因表达盒的存在系藉由个别PCR反应检测。该等五个PTU的编码区特异性的引物对(表9)系用于检测。
表9.pat与内部参考(HMG)之水解探针试验的引物与探针信息
PUFA合成酶OrfAPCR反应需要两个分别PCR反应及不同条件(譬如PCR引物与循环条件),以扩增基因序列的开放读码区。全部PCR反应皆使用表10所述条件以35个循环使用EX-TAQPCR试剂盒(TaKaRaBiotechnologyInc.Otsu,Shiga,Japan)依照制造商指示完成。PCR产物系使用TAE琼脂凝胶电泳解析与辨识。指示全长PTU存在的预期PCR产物凝胶片段尺寸系说明于表10的"预期尺寸"栏。
表10.PCR引物与条件.
由Invader与水解探针实验,总共197个芥花事件被辨识为pat阳性。该等事件中有十五个产生了用于转化植物之二元体所内含的全部五个基因表达盒(PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶嵌合OrfC、酰基-CoA合成酶与4’磷酸泛酰巯基乙胺基转移酶HetI)的PCR扩增产物。表11提供该十五个事件,其进一步分析二十二碳六烯酸(DHA)的制造。该等T0芥花植物在温室中长至成熟并接着自花授粉。采集成熟T1籽并经由GC-FAME分析分析DHA。
表11.转基因芥花植物中产生二十二碳六烯酸(DHA)之基因的PCR检测
实施例6
检测转基因芥花籽脂质中的DHA
使芥花籽样本(单一籽或批次样本)于含有甘油三十七烷酸酯(Nu-Chekprep)作为三酸甘油酯标准品之庚烷中使用钢球研磨机均质化。在均质化前,加入新鲜制备的甲氧基钠(Sigma-Aldrich,St.Louis,MO)溶于甲醇的0.25M溶液。于40°C不断晃动进行萃取。回收率系以甲基化替代物C17脂肪酸的回收验证。FAMEs(脂肪酸甲酯)的萃取系重复三回并在分析前先汇集庚烷层。在第四回萃取/衍化时检查内源FAMEs的存在来验证反应完成度。使用购自SGE的毛细管柱BPX70(15mx0.25mmx0.25μM)以GC-FID分析所得FAMEs。各FAME系以滞留时间辨识并藉由注射购自MatreyaLLC(PleasantGap,PA)的油菜籽油参考混合物作为校准标准品并添加适当长链多不饱和脂肪酸(Nu-ChekPrep,ElysianMN)来定量。
在T1籽的GC-FAME分析后,对应于七个事件之籽的FAMEs萃取物被发现含有对应于DHA与DPA(n-6)之高峰(列于下表12)。表12显示含DHA籽的数量系有所不同(如隔离转基因组各式拷贝插入芥花基因组所预期),于单一籽观察到的DHA最大含量亦然。
表12:含有PUFA合成酶基因、SzACS-2与HetI基因的七个转基因芥花事件T1籽的LC-PUFA含量
a.由T1批次分析,含有可检测DHA之籽数量/籽总数量。
b.所有DHA-阳性籽的平均DHA含量(%总脂质)。
c.所有DHA-阳性籽的平均PUFA含量(%总脂质)。
d.DHAn-3/总LC-PUFA(DHA+DPAn-6)的平均%比例。
e.于单一籽观察到的最高DHA含量。
得自额外事件的发育中种籽被分析并发现含有DHA,但成熟植物产生的T1籽不够供进一步分析。长链多不饱和脂肪酸(LC-PUFA)高峰标识系以质谱分析并与真实标准品(Nu-ChekPrep,ElysianMN)比对确认。
来自一个事件(事件5197[14]-032.002)之对T1籽DHA含量的单一籽分析显示于第5图。单一籽含有高达1%DHA(%总FAMEs)。DHA水平似乎隔成三个族群(0、~0.4%与~0.9%DHA),反映了含有DHA-制造基因的单一基因座的分隔。
该等资料指出DHA系于以质粒pDAB7361、pDAB7362与pDAB7363转化之植物中生产。pDAB7362质粒含有植物-最佳化版本的全部五个基因(编码PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶嵌合OrfC、酰基-CoA合成酶与4'磷酸泛酰巯基乙胺基转移酶HetI),该等以菜豆植物血凝素-L基因启动子驱动。在pDAB7361中,PUFA合成酶OrfA(SzOrfAv2)的原生基因序列置换植物-最佳化版本(SzOrfAv3)。pDAB7363亦类似于pDAB7362,除了将拟南芥核酮糖双磷酸羧化酶小链1A叶绿体转运肽加至PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶嵌合OrfC、与4'磷酸泛酰巯基乙胺基转移酶HetI的N-端以使该等多肽靶向质体。
实施例7
检测芥花籽的PUFA合成酶蛋白
以蛋白质印迹法检测成熟转基因籽样本的PUFA合成酶多肽。藉由于Kleco珠式打浆机(GarciaMachine,Visalia,CA)以2颗不锈钢珠磨碎干籽来制备分析用籽。加入萃取缓冲液(50mMTris,10mMEDTA,2%SDS)并使样本管缓缓摇晃30分钟。以3000rcf离心样本30分钟。收集上清液用于分析。以Lowry试验(BioRad,Hercules,CA)测定籽萃取液中的总可溶蛋白量。将样本正规化至1.55mg/ml总可溶蛋白并于含40mMDTT之LDS样本缓冲液(Invitrogen,Carlsbad,CA)制备以供每道20μg总可溶蛋白之正规化载入量。样本于3-8%Tris乙酸酯凝胶(Invitrogen,Carlsbad,CA)中进行电泳并转至硝基纤维素膜。印迹于阻塞缓冲液中被阻塞并以针对不同PUFA合成酶OrfA、OrfB与OrfC多肽的抗体探测。使用针对裂殖壶菌PUFA合成酶亚基A(SzPUFS-A)之A2区的兔抗-A2-A及针对裂殖壶菌PUFA合成酶亚基B(SzPUFS-B)之B3区的兔抗-B3-A。B3区为烯酰基还原酶(ER)区。亚基C里亦有ER区,故于蛋白质印迹法,此抗血清将识得亚基B与C二者。抗-兔的荧光标记二级抗体(山羊的抗-兔AF633(Invitrogen,Carlsbad,CA))系用于检测。以TyphoonTrioPlus荧光成像仪(GEHealthcare,NewBrunswickNJ)观看印迹。
来自事件5197[14]-032.002的晚期(>30DAP)发育中T1籽萃取物的SDS-PAGE蛋白质印迹法显示了以OrfA、OrfB与OrfC特异性血清探测之适当尺寸条带(第6图)。该等条带亦可以考马斯蓝直接染色来查看。OrfA、OrfB与OrfC亦于来自DHA生产事件5197[13]-010.001、5197[21]-052.001、5197[21]-053.001与5217[6]-065.002的籽样本中检测到。
收集来自DHA-生产芥花事件5197[14]-032.002.Sx002之授粉后日数(DAP)15、20、25、30、35、与42的一组发育中T2籽样本被分析脂质含量(第7A图)及以蛋白质印迹法分析OrfA、OrfB与OrfC多肽的存在(第7B图)。
全部三个多肽的表达系于授粉后日数30与35的发育中种籽检测到,尤其在授粉后日数42与成熟籽中检测到(第7A与7B图)。
实施例8
T2芥花籽的DHA、DPA与EPA水平
将来自事件5197[14]-032.002的T1籽种在温室并从96株植物的4-5叶阶段摘取供DNA分析的叶子样本,以测定各株T1分离植物中的转基因拷贝数。此系以pat基因之水解探针试验、使用上述流程进行,并识得三种不同类别的分离株;21株纯合、45株杂交与30株空白植物。将所有纯合与31株空白植物于温室栽种至成熟并采集籽。纯合与空白植物的每株植物平均T2籽产量分别为7.36gm与8.61gm。
如前文所述,批次萃取8-12颗籽以GC-FAME分析测定来自事件5197[14]-032.002之温室栽种T1植物的T2籽的长链多不饱和脂肪酸(LC-PUFA)含量。亦将21株空白分离植物种至成熟,作为对照组。纯合植物的LC-PUFA含量显示在第8图。任何空白分离株的籽皆无检测到LC-PUFAs。二十个转基因品系在批次籽分析中产生介于0.28%与0.90%之间的DHA而一品系并未产生任何LC-PUFA。含DHA的籽亦含有介于0.09与0.34%之间的DPA(n-6)。DHA占全部PUFA(DHA+DPA)的平均比例为77%。
来自产生超过0.7%DHA的四个品系之籽的脂肪酸组成显示在表13,对比于四个空白分离品系所得者。
对来自该等纯合T1植物六个品系(4、35、63、96、50、及106)的48颗T2籽进行单一籽分析。详细分析GC-FAME图样显示含DHA与DPA之籽持续出现额外高峰。藉由和真实标准品(NU-Chek)比较,此被辨识为C20:5(n-3)EPA。滞留时间与真实EPA(C20:5(n-3))的滞留时间相符且由PolarisQ之GC-MS测定的名义分子量相同。
来自六个品系的单一T2籽分析的LC-PUFA整理系显示于第9图。发现了DHA含量高达1.6%的单一籽。此外,识得EPA含量高达0.27%的植物。
在两个T1品系与未转化Nexera710之间进行正逆杂交。分析所得亲代与F1杂交籽的DHA含量(第10图)。在第10图中,菱形代表X轴上所述各类别的平均ANOVA。垂直杆代表类别平均,菱形顶点之间的距离为95%信赖区间。F1籽累积的平均DHA水平(0.29%与0.28%)是转基因亲代籽所累积(0.51%与0.47%)的一半。表型与接合程度的量化关联性可由此结果推断。
总之,该等数据显示由五个转基因所赋予的DHA特征是可遗传的并维持至第二代。
实施例9
芥花事件-10的T2籽中的DHA生产
将芥花事件5197[13]-010.001(含有两份pat基因拷贝,如第11图所示)的六十颗T1籽种在温室。pat基因之水解探针试验识得五个不同种类分离株,对应于0-4份pat基因拷贝。
对应于转基因嵌入物的两基因座可藉由DNA印迹分析来区分(称作基因座A与B)。来自含有两份pat拷贝的所有植物的DNA可藉由DNA印迹法分析,以测定该等的基因型(就基因座A或基因座B而言为纯合、或就两基因座而言为半合)。亦分析四个单一拷贝与两个空白对照植物作为对照组。使所有T1植物于温室长至成熟。采集籽并以批次籽分析来分析LC-PUFA含量(表14)。
表14.来自事件5197[13]-010.001的T1分离株之T2籽的LC-PUFA含量(平均值系以Tukey-KramerHSD测试比对且未以相同字母连接之水平为显著不同)。
该等数据显示事件5197[13]-010.001基因座A为纯合的植物系引导LC-PUFA的产生,基因座B的纯合子则否。再者,基因座B干扰LC-PUFA的产生,因为四份拷贝双纯合子产生极低水平的DHA,三份拷贝植物亦然。同样地,半合单一拷贝基因座A植物产生0.47%LC-PUFA,但半合单一拷贝拷贝基因座B产生极低水平的LC-PUFA(0.02%)。
由GC-FAME分析测定来自衍生自基因座A为纯合(基因座B为空白)之事件事件5197[13]-010.001植物的批次T2籽的完整脂肪组合系显示于表15。
实施例10
在田野生产芥花DHA
收集含有最高水平DHA之5197[14]-032.002十个纯合品系的T2籽,生成60gm籽。亦收集10个空白分离品系的籽,得到47gm籽,作为负对照组。2009年五月将籽种在北达科他州两个地区,于各地区,8块地种含转基因的籽、6块地种空白分离株的籽及两块地种商业对照组(Nexera845CL)。所有转基因植物田地及空白分离株其中四块地在开花期间以隔离笼覆盖。其余两块空白株及Nexera845CL田地未被覆盖。根据常务,在九月收割该等田地。于位点1,一块地平均从转基因植物获得0.95kg籽且从空白植物获得0.99kg。于位点2,一块地平均从转基因植物获得0.64kg且从空白株获得0.73kg。对来自各田地的籽进行GC-FAME脂质分析,以测定田间栽种籽的LC-PUFAs水平(表16)。
表16的结果代表各块地三个样本的分析。相较于其它位点1的田地(平均76.7%18:1与2.9%18:3),来自田地1-11的籽含有较低水平的18:1(65.5%)与较高水平的18:3(7.6%),因此被认为广泛地被常规芥花污染。此地在后续分析被排除。以10-籽批次分析来自转基因植物T3籽的平均DHA含量为0.19%(位点1)及0.26%(位点2)。最高DHA含量为0.38%(同时0.03%EPA)。平均n-3LC-PUFA/总PUFAs的%比例为73%。
亦将田野试验使用的各T2品系样本栽种于温室。以10-籽批次分析T3温室籽的平均DHA含量为0.22%,个别植物有高达0.8%DHA。此和田野生产的DHA份量相关联。
该等数据显示标的PUFA合成酶基因套件可引导在田野条件下制造DHA。
表16.以10-籽批次分析来自5197[14]-032.002的田野栽种T2植物之T3籽的DHA含量。
实施例11
使用微阵列技术之DHA基因表达分析
于授粉后日数(DAP)15、20、25、30、35与42收集来自转化纯合事件5197[14]-032.002品系与未转化空白植物的发育中芥花籽。使用单色整体基因表达图样设计来测定在籽发育期间各既定时点、各个新引进纯合转化品系之基因相较于未转化空白品系的表达水平。使个别为60-单体之寡阵列的三个相同工业复制物(AgilentTechnologiesInc.,SantaClara,CA)和各样本之经扩增、标记有Cy3的cRNA杂交。使用客制设计(eArray,AgilentTechnologiesInc.,SantaClara,CA)的60-单体全面转录芥花寡核苷酸阵列进行前述杂交。此阵列含有获自公开数据来源的超过37,000个不同芥花转录物(AgilentTechnologiesInc.,SantaClara,CA)。为有效率地测量各转录物的表达水平,存在于阵列内的寡聚物被设计成独特并专属于各目标,以有效率地和预期目标序列杂交。将和不止一个转录物形成双倍体的寡聚物从阵列中移除。各寡聚物亦满足最理想性能通量微阵列处理所需的化学物理特性。此外,代表新引进基因的专属与独特寡聚物还有数个其它感兴趣基因亦呈现在客制设计的芥花寡阵列。使用制造商的Sure-Print技术原地合成60-单体寡聚物。
RNA分离与纯化
将来自事件5197[14]-032.002与空白植物对照组的发育中种籽样本冷冻并汇集,以用作RNA分离与纯化的起始材料。使用杵与臼将每次汇集样本总共500mgs籽组织加液态氮磨碎并将大约50mgs磨碎组织再悬浮于供萃取RNA之RNeasy试剂盒(Qiagen,Valencia,CA)的450μL萃取缓冲液RLT。在以萃取操作流程继续之前快速振荡样本,以破坏组织。依照供萃取RNA之RNeasy试剂盒(Qiagen,Valencia,CA)的指示纯化总RNA。经纯化的总RNA随后使用NanoQuant(TECAN,ResearchTrianglePark,NC)光谱仪定量并以标准1%琼脂凝胶电泳化目视。
为了标记,依照Agilent(SantaClara,CA)单色微阵列基因表达QuickAmp标记操作流程,使总共1.0μg来自各样本的纯化总RNA反转录、扩增及以Cy3-CTP标记。由于各芥花阵列含有超过1300个内部掺入对照,所以亦根据制造商指示标记单色RNA掺入试剂盒(Agilent,SantaClara,CA)。样本系使用MMLV反转录酶反转录并使用T7RNA聚合酶扩增。扩增后,cRNA系使用Qiagen的Rneasy微型离心管柱纯化并使用NanoQuant光谱仪(TECAN,ResearchTrianglePark,NC)定量。Cy3的比活性系以下式决定:(Cy3浓度/(cRNA浓度)*1000=每μgcRNA以pmol计之Cy3量。将杂交样本正规化至1.65μgs,比活性为每μgcRNA有>9.0pmolCy3。
杂交、扫描及特征提取
使用AgilentTechnologies(SantaClara,CA)的基因表达杂交试剂盒与冲洗缓冲液试剂盒让寡聚基因表达阵列进行杂交。杂交系于全自动化TECANHS4800PRO(TECAN,ResearchTrianglePark,NC)杂交工作站进行。在65°C、30秒的载玻片预杂交步骤后,于65°C将杂交混合物注入并搅动培育17小时。载玻片随后使用AgilentGEWash#1于37°C冲洗1分钟,接着以AgilentGEWash#2于30°C进行第二回冲洗1分钟,于30°C使用氮气2分30秒进行最终干燥步骤。立即扫描载玻片,以使环境氧化物对信号强度的影响减至最低。
阵列系使用带有SureScan高分辨率技术的AgilentG2565CA微阵列扫描机(AgilentTechnologies,SantaClara,CA)扫描。用于扫描各阵列的操作流程定义了染料频道、扫描区与分辨率、TIFF文件动态范围、PMT增益的参数与最终影像结果的设定。一旦阵列已扫描,接着进行特征提取(FE)操作流程,使用为置放与最佳化格栅配合所定义的参数、寻找定点、疲弱异常值,计算背景偏差、错误与比例,并计算质量控制指针。在完成扫描与特征提取操作流程后,生成含有Cy3影像的TIFF文件连同质量控制指针报告及含有所有原始数据的最终档案(TXT)。影像文件(TIFF)系用来检查载玻片的一般质量、掺入对照出现在对的位置(四个角落)与强度、还有确认杂交、冲洗、扫描与特征提取过程成功。FE质量控制(QC)报告提供容许以AgilentTechnologies(SantaClara,CA)所提供设计的正负(原核基因与人工序列)掺入对照作为基础测量数据多样性的变异系数值。此报告亦提供关于资料分布、均一性、背景、再现性、灵敏度与数据一般质量的信息。将含有所有原始数据的TXT文件上传至GeneSpring(Agilent,SantaClara,CA)供进一步分析。
资料正规化与统计分析
在扫描与特征提取操作流程后,将原始数据文件上传至GeneSpringGX版本10.0.2(AgilentTechnologies,SantaClara,CA)并创建一项目,定义各阵列数据文件作为样本并指定适当参数值。具相同参数值的样本以复本处理。创建明订样本如何以实验条件分群并用于成像与分析资料之诠释。基于先前定义之掺入对照、参数与诠释对样本进行质量控制,以在开始分析前确保数据质量并由GeneSpring出示质量控制指针报告。
使用全体百分位数位移正规化方法将数据正规化,以使系统性非生物差异减至最少并标准化用于交叉比对的阵列。此算法将信号强度转换至底数为2之对数并以递增顺序排列、计算排名75th百分位数并从各对数转换信号强度减去此值,产生正规化强度值。数据系藉由选择研究中的每单一样本标示为存在(Present)之实体并排除标示为边际(Marginal)或缺失(Absent)之实体来过滤。经过滤与正规化实体名单系用作统计分析之输入值,该分析系使用TwoWayANOVA方法以经校正p-值临界值p<0.05、定义DAP与基因型作为参数。决定了各新引进基因的表达情形。
结果
总RNA浓度还有经标记与扩增cRNA获得的数值系最佳化。再者,一致与可靠结果所需之扩增后浓度、以Cy3标记的效率、比活性的数值极优。由各个别阵列扫描后之特征提取操作流程所提供的质量控制(QC)报告提供了用于以正负掺入对照作为基础测量数据多样性的变异系数值。所有获自该报告之值显示数据分布、均一性、背景、再现性与灵敏度的最佳化质量。此研究期间所用的GeneSpring(AgilentTechnologies,SantaClara,CA)样本质量控制指针报告提供了协助评估所获数据再现性与可靠性的重要统计值。技术复制阵列(每样本3个)群组的报告值皆在范围内并指出所获资料是可信赖的(数据未显示)。
所报导的纯合子(表17)("DAP"代表授粉后日数)与空白(表18)品系在籽发育期间各六个时点定义的原始值代表所有特征提取(FE)处理步骤—必要时包括背景删减与乘性消趋—已完成后所余留的信号强度值。另一方面,已使用负责技术变异的全体百分位数位移正规化方法处理纯合子(表19)与空白(表20)品系的正规化数值,以使系统性非生物差异减至最少并标准化用于交叉比对的阵列。
于籽发育期间每个时点获得的空白品系原始(第12图)与正规化(第13图)数值图表证实该等基因并未出现在ω-9Nexera710未转化品系且因此未测到显著表达。在第14图(原始)与第15图(正规化)展示的事件5197[14]-032.002品系中,可观察到所有基因转录物的累积系随着籽发育进展而逐渐增加之大致趋势。转录物累积的首度显著增加发生在15与30DAP期间并于DAP42达到最大水平。第14图展示的原始曲线提供了研究之各基因获得的相对杂交强度值的可视图,而总结于第15图的正规化曲线代表—以最小化系统性非生物变异与标准化跨阵列比对得到的—基因表达情形的大致趋势。
实施例12
使用另择启动子表达藻类PUFA合成酶基因套件
使用额外转录调控单元表达编码PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶嵌合OrfC、酰基-CoA合成酶与4'磷酸泛酰巯基乙胺基转移酶HetI蛋白之(多个)基因可又增加芥花内的DHA含量。辨识和使用在发育较早期表达并表达较长时间的转录调控单元可藉由促进异源性基因在籽的发育较早阶段(譬如于15至25DAP)转录且因此延长DHA生产时间而增加芥花籽内的DHA水平。该类转录调控区的例子包括但不限于LfKCS3启动子(U.S.专利号7,253,337)与FAE1启动子(U.S.专利号6,784,342)与ACP启动子(WO1992/18634)。该等启动子系单独或合并使用,以驱动PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶嵌合OrfC、酰基-CoA合成酶与4'磷酸泛酰巯基乙胺基转移酶HetI表达盒的表达,该等先前说明于下列质粒;pDAB7361、pDAB7362、与pDAB7363。置换质粒内的转录调控区的方法系为本领域所熟知。为此,将包含PvDlec2启动子v2的多核苷酸片段从pDAB7361、pDAB7362、或pDAB7363(或用于建构pDAB7361、pDAB7362、或pDAB7363的前述质粒)移除并置换成LfKCS3或FAE1启动子区。新建质粒系用于稳定地转化芥花植物。将转基因芥花植物分离并测定分子特征。测定所得LC-PUFA累积并辨识制造0.01%至15%DHA或0.01%至10%EPA的芥花植物。
构建pDAB9166
pDAB9166质粒(第26图;SEQIDNO:46)系使用多重位点网关L-R重组反应构建。pDAB9166含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有LfKCS3启动子v1、SzPUFAOrfAv3与AtuORF233'UTRv1。第二个PUFA合成酶PTU含有LfKCS3启动子v1、SzPUFAOrfBv3与AtuOrf233'UTRv1。第三个PUFA合成酶PTU含有LfKCS3启动子v1、hSzThPUFAOrfCv3与AtuORF233'UTRv1。磷酸泛酰巯基乙胺基转移酶PTU含有LfKCS3启动子v1、NoHetIv3与AtuORF233'UTRv1。
将质粒pDAB9161、pDAB9162、pDAB9163、pDAB101484与pDAB7333重组,以形成pDAB9166。明确地说,上述四个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、NoHetIv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB9167
pDAB9167质粒(第27图;SEQIDNO:47)系使用多重位点网关L-R重组反应构建。pDAB9167含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有LfKCS3启动子v1、SzPUFAOrfAv3与AtuORF233'UTRv1。第二个PUFA合成酶PTU含有BoACP启动子v1、BoACP5'UTRv1、SzPUFAOrfBv3与AtuOrf233'UTRv1。第三个PUFA合成酶PTU含有LfKCS3启动子v1、hSzThPUFAOrfCv3与AtuORF233'UTRv1。磷酸泛酰巯基乙胺基转移酶PTU含有BoACP启动子v1、BoACP5'UTRv1、NoHetIv3与AtuORF233'UTRv1。
将质粒pDAB9161、pDAB9165、pDAB9163、pDAB101485与pDAB7333重组,以形成pDAB9167。明确地说,上述四个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、NoHetIv3。pDAB7333-除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外-亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB7379
pDAB7379为二元质粒,其被构建含有再建造、密码子最佳化版本的SzPUFAOrfA、SzPUFAOrfB、hSzThPUFAOrfC、andNoHetI。SzACS-2基因序列不包括在此构建体内。pDAB7379质粒(第28图;SEQIDNO:48)系使用多重位点网关L-R重组反应构建。
pDAB7379含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、SzPUFAOrfAv3与AtuORF233'UTRv1。第二个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、SzPUFAOrfBv3与AtuORF233'UTRv1。第三个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、hSzThPUFAOrfCv3与AtuORF233'UTRv1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v3、PvPhas5'UTR、NoHetIv3与AtuORF233'UTRv1。
将质粒pDAB7371、pDAB7372、pDAB7373、pDAB7374与pDAB7333重组,以形成pDAB7379。明确地说,上述四个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、NoHetIv3。pDAB7333-除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外-亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB7380
pDAB7380为二元质粒,其被构建含有再建造、密码子最佳化版本的SzPUFAOrfA、SzPUFAOrfB、hSzThPUFAOrfC与NoHetI。SzACS-2基因序列不包含在此构建体内。用于此构建体的菜豆素启动子版本基本上系如Bustosetal.,1989(ThePlantCell,Vol.1;839-853)所述般修饰,其中启动子的5'部分被截短而菜豆素5'未翻译区原封不动。pDAB7380质粒(第29图;SEQIDNO:49)系使用多重位点网关L-R重组反应构建。
pDAB7380含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvPhas启动子v4、PvPhas5'UTR、SzPUFAOrfAv3与AtuORF233'UTRv1。第二个PUFA合成酶PTU含有PvPhas启动子v4、PvPhas5'UTR、SzPUFAOrfBv3与AtuORF233'UTRv1。第三个PUFA合成酶PTU含有PvPhas启动子v4、PvPhas5'UTR、hSzThPUFAOrfCv3与AtuORF233'UTRv1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v5、PvPhas5'UTR、NoHetIv3与AtuORF233'UTRv1。
将质粒pDAB7375、pDAB7376、pDAB7377、pDAB7378与pDAB7333重组,以形成pDAB7380。明确地说,上述四个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、NoHetIv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB9323
pDAB9323为二元质粒,其被构建含有原生、非密码子最佳化版本的SzPUFAOrfA、SzPUFAOrfB、hSzThPUFAOrfC、SzACS-2、与NoHetI。pDAB9323质粒(第30图;SEQIDNO:50)系使用多重位点网关L-R重组反应构建。
pDAB9323含有三个PUFA合成酶PTUs、一个酰基-CoA合成酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、SzPUFAOrfAv2、PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。第二个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、SzPUFAOrfBv2、PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。第三个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、SzPUFAOrfCv2、PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。酰基-CoA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、SzACS-2v2基因、PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v3、PvPhas5'UTR、NoHetIv2、PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。
将质粒pDAB9307、pDAB9311、pDAB9315、pDAB9322与pDAB7333重组,以形成pDAB9323。明确地说,上述五个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv2、SzPUFAOrfBv2、SzPUFAOrfCv2、NoHetIv2。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有六个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试六个PTUs的合并。
构建pDAB9330
pDAB9330为二元质粒,其被构建含有再建造、密码子最佳化版本的SzPUFAOrfA、SzPUFAOrfB、hSzThPUFAOrfC、SzACS-2与NoHetI。pDAB9330质粒(第31图;SEQIDNO:51)系使用多重位点网关L-R重组反应构建。pDAB9330含有三个PUFA合成酶PTUs、一个酰基-CoA合成酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、SzPUFAOrfAv3、PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。第二个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、SzPUFAOrfBv3、PvPhas3'UTR与PvPhas3'MARv2(质粒图谱上无注明)。第三个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、hSzThPUFAOrfCv3、PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。酰基-CoA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、SzACS-2v3基因,PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v3、PvPhas5'UTR、NoHetIv3、PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。
将质粒pDAB9324、pDAB9325、pDAB9326、pDAB9329与pDAB7333重组,以形成pDAB9330。明确地说,上述五个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、SzACS-2v3、NoHetIv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有六个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试六个PTUs的合并。
构建pDAB9337
pDAB9337为二元质粒,其被构建含有再建造、密码子最佳化版本的SzPUFAOrfA、SzPUFAOrfB、hSzThPUFAOrfC、与NoHetI,该等之表达系以菜豆素启动子驱动。pDAB9337质粒(第32图;SEQIDNO:52)系使用多重位点网关L-R重组反应构建。
pDAB9337含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、SzPUFAOrfAv3、PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。第二个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、SzPUFAOrfBv3、PvPhas3’UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。第三个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、hSzThPUFAOrfCv3、PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v3、PvPhas5'UTR、NoHetIv3、PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。
将质粒pDAB9324、pDAB9325、pDAB9326、pDAB9328与pDAB7333重组,以形成pDAB9337。明确地说,上述四个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、NoHetIv3。pDAB7333-除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外-亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB9338
pDAB9338为二元质粒,其被构建含有再建造、密码子最佳化版本的SzPUFAOrfA、SzPUFAOrfB、hSzThPUFAOrfC、与NoHetI。菜豆素启动子系用于驱动SzPUFAOrfA的表达,而PvDlec2启动子系用于驱动其它转基因。pDAB9338质粒(第33图;SEQIDNO:53)系使用多重位点网关L-R重组反应构建。
pDAB9338含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、SzPUFAOrfAv3、PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。第二个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfBv3与At2SSSP终止子v1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv3与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvDlec2启动子v2、2S5'UTR、NoHetIv3与At2SSSP终止子v1。
将质粒pDAB9324、pDAB7335、pDAB7336、pDAB7338与pDAB7333重组,以形成pDAB9338。明确地说,上述四个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、NoHetIv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外-亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB9344
pDAB9344为二元质粒,其被构建含有再建造、密码子最佳化版本的SzPUFAOrfA、SzPUFAOrfB、hSzThPUFAOrfC、与NoHetI,该等皆含有接合至编码序列氨基端之核酮糖双磷酸羧化酶小链1A(标记为SSU-TPv1)。菜豆素启动子系用于驱动SzPUFAOrfA的表达,PvDlec2启动子系用于驱动其它转基因。
pDAB9344质粒(第34图;SEQIDNO:54)系使用多重位点网关L-R重组反应构建。pDAB9344含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、SzPUFAOrfAv4、PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。第二个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、SzPUFAOrfBv4、PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。第三个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、hSzThPUFAOrfCv4、PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v3、PvPhas5'UTR、NoHetIv4、PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。
将质粒pDAB9343、pDAB9342、pDAB9340、pDAB9331与pDAB7333重组,以形成pDAB9344。明确地说,上述四个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv4、SzPUFAOrfBv4、hSzThPUFAOrfCv4、NoHetIv4。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有六个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB9396
pDAB9396为二元质粒,其被构建含有再建造、密码子最佳化版本的SzPUFAOrfA、SzPUFAOrfB、hSzThPUFAOrfC、SzACS-2、与NoHetI。菜豆素启动子系用于驱动SzPUFAOrfA与SzPUFAOrfB的表达。PvDlec2启动子系用于驱动其它转基因;hSzThPUFAOrfC、SzACS-2、与NoHetI。
pDAB9396质粒(第35图;SEQIDNO:55)系使用多重位点网关L-R重组反应构建。pDAB9396含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、SzPUFAOrfAv3、PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。第二个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfBv3与At2SSSP终止子v1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv3与At2SSSP终止子v1。酰基-CoA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、SzACS-2v3基因、PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。磷酸泛酰巯基乙胺基转移酶PTU含有PvDlec2启动子v2、2S5'UTR、NoHetIv3与At2SSSP终止子v1。
将质粒pDAB9324、pDAB7335、pDAB7336、pDAB7339与pDAB7333重组,以形成pDAB9338。明确地说,上述五个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、SzACS-2v3、NoHetIv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试六个PTUs的合并。
构建pDAB101412
pDAB101412为二元质粒,其被构建含有再建造、密码子最佳化版本的SzPUFAOrfA、SzPUFAOrfB、hSzThPUFAOrfC、SzACS-2、与NoHetI。用于此构建体的菜豆素启动子版本基本上系如Bustosetal.,1989(ThePlantCell,Vol.1;839-853)所述般修饰,其中启动子的5'部分被截短而菜豆素5'未翻译区原封不动。截短的菜豆素启动子序列在本申请案系识别为版本4(v4)、版本5(v5)、及版本6(v6)。pDAB101412质粒(第36图;SEQIDNO:56)系使用多重位点网关L-R重组反应构建。
pDAB101412含有三个PUFA合成酶PTUs、一个酰基-CoA合成酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvPhas启动子v4、PvPhas5'UTR、SzPUFAOrfAv3与AtuORF233'UTRv1。第二个PUFA合成酶PTU含有PvPhas启动子v4、PvPhas5'UTR、SzPUFAOrfBv3与AtuORF233'UTRv1。第三个PUFA合成酶PTU含有PvPhas启动子v4、PvPhas5'UTR、hSzThPUFAOrfCv3与AtuORF233'UTRv1。酰基-CoA合成酶PTU含有PvPhas启动子v4、PvPhas5'UTR,2S5'UTR、SzACS-2v3基因与AtuORF235'UTRv1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v5、PvPhas5'UTR、NoHetIv3与AtuORF233'UTRv1。
将质粒pDAB7375、pDAB7376、pDAB7377、pDAB7398与pDAB7333重组,以形成pDAB101412。明确地说,上述五个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、SzACS-2v3、NoHetIv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试六个PTUs的合并。
以于籽发育早期表达之启动子进行芥花转化
该等质粒系用于使用上述操作流程稳定地转化芥花植物。将转基因芥花植物分离并测定分子特征。使用另择构建体产生含有较大量DHA与LC-PUFAs的芥花植物。测定所得LC-PUFA累积并辨识制造0.01%至15%DHA或0.01%至15%LC-PUFA的芥花植物。
实施例13
DGAT2或ACCase和藻类PUFA合成酶基因套件在芥花内共同表达
藉由转化编码与表达乙酰基CoA羧化酶(ACCase)或第2型二酰基甘油酯酰基转移酶(DGAT2)的嵌合DNA分子进一步修饰芥花植物内的油含量。该等基因系和上述藻类PUFA合成酶基因共同表达,其系经由含有ACCase或DGAT2表达盒之芥花植物和含有PUFA合成酶基因之芥花植物的育种;或以含有ACCase或DGAT2与PUFA合成酶基因之基因堆(stack)转化芥花植物。ACCase或DGAT2编码序列表达所必需的调控单元可包括该等说明于上文者。亦可用本领域习知的额外调控单元表达序列。ACCase与DGAT2表达盒系使用上述转化操作流程转化至芥花。转化可以ACCase或DGAT2表达盒结合PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶OrfC、酰基-CoA合成酶与4'磷酸泛酰巯基乙胺基转移酶HetI表达盒之分子堆发生;或以连接至可选择标记之独立ACCase或DGAT2表达盒并随后和含有PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶OrfC、酰基-CoA合成酶与4'磷酸泛酰巯基乙胺基转移酶HetI表达盒之芥花植物交配而发生。将阳性转化子分离并测定分子特征。辨识于植物、植物籽、或植物油浓缩物含有相较于未转化对照芥花植物之增多累积LC-PUFAs的芥花植物。该类增加可介于1.2至20倍增加。
ACCase在细胞质的过度表达可产生较高水平的丙二酰基-CoA。当藻类PUFA合成酶基因存在并表达时,含有增多水平之细胞质丙二酰基-CoA的芥花植物或籽可接续产生较高水平的长链多不饱和脂肪酸(LC-PUFA)。在芥花植物内表达的DGAT2基因能够优先整并大量的二十二碳六烯酸(DHA)与二十碳五烯酸(EPA)成为三酸甘油酯。对LC-PUFAs具有受质偏好性的DGAT2基因(参阅譬如WO2009/085169)可增加该等脂肪酸成为三酸甘油酯(TAG)之整并。该类DGAT基因系有益于引导LC-PUFA—尤其是DHA—整并成为TAG并有益于增加植物与其它生物体之TAG生产。
实施例14
使用原生酰基-CoA合成酶基因序列在植物内表达较高水平酰基-CoA合成酶
藉由移除多余开放读码区修饰原生基因序列而创建来自裂殖壶菌的酰基-CoA合成酶基因的另择版本。将此版本标记为"SzACS-2v4"并列于SEQIDNO:34。序列系由服务提供商DNA2.0(MenloPark,CA)合成。将编码序列并入含有启动子与3'未翻译区的植物表达盒,彼等系说明于该等实施例。使用所得表达盒置换酰基-CoA合成酶表达盒—上文说明为"SzACS-2v3",SEQIDNO:9,其系和PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶嵌合OrfC与4'磷酸泛酰巯基乙胺基转移酶HetI表达盒结合,以构建pDAB7361、pDAB7362与pDAB7363。含有"SzACS-2v4"表达盒的新质粒被赋予独特的识别标签。新建质粒系用于稳定地转化芥花植物。将转基因芥花植物分离并测定分子特征。该基因的另择版本"SzACS-2v4"可产生含有较大量DHA与LC-PUFAs的芥花植物。测定所得LC-PUFA累积并辨识产生0.01%至15%DHA或0.01%至10%EPA的芥花植物。
实施例15
成熟转基因芥花籽的PUFA合成酶活性
PUFA合成酶活性系以来自利用农杆菌载体pDAB7361产生的植物(事件5197[14]-032)的成熟T1转基因芥花籽之萃取物检测。在移除籽外壳前先将籽浸在水里3-4小时并在干冰上于萃取缓冲液(200mM磷酸盐pH7.0、1mMEDTA、1mMDTT、50mMNaCl、5%甘油、1%PVPP、0.52μg/mL抗痛素、0.58μg/mL亮肽素、0.83μg/mL抑肽素A、12μg/mLTLCK、12μg/mLTPCK、与6μg/mL大豆胰蛋白酶抑制剂)研磨并于4°C微离心10min。将脂肪垫移除,在再次离心前先将所得压丸和较高离子强度缓冲液一起振动培育。将脂肪垫与脂质层移除,使样本与水性上清液通过以50mM磷酸盐pH7.2、1mMDTT、10%甘油、与1mMEDTA预先平衡的Zeba去盐管柱。并行处理未转化Nexera710的籽以作为负对照组。两组籽的样本系使用Metzetal.,PlantPhysiol.Biochem.47:6(2009)说明的HIP萃取与TLC方法试验(第16图)。将试验条件改成包括2mMNADH、NADH再生系统(葡萄糖+葡萄糖去氢酶),持续摇晃及最终丙二酰基-CoA浓度为100μM(每试验0.064μCi/100μL)。所得上清液之试验系以体积正规化并指示可在60min后测到FFA形成。此在Nexera710对照组未观察到,指示FFA形成系来自经由PUFA合成酶之DHA形成。
实施例16
藉由共同表达的HetI在芥花内产生之OrfA泛酰巯基乙胺化作用
OrfA含有九个酰基-携带蛋白域,其各需要藉由磷酸泛酰巯基乙胺基转移酶(PPTase)以磷酸泛酰巯基乙胺基团衍化才能发挥功能。在转基因芥花籽中藉助PPTaseHetI的OrfA泛酰巯基乙胺化程度系以纳米液相层析质谱仪(nanoLC-MS)评估来自各式OrfA样本之含有泛酰巯基乙胺化位点之胰蛋白酶分解肽段来评定。
重组holo与apoOrfA多肽标准品系藉由和HetI或不和HetI共同表达而于大肠杆菌制造。在缺少HetI之下表达OrfA会生成无功能蛋白,因为大肠杆菌的内源PPTases不能添加泛酰巯基乙胺基团(Hauvermaleetal.,Lipids41:739-747;2006)。反之,连同HetI表达产生高度泛酰巯基乙胺化的OrfA蛋白。为萃取大肠杆菌表达的OrfA,将0.5L重组细胞培养基的冷冻细胞再悬浮于20mL萃取缓冲液:20mMTrispH7.0、1mg/mL溶菌酶、1mMEDTA、1mMPMSF、1mMDTT、0.52μg/mL抗痛素、0.58μg/mL亮肽素、0.83μg/mL抑肽素A、12μg/mLTLCK、12μg/mLTPCK、6μg/mL大豆胰蛋白酶抑制剂。裂解后,以Dnase与4mMMgCl2处理萃取物、以离心澄清并将上清液冷冻于-80°C。
使用前述萃取方法从事件5197[14]-032.002的复水成熟芥花籽分离植物制造的OrfA,以用于芥花制造的PUFA合成酶之试管内试验。将来自大肠杆菌标准品与芥花样本两者的OrfA蛋白以酶消化并以nanoLC-MS分析,其系使用AgilentChipCube纳米层析进口连同AgilentQTOF质谱仪(型号6530)之MS分析。将QTOF编程进行自动化MS2分析,以于层析期间生成肽序列资料。该方法的主要特征在于质谱仪系编程为进行全扫描MS扫描、接着对三个含量最丰富的离子进行自动化MS2,以生成MS2序列光谱。接着在出现2回后将离子从MS2移除,排除时间为30sec。在纳米喷洒期间持续地注入内部参考物,以生成供QTOF内部校准的参考离子(于m/z299.29446与1221.99064)。通常从校准库存残留物发现的离子被定义为排除离子,以避免该等离子的虚假MS2扫描。MS扫描系进行及于m/z295–2400之范围。MS2扫描系进行及于m/z59–3000之范围。进行自动化MS2,偏好下列顺序的电荷状态:+2>+3>(>+3)>未知>+1。
串联质谱系以MascotDistiller(MatrixScience,LondonUK;版本2.3.2)提取。未执行电荷状态解褶积与去同位素。使用Mascot(MatrixScience,London,UK;版本2.2.06)与X!Tandem(www.thegpm.org;版本2007.01.01.1)分析所有MS/MS光谱。Mascot与X!Tandem均设定成搜寻含有呈现胰蛋白酶消化特异性之OrfA蛋白全长序列的蛋白序列数据库。Mascot与X!Tandem系以0.30Da之片段离子质量容许度与10.0ppm之亲体离子容许度搜寻。甲硫氨酸的氧化与丝氨酸的磷酸泛酰巯基乙胺于Mascot与X!Tandem系明订为可变修饰。
Scaffold(版本Scaffold_2_05_02,ProteomeSoftwareInc.,Portland,OR)系用于验证以MS/MS为基础之肽与蛋白辨识。假使可以如肽Prophet算法(Kelleretal.,Anal.Chem.74:5383-92(2002))所指明之大于95.0%或然率建立,则肽辨识被接受。假使可以大于99.0%或然率建立并含有至少2个已辨识肽,则蛋白辨识被接受。蛋白或然率系由蛋白Prophet算法(Nesvizhskii,AnalChem.75:4646-58(2003))指派。将含有类似肽且无法仅靠MS/MS分析区别的蛋白编组,以符合简约原则。数据库搜寻识得对应于泛酰巯基乙胺化位点1(SEQIDNO:78TGYETDMIEADMELETELGIDSIK)与泛酰巯基乙胺化位点29(SEQIDNO:77TGYETDMIESDMELETELGIDSIK)之apo形式的胰蛋白酶分解肽段。未观察到泛酰巯基乙胺化肽的直接证据。
为估计从芥花分离的OrfA位点2-9的泛酰巯基乙胺化程度,测量apo2-9肽相较于OrfA分子其它区域六个不同参考肽的份量(表21)。
表21.用于计算在OrfA分解段中apo2-9肽相对量的肽。"起始"系指在全长蛋白中所指定肽的起始位置。apo2-9起始位置系指在蛋白序列中该肽第一回出现。缩写"z"系指电荷,缩写m/z系指质量除以电荷。
在大肠杆菌衍生蛋白(无HetI)中,apo2-9肽对参考肽的内部比例被视为无泛酰巯基乙胺化的估计值,而在协同HetI表达的大肠杆菌衍生蛋白中,内部比例被视为高度泛酰巯基乙胺化的估计值。该等内部比例假设参考肽的摩尔丰度相等,而与OrfA蛋白来源无关(第17图)。计算apo2-9肽对六个参考肽各者的比例并平均。(计算六个参考肽的三个比例。)此外,计算六个参考肽彼此相对的三个比例(ref1/ref2、ref3/ref4与ref5/ref6),以证实该等参考肽在三个OrfA样本之间无显著差异(第17图)并适用于计算apo2-9肽存在的相对量。
和参考肽的计算比例相反,apo2-9对参考肽各者的比例显示-相较于无HetI的OrfA标准品-在OrfA/HetI与芥花样本两者中的apo2-9肽水平明显较低(第18图)。该等结果的简单解释是apo2-9肽上的泛酰巯基乙胺化位点系实质上被磷酸泛酰巯基乙胺基团占据,藉此明显减少apo2-9肽的摩尔丰度。此指出芥花表达的PPTase、HetI在功能上能够活化转基因芥花籽的OrfA,且芥花表达的OrfAACP单元在功能上是足以胜任的。
实施例17
额外构建体
引进启动子多样性以减少调控单元的复制
基因沉默是转基因芥花事件在产生后代时已观察到的现象。数篇综述性文章讨论到转录基因沉默(TGS)与转录后基因沉默(PTGS),例如Waterhouseetal.,2001(Nature411:834-842)、VaucheretandFagard,2001(TrendsinGenetics17(1):29-35、及OkamotoandHirochika,2001(TrendsinPlantSci.6(11):527-534)。在植物中,基因沉默可被转基因多核苷酸序列(串联重复转基因序列、反向重复转基因序列、或染色体多个插入物)的重复触发或在和目标基因序列同源的序列系由感染植物病毒或根瘤农杆菌的T-DNA携带的时候被触发。
此外,转基因多核苷酸序列的重复可作用为构建体不稳定性的触发物。共享高水平序列相似性的多重转基因序列可反折在另一者上。经由同源重组可能发生重排,其中DNA的介入序列被切除。结果,位在重复转基因多核苷酸序列之间的DNA片段被切除。
在设计质粒载体时的一个策略是藉由合并维持各转基因高水平表达的多重独特籽专属启动子将启动子多样性引进构建体。将启动子序列多样性引进质粒载体可降低基因沉默并增进质粒稳定性。多重籽专属启动子系包括PvDlec2、菜豆素、与Napin(U.S.专利号5,608,152)。该等激活子在诸如组织特异性、表达水平、表达历时等等之启动子活性系较为相仿。
构建pDAB7733
pDAB7733二元质粒(第37图;SEQIDNO:57)系使用多重位点网关L-R重组反应构建。pDAB7733含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvPhas启动子v4、PvPhas5'UTR、SzPUFAOrfAv3与AtuORF233'UTRv1。第二个PUFA合成酶PTU含有BnaNapinC启动子v1、BnaNapinC5'UTR、SzPUFAOrfBv3与BnaNapinC3'UTRv1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv3与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v5、PvPhas5'UTR、NoHetIv3与AtuOrf233'UTRv1。
将质粒pDAB7375、pDAB7731、pDAB7336、pDAB7378与pDAB7333重组,以形成pDAB7733。明确地说,上述四个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、NoHetIv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB7734
pDAB7734二元质粒(第38图;SEQIDNO:58)系使用多重位点网关L-R重组反应构建。pDAB7734含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv3与At2SSSP终止子v1。第二个PUFA合成酶PTU含有PvPhas启动子v4、PvPhas5'UTR、SzPUFAOrfBv3与AtuORF233'UTRv1。第三个PUFA合成酶PTU含有BnaNapinC启动子v1、BnaNapinC5'UTR、hSzThPUFAOrfCv3与BnaNapinC3'UTRv1。磷酸泛酰巯基乙胺基转移酶PTU含有PvDlec2启动子v2、2S5'UTR、NoHetIv3与At2SSSP终止子v1。
将质粒pDAB7334、pDAB7376、pDAB7732、pDAB7338与pDAB7333重组,以形成pDAB7734。明确地说,上述四个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、NoHetIv3。pDAB7333-除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外-亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB101493
pDAB101493二元质粒(第39图;SEQIDNO:59)系使用多重位点网关L-R重组反应构建。pDAB101493含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv3与At2SSSP终止子v1。第二个PUFA合成酶PTU含有PvPhas启动子v4、PvPhas5'UTR、SzPUFAOrfBv3与AtuORF233'UTRv1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv3与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v5、PvPhas5'UTR、NoHetIv3与AtuOrf233'UTRv1。
将质粒pDAB7334、pDAB7376、pDAB7336、pDAB7378与pDAB7333重组,以形成pDAB101493。明确地说,上述四个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、NoHetIv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB109507
pDAB109507质粒(第40图;SEQIDNO:60)系使用多重位点网关L-R重组反应构建。pDAB109507含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、SzPUFAOrfAv3与PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。第二个PUFA合成酶PTU含有BnaNapinC启动子v1、BnaNapinC5'UTR、SzPUFAOrfBv3与BnaNapinC3'UTRv1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv3与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有BoACP启动子/5'UTRv1、NoHetIv3与AtuOrf233'UTRv1。
质粒pDAB9324、pDAB7731、pDAB7336、pDAB101485与pDAB7333被重组,以形成pDAB109507。明确地说,上述四个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、NoHetIv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB109508
pDAB109508质粒(第41图;SEQIDNO:61)系使用多重位点网关L-R重组反应构建。pDAB109508含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、SzPUFAOrfAv3与PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。第二个PUFA合成酶PTU含有BnaNapinC启动子v1、BnaNapinC5'UTR、SzPUFAOrfBv3与BnaNapinC3'UTRv1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv3与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvDlec2启动子v2、2S5'UTR、NoHetIv3与At2SSSP终止子v1。
质粒pDAB9324、pDAB7731、pDAB7336、pDAB7338与pDAB7333被重组,以形成pDAB109508。明确地说,上述四个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、NoHetIv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外-亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB109509
pDAB109509质粒(第42图;SEQIDNO:62)系使用多重位点网关L-R重组反应构建。pDAB109509含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv3与At2SSSP终止子v1。第二个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfBv3与At2SSSP终止子v1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv3与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有BoACP启动子/5'UTRv1、NoHetIv3与AtuOrf233'UTRv1。
将质粒pDAB7334、pDAB7335、pDAB7336、pDAB101485与pDAB7333重组,以形成pDAB109509。明确地说,上述四个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、NoHetIv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
重排二元构建体PTUs的顺序以减少长基因序列分段
将SzPUFAOrfAPTU置于二元构建体的3'端,以测试PTU盒顺序是否可减少分离转化事件的分段与重排。SzPUFAOrfA为含有九个串联酰基携带蛋白重复序列的大型开放读码区(~8,700b.p.)。在第一系列的完成构建体中,SzPUFAOrfAPTU系置放为首先整合至植物染色体内。然后SzPUFAOrfAPTU系接续着其余PUFA合成相关基因PTUs,因该等减少分子尺寸。SzPUFAOrfA编码区的分子分析指出某些转化芥花与拟南芥事件含有分段插入物。说明了另择构建体设计,其中PUFA合成酶PTUs的顺序已改成下列构型;hSzThPUFAOrfCPTU、SzPUFAOrfBPTU、NoHetIPTU、SzPUFAOrfAPTU、与PATPTU。完成了改变SzPUFAOrfAPTU在二元构建体上的位置,以减少分离转基因事件的分段与重排。
构建pDAB9151
pDAB9151质粒(第43图;SEQIDNO:63)系使用多重位点网关L-R重组反应构建。pDAB9151含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfBv3与At2SSSP终止子v1。第二个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv3与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvDlec2启动子v2、2S5'UTR、NoHetIv3与At2SSSP终止子v1。最终PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv3与At2SSSP终止子v1。
将质粒pDAB9148、pDAB7335、pDAB9149、pDAB9150与pDAB7333重组,以形成pDAB9151。明确地说,上述四个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:hSzThPUFAOrfCv3、SzPUFAOrfBv3、NoHetIv3、SzPUFAOrfAv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13′UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
改变二元构建体PTUs的转录方向以引进构建体多样性
一另择构建体设计系包括改变PUFA合成酶PTUs顺序及基因表达盒的转录方向。在第一系列的完成构建体中,各基因表达盒系以相同方向置放(″头接尾",其中一基因表达盒的启动子系毗邻第二个基因表达盒的3′UTR)。下列构建体说明了基因表达盒系以不同方向置放并利用另择启动子的策略。在该等实施例中,一基因表达盒系以逆向和第二个基因表达盒相接,俾使两基因表达盒的启动子被改造为彼此相邻。此构型被描述为"头接头"构型。其它构型系说明于实施例,其中一基因表达盒系以逆向和第二个基因表达盒相接,俾使两基因表达盒的3'UTRs被改造为彼此相邻。此构型被描述为"尾接尾"构型。为缓解该类设计可能会有的通读现象,将双向Orf23/24终止子置于该等两PTUs之间。提出该等构型是为了增加转基因的表达,藉此产生较高浓度与含量的LC-PUFA与DHA脂肪酸。
构建pDAB108207
pDAB108207质粒(第44图;SEQIDNO:64)系使用多重位点网关L-R重组反应构建。pDAB108207含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv3与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v6、PvPhas5'UTR、NoHetIv3、PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。第二个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv3、At2SSSP终止子v1与AtuORF233'UTRv1。第三个PUFA合成酶PTU含有PvPhas启动子v6、PvPhas5'UTR、SzPUFAOrfBv3、PvPhas3'UTR与PvPhas3'MARv2(质粒图谱上无注明)与AtuORF233'UTRv1。
将质粒pDAB7334、pDAB101489、pDAB108205、pDAB108206与pDAB7333重组,以形成pDAB108207。明确地说,于植物转化二元pDAB7333的T链DNA边界区内,SzPUFAOrfAv3与NoHetIv3系以尾接尾方向置放;NoHetIv3与hSzThPUFAOrfCv3系以头接头方向置放;hSzThPUFAOrfCv3与SzPUFAOrfB系以尾接尾方向置放。基因顺序为:SzPUFAOrfAv3、NoHetIv3、hSzThPUFAOrfCv3、SzPUFAOrfBv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB108208
pDAB108208质粒(第45图;SEQIDNO:65)系使用多重位点网关L-R重组反应构建。pDAB108208含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv3与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v4、PvPhas5'UTR、NoHetIv3与AtuORF233'UTRv1。第二个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv3与At2SSSP终止子v1。第三个PUFA合成酶PTU含有PvPhas启动子v5、PvPhas5'UTR、SzPUFAOrfBv3、PvPhas3'UTR,PvPhas3'MARv2(质粒图谱上无注明)、与AtuORF233'UTRv1。
将质粒pDAB108200、pDAB101490、pDAB108201、pDAB108202与pDAB7333重组,以形成pDAB108208。明确地说,于植物转化二元pDAB7333的T链DNA边界区内,SzPUFAOrfAv3与NoHetIv3系以头接头方向置放;NoHetIv3与hSzThPUFAOrfCv3系以尾接尾方向置放;hSzThPUFAOrfCv3与SzPUFAOrfB系以头接头方向置放。基因顺序为:SzPUFAOrfAv3、NoHetIv3、hSzThPUFAOrfCv3、SzPUFAOrfBv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB108209
pDAB108209质粒(第46图;SEQIDNO:66)系使用多重位点网关L-R重组反应构建。pDAB108209含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv3与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v4、PvPhas5'UTR、NoHetIv3与AtuORF233'UTRv1。第二个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv3与At2SSSP终止子v1。第三个PUFA合成酶PTU含有PvPhas启动子v5、PvPhas5'UTR、SzPUFAOrfBv3、PvPhas3'UTR与PvPhas3'MARv2(质粒图谱上无注明)、与随机DNA间隔物。
将质粒pDAB108200、pDAB108204、pDAB108201、pDAB108202与pDAB7333重组,以形成pDAB108209。明确地说,于植物转化二元pDAB7333的T链DNA边界区内,SzPUFAOrfAv3与NoHetIv3系以头接头方向置放;NoHetIv3与hSzThPUFAOrfCv3系以尾接尾方向置放;hSzThPUFAOrfCv3与SzPUFAOrfB系以头接头方向置放。基因顺序为:SzPUFAOrfAv3、NoHetIv3、hSzThPUFAOrfCv3、SzPUFAOrfBv3。pDAB7333-除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外-亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
倍增3'UTRs并包括间隔DNA以减少转录干扰
转录干扰可在多个基因堆成一列时发生,藉此导致下游基因的表达降低。此现象系导因于3'UTR与终止子转录通读至下一个启动子-转录单元。说明了由减少转录干扰与转录干扰之两策略构成的另择构建体设计。第一个策略是使用两个终止子/3'UTRs,该等系堆栈于个别DHA基因表达盒之间,以限制通读至下一个基因表达盒。第二个策略是在基因表达盒之间插入约一千对间隔DNA碱基,藉此减少转录干扰。
构建pDAB108207
pDAB108207质粒(第44图;SEQIDNO:64)系使用多重位点网关L-R重组反应构建。pDAB108207含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv3与At2SSSP终止子v1。第二个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、SzPUFAOrfBv3、PvPhas3'UTR,PvPhas3'MARv2(质粒图谱上无注明)、与AtuORF233'UTRv1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv3、At2SSSP终止子v1与AtuORF233'UTRv1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v6、PvPhas5'UTR、NoHetIv3、PvPhas3'UTRv1与PvPhas3'MARv2(质粒图谱上无注明)。
将质粒pDAB7334、pDAB101489、pDAB108205、pDAB108206与pDAB7333重组,以形成pDAB108207。明确地说,于植物转化二元pDAB7333的T链DNA边界区内,SzPUFAOrfAv3与NoHetIv3系以尾接尾方向置放且AtuORF233'UTR系置于两PTUs之间;NoHetIv3与hSzThPUFAOrfCv3系以头接头方向置放;hSzThPUFAOrfCv3与SzPUFAOrfB系以头接尾方向置放且AtuORF233'UTR系置于两PTUs之间。基因顺序为:SzPUFAOrfAv3、NoHetIv3、hSzThPUFAOrfCv3、SzPUFAOrfBv3。pDAB7333-除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外-亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB108208
pDAB108208质粒(第45图;SEQIDNO:65)系使用多重位点网关L-R重组反应构建。pDAB108208含有三个PUFA合成酶PTUs、一个酰基-CoA合成酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv3与At2SSSP终止子v1。第二个PUFA合成酶PTU含有PvPhas启动子v5、PvPhas5'UTR、SzPUFAOrfBv3、PvPhas3'UTR,PvPhas3'MARv2(质粒图谱上无注明)与AtuORF233'UTRv1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv3与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v4、PvPhas5'UTR、NoHetIv3与AtuORF233'UTRv1。
将质粒pDAB108200、pDAB101490、pDAB108201、pDAB108202与pDAB7333重组,以形成pDAB108208。明确地说,于植物转化二元pDAB7333的T链DNA边界区内,SzPUFAOrfAv3与NoHetIv3系以头接头方向置放;NoHetIv3与hSzThPUFAOrfCv3系以尾接尾方向置放且AtuORF233'UTR系置于两PTUs之间;hSzThPUFAOrfCv3与SzPUFAOrfB系以头接头方向置放。基因顺序为:SzPUFAOrfAv3、NoHetIv3、hSzThPUFAOrfCv3、SzPUFAOrfBv3。pDAB7333-除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外-亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB108209
pDAB108209质粒(第46图;SEQIDNO:66)系使用多重位点网关L-R重组反应构建。pDAB108209含有三个PUFA合成酶PTUs、一个酰基-CoA合成酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv3与At2SSSP终止子v1。第二个PUFA合成酶PTU含有PvPhas启动子v5、PvPhas5'UTR、SzPUFAOrfBv3、PvPhas3'UTR,PvPhas3'MARv2(质粒图谱上无注明)、与随机DNA间隔物。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv3与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v4、PvPhas5'UTR、NoHetIv3与AtuORF233'UTRv1。
将质粒pDAB108200、pDAB108204、pDAB108201、pDAB108202与pDAB7333重组,以形成pDAB108209。明确地说,于植物转化二元pDAB7333的T链DNA边界区内,SzPUFAOrfAv3与NoHetIv3系以头接头方向置放;NoHetIv3与hSzThPUFAOrfCv3系以尾接尾方向置放且一千对碱基对间隔物系置于两PTUs之间;hSzThPUFAOrfCv3与SzPUFAOrfB系以头接头方向置放。基因顺序为:SzPUFAOrfAv3、NoHetIv3、hSzThPUFAOrfCv3、SzPUFAOrfBv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
使用另择3'UTR-终止子以限制转录通读
由于专有3'UTR-终止子的数量有限,所以主要使用农杆菌ORF233'UTR-终止子来终止转录。近来显示在拟南芥中,ZmLipase3'UTR-终止子系更有效于终止转录通读。为此,一个版本的构建体系利用ZmLipase3'UTR-终止子结合PvDlec2启动子,以测试是否此3'UTR可减少上游基因的转录通读,藉此减少转录干扰。
构建pDAB9159
pDAB9159质粒(第47图;SEQIDNO:67)系使用多重位点网关L-R重组反应构建。pDAB9159含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv3与ZmLip3'UTRv1。第二个PUFA合成酶PTU含有PvPhas启动子v3、PvPhas5'UTR、SzPUFAOrfBv3与ZmLip3'UTRv1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv3与ZmLip3'UTRv1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v3、PvPhas5'UTR、NoHetIv3与ZmLip3'UTRv1。
将质粒pDAB9152、pDAB9153、pDAB9154、pDAB9155与pDAB7333重组,以形成pDAB9159。明确地说,上述四个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、NoHetIv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
构建pDAB9147
pDAB9147质粒(第48图;SEQIDNO:68)系使用多重位点网关L-R重组反应构建。pDAB9147含有三个PUFA合成酶PTUs、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv3、At2SSSP终止子v1与ZmLip3'UTRv1。第二个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfBv3与At2SSSP终止子v1。第三个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、hSzThPUFAOrfCv3与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvDlec2启动子v2、2S5'UTR、NoHetIv3与At2SSSP终止子v1。
将质粒pDAB9146、pDAB7335、pDAB7336、pDAB7338与pDAB7333重组,以形成pDAB9147。明确地说,上述四个PTUs系以头接尾方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、SzPUFAOrfBv3、hSzThPUFAOrfCv3、NoHetIv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外-亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试五个PTUs的合并。
以两个分别的T-DNA输送DHA基因
一另择构建体设计系包含构建两个分别的二元载体,第一个载体含有位于一个T-DNA上的PUFA合成酶基因亚集,而第二个二元载体含有位于第二个T-DNA上的其余PUFA合成酶基因。该等二元载体系个别用于转化性别杂交植物,藉此产生含有全部PUFA合成酶基因表达构建体的后代。制造转基因植物的一另择方法是将二元载体两者共同转化至芥花组织,并挑选或筛选含有两个T-链的单一植物。
构建pDAB108224
pDAB108224质粒(第49图;SEQIDNO:69)系使用多重位点网关L-R重组反应构建。pDAB108224含有一个PUFA合成酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfAv3与At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v4、PvPhas5'UTR、NoHetIv3与AtuORF233'UTRv1。
将质粒pDAB108216、pDAB108221与pDAB7333重组,以形成pDAB108224。明确地说,SzPUFAOrfAv3与NoHetIv3系以头接头方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfAv3、NoHetIv3。pDAB7333—除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外—亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13'UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试三个PTUs的合并。
构建pDAB108225
pDAB108225质粒(第50图;SEQIDNO:70)系使用多重位点网关L-R重组反应构建。pDAB108225含有两个PUFA合成酶PTUs与草胺膦乙酰基转移酶PTU。明确地说,第一个PUFA合成酶PTU含有PvDlec2启动子v2、2S5'UTR、SzPUFAOrfBv3与At2SSSP终止子v1。第二个PUFA合成酶PTU含有PvPhas启动子v4、SzPUFAOrfBv3与AtuORF233'UTRv1。
将质粒pDAB108217、pDAB108222与pDAB7333重组,以形成pDAB108225。明确地说,SzPUFAOrfBv3与hSzThPUFAOrfCv3系以头接头方向置于植物转化二元pDAB7333的T链DNA边界区内。基因顺序为:SzPUFAOrfBv3、hSzThPUFAOrfCv3。pDAB7333-除了其它调控单元,例如超驱动序列与T链边界序列(T-DNA边界A与T-DNA边界B)以外-亦含有草胺膦乙酰基转移酶PTU:CsVMV启动子v2、PATv5、AtuORF13′UTRv4。含有五个PTUs的重组质粒随后被分离并以限制酶消化与DNA测序测试三个PTUs的合并。
以含有另择设计之构建体转化芥花
该等质粒系用于使用上述操作流程稳定地转化芥花植物。将转基因芥花植物分离并测定分子特征。使用另择构建体产生含有较大量DHA与LC-PUFAs的芥花植物。测定所得LC-PUFA累积并辨识制造0.01%至15%DHA或0.01%至15%LC-PUFA的芥花植物。
实施例18
用于拟南芥转化之另择构建体设计及后续的LC-PUFA与DHA制造
以含有pDAB101493、pDAB7362、pDAB7369、pDAB101412、或pDAB7380二元载体的根瘤农杆菌株转化拟南芥植物。由CloughandBent(1998)说明的浸花转化操作流程系用于转化。CloughandBent,"Floraldip:asimplifiedmethodforagrobacterium-mediatedtransformationofArabidopsisthalia,"PlantJ.,16:735-743,1998。获得转化拟南芥植物并完成转基因存在的分子确认。使来自转基因拟南芥事件的T1植物在温室中长至成熟。该等植物系自花授粉并于成熟时采集所得T2籽。经由FAMEsGC-FID分析单一籽,以测定T2拟南芥籽中的LC-PUFA与DHA含量。组织系经由先前实施例所说明的FAMEsGC-FID方法分析。拟南芥植物T1植物的单一T2籽系含有0.00%至0.95%DHA与0.00%至1.50%总LC-PUFA。个别T1植物的各别T2籽的LC-PUFA与DHA含量系显示于第51图。
实施例19
以PUFA合成酶基因组转化"非高油酸"芥花品种(DH12075)
油菜品种DH12075系藉由基本上如同实施例4所述之胚轴转化方法使用包含质粒pDAB7362的根瘤农杆菌转化。不像Nexera710的基因背景,DH12075不是"高油酸"品种。回收有出现pat基因的T0DH12075植物并藉由实施例5所述分子分析方法分析全部五个DHA基因组(PUFA合成酶OrfA、PUFA合成酶OrfB、PUFA合成酶嵌合OrfC、酰基-CoA合成酶与4'磷酸泛酰巯基乙胺基转移酶HetI)的存在。事件001-2009-006DH(事件006)被辨识为含有全部五个DHA基因的T0植物。使其于生长室中长至成熟并采集T1籽。以实施例6所述方法分析事件006的单一T1籽显示所分析48颗籽中的31颗含有介于0.19%与0.86%DHA之间的DHA水平。使113颗T1籽栽种、生长于生长室并以实施例4所述方法分析叶组织样本,以测定个别植物的接合性。qPCR分析测出23株植物为纯合PAT基因且亦显示五个DHA基因的共同分隔,指示单一基因座的存在。使用pat与OrfA探针对事件006的T1植物组织进行南方分析指出存在有OrfA基因的一个额外拷贝。让纯合植物长至成熟并采集籽。来自该等植物各者的批次T2籽样本之FAME分析显示23株纯合T2植物中的17株系产生带有DHA含量介于0.17与0.72%之间的LC-PUFAs。五个T2籽样本含有介于0.08%与0.16%之间的EPA,LC-PUFA产生事件的全部LC-PUFA(DHA+EPA+DPA[n-6])系介于0.33%与1.35%之间。表22a显示事件006的两个含DHA之批次T2样本的完整脂肪酸配置。对八个纯合T1品系的48颗个别T2籽进行单一籽分析且该等籽的平均DHA含量系显示于表23。测到DHA含量高达1.31%的单一T2籽。表22b显示四个含DHA之T2籽的完整脂肪酸配置。该等数据显示DHA可在带有少于72%油酸含量之基因背景的芥花中经由以PUFA合成酶基因组转化来产生。
表23.具DH12075基因背景的八个纯合事件006T1芥花植物之T2籽的平均DHA含量(每株植物分析48颗籽)。
为例示与说明,已提交本发明前述说明。又,该说明并无意图将发明限制于本案揭示之形式。
本案所述各式态样、具体例、及选项皆可结合任何与全部变化例。
本说明书提到的所有出版品、专利、及专利申请案系以参照方式并入本案,其程度系同于犹如个别所有出版品、专利、或专利申请案系明确地个别指示以参照方式并入。

Claims (17)

1.一种制造包含至少一PUFA之油的方法,该方法包含从
包含:
编码多不饱和脂肪酸(PUFA)合成酶系统之第一核酸序列,该系统制造至少一PUFA,其中该PUFA合成酶系统包含SEQIDNOs:1-3之氨基酸序列,其中该第一核酸序列可操作地连接至选自由下列所构成之群组的启动子:PvDlec2、LfKCS3及FAE1;
编码SEQIDNO:5的磷酸泛酰巯基乙胺基转移酶(PPTase)之第二核酸序列,该酶将磷酸泛酰巯基乙胺基辅助因子转移至PUFA合成酶系统ACP域,其中该第二核酸序列可操作地连接至选自由下列所构成之群组的启动子:PvDlec2、LfKCS3及FAE1;和
编码SEQIDNO:4的酰基-CoA合成酶(ACoAS)之第三核酸序列,该酶催化长链PUFA游离脂肪酸(FFA)转换成酰基-CoA,其中该第三核酸序列可操作地连接至选自由下列所构成之群组的启动子:PvDlec2、LfKCS3及FAE1的基因改造油菜植物、其子代、细胞、组织、籽或部位回收油,
其中该回收的油包含0.19%至1.6%DHA(二十二碳六烯酸(C22:6,n-3))、0.09%至0.34%DPA(C22:5,n-6或n-3)和0.05%至0.27%EPA(二十碳五烯酸(C20:5,n-3))。
2.一种制造包含至少一PUFA之油的方法,该方法包含使
包含:
编码多不饱和脂肪酸(PUFA)合成酶系统之第一核酸序列,该系统制造至少一PUFA,其中该PUFA合成酶系统包含SEQIDNOs:1-3之氨基酸序列,其中该第一核酸序列可操作地连接至选自由下列所构成之群组的启动子:PvDlec2、LfKCS3及FAE1;
编码SEQIDNO:5的磷酸泛酰巯基乙胺基转移酶(PPTase)之第二核酸序列,该酶将磷酸泛酰巯基乙胺基辅助因子转移至PUFA合成酶系统ACP域,其中该第二核酸序列可操作地连接至选自由下列所构成之群组的启动子:PvDlec2、LfKCS3及FAE1;和
编码SEQIDNO:4的酰基-CoA合成酶(ACoAS)之第三核酸序列,该酶催化长链PUFA游离脂肪酸(FFA)转换成酰基-CoA,其中该第三核酸序列可操作地连接至选自由下列所构成之群组的启动子:PvDlec2、LfKCS3及FAE1的基因改造油菜植物、其子代、细胞、组织、籽或部位生长,
其中该油包含0.19%至1.6%DHA(二十二碳六烯酸(C22:6,n-3))、0.09%至0.34%DPA(C22:5,n-6或n-3)和0.05%至0.27%EPA(二十碳五烯酸(C20:5,n-3))。
3.一种制造在籽油中的至少一PUFA的方法,该方法包含从
包含:
编码多不饱和脂肪酸(PUFA)合成酶系统之第一核酸序列,该系统制造至少一PUFA,其中该PUFA合成酶系统包含SEQIDNOs:1-3之氨基酸序列,其中该第一核酸序列可操作地连接至选自由下列所构成之群组的启动子:PvDlec2、LfKCS3及FAE1;
编码SEQIDNO:5的磷酸泛酰巯基乙胺基转移酶(PPTase)之第二核酸序列,该酶将磷酸泛酰巯基乙胺基辅助因子转移至PUFA合成酶系统ACP域,其中该第二核酸序列可操作地连接至选自由下列所构成之群组的启动子:PvDlec2、LfKCS3及FAE1;和
编码SEQIDNO:4的酰基-CoA合成酶(ACoAS)之第三核酸序列,该酶催化长链PUFA游离脂肪酸(FFA)转换成酰基-CoA,其中该第三核酸序列可操作地连接至选自由下列所构成之群组的启动子:PvDlec2、LfKCS3及FAE1的基因改造油菜植物、其子代、细胞、组织或部位之籽回收油,
其中该回收的油包含0.19%至1.6%DHA(二十二碳六烯酸(C22:6,n-3))、0.09%至0.34%DPA(C22:5,n-6或n-3)和0.05%至0.27%EPA(二十碳五烯酸(C20:5,n-3))。
4.一种制造在籽油中的至少一PUFA的方法,该方法包括使
包含:
编码多不饱和脂肪酸(PUFA)合成酶系统之第一核酸序列,该系统制造至少一PUFA,其中该PUFA合成酶系统包含SEQIDNOs:1-3之氨基酸序列,其中该第一核酸序列可操作地连接至选自由下列所构成之群组的启动子:PvDlec2、LfKCS3及FAE1;
编码SEQIDNO:5的磷酸泛酰巯基乙胺基转移酶(PPTase)之第二核酸序列,该酶将磷酸泛酰巯基乙胺基辅助因子转移至PUFA合成酶系统ACP域,其中该第二核酸序列可操作地连接至选自由下列所构成之群组的启动子:PvDlec2、LfKCS3及FAE1;和
编码SEQIDNO:4的酰基-CoA合成酶(ACoAS)之第三核酸序列,该酶催化长链PUFA游离脂肪酸(FFA)转换成酰基-CoA,其中该第三核酸序列可操作地连接至选自由下列所构成之群组的启动子:PvDlec2、LfKCS3及FAE1的基因改造油菜植物、其子代、细胞、组织、籽或部位生长,
其中该籽油包含0.19%至1.6%DHA(二十二碳六烯酸(C22:6,n-3))、0.09%至0.34%DPA(C22:5,n-6或n-3)和0.05%至0.27%EPA(二十碳五烯酸(C20:5,n-3))。
5.一种制造生产包含0.19%至1.6%DHA(二十二碳六烯酸(C22:6,n-3))、0.09%至0.34%DPA(C22:5,n-6或n-3)和0.05%至0.27%EPA(二十碳五烯酸(C20:5,n-3))油的基因改造油菜植物、其子代、细胞、组织、籽或部位的方法,该方法包含以下列核酸序列转化油菜植物或植物细胞:编码藻类PUFA合成酶之核酸序列,该酶制造至少一多不饱和脂肪酸(PUFA),其中该PUFA合成酶系统包含SEQIDNOs:1-3之氨基酸序列;编码SEQIDNO:5的磷酸泛酰巯基乙胺基转移酶(PPTase)之核酸序列,该酶将磷酸泛酰巯基乙胺基辅助因子转移至藻类PUFA合成酶ACP域;和编码SEQIDNO:4的酰基-CoA合成酶(ACoAS)之核酸序列,该酶催化长链PUFA游离脂肪酸(FFA)转换成酰基-CoA。
6.一种油,其通过权利要求1-4中任一项的方法得自基因改造油菜植物、其子代、细胞、组织、籽或部位,其中该油包含0.19%至1.6%DHA(二十二碳六烯酸(C22:6,n-3))、0.09%至0.34%DPA(C22:5,n-6或n-3)和0.05%至0.27%EPA(二十碳五烯酸(C20:5,n-3))。
7.一种籽油,其得自权利要求5的方法制造的基因改造油菜植物、其子代、细胞、组织、籽或部位。
8.一种食品,其包含权利要求6或7的油。
9.一种功能食品,其包含权利要求6或7的油。
10.一种医药产品,其包含权利要求6或7的油。
11.权利要求5的方法,其中以SEQIDNO:35或SEQIDNO:36之核酸序列转化油菜植物或植物细胞。
12.权利要求1-5任一项的方法,其中该编码PUFA合成酶系统之核酸序列包含:
和SEQIDNO:6之核酸序列至少80%相同的核酸序列;
和SEQIDNO:7之核酸序列至少80%相同的核酸序列;和
和SEQIDNO:8之核酸序列至少80%相同的核酸序列。
13.权利要求1-5和12任一项的方法,其中该编码PPTase之核酸序列和SEQIDNO:10之核酸序列至少80%相同。
14.权利要求1-5、12和13任一项的方法,其中该编码ACoAS之核酸序列包含和SEQIDNO:9之核酸序列至少80%相同的核酸序列。
15.权利要求1-5、12和13任一项的方法,该编码ACoAS之核酸序列包含SEQIDNO:34之核酸序列。
16.权利要求1-5、12、13和15任一项的方法,其中编码PUFA合成酶系统之核酸序列,编码PPTase之核酸序列和编码ACoAS之核酸序列包含于单一重组表达载体。
17.权利要求1-5、12、13、15和16任一项的方法,其中该基因改造油菜植物、其子代、细胞、组织、籽或部位包含编码乙酰基CoA羧化酶(ACCase)之核酸序列和/或编码第2型二酰基甘油酯酰基转移酶(DGAT2)之核酸序列。
CN201180035255.6A 2010-05-17 2011-05-17 在植物中制造dha和其他lc-pufa Expired - Fee Related CN103080319B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510664546.1A CN105296511A (zh) 2010-05-17 2011-05-17 在植物中制造dha和其他lc-pufa

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US34553710P 2010-05-17 2010-05-17
US61/345,537 2010-05-17
PCT/US2011/036869 WO2011146524A1 (en) 2010-05-17 2011-05-17 Production of dha and other lc-pufas in plants

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510664546.1A Division CN105296511A (zh) 2010-05-17 2011-05-17 在植物中制造dha和其他lc-pufa

Publications (2)

Publication Number Publication Date
CN103080319A CN103080319A (zh) 2013-05-01
CN103080319B true CN103080319B (zh) 2015-11-25

Family

ID=44992026

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510664546.1A Pending CN105296511A (zh) 2010-05-17 2011-05-17 在植物中制造dha和其他lc-pufa
CN201180035255.6A Expired - Fee Related CN103080319B (zh) 2010-05-17 2011-05-17 在植物中制造dha和其他lc-pufa

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201510664546.1A Pending CN105296511A (zh) 2010-05-17 2011-05-17 在植物中制造dha和其他lc-pufa

Country Status (25)

Country Link
US (4) US20130150599A1 (zh)
EP (3) EP2571994B1 (zh)
JP (1) JP6059138B2 (zh)
KR (1) KR102184432B1 (zh)
CN (2) CN105296511A (zh)
AR (1) AR081201A1 (zh)
AU (1) AU2011256209B2 (zh)
BR (1) BR112012029255A2 (zh)
CA (2) CA2799559C (zh)
CL (1) CL2012003210A1 (zh)
EA (1) EA201291223A1 (zh)
ES (1) ES2656217T3 (zh)
HK (1) HK1179652A1 (zh)
HU (1) HUE036182T2 (zh)
IL (1) IL223045A0 (zh)
MX (1) MX345243B (zh)
MY (1) MY165098A (zh)
NO (1) NO2571994T3 (zh)
NZ (1) NZ604479A (zh)
PL (1) PL2571994T3 (zh)
PT (1) PT2571994T (zh)
SG (1) SG185572A1 (zh)
TW (1) TW201144442A (zh)
UA (1) UA116613C2 (zh)
WO (1) WO2011146524A1 (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201144442A (en) * 2010-05-17 2011-12-16 Dow Agrosciences Llc Production of DHA and other LC-PUFAs in plants
US11236351B2 (en) * 2010-05-17 2022-02-01 Dow Agrosciences Llc Production of DHA and other LC PUFAs in plants
BR112013010103B1 (pt) * 2010-12-30 2021-12-14 Telefonaktiebolaget Lm Ericsson (Publ) Equipamento de usuário e estação rádio base em um sistema de telecomunicações e métodos relacionados
TW201307553A (zh) * 2011-07-26 2013-02-16 Dow Agrosciences Llc 在植物中生產二十二碳六烯酸(dha)及其他長鏈多元不飽和脂肪酸(lc-pufa)之技術
EP2768954B1 (en) 2011-10-19 2018-12-05 Massachusetts Institute of Technology Engineered microbes and methods for microbial oil production
KR20140116445A (ko) 2011-12-30 2014-10-02 다우 아그로사이언시즈 엘엘씨 카놀라 가공 동안의 dha 유지
US8816111B2 (en) 2012-06-15 2014-08-26 Commonwealth Scientific And Industrial Research Organisation Lipid comprising polyunsaturated fatty acids
AR091774A1 (es) * 2012-07-16 2015-02-25 Dow Agrosciences Llc Proceso para el diseño de las secuencias de adn repetidas, largas, divergentes de codones optimizados
US20150223483A1 (en) * 2012-09-11 2015-08-13 Dow Agrosciences Llc Omega-9 canola oil blended with dha
BR112015023058B1 (pt) 2013-03-15 2023-04-11 Lisa Hollister Cassete de expressão
WO2014152986A2 (en) * 2013-03-15 2014-09-25 Hollister Lisa Genetically modified plants that are herbivore-resistant
KR20160065952A (ko) 2013-10-04 2016-06-09 다우 아그로사이언시즈 엘엘씨 제아 메이스 메탈로티오네인-유사 조절 요소 및 그의 용도
BR102014025499A2 (pt) 2013-10-15 2015-09-29 Dow Agrosciences Llc elementos regulatórios de zea mays e uso dos mesmos
BR102014025574A2 (pt) 2013-10-15 2015-09-29 Dow Agrosciences Llc elementos regulatórios de zea mays e usos dos mesmos
BR102014029437A2 (pt) 2013-11-26 2015-07-07 Dow Agrosciences Llc Produção de ácidos graxos ômega-3 polinsaturados de cadeia longa em culturas oleaginosas por uma pufa sintase de traustoquitrídio
CN104726473B (zh) 2013-12-18 2020-02-14 联邦科学技术研究组织 包含二十二碳六烯酸的提取的植物脂质
TW201527316A (zh) 2013-12-31 2015-07-16 Dow Agrosciences Llc 新穎玉米泛素啓動子(五)
TW201527313A (zh) 2013-12-31 2015-07-16 Dow Agrosciences Llc 新穎玉米泛素啓動子(二)
TW201527312A (zh) 2013-12-31 2015-07-16 Dow Agrosciences Llc 新穎玉米泛素啓動子(一)
TW201527314A (zh) 2013-12-31 2015-07-16 Dow Agrosciences Llc 新穎玉米泛素啓動子(三)
BR102015000943A2 (pt) 2014-01-17 2016-06-07 Dow Agrosciences Llc expressão aumentada de proteína em planta
ES2721269T3 (es) 2014-01-28 2019-07-30 Dsm Ip Assets Bv Factores para la producción y acumulación de ácidos grasos poliinsaturados (PUFA) obtenidos con PUFA sintasas
TW201538518A (zh) 2014-02-28 2015-10-16 Dow Agrosciences Llc 藉由嵌合基因調控元件所賦予之根部特異性表現
CN105219789B (zh) 2014-06-27 2023-04-07 联邦科学技术研究组织 包含二十二碳五烯酸的提取的植物脂质
CN107429256B (zh) 2014-11-14 2022-03-04 巴斯夫植物科学有限公司 增加种子油中生育酚含量的材料和方法
RU2017138655A (ru) 2015-04-15 2019-05-15 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи Растительный промотор для экспрессии трансгена
US9914934B2 (en) 2015-04-15 2018-03-13 Dow Agrosciences Llc Root-preferred promoter from a Panicum virgatum metallothionein-like gene
TW201718861A (zh) 2015-09-22 2017-06-01 道禮責任有限公司 用於轉殖基因表現之植物啟動子及3’utr
TW201718862A (zh) 2015-09-22 2017-06-01 Dow Agrosciences Llc 用於轉殖基因表現之植物啟動子及3’utr
US10280429B2 (en) 2015-10-22 2019-05-07 Dow Agrosciences Llc Plant promoter for transgene expression
WO2017078935A1 (en) 2015-11-04 2017-05-11 Dow Agrosciences Llc Plant promoter for transgene expression
KR102442450B1 (ko) 2016-05-12 2022-09-14 디에스엠 아이피 어셋츠 비.브이. 미세조류에서 오메가-3 다중불포화 지방산 생산을 증가시키는 방법
BR112018076314A2 (pt) * 2016-06-16 2019-03-26 Nuseed Pty Ltd. canola de evento elite ns-b50027-4
CN109996436B (zh) 2016-10-03 2023-09-29 科迪华农业科技有限责任公司 用于转基因表达的植物启动子
CN110291199B (zh) 2016-10-03 2023-12-22 美国陶氏益农公司 用于转基因表达的植物启动子
US11390880B2 (en) 2017-08-31 2022-07-19 Corteva Agriscience Llc Compositions and methods for expressing transgenes using regulatory elements from chlorophyll binding Ab genes
WO2020032258A1 (ja) * 2018-08-10 2020-02-13 協和発酵バイオ株式会社 多価不飽和脂肪酸を生産する微生物及び多価不飽和脂肪酸の製造法
EP3835410A4 (en) * 2018-08-10 2022-05-18 Kyowa Hakko Bio Co., Ltd. EICOSAPENTAIC ACID PRODUCING MICROORGANISM AND PROCESS FOR PRODUCTION OF EICOSAPENTAIC ACID
CN109852724A (zh) * 2019-04-03 2019-06-07 深圳出入境检验检疫局食品检验检疫技术中心 转基因油菜品系oxy235检测方法、试剂和试剂盒
CA3237962A1 (en) 2021-11-09 2023-05-19 Benson Hill, Inc. Promoter elements for improved polynucleotide expression in plants
WO2023111961A1 (en) 2021-12-15 2023-06-22 Benson Hill, Inc. Spatio-temporal promoters for polynucleotide expression in plants
WO2024006698A2 (en) * 2022-06-27 2024-01-04 Monsanto Technology Llc Soybean transgenic event gm_csm63770 and methods for detection and uses thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007106905A2 (en) * 2006-03-15 2007-09-20 Martek Biosciences Corporation Polyunsaturated fatty acid production in heterologous organisms using pufa polyketide synthase systems
US20080022422A1 (en) * 1999-01-14 2008-01-24 Martek Biosciences Corporation Chimeric pufa polyketide synthase systems and uses thereof

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8300698A (nl) 1983-02-24 1984-09-17 Univ Leiden Werkwijze voor het inbouwen van vreemd dna in het genoom van tweezaadlobbige planten; agrobacterium tumefaciens bacterien en werkwijze voor het produceren daarvan; planten en plantecellen met gewijzigde genetische eigenschappen; werkwijze voor het bereiden van chemische en/of farmaceutische produkten.
US5420034A (en) 1986-07-31 1995-05-30 Calgene, Inc. Seed-specific transcriptional regulation
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US5693507A (en) 1988-09-26 1997-12-02 Auburn University Genetic engineering of plant chloroplasts
US5451513A (en) 1990-05-01 1995-09-19 The State University of New Jersey Rutgers Method for stably transforming plastids of multicellular plants
DE69231875T2 (de) 1991-04-09 2001-10-04 Unilever Plc Pflanzen-promoter involviert in der kontrolle der lipid-biosynthese in samen
US6210700B1 (en) 1997-01-14 2001-04-03 Novartis Nutrition Ag Enhancement of transplant graft survival through nutritional immunomodulation with omega-9 fatty acid dietary supplement therapy
CA2283422A1 (en) 1997-06-04 1998-12-10 Calgene, Llc Production of polyunsaturated fatty acids by expression of polyketide-like synthesis genes in plants
US6566583B1 (en) 1997-06-04 2003-05-20 Daniel Facciotti Schizochytrium PKS genes
CN1333835A (zh) * 1998-11-17 2002-01-30 孟山都技术有限公司 膦酸代谢植物
US7247461B2 (en) 1999-01-14 2007-07-24 Martek Biosciences Corporation Nucleic acid molecule encoding ORFA of a PUFA polyketide synthase system and uses thereof
US7217856B2 (en) 1999-01-14 2007-05-15 Martek Biosciences Corporation PUFA polyketide synthase systems and uses thereof
US7211418B2 (en) 1999-01-14 2007-05-01 Martek Biosciences Corporation PUFA polyketide synthase systems and uses thereof
US6784342B1 (en) 1999-08-04 2004-08-31 The University Of British Columbia Regulation of embryonic transcription in plants
WO2001025459A1 (fr) 1999-09-30 2001-04-12 Japan Tobacco Inc. Vecteurs de transformation de plantes
US20040049806A1 (en) * 2000-05-24 2004-03-11 Ljerka Kunst Nucleic acid encoding a plant very long chain fatty acid biosynthetic enzyme
WO2001090386A2 (en) 2000-05-24 2001-11-29 The University Of British Columbia Gene regulatory region that promotes early seed-specific transcription
US20040172682A1 (en) 2003-02-12 2004-09-02 Kinney Anthony J. Production of very long chain polyunsaturated fatty acids in oilseed plants
CA2847960C (en) * 2004-11-04 2015-02-10 Monsanto Technology Llc Processes for preparation of oil compositions
WO2006135866A2 (en) 2005-06-10 2006-12-21 Martek Biosciences Corporation Pufa polyketide synthase systems and uses thereof
CN102524087A (zh) * 2005-08-01 2012-07-04 加拿大农业和农业食品部 包含高油酸、低亚麻酸油的低纤维黄色油菜种子
US7868228B2 (en) 2006-01-31 2011-01-11 Monsanto Technology Llc Phosphopantetheinyl transferases from bacteria
SG10201501004UA (en) * 2006-08-29 2015-04-29 Dsm Ip Assets Bv USE OF DPA(n-6) OILS IN INFANT FORMULA
EP3146836A1 (en) 2007-12-21 2017-03-29 National Research Council of Canada Diacylglycerol acyltransferase 2 genes and proteins encoded thereby from algae
JP2011519552A (ja) * 2008-04-25 2011-07-14 ビーエーエスエフ プラント サイエンス ゲーエムベーハー 植物種子油
US9090902B2 (en) * 2008-08-26 2015-07-28 Basf Plant Science Gmbh Nucleic acids encoding desaturases and modified plant oil
EP3192871B1 (en) * 2009-03-19 2019-01-23 DSM IP Assets B.V. Polyunsaturated fatty acid synthase nucleic acid molecules and polypeptides, compositions, and methods of making and uses thereof
TW201144442A (en) * 2010-05-17 2011-12-16 Dow Agrosciences Llc Production of DHA and other LC-PUFAs in plants

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080022422A1 (en) * 1999-01-14 2008-01-24 Martek Biosciences Corporation Chimeric pufa polyketide synthase systems and uses thereof
WO2007106905A2 (en) * 2006-03-15 2007-09-20 Martek Biosciences Corporation Polyunsaturated fatty acid production in heterologous organisms using pufa polyketide synthase systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Production of Polyunsaturated Fatty Acids in Transgenic Plants;VRINTEN et al;《Biotechnol Genet Eng Rev》;20071231;第24卷;第263-280页 *

Also Published As

Publication number Publication date
EP3354739A1 (en) 2018-08-01
MX2012013401A (es) 2013-09-02
NO2571994T3 (zh) 2018-05-12
HK1179652A1 (zh) 2013-10-04
JP2013529086A (ja) 2013-07-18
CA3161375A1 (en) 2011-11-24
US20180073036A1 (en) 2018-03-15
EP3517617A1 (en) 2019-07-31
TW201144442A (en) 2011-12-16
EA201291223A1 (ru) 2013-05-30
MY165098A (en) 2018-02-28
EP2571994B1 (en) 2017-12-13
AU2011256209A1 (en) 2013-01-10
WO2011146524A1 (en) 2011-11-24
NZ604479A (en) 2014-10-31
US20220170037A1 (en) 2022-06-02
AR081201A1 (es) 2012-07-04
CA2799559C (en) 2022-06-28
CL2012003210A1 (es) 2013-08-02
EP2571994A4 (en) 2013-10-23
IL223045A0 (en) 2013-02-03
US20190010510A1 (en) 2019-01-10
SG185572A1 (en) 2012-12-28
US20200362361A1 (en) 2020-11-19
BR112012029255A2 (pt) 2015-09-08
AU2011256209B2 (en) 2016-12-22
PT2571994T (pt) 2018-03-14
CA2799559A1 (en) 2011-11-24
CN103080319A (zh) 2013-05-01
EP2571994A1 (en) 2013-03-27
HUE036182T2 (hu) 2018-06-28
CN105296511A (zh) 2016-02-03
US10669554B2 (en) 2020-06-02
JP6059138B2 (ja) 2017-01-11
KR102184432B1 (ko) 2020-12-01
ES2656217T3 (es) 2018-02-26
US11168332B2 (en) 2021-11-09
US20130150599A1 (en) 2013-06-13
UA116613C2 (uk) 2018-04-25
KR20130109974A (ko) 2013-10-08
MX345243B (es) 2017-01-23
PL2571994T3 (pl) 2018-06-29

Similar Documents

Publication Publication Date Title
CN103080319B (zh) 在植物中制造dha和其他lc-pufa
US11053511B2 (en) Production of DHA and other LC PUFAs in plants
CN102782140A (zh) 靶向参与脂肪酸生物合成的植物基因的工程改造锌指蛋白
US20220042028A1 (en) Production of dha and other lc pufas in plants
CN106413389A (zh) 通过破囊壶菌PUFA合酶在油料作物中产生ω‑3长链多不饱和脂肪酸
CN109402079B (zh) 一种多肽在提高植物超长链脂肪酸含量中的应用
US12006504B2 (en) Production of DHA and other LC PUFAs in plants

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1179652

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1179652

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151125

Termination date: 20210517