CN106413389A - 通过破囊壶菌PUFA合酶在油料作物中产生ω‑3长链多不饱和脂肪酸 - Google Patents

通过破囊壶菌PUFA合酶在油料作物中产生ω‑3长链多不饱和脂肪酸 Download PDF

Info

Publication number
CN106413389A
CN106413389A CN201480074043.2A CN201480074043A CN106413389A CN 106413389 A CN106413389 A CN 106413389A CN 201480074043 A CN201480074043 A CN 201480074043A CN 106413389 A CN106413389 A CN 106413389A
Authority
CN
China
Prior art keywords
seq
plant
pufa
nucleic acid
genetically modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480074043.2A
Other languages
English (en)
Inventor
T·A·沃尔什
D·J·加绍特
C·M·拉森
S·A·贝文
P·A·O·默洛
J·G·梅茨
R·泽克尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DSM IP Assets BV
Corteva Agriscience LLC
Original Assignee
DSM IP Assets BV
Dow AgroSciences LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DSM IP Assets BV, Dow AgroSciences LLC filed Critical DSM IP Assets BV
Publication of CN106413389A publication Critical patent/CN106413389A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/158Fatty acids; Fats; Products containing oils or fats
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/02Pretreatment
    • C11B1/04Pretreatment of vegetable raw material
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/10Production of fats or fatty oils from raw materials by extracting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1288Transferases for other substituted phosphate groups (2.7.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01085Fatty-acid synthase (2.3.1.85)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Husbandry (AREA)
  • Physiology (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Edible Oils And Fats (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明公开涉及用多不饱和脂肪酸(PUFA)合酶系统和一种或多种辅助蛋白遗传修饰的重组宿主生物,所述辅助蛋白允许和/或提高PUFA在宿主生物中的产生。本发明公开还涉及制造和使用这样的生物、以及从这样的生物获得的产物的方法。

Description

通过破囊壶菌PUFA合酶在油料作物中产生ω-3长链多不饱和 脂肪酸
优先权声明
本申请要求2013年11月26日提交的“通过破囊壶菌PUFA合酶在油料作物中产生ω-3长链多不饱和脂肪酸”的美国临时专利申请系列号61/909,289的申请日的权益。
技术领域
本发明公开一般性地涉及用多不饱和脂肪酸(PUFA)合酶系统和一种或多种辅助蛋白遗传修饰的重组宿主生物(例如,植物),所述辅助蛋白允许和/或提高PUFA在宿主生物中的产生。本发明还涉及制造和利用这种生物(例如,为了获得PUFA)的方法以及从这种生物获得的产物(例如,油和种子)。
背景
多不饱和脂肪酸(PUFA)被认为可用于营养、药物、和工业应用,以及其他目的。然而,对于许多长期的商业需求而言,天然来源(例如,鱼油和海藻油)以及来自化学合成的PUFA的当前供应不足,或者成本效益不高。
来源于植物(例如,油料作物)的植物油相对价廉,没有与鱼油相关的污染问题,并被认为是可持续的。然而,商业开发的植物和植物油中发现的PUFA一般不包括更饱和或更长链的PUFA,一般仅仅包括诸如亚油酸(十八碳,具有在Δ9和12位置的2个双键,18:2Δ9,12)和亚麻酸(18:3Δ9,12,15)之类的脂肪酸。
已经有人描述了通过修饰由植物内源性产生的脂肪酸而在植物中产生更饱和或更长链的PUFA。例如,已经有人描述,用编码脂肪酸延长酶和/或去饱和酶的不同基因遗传修饰植物,结果产生的叶或种子含有显著水平的更长链且更饱和的PUFA,如二十二碳六烯酸(DHA)和二十碳五烯酸(EPA),而且含有显著水平的混合较短链且较不饱和的PUFA。Qi等人,(2004)Nature Biotech.22:739;PCT国际专利公开No.WO 04/071467;Abbadi等人,(2004)Plant Cell16:1;Napier和Sayanova(2005)Proc.Nutr.Soc.64:387-93;Robert等人,(2005)Functional Plant Biol.32:473-79;美国专利公开No.2004/0172682;Petrie等人,(2012)PLOS One 7:e49165;和美国临时申请No.61/345,537(2010年5月17日提交)。
公开
本文描述了方法和组合物,可用于在转基因宿主生物(例如,植物细胞、植物部分、和植物)中产生LC-PUFA,以及产生在此类PUFA中富集的大量非天然植物脂质,例如三酰甘油(TAG)和磷脂(PL),并且产生相比于以往可得的PUFA主链更长且不饱和程度更高的PUFA。本文还描述了通过提供用功能性PUFA合酶系统遗传修饰的宿主生物而在宿主植物中产生PUFA的系统。
本文中的一些实施方案包括遗传修饰的植物细胞(例如,芥花(canola)、大豆、和/或拟南芥植物细胞),所述植物细胞包含编码来自破囊壶菌——裂殖壶菌藻(Schizochytrium alga)(其代表性例子是以ATCC登录号PTA-9695保藏(保藏日2009.1.7)的裂殖壶菌属物种)的多不饱和脂肪酸(PUFA)合酶(PFA1、PFA2、和PFA3)的至少一种多肽,和来自蓝藻细菌属—念珠藻属(Nostoc)的磷酸泛酰巯基乙胺基转移酶(HetI)的多核苷酸,所述多核苷酸的表达产物重构功能性PUFA合酶系统。例如,植物细胞可包含编码裂殖壶菌PFA1、PFA2、和PFA3;以及念珠藻属HetI的多核苷酸。在一些实施方案中,植物细胞还包含至少一种编码脂酰CoA合成酶同工酶2(SzACS2)的多核苷酸。在具体的实施方案中,还在宿主植物细胞中表达了编码至少一种DHA优选辅助蛋白的多核苷酸,以促进LC-PUFA掺入到种子油中(例如,ACS、DGAT、LPAT、LPCAT、和PDAT)。
本文中的具体实施方案包括:包括这样的植物细胞的遗传修饰植物(例如,芸苔属、大豆属、拟南芥属、和油料作物),以及其后代、种子、组织、或部分。在具体的实施方案中,遗传修饰的植物细胞为油料作物细胞;例如,但不限于,红花、向日葵、和棕榈。表达功能性PUFA合酶系统的遗传修饰的油料作物细胞可生成特征性的脂肪酸概貌,例如,包括含DHA的植物油的脂肪酸概貌。
一些实施方案提供了编码功能性PUFA合酶系统的组分(例如,裂殖壶菌PFA1、PFA2、PFA3,和念珠藻属HetI)以及任选地至少一种辅助蛋白(例如,SzACS2)的多核苷酸。在一些实例中,这些多核苷酸被包含在单个重组表达载体中。在其他实例中,这些多核苷酸被包含在不同的重组表达载体中。
在具体的实施方案中,编码功能性PUFA合酶系统的组分以任选地至少一 种辅助蛋白的多核苷酸与种子特异性启动子可操作连接。例如,在特定实例中所述多核苷酸可与选自PvDlec2;PvPhas;LfKCS3;FAE1;BoACP;BnaNapinC;SSPRO2745.1;和SSPRO2743.1的启动子可操作连接,这些启动子元件在本文中有示例。在一些实施方案中,多核苷酸与组成型启动子(例如,泛素和CsVMV启动子)、或叶特异性启动子可操作连接。在具体的实施方案中,可以采用另外的启动子在不同的生长阶段和/或在种子发育期间以更高的水平(例如,为了提供增加的LC-PUFA积累)驱动功能性PUFA合酶系统的表达。
在其他实施方案中,编码功能性PUFA合酶的组分的多核苷酸编码:包含与SEQ IDNO:1至少80%相同的氨基酸序列的多肽;包含与SEQ ID NO:4至少80%相同的氨基酸序列的多肽;和/或包含与SEQ ID NO:7或SEQ ID NO:14至少80%相同的氨基酸序列的多肽,其中所述多核苷酸还包含HetI基因(例如,编码与SEQ ID NO:10的编码产物具有至少80%同一性的多肽的多核苷酸)。在一些实施方案中,所述多核苷酸还包含SzACS2基因(例如,编码与SEQ ID NO:11的编码产物具有至少80%同一性的多肽的多核苷酸)。
在具体的实例中,编码功能性PUFA合酶的组分的多核苷酸包括:与SEQ ID NO:2和/或SEQ ID NO:3至少70%相同的多核苷酸;与SEQ ID NO:5和/或SEQ ID NO:6至少70%相同的多核苷酸;与SEQ ID NO:8、SEQ ID NO:9、和/或SEQ ID NO:13至少70%相同的多核苷酸;和/或编码与SEQ ID NO:10至少80%相同的多肽的多核苷酸。在某些实例中,多核苷酸还包括编码与SEQ ID NO:11具有至少80%同一性的多肽的多核苷酸。
在具体的实例中,编码功能性PUFA合酶的组分的多核苷酸在严格条件(例如,极严格条件)下与SEQ ID NO:2和/或SEQ ID NO:3;SEQ ID NO:5和/或SEQ ID NO:6;SEQ ID NO:8、SEQ ID NO:9、和/或SEQ ID NO:13;SEQ ID NO:10;和/或SEQ ID NO:11杂交。在某些实例中,多核苷酸在严格条件下与SEQ ID NO:2;SEQ ID NO:5;SEQ ID NO:8;SEQ ID NO:10;和SEQ ID NO:11中的全部杂交。
本文中还描述了产生转基因植物的方法,其中所述方法包括将编码功能性PUFA合酶的组分的多核苷酸导入植物细胞中;和从所述植物细胞再生植物。在一些实施方案中,多核苷酸在单个载体中被转化到作物细胞中。在其他实施方案中,多核苷酸介由多个载体转化到作物细胞中,从而生成在不同的事件中包含组成基因的植物。在一些实施方案中,介由常规育种,通过基因渗入将 多核苷酸导入作物细胞中。在具体的实例中,通过育种杂交来优化子代植物的PUFA概貌(例如,通过选择产生DHA(C22:6,n-3)和/或EPA(C20:5,n-3)的植物),从而重构功能性PUFA合酶系统。
在一些实施方案中,遗传修饰的植物、其后代、细胞、组织、种子、或部分,或从该遗传修饰的植物、其后代、种子、细胞、组织、或部分获得的非天然油(例如,生籽油),含有可检出量的DHA、DPA(n-6)(C22:5,n-6)、和/或EPA。在具体的实施方案中,遗传修饰的植物、其后代、细胞、组织、种子、或部分或油包含这样的脂肪酸概貌,其具有按重量计0.01%到15%的DHA(例如,按重量计0.05%到10%的DHA;或0.05%到5%的DHA)。在具体的实施方案中,遗传修饰的植物、其后代、细胞、组织、种子、或部分或油包含这样的脂肪酸概貌,其具有按重量计0.01%到10%的EPA(例如,按重量计0.05%到5%的EPA;或0.05%到1%的EPA)。在具体的实施方案中,遗传修饰的植物、其后代、细胞、组织、种子、或部分或油包含这样的脂肪酸概貌,其具有按重量计0.01%到10%的DPA(n-6)(例如,按重量计0.01%到5%的DPA(n-6);或0.01%到1%的DPA(n-6))。在具体的实施方案中,遗传修饰的植物、其后代、细胞、组织、种子、或部分或油包含这样的脂肪酸概貌,其具有按总脂肪酸的重量计从10:1到1:30(例如,从约2:1到约1:10、从约1:1到约1:12、从约2:1到约1:11、从约1:1.5到约1:5、从约6:1到约1:6.5、和约1:1.25)的EPA:DHA比率。在具体的实施方案中,遗传修饰的植物、其后代、细胞、组织、种子、或部分或油包含具有按总脂肪酸的重量计从1:1到1:10(例如,从约1:2到约1:5、从约1:3到约1:5、约1:3到约1:6、和约1:5)的DPA(n-6):DHA比率的脂肪酸概貌。在具体的实施方案中,遗传修饰的植物,其后代、细胞、组织、种子、或部分或油包含具有按油的重量计70%到99%甘油三酯的脂肪酸概貌。
在一些实施方案中,可检出量的DHA、DPA(n-6)和/或EPA也在从遗传修饰的植物获得的植物商业产品(例如,油产品、特种油产品、谷物、和粕)中被发现。从本文中描述的遗传修饰植物获得的含LC-PUFA的植物油可用作低成本的DHA/EPA来源,用于旨在改进人类营养的食品成分。从本文中描述的遗传修饰植物获得的油和油料种子可作为低成本、高质量的ω-3 LC-PUFA来源用于动物饲料和水产养殖,或作为交酯化的原料来构建富含ω-3 LC-PUFA的结构化脂质,以供药品和营养食品应用。
本文中还描述了用于产生包含至少一种LC-PUFA的油的方法,其中所述方法包括培植本文中描述的遗传修饰植物(例如,油料植物)、其后代、细胞、组织、或部分,和/或从本文中描述的遗传修饰的植物回收油(例如,种子油)。
本文中还描述了向个体提供包含至少一种LC-PUFA的补充剂或治疗产品的方法,其中所述方法包括向个体提供本文中描述的遗传修饰的植物、其后代、细胞、组织、或部分、本文中描述的油、本文中描述的种子、本文中描述的食物产品、本文中描述的功能性食品、或本文中描述的药物产品。在一些实施方案中,此类实施方案中包含的LC-PUFA为DHA、DPA(n-6)、和/或EPA。
根据下面援引附图展开的若干实施方案的详细说明,能够更清楚地了解前述特征和其他特征。
附图简述
图1包括了在某些实施方案中使用的示例性PUFA合酶构建体的总结。在每个加框的PTU上示出转录的方向,在每个PTU上标示出编码序列,并标明了所使用的启动子/终止子组合。
图1a包括按“取向1”排列的PUFA合酶构建体。
图1b包括按“取向2”排列的构建体。
图1c包括按“取向3”排列的构建体。
图2包括14C-标记的EPA、DHA、和DPA标准品的HPLC放射性痕量分析。EPA和DHA的保留时间分别标记在约5.3和约6.1分钟处。
图3包括用PUFA合酶和HetI转基因转化的拟南芥事件T2种子中的LC-PUFA含量的总结。每个竖条代表来自一个拟南芥事件的LC-PUFA含量;黑色=DHA,深灰=EPA,浅灰=DPA(n-6)。
图4包括来自选定的转基因拟南芥的产DHA T2系的T3种子子代的LC-PUFA含量的图示。每个圆圈代表来自一株纯合T2植物的T3种子。灰条代表每个T3种子系的平均LC-PUFA含量。
图5包括来自四株纯合T1芥花植物和五株半合T1芥花植物的个体T2种子的LC-PUFA含量的图示。每个系分析了48粒种子。“PUFA”代表DHA+EPA+DPA(n=6)的总和。纵轴相应于LC-PUFA含量,表示为总FAME的%。
序列表
随附序列表中列出的核酸序列使用如37 C.F.R.§1.822规定的核苷酸碱基的标准字母缩写来表示。每个核酸序列仅示出了一条链,但应理解对被展示的链的任何提述也包括其互补链。在所附序列表中:
SEQ ID NO:1示出了一个示例性PFA1蛋白的氨基酸序列:
MDTRIAIVGMSAILPSGENVRESWEAIRDGLDCLSDLPADRVDVTAYYNPEKTTKDKIYCKRGGFIPEYDFDAREFGLNMFQMEDSDANQTISLLKVKEALTDANIPAFSSGKKNIGCVLGIGGGQKASHEFYSRLNYVVVDKVLRKMGLPEEDVAAAVDKYKASFPEWRLDSFPGFLGNVTAGRCCNTFNMEGMNCVVDAACASSLIAVKVAIEELLYGDCDAMIAGATCTDNSIGMYMAFSKTPVFSTDPSVKAYDAATKGMLIGEGSAMLVLKRYADAVRDGDTVHAVIKGCASSSDGKAAGIYTPTISGQEEALRRAYARANVDPATVTLVEGHGTGTPVGDKIELTALSNLFSKAFSANGGGAEEAEQVAVGSIKSQIGHLKAVAGLAGLVKVVLALKHKTLPQTINVDKPPSLVDGTPIQQSPLYVNTMNRPWFTPVGVPRRAGVSSFGFGGANYHAVLEEFEPEHESAYRYNNLPQVALLHAGDVATLAATVRAKLALATAEQEEARVVKNADYIAYHRFLDECKLRGAVPQAHARVGLLVRDLSSLIAVLEAAAAKLAGEESATEWTVSVATGEAAFRVRGVATEANVAALFSGQGAQYTHMFSDVAMNWPPFRESVAAMDRAQRERFGRPAKRVSSVLYPRKPYGDEPRQDHKEISQTRYSQPATLACSVGAFDIFKAAARAPSFAAGHSLGEFAALYAAGSLDRDAVFDLVCARAKAMSDFTAQASSSGGAMAAVIGAKADQLSLGGAPDVWLANSNSPSQTVITGTAEAVAAASDKLRCSGNFRVVPLACEAAFHSPHMRGAEQTFASALAQAPVSAPAAARFYSNVTGGAAVTSPADVKTNLGKHMTSPVQFVQQVRAMHAAGARVFVEFGPKQVLSRLVKETLGEAGDVVTVAVNPDSAKDSDTQLRQAALTLAVAGVPLKDFDRWQLPDATRLEPVKKKKTTLRLSAATYVSAKTLRQREAVLNDGYTVSGATAVVKEVDTANEERLVRQAQDLQRQLAEASTAAQAAQSKVAELERTIQDLERKVQQQQQEKGENSDSNAAAEVLRRHKELLQRMLQDCDEQAVPVATVVPTPTSSPTPTSSPVSGNSKSTRGSADLQALLAKAETVVMAVLAAKTGYEADMVEADMDLEAELGIDSIKRVEILSEVQGQLGVEAKDVDALSRTRTVGEVVDAMKAEIVAASGGSAPAVPSAPAASAAPTPAASTAPSADLQALLSKAETVVMAVLAAKTGYEADMVEADMDLEAELGIDSIKRVEILSEVQGQLGVEAKDVDALSRTRTVGEVVDAMKAEIVAASAGSAPAPAVPSAPAASAAPTPAASTAPSADLQALLSKAETVVMAVLAAKTGYEADMVEADMDLEAELGIDSIKRVEILSEVQGQLGVEAKDVDALSRTRTVGEVVDAMKAEIVAASGGSAPAPAVPSAPAASAAPTPAAATAPSADLQALLAKAETVVMAVLAAKTGYEADMVEADMDLEAELGIDSIKRVEILSEVQGQLGVEAKDVDALSRTRTVGEVVDAMKAEIVAASAGSAPAPAVPSAPAASAAPTPAASTAPSADLQALLSKAETVVMAVLAAKTGYEADMVEADMDLEAELGIDSIKRVEILSEVQGQLGVEAKDVDALSRTRTVGEVVDAMKAEIVAASGGSAPAAAVPSAPAASAAPTPATAPSADLQALLSKAETVVMAVLAAKTGYEADMVEADMDLEAELGIDSIKRVEILSEVQGQLGVEAKDVDALSRTRTVGEVVDAMKAEIVAASGGSAPAAPSAPALLPTLFGSECEDLSLTFPVITTLPLPAELVLAEGGARPVVVVDDGSALTSSLVSSLGDRAVLLQVQSSSACSPRSTTHKLVTVADRSEAALQAALTSVEAQFGKVGGFVFQFGDDDVQAQLGWALLAAKHLKTSLSEQIEGGRTFFVAVARLDGQLGLSGKSTTATVDLSRAQQGSVFGLCKTLDLEWPAVFCRGIDLAADLDAAQAARCLLGELSDPDVAVRESGYSASGQRCTTTTKSLTTGKPHQPISSSDLFLVSGGARGITPLCVRELAQRVGGGTYVLIGRSELPTTEPAWAVGVESGKPLEKAALAFLKAEFAAGRGAKPTPMLHKKLVGAVVGAREVRASLAEITAQGATAVYESCDVSSAAKVREMVERVQQQGGRRVSGVFHASGVLRDKLVENKSLADFSAVYDTKVGGLINLLACVDLAQLRHLVLFSSLAGFHGNVGQSDYAMANEALNKLAAHLSAVHPQLCARSICFGPWDGGMVTPALKANFIRMGIQIIPRQGGAQTVANMLVSSSPGQLLVGNWGVPPVVPSATEHTVLQTLRQSDNPFLDSHVIQGRRVLPMTLAVGYMAHQAQSIYAGHQLWAVEDAQLFKGIAIDNGADVPVRVELSRRKEEQEDAGKVKVKVQVLLKSQVNGKSVPAYKATVVLSPAPRPSVITRDFDLTPDPACTEHDLYDGKTLFHGKAFQGIEQVLSATPKQLTAKCRNLPLTPEQRGQFVVNLSQQDPFQADIAFQAMLVWARMLRQSAALPNNCERFDFYKPMAPGATYYTSVKLASASPLV
DSVCKCTVAMHDEQGEVYFSARASVVLNKTLTY
SEQ ID NO:2示出了一个示例性PFA1基因的核苷酸序列,在本文中称为PFA1 v1,其分离自破囊壶菌——裂殖壶菌属物种(如ATCC登录号PTA-9695代表的):
ATGGATACTCGCATCGCGATCGTGGGGATGTCGGCGATCCTGCCGAGCGGGGAGAACGTGCGCGAGAGCTGGGAGGCGATCCGCGATGGGCTGGATTGCCTGAGCGATCTGCCGGCGGACCGCGTGGACGTGACGGCCTACTACAACCCGGAGAAGACGACCAAGGACAAGATCTACTGCAAGCGCGGCGGGTTCATCCCGGAGTACGACTTCGACGCGCGTGAGTTCGGGCTCAACATGTTCCAGATGGAGGACTCGGACGCCAACCAGACGATCTCGCTGCTCAAGGTGAAGGAGGCGCTGACGGACGCCAACATCCCGGCGTTCTCGAGCGGTAAGAAGAACATCGGCTGCGTGCTGGGCATCGGCGGCGGCCAGAAGGCGAGCCACGAGTTCTACTCGCGGCTCAACTACGTGGTCGTGGACAAGGTGCTGCGCAAGATGGGCCTGCCGGAGGAAGACGTGGCGGCGGCGGTGGACAAGTACAAGGCGAGTTTCCCCGAGTGGCGCCTCGACTCTTTCCCCGGGTTCCTGGGCAACGTCACGGCGGGGCGCTGCTGCAATACCTTCAACATGGAGGGCATGAACTGCGTCGTGGACGCGGCCTGCGCGTCGTCGCTGATCGCGGTCAAAGTGGCGATCGAGGAGCTGCTCTACGGCGACTGCGATGCGATGATCGCGGGTGCCACCTGCACGGACAACTCGATCGGGATGTACATGGCCTTCTCCAAGACGCCCGTGTTTTCCACGGACCCGAGCGTCAAGGCGTACGACGCCGCCACCAAAGGCATGCTCATCGGCGAGGGCTCGGCGATGCTCGTGCTGAAGCGCTACGCGGACGCCGTGCGCGACGGCGACACCGTGCACGCCGTCATCAAGGGGTGCGCGTCCTCGAGCGACGGCAAGGCGGCGGGCATCTACACGCCGACAATCTCGGGCCAGGAGGAGGCCCTGCGCCGCGCCTACGCCCGCGCCAATGTCGACCCGGCCACTGTGACGCTGGTGGAGGGCCACGGCACGGGTACGCCGGTGGGCGACAAGATCGAGCTGACGGCGCTGAGCAACCTCTTCTCCAAGGCGTTTTCTGCCAACGGTGGCGGCGCGGAGGAAGCAGAGCAGGTGGCGGTGGGCAGCATCAAGTCGCAGATCGGGCACCTCAAGGCGGTGGCCGGGCTGGCCGGGCTGGTCAAGGTGGTGCTGGCGCTCAAGCACAAGACGCTGCCGCAGACGATCAACGTCGACAAGCCGCCGTCGCTGGTGGACGGGACCCCGATCCAGCAGTCGCCGCTGTACGTCAACACGATGAACCGCCCCTGGTTCACGCCCGTAGGGGTGCCGCGCCGCGCCGGCGTGTCGTCGTTTGGGTTTGGCGGTGCCAACTACCACGCCGTGCTGGAGGAGTTTGAGCCCGAGCACGAGAGCGCGTACCGGTACAACAACCTGCCGCAGGTGGCGCTGCTGCACGCGGGGGACGTCGCGACCTTGGCGGCGACGGTTCGCGCCAAGCTGGCGCTGGCCACCGCCGAGCAGGAAGAGGCGCGTGTGGTGAAGAACGCGGACTACATCGCGTACCACCGGTTCCTGGACGAGTGCAAGTTGCGCGGCGCTGTGCCGCAGGCGCACGCGCGGGTGGGACTGCTCGTACGGGACCTGAGCTCGCTCATCGCCGTGCTCGAGGCCGCTGCCGCCAAGCTCGCGGGCGAAGAGAGCGCGACGGAGTGGACGGTCAGCGTTGCTACGGGCGAGGCGGCCTTCCGCGTGCGCGGTGTGGCTACGGAGGCCAACGTGGCGGCGCTGTTCTCGGGCCAGGGCGCGCAGTACACGCACATGTTCAGCGACGTGGCGATGAACTGGCCCCCGTTCCGCGAGAGCGTCGCCGCCATGGACCGCGCCCAGCGCGAGCGCTTCGGGCGGCCTGCCAAGCGCGTGAGCAGCGTGCTGTACCCGCGCAAGCCGTACGGCGACGAACCGCGGCAGGACCACAAGGAGATCTCGCAAACGCGCTACTCGCAGCCCGCAACGCTCGCGTGCTCGGTCGGCGCCTTTGACATCTTCAAAGCGGCGGGACTGGCGCCGAGCTTTGCGGCGGGCCACTCGCTGGGCGAGTTTGCGGCGCTCTACGCGGCCGGGTCGCTCGATCGCGACGCCGTCTTCGACCTGGTCTGCGCGCGCGCCAAGGCCATGAGCGACTTCACGGCCCAGGCCAGCAGCAGCGGTGGCGCCATGGCGGCCGTGATTGGCGCCAAGGCGGACCAGCTCTCGCTGGGTGGCGCGCCCGACGTGTGGCTCGCCAACAGCAACTCGCCCTCGCAGACCGTGATCACGGGAACCGCCGAAGCAGTGGCTGCGGCCTCTGACAAGTTGCGCTGCAGCGGCAACTTCCGCGTCGTGCCTCTGGCCTGCGAGGCGGCCTTCCACTCGCCGCACATGCGCGGCGCGGAGCAGACGTTTGCGTCGGCGCTCGCGCAGGCGCCCGTGTCGGCACCGGCGGCTGCTCGGTTCTACTCTAACGTGACGGGGGGCGCCGCGGTAACCTCGCCCGCGGACGTCAAAACGAACCTGGGCAAGCACATGACGAGCCCTGTGCAGTTCGTGCAGCAGGTGCGAGCCATGCACGCGGCGGGCGCGCGTGTGTTTGTGGAGTTTGGGCCCAAGCAGGTCCTGTCGCGCCTCGTCAAGGAGACCCTTGGCGAGGCCGGCGACGTGGTCACGGTCGCCGTCAACCCAGACTCGGCCAAGGACAGCGACACGCAGCTGCGCCAGGCGGCGCTCACGTTGGCGGTCGCCGGCGTGCCGCTCAAGGACTTTGACCGCTGGCAGCTGCCGGATGCCACGCGCCTCGAGCCTGTCAAGAAGAAGAAGACCACGTTGCGGCTCTCGGCAGCCACCTACGTCTCCGCCAAGACGTTGCGCCAGCGCGAGGCCGTGCTCAACGACGGCTACACTGTCAGTGGTGCCACGGCGGTAGTCAAGGAAGTGGACACGGCCAACGAGGAGCGTCTCGTCCGCCAAGCCCAGGATCTCCAGCGCCAGCTCGCGGAGGCCTCGACGGCAGCCCAGGCGGCGCAGTCCAAGGTCGCGGAGCTCGAGCGCACGATCCAGGACTTGGAGCGCAAGGTGCAGCAGCAGCAGCAAGAGAAGGGTGAGAACTCAGACAGCAACGCTGCCGCCGAAGTGCTGCGGCGCCACAAGGAGCTGCTCCAGCGCATGCTGCAGGACTGTGACGAGCAGGCAGTGCCCGTAGCCACGGTGGTTCCGACACCTACGTCCTCCCCGACGCCTACATCCTCACCCGTATCCGGCAACAGCAAGAGCACTCGTGGCAGTGCTGATCTGCAAGCGCTGCTGGCCAAGGCGGAGACTGTGGTGATGGCTGTGCTGGCTGCCAAGACTGGCTACGAGGCCGACATGGTTGAGGCGGACATGGACCTGGAGGCCGAGCTCGGCATCGACTCGATCAAGCGCGTGGAGATCCTTTCCGAGGTGCAGGGCCAGCTGGGCGTCGAGGCCAAGGACGTGGATGCGCTGAGCCGCACGCGCACGGTCGGTGAGGTTGTGGACGCCATGAAGGCGGAGATCGTGGCTGCCTCTGGTGGTAGTGCTCCTGCGGTTCCTTCGGCGCCCGCTGCTTCTGCAGCTCCGACTCCCGCTGCTTCGACTGCGCCTTCTGCTGATCTGCAAGCGCTGCTGTCCAAGGCGGAGACTGTGGTGATGGCTGTGCTGGCGGCCAAGACTGGCTACGAGGCCGACATGGTCGAGGCGGACATGGACCTGGAGGCCGAGCTCGGCATCGACTCGATCAAGCGCGTGGAGATCCTCTCGGAGGTGCAGGGCCAGCTGGGCGTCGAGGCCAAGGACGTGGATGCGCTGAGCCGCACGCGCACGGTCGGTGAGGTTGTGGATGCCATGAAGGCGGAAATCGTGGCTGCCTCTGCTGGTAGTGCTCCTGCTCCTGCTGTTCCTTCGGCGCCCGCTGCTTCTGCAGCTCCGACTCCCGCTGCTTCGACTGCGCCTTCTGCTGATCTGCAAGCGCTGCTGTCCAAGGCGGAGACGGTGGTGATGGCTGTGCTGGCGGCCAAGACTGGCTACGAGGCCGACATGGTCGAGGCGGACATGGACCTGGAGGCCGAGCTCGGCATCGACTCGATCAAGCGCGTGGAGATCCTCTCGGAGGTGCAGGGCCAGCTGGGCGTCGAGGCCAAGGACGTGGATGCGCTGAGCCGCACGCGCACGGTCGGTGAGGTTGTGGATGCCATGAAGGCGGAAATCGTGGCTGCCTCTGGTGGTAGTGCTCCTGCTCCTGCGGTTCCTTCGGCGCCCGCTGCTTCTGCAGCTCCGACTCCCGCGGCTGCGACAGCGCCTTCTGCTGATCTGCAAGCGCTGCTGGCCAAGGCGGAGACTGTGGTGATGGCTGTGCTGGCGGCCAAGACTGGCTACGAGGCCGACATGGTCGAGGCGGACATGGACCTGGAGGCCGAGCTCGGCATCGACTCGATCAAGCGCGTGGAGATCCTTTCCGAGGTGCAGGGCCAGCTGGGCGTCGAGGCCAAGGACGTAGATGCGCTGAGCCGCACGCGCACGGTCGGTGAGGTTGTGGATGCCATGAAGGCGGAGATCGTGGCTGCCTCTGCTGGTAGTGCTCCTGCTCCTGCTGTTCCTTCGGCGCCCGCTGCTTCTGCAGCTCCGACTCCCGCTGCTTCGACTGCGCCTTCTGCTGATCTGCAAGCGCTGCTGTCCAAGGCGGAGACTGTGGTGATGGCTGTGCTGGCGGCCAAGACTGGCTACGAGGCCGACATGGTCGAGGCGGACATGGACCTGGAGGCCGAGCTCGGCATCGACTCGATCAAGCGCGTGGAGATCCTCTCGGAGGTGCAGGGCCAGCTGGGCGTCGAGGCCAAGGACGTGGATGCGCTGAGCCGCACGCGCACGGTCGGTGAGGTTGTGGATGCCATGAAGGCGGAAATCGTGGCTGCCTCTGGTGGTAGTGCTCCTGCTGCTGCTGTTCCTTCGGCGCCCGCTGCTTCTGCAGCTCCGACTCCTGCGACTGCGCCTTCTGCTGATCTGCAAGCGCTGCTGTCCAAGGCGGAGACTGTGGTGATGGCTGTGCTGGCGGCCAAGACTGGCTACGAGGCCGACATGGTCGAGGCGGACATGGACCTGGAGGCCGAGCTCGGCATCGACTCGATCAAGCGCGTGGAGATCCTTTCCGAGGTGCAGGGCCAGCTGGGCGTCGAGGCCAAGGACGTAGATGCGCTGAGCCGCACGCGCACGGTCGGTGAAGTGGTGGACGCCATGAAGGCGGAGATCGTGGCTGCCTCTGGTGGTAGTGCTCCTGCTGCTCCTTCGGCGCCCGCGCTTCTTCCAACGCTGTTTGGTTCCGAGTGCGAGGACCTGTCTCTGACCTTTCCCGTGATAACGACCCTGCCGCTTCCTGCAGAGCTTGTGCTGGCCGAGGGCGGCGCTCGCCCTGTAGTCGTGGTGGATGATGGATCTGCACTCACCTCGTCGCTGGTGTCCTCGCTCGGCGATCGTGCGGTGCTGCTGCAGGTGCAGTCTTCCTCTGCCTGCTCGCCGCGCTCGACCACGCACAAGTTGGTGACCGTAGCAGACCGCTCTGAAGCGGCGCTACAGGCGGCGCTCACGTCCGTCGAGGCGCAGTTCGGCAAGGTGGGTGGCTTTGTGTTCCAGTTCGGCGACGACGACGTGCAAGCGCAGCTCGGCTGGGCGCTGCTCGCGGCCAAGCACCTCAAAACTTCGCTGTCAGAACAGATCGAGGGCGGTCGCACCTTTTTCGTGGCCGTCGCGCGGCTCGACGGCCAGCTGGGGCTCTCCGGCAAGTCGACGACCGCTACCGTTGATCTCTCCCGCGCGCAGCAGGGCAGCGTGTTCGGCCTGTGCAAGACACTCGACCTGGAGTGGCCCGCTGTCTTCTGCCGCGGAATCGACCTGGCCGCCGACCTCGACGCCGCACAGGCCGCGCGGTGCCTGCTGGGCGAGCTGTCAGACCCCGACGTGGCCGTGCGCGAGTCTGGTTACTCCGCCTCGGGCCAGCGCTGCACGACAACTACGAAGTCGCTGACTACGGGCAAGCCGCACCAGCCGATCTCCTCGTCGGACCTCTTTCTGGTGTCGGGCGGCGCGCGCGGCATCACCCCGCTGTGCGTGCGCGAGCTGGCGCAGCGCGTGGGCGGCGGCACGTACGTGCTCATCGGCCGCTCGGAGCTGCCCACGACGGAGCCTGCCTGGGCGGTCGGCGTGGAGTCTGGCAAGCCGCTGGAGAAGGCCGCGCTGGCGTTCCTGAAGGCGGAGTTTGCAGCGGGCCGCGGGGCCAAGCCGACGCCGATGCTGCACAAGAAGCTCGTGGGCGCCGTGGTCGGAGCGCGCGAGGTGCGAGCCTCGCTCGCCGAGATCACTGCACAGGGCGCCACGGCTGTGTACGAGTCGTGCGACGTGAGCTCTGCCGCCAAGGTGCGTGAGATGGTAGAGCGCGTGCAGCAGCAGGGCGGGCGGCGCGTGTCGGGCGTGTTCCACGCGTCGGGCGTGCTGCGCGACAAGCTCGTGGAGAACAAGTCGCTGGCGGACTTCAGCGCCGTGTACGACACCAAGGTGGGCGGCCTCATCAACCTGCTGGCCTGCGTGGACCTGGCGCAGCTGCGTCACCTCGTGCTCTTCAGCTCGCTCGCGGGCTTCCACGGCAACGTCGGGCAGTCGGACTACGCAATGGCCAACGAGGCGCTCAACAAGCTGGCGGCGCACCTGTCGGCGGTGCACCCGCAGCTGTGCGCGCGCTCGATCTGCTTCGGACCGTGGGACGGCGGCATGGTGACCCCCGCGCTCAAGGCCAACTTCATCCGCATGGGCATCCAGATCATCCCGCGCCAAGGCGGCGCGCAGACCGTCGCCAACATGCTCGTCAGTAGCTCCCCCGGTCAGCTGCTCGTGGGCAACTGGGGCGTGCCACCCGTCGTGCCGAGTGCCACCGAGCACACCGTGCTGCAGACGCTCCGCCAGAGCGACAACCCCTTCCTCGACTCGCACGTGATCCAGGGCCGCCGCGTGCTGCCCATGACCCTGGCCGTGGGCTACATGGCGCACCAGGCGCAGAGCATCTACGCGGGCCACCAGCTGTGGGCCGTCGAGGACGCCCAGCTCTTCAAGGGCATCGCCATCGACAATGGCGCCGACGTGCCCGTGCGCGTGGAGCTGTCGCGCCGCAAGGAGGAGCAGGAGGACGCCGGCAAGGTCAAGGTCAAGGTGCAGGTGCTGCTCAAATCGCAGGTCAACGGCAAGTCGGTGCCCGCGTACAAGGCGACCGTCGTGCTGTCCCCTGCGCCGCGCCCCAGCGTCATCACGCGTGACTTCGACCTCACCCCGGACCCGGCCTGCACGGAGCACGACCTCTACGACGGCAAGACGCTCTTCCACGGCAAGGCCTTCCAGGGCATCGAGCAGGTGCTCTCGGCGACGCCCAAGCAGCTCACCGCCAAGTGCCGCAATTTGCCCCTCACGCCCGAGCAGCGCGGCCAGTTCGTCGTTAACCTCAGCCAGCAGGACCCGTTCCAGGCGGACATTGCGTTCCAGGCGATGCTCGTCTGGGCGCGCATGCTGCGCCAATCGGCGGCCCTGCCCAACAACTGCGAGCGCTTCGACTTTTACAAGCCGATGGCCCCGGGCGCCACCTACTACACGTCGGTCAAGCTGGCCTCGGCCTCACCCTTGGTGGACTCTGTGTGCAAGTGCACCGTGGCGATGCACGATGAGCAAGGTGAGGTGTACTTTTCTGCTCGT
GCCAGCGTCGTCCTCAACAAGACCCTCACGTACTAA
SEQ ID NO:3示出了示例性的植物优化的PFA1基因的核苷酸序列,在本文中称为PFA1 v2:
ATGGATACCAGAATTGCCATTGTGGGAATGAGTGCGATCCTTCCGAGTGGTGAGAATGTTAGAGAGAGCTGGGAGGCCATCAGAGATGGCTTGGATTGTCTGTCTGATCTGCCTGCGGATCGTGTGGATGTGACTGCCTATTACAATCCAGAGAAAACGACCAAGGACAAAATCTACTGCAAAAGAGGTGGGTTCATCCCTGAGTATGACTTTGATGCTCGTGAGTTTGGCCTCAACATGTTCCAGATGGAAGATTCTGATGCGAACCAGACCATCTCATTGCTCAAGGTGAAGGAAGCTCTCACCGATGCCAACATACCTGCTTTCTCAAGTGGCAAAAAGAACATTGGTTGTGTTCTTGGCATAGGTGGAGGTCAGAAGGCGTCACATGAGTTCTACTCCAGACTCAACTATGTTGTGGTTGACAAAGTGCTCAGAAAGATGGGTTTGCCAGAGGAAGATGTGGCAGCTGCGGTGGACAAGTACAAGGCGAGCTTCCCAGAGTGGAGGCTTGATTCTTTTCCTGGTTTCTTGGGCAATGTTACCGCTGGCAGATGTTGCAACACCTTCAACATGGAGGGCATGAACTGTGTCGTTGACGCTGCCTGTGCTTCAAGCCTGATTGCGGTCAAGGTGGCAATAGAAGAGCTTCTCTATGGTGACTGTGATGCCATGATTGCTGGTGCCACCTGCACAGACAATTCAATAGGGATGTACATGGCCTTCTCCAAGACGCCTGTTTTCTCTACGGACCCGAGTGTCAAAGCGTATGATGCTGCCACCAAAGGCATGTTGATTGGTGAAGGATCTGCGATGCTTGTTCTGAAGAGATATGCGGATGCTGTCAGAGATGGTGACACTGTTCATGCTGTCATCAAGGGCTGTGCTTCCTCAAGTGATGGAAAAGCAGCTGGAATCTACACACCGACAATCAGCGGACAAGAAGAGGCTCTCCGTAGAGCCTATGCACGTGCCAATGTGGACCCAGCCACTGTCACTCTTGTTGAAGGACATGGAACTGGCACTCCGGTTGGGGACAAGATTGAACTCACAGCTCTGAGCAATCTCTTCTCCAAAGCGTTTTCTGCGAATGGAGGTGGAGCTGAGGAAGCTGAGCAAGTTGCTGTTGGCAGCATCAAGAGCCAGATAGGGCACCTCAAAGCGGTTGCTGGATTGGCTGGATTGGTCAAAGTGGTCCTTGCTCTCAAGCACAAGACATTGCCTCAGACGATCAATGTGGACAAGCCACCTTCACTGGTGGATGGGACACCGATTCAACAGTCCCCTTTGTACGTCAACACCATGAACCGTCCCTGGTTCACTCCGGTTGGGGTTCCGAGGAGAGCTGGCGTTTCCTCATTTGGTTTTGGAGGTGCGAACTACCATGCTGTGCTTGAAGAGTTTGAACCTGAACATGAGAGTGCTTACCGTTACAACAATCTTCCCCAAGTTGCTCTCCTTCATGCTGGGGATGTTGCAACTCTTGCTGCCACAGTTAGGGCAAAACTGGCATTGGCCACTGCTGAGCAAGAAGAGGCTAGAGTTGTGAAGAACGCTGATTACATTGCATACCATAGGTTCCTTGATGAATGTAAGTTGAGAGGAGCTGTTCCCCAAGCCCACGCAAGGGTTGGACTTCTGGTGAGGGACCTGTCCTCTCTCATTGCGGTTTTGGAAGCAGCTGCAGCCAAACTTGCTGGAGAAGAGTCAGCAACGGAATGGACGGTCTCAGTTGCCACTGGTGAGGCTGCATTCAGAGTTAGGGGTGTTGCCACAGAGGCCAATGTTGCTGCACTTTTCTCTGGCCAAGGAGCGCAGTACACTCACATGTTCTCAGATGTTGCCATGAACTGGCCTCCGTTCAGAGAGAGTGTTGCTGCGATGGACAGAGCGCAGAGAGAACGTTTTGGGAGGCCAGCCAAAAGAGTCTCCAGTGTTCTCTATCCGAGAAAACCTTATGGAGATGAGCCAAGGCAAGATCACAAAGAGATTTCTCAGACGCGTTACTCTCAGCCAGCAACCCTCGCTTGCTCTGTCGGTGCCTTTGACATCTTCAAAGCAGCTGGATTGGCTCCTTCTTTTGCAGCTGGACATTCCCTGGGAGAGTTTGCAGCTCTCTATGCAGCTGGTTCATTGGATCGTGATGCTGTGTTTGACTTGGTTTGCGCTAGGGCAAAGGCCATGTCTGATTTCACTGCTCAAGCCAGCTCCAGTGGAGGTGCTATGGCAGCGGTCATAGGAGCCAAGGCTGATCAGCTCAGCCTTGGTGGAGCACCTGATGTTTGGCTGGCCAATAGCAACAGTCCATCACAGACGGTGATCACGGGAACTGCTGAAGCAGTGGCAGCTGCATCTGACAAACTTCGTTGTAGTGGAAACTTCAGAGTGGTTCCTCTTGCTTGTGAAGCTGCCTTCCATTCACCACACATGCGTGGAGCAGAGCAGACATTTGCGTCTGCGCTTGCTCAAGCTCCAGTGTCCGCACCTGCAGCTGCCAGATTCTACAGCAACGTCACTGGTGGAGCTGCAGTCACCTCTCCTGCTGATGTCAAAACGAACCTTGGGAAACACATGACTTCTCCTGTGCAGTTTGTGCAGCAAGTCCGTGCCATGCACGCAGCTGGAGCAAGGGTGTTTGTTGAGTTCGGTCCCAAGCAAGTCCTTTCTCGTTTGGTCAAAGAGACCCTTGGGGAAGCTGGAGACGTGGTCACGGTGGCTGTCAACCCAGACTCAGCCAAGGATTCAGACACCCAGCTGAGACAAGCAGCTCTCACCTTGGCTGTGGCTGGTGTTCCACTCAAAGACTTTGACAGATGGCAGCTTCCCGATGCCACTCGTCTTGAGCCTGTCAAGAAAAAGAAAACAACCTTGAGGTTGAGTGCTGCCACCTATGTCTCTGCCAAGACCTTGAGGCAGAGGGAGGCTGTGCTCAATGATGGTTACACTGTGAGTGGTGCCACAGCGGTTGTCAAAGAAGTGGACACTGCAAACGAAGAGAGACTTGTCAGACAAGCACAAGACCTCCAGCGTCAGCTTGCTGAAGCAAGCACTGCAGCCCAAGCAGCTCAATCCAAGGTCGCTGAATTGGAGAGGACAATCCAAGACTTGGAGAGGAAGGTTCAACAGCAACAGCAAGAGAAAGGTGAGAACTCTGACTCCAATGCAGCTGCGGAAGTGCTTAGGAGACACAAGGAACTGCTCCAGAGGATGCTCCAAGATTGTGATGAGCAAGCAGTTCCCGTGGCAACAGTCGTTCCAACACCCACTTCTTCCCCTACACCAACATCCTCACCAGTTAGCGGAAACAGCAAGTCCACCAGAGGATCAGCCGACCTCCAAGCACTCCTGGCGAAAGCTGAGACGGTCGTGATGGCAGTTTTGGCTGCAAAGACTGGCTACGAGGCAGACATGGTGGAAGCAGATATGGATTTGGAGGCTGAGCTTGGGATTGATTCCATCAAAAGGGTGGAGATCCTGAGTGAAGTCCAAGGGCAGCTCGGAGTTGAAGCGAAGGATGTTGATGCCCTTTCACGTACAAGGACCGTCGGAGAGGTTGTGGATGCCATGAAGGCTGAGATTGTTGCTGCATCTGGTGGGTCAGCACCTGCTGTCCCCTCTGCACCAGCTGCATCAGCGGCTCCGACACCTGCTGCGAGTACCGCTCCGAGTGCTGATCTTCAGGCTCTCCTGTCTAAAGCCGAGACGGTTGTGATGGCTGTGCTCGCAGCGAAAACTGGTTACGAGGCTGACATGGTGGAAGCTGACATGGACCTTGAAGCGGAGTTGGGAATAGATAGCATCAAACGTGTTGAAATCTTGTCTGAGGTCCAAGGACAGTTGGGTGTGGAAGCCAAAGATGTCGATGCGCTTTCAAGAACCAGAACCGTCGGTGAGGTCGTGGACGCCATGAAGGCTGAGATTGTGGCTGCCTCTGCTGGCTCCGCTCCTGCTCCAGCAGTTCCTTCTGCACCTGCAGCGTCAGCGGCTCCAACTCCAGCTGCATCCACGGCTCCTTCTGCAGACCTCCAAGCCTTGCTGTCCAAAGCCGAAACAGTTGTGATGGCTGTCCTTGCTGCAAAGACTGGTTACGAAGCCGACATGGTTGAAGCTGACATGGATTTGGAAGCCGAACTTGGAATAGATTCCATCAAAAGAGTGGAGATACTCTCTGAGGTGCAAGGTCAGCTCGGAGTTGAAGCGAAAGACGTTGATGCCCTCAGTAGGACCAGAACTGTTGGGGAAGTTGTCGATGCGATGAAGGCTGAGATTGTCGCTGCCAGCGGTGGATCTGCACCTGCACCTGCGGTCCCGTCAGCTCCAGCAGCCAGCGCAGCTCCGACTCCTGCAGCTGCCACAGCACCGAGTGCGGATCTGCAGGCATTGCTTGCGAAGGCTGAAACAGTTGTCATGGCTGTCCTGGCTGCGAAAACTGGCTATGAGGCTGATATGGTGGAAGCCGACATGGACCTTGAGGCTGAATTGGGCATTGACAGCATCAAGCGTGTTGAGATTCTCAGTGAAGTCCAAGGACAGCTCGGAGTGGAGGCGAAGGATGTGGATGCCCTCTCAAGGACCAGAACAGTTGGTGAGGTCGTTGATGCGATGAAGGCAGAGATTGTTGCTGCCAGTGCTGGTTCTGCTCCCGCACCCGCTGTCCCAAGCGCACCAGCTGCCTCCGCCGCTCCCACACCAGCTGCCTCTACTGCACCAAGTGCGGACCTTCAAGCTCTCCTGAGCAAGGCTGAGACAGTTGTGATGGCAGTCCTTGCTGCGAAAACTGGCTATGAGGCAGACATGGTGGAAGCGGACATGGATCTGGAAGCTGAACTTGGAATTGACTCCATCAAACGTGTTGAAATCCTCTCTGAGGTTCAAGGTCAGCTTGGGGTGGAGGCCAAAGATGTTGATGCTCTTTCCAGAACAAGGACGGTGGGAGAGGTGGTTGATGCCATGAAGGCTGAGATAGTGGCAGCGTCAGGAGGGTCAGCACCTGCAGCTGCCGTTCCGTCCGCACCAGCAGCCTCTGCAGCTCCCACGCCAGCCACCGCTCCTAGTGCTGATTTGCAAGCCCTCCTTTCAAAAGCTGAAACTGTTGTCATGGCTGTTTTGGCTGCCAAGACTGGCTACGAGGCTGACATGGTTGAGGCTGACATGGACTTGGAAGCCGAGCTTGGGATTGATAGCATCAAGCGTGTGGAAATCCTTTCTGAGGTTCAAGGTCAGCTGGGTGTTGAGGCCAAAGATGTCGATGCGTTGTCAAGGACCAGAACGGTTGGAGAAGTGGTCGATGCCATGAAGGCTGAGATAGTTGCTGCCTCTGGAGGTTCAGCTCCTGCAGCTCCGTCAGCACCTGCCCTCCTTCCAACTTTGTTTGGTTCTGAGTGTGAAGATTTGAGCTTGACTTTCCCAGTCATCACAACCCTGCCTCTTCCTGCTGAACTTGTGCTGGCTGAAGGTGGAGCACGTCCTGTGGTTGTGGTTGACGATGGCTCTGCACTCACCAGTTCTCTTGTGTCCTCACTTGGTGATCGTGCTGTGCTCTTGCAAGTTCAGTCCAGCTCTGCCTGTTCACCCAGAAGCACCACGCACAAGTTGGTCACTGTTGCAGACCGTTCTGAAGCTGCATTGCAAGCTGCGCTCACATCAGTTGAAGCACAGTTTGGAAAAGTGGGAGGTTTTGTGTTCCAGTTTGGTGATGACGATGTCCAAGCGCAGCTTGGTTGGGCACTGCTTGCTGCCAAACATCTCAAAACGTCCTTGTCAGAACAGATAGAAGGTGGGAGGACCTTCTTTGTTGCCGTTGCGAGGTTGGATGGTCAGTTGGGGTTGTCTGGAAAGTCCACGACTGCCACTGTTGATCTCTCCAGAGCGCAGCAAGGCTCAGTCTTTGGACTCTGCAAAACCCTTGACTTGGAATGGCCTGCTGTTTTCTGCAGAGGAATCGACCTTGCAGCTGACTTGGATGCTGCACAAGCTGCCAGATGTCTTTTGGGTGAGCTTTCAGACCCAGATGTGGCAGTGAGGGAGTCTGGTTACTCCGCATCTGGGCAAAGATGCACCACAACCACAAAGTCTCTCACCACGGGAAAACCACATCAACCGATCTCTTCCAGTGATTTGTTCCTGGTCTCTGGAGGTGCTCGTGGAATCACACCTCTTTGTGTGAGAGAATTGGCACAGAGGGTGGGAGGTGGAACCTATGTCCTCATTGGGAGAAGTGAGCTGCCCACCACGGAACCTGCCTGGGCTGTTGGTGTTGAGTCAGGGAAACCTCTTGAGAAGGCTGCGCTGGCGTTCCTCAAAGCTGAGTTTGCAGCTGGAAGGGGAGCGAAGCCGACACCGATGCTCCACAAGAAACTTGTTGGAGCTGTTGTGGGAGCTAGAGAGGTCCGTGCGAGCCTGGCAGAGATAACTGCTCAAGGTGCCACAGCTGTCTATGAGTCCTGTGATGTCAGCTCTGCAGCCAAGGTTCGTGAAATGGTTGAGAGGGTTCAACAGCAAGGAGGGAGAAGGGTCAGCGGTGTGTTTCATGCAAGTGGTGTTTTGAGAGACAAGTTGGTTGAGAACAAGTCACTGGCTGATTTCAGTGCTGTGTATGACACAAAGGTTGGTGGACTCATCAACCTCCTTGCCTGTGTGGATCTTGCACAGCTTAGGCACCTGGTGCTCTTCAGCTCCCTTGCTGGGTTCCACGGCAATGTTGGTCAGAGTGACTATGCAATGGCCAATGAGGCTCTCAACAAGCTGGCTGCACATCTGTCTGCTGTGCATCCCCAACTTTGTGCGAGATCCATTTGCTTTGGTCCGTGGGATGGAGGGATGGTGACGCCTGCACTCAAGGCCAACTTCATCAGAATGGGCATTCAGATTATCCCTCGTCAAGGTGGAGCACAGACAGTTGCGAACATGCTTGTCAGCTCCAGCCCTGGTCAGCTCCTTGTTGGGAACTGGGGAGTGCCACCTGTGGTTCCAAGTGCCACTGAGCACACTGTTTTGCAGACTCTTCGTCAGAGCGACAACCCCTTCTTGGATTCACATGTCATTCAAGGGAGAAGGGTTTTGCCGATGACACTGGCTGTCGGCTACATGGCTCACCAAGCTCAGAGCATCTACGCTGGACATCAGCTTTGGGCAGTTGAGGATGCCCAGCTTTTCAAAGGCATAGCCATTGACAATGGAGCTGATGTTCCGGTTAGGGTTGAGTTGTCAAGGAGAAAGGAGGAACAAGAGGATGCTGGCAAGGTCAAGGTCAAGGTTCAAGTGCTTCTCAAATCTCAAGTCAATGGCAAGTCAGTCCCTGCTTACAAGGCGACTGTCGTGCTTTCCCCTGCTCCACGTCCCAGTGTCATCACCCGTGACTTTGATCTCACTCCTGACCCAGCCTGCACCGAACATGACCTCTATGATGGCAAGACGCTCTTCCACGGCAAAGCCTTCCAAGGAATAGAACAAGTTCTTTCTGCGACGCCAAAACAGCTCACTGCCAAATGCAGAAACCTTCCACTCACACCGGAGCAGCGTGGCCAGTTTGTGGTCAATCTCAGCCAGCAAGACCCATTCCAAGCTGACATTGCTTTCCAAGCCATGCTTGTTTGGGCTAGGATGTTGAGACAGTCTGCTGCGCTGCCCAATAACTGTGAAAGGTTTGATTTCTACAAACCGATGGCTCCTGGAGCAACTTACTATACCAGTGTCAAACTGGCTTCAGCTTCACCATTGGTGGATTCTGTGTGCAAATGCACTGTTGCCATGCACGATGAGCAAGGTGAAGTGTACTTCTCTGCGAGA
GCCAGTGTTGTCCTCAACAAGACACTCACATACTGA
SEQ ID NO:4示出了示例性PFA2蛋白的氨基酸序列:
MPCDNIAVVGMAVQYAGCKNQDEFWDTLMRKEINSSPISAERLGTRYRDLHFHPQRSKYADTFCNDRYGCVDASVDNEHDLLADLARRALLDAGINLDDASTTANLRDFGIVSGCLSFPMDNLQGELLNLYQVHVENRVGAQRFRDSRPWSERPRAVSPEASDPRVYSDPASFVANQLGLGPVRYSLDAACASALYCLKLASDHLLSRSADVMLCGATCFPDPFFILSGFSTFQAMPLGGPDDNPLSVPLRQGSQGLTPGEGGAIMVLKRLEDAVRDGDRIYGTLLGTSLSNAGCGLPLSPHLPSEKSCMEDLYTSVGIDPSEVQYVECHATGTPQGDVVEVEALRHCFRGNTDHPPRMGSTKGNFGHTLVAAGFAGMAKVLLSMQHGTIPPTPGVDRSNCIDPLVVDEAIPWPYSSAQARAGKPGDELKCASLSAFGFGGTNAHCVFREHRQIAATATASPVLPEVTPGPIAIIGMDATFGTLKGLDAFEQAIYKGTDGASDLPSKRWRFLGADTDFLTAMGLDAVPRGCYVRDVDVDYKRLRSPMIPEDVLRPQQLLAVATMDRALQDAGMATGGKVAVLVGLGTDTELYRHRARVTLKERLDPAAFSPEQVQEMMDYINDCGTSTSYTSYIGNLVATRVSSQWGFTGPSFTVTEGANSVYRCLELGKFLLDTHQVDAVVVAGVDLCATAENLYLKARRSAISRQDHPRANFEASADGYFAGEGSGALVLKRQADVGSDDKVYASVAGLTCAAQPAEAVSPLLLQVHNDDNEKRVVEMVELAADSGRHAPHLANSPLSAESQLEQVSKLLAHQVPGSVAIGSVRANVGDVGYASGAASLIKTALCLHNRYLPANPQWERPVAPVSEALFTCPRSRAWLKNPGESRLAAVASASESGSCFGVLLTDEYATHESSNRLSLDDAAPKLIAIRGDTVDDIMAKVNAELALLRAHAETGSATDDDPAAAVAFTAHRLRFLRLVGETVASHGATATLCLALLTTPEKLEKELELAAKGVPRSAKAGRNWMSPSGSAFAPTPVTSDRVAFMYGEGRSPYYGVGLDLHRLWPALHERINDKTAALWENGDSWLMPRAVDADSQRAVQTAFDADQIEMFRTGIFVSICLTDYARDVLGVQPKACFGLSLGEISMLFALSRRNCGLSDQLTQRLRTSPVWSTQLAVEFQALRKLWNVPADAPVESFWQGYLVRASRAEIEKAIGPDNRFVRLLIVNDSSSALIAGKPAECLRVLERLGGRLPPMPVKQGMIGHCPEVAPYTPGIAHIHEILEIPDSPVKMYTSVTNAELRGGSNSSITEFVQKLYTRIADFPGIVDKVSRDGHDVFVEVGPNNMRSAAVSDILGKAATPHVSVALDRPSESAWTQTLKSLALLTAHRVPLHNPTLFADLYHPTFLTAIDSAMQEPPPKPNRFLRSVEVNGYFCPDGISKQVAAASAKPSTHCMVRLHPAKAVVVAAAGAVVADSTPVVKAKQTSSSLLVGDDAFLRCYDVDWPLYMGAMAEGISSVDLVVAAAEARMLASFGAARLPMDQVELQIREIQQRTSNAFAVNLMPGPDEAATVDALLRTGVSIVEASGYTGALSADLVRYRVTGLRRTSCGASVSATHRVVAKVSRTEVAEHFLRPAPAAVLEALVAAKQITPEQAALASRVAMADDVAVEADSGGHTDNRPIHVLLPLVVAQRNRWRHLVDTPVRVGAGGGIACPRAALLAFSLGAAFVVTGSVNQLAREAGTSDAVRLLLATATYSDVAMAPGGVQVLKKQTMFAARATMLAQLQAKFGSFDAVPEPQLRKLERSVFKQSVADVWAAAREKFGVDATAASPQERMALCVRWYMSQSSRWATEATSARKADYQIWCGPAIGSFNDFVRGTKLDATAGTGEFPRVVDINQHILLGASHYRRVQQQ
QQDDDVEYIIV
SEQ ID NO:5示出了示例性PFA2基因的核苷酸序列,在本文中称为PFA2v1,分离自破囊壶菌——裂殖壶菌属物种(如ATCC登录号PTA-9695代表的):
ATGCCGTGCGATAACATTGCGGTCGTGGGCATGGCGGTGCAGTATGCCGGATGCAAGAACCAGGACGAGTTCTGGGATACGCTGATGCGTAAGGAGATCAACTCGAGCCCGATCTCGGCGGAGCGCCTCGGTACGCGCTACCGCGACCTCCACTTCCACCCGCAGCGCAGCAAGTACGCCGACACCTTCTGCAACGATCGCTACGGCTGCGTCGATGCCAGCGTCGACAACGAGCACGACCTCC TCGCCGACCTGGCCCGGCGCGCCCTGCTCGACGCCGGAATTAACCTCGACGACGCCAGCACCACCGCCAACCTACGCGACTTCGGCATCGTGAGCGGCTGCCTGTCGTTCCCCATGGACAATCTGCAGGGCGAGCTGCTCAATCTGTACCAAGTGCATGTGGAGAACCGCGTGGGCGCCCAGCGCTTCCGCGACTCGCGCCCCTGGTCGGAGCGCCCGCGCGCTGTCTCGCCCGAGGCCAGCGACCCGCGCGTGTACTCCGACCCGGCGTCCTTCGTGGCCAACCAGCTCGGCCTGGGGCCCGTGCGCTACAGCCTCGATGCAGCCTGCGCGTCGGCGCTGTACTGCCTCAAGCTGGCGTCCGACCACTTGCTCTCGCGCAGCGCGGACGTGATGCTGTGCGGCGCCACATGCTTTCCGGACCCGTTCTTCATTCTCTCGGGGTTCTCCACCTTCCAGGCGATGCCGCTGGGCGGACCGGACGATAACCCACTGTCCGTGCCGCTGCGGCAGGGCAGCCAGGGCCTGACGCCCGGAGAGGGCGGCGCCATCATGGTGCTGAAGCGCCTCGAGGACGCCGTGCGCGACGGCGACCGCATCTACGGCACCTTGCTCGGCACGAGTCTGAGCAACGCCGGGTGCGGCCTGCCGCTGAGCCCGCACCTGCCGAGCGAGAAGTCGTGCATGGAGGACCTGTACACGAGCGTCGGCATCGACCCAAGCGAGGTGCAGTACGTGGAGTGCCACGCCACGGGCACTCCGCAGGGCGACGTCGTGGAGGTAGAGGCGCTGCGCCACTGCTTTCGAGGTAACACGGACCACCCGCCGCGCATGGGCTCCACCAAGGGCAACTTTGGCCACACTCTCGTGGCGGCCGGGTTCGCAGGCATGGCCAAGGTGCTGCTGTCGATGCAGCACGGCACGATCCCGCCCACGCCCGGTGTCGACCGCTCCAACTGCATCGACCCGCTCGTCGTGGACGAGGCCATCCCTTGGCCGTACTCGTCGGCGCAGGCGCGGGCAGGCAAACCAGGCGATGAGCTCAAGTGCGCCTCGCTCTCCGCCTTTGGCTTTGGTGGAACCAACGCGCACTGTGTCTTCCGTGAGCACCGCCAAATTGCTGCTACTGCGACAGCCTCGCCGGTGCTTCCCGAGGTGACTCCTGGACCGATTGCCATCATCGGGATGGACGCGACGTTTGGTACCCTCAAGGGCCTGGACGCGTTTGAGCAGGCCATCTACAAGGGCACGGACGGCGCCAGCGACCTGCCGAGCAAGCGCTGGCGGTTCCTGGGCGCCGACACGGACTTCTTGACCGCCATGGGCCTCGACGCCGTGCCGCGCGGGTGCTACGTGCGCGACGTGGACGTGGACTACAAGCGGCTGCGGTCGCCGATGATCCCTGAGGACGTCCTGCGCCCGCAACAGCTGCTGGCGGTGGCTACGATGGACCGCGCGCTGCAGGACGCTGGAATGGCGACGGGAGGCAAGGTGGCGGTGCT GGTGGGGCTCGGCACGGACACCGAGCTGTACCGGCACCGCGCGCGCGTGACACTCAAGGAGCGGCTCGACCCGGCCGCGTTCTCGCCCGAGCAGGTGCAGGAGATGATGGACTACATCAACGACTGCGGCACCTCGACGTCGTACACGTCGTACATCGGCAACCTCGTGGCCACGCGCGTGTCCTCGCAGTGGGGCTTTACGGGCCCGTCCTTCACCGTCACCGAAGGCGCAAACTCGGTCTACCGCTGCCTCGAGCTGGGCAAGTTCCTGCTCGACACGCACCAGGTGGACGCCGTCGTGGTGGCCGGCGTCGACCTCTGTGCCACCGCCGAGAACCTTTACCTCAAGGCGCGCCGCTCCGCCATCAGCCGACAGGACCACCCTCGCGCCAACTTTGAGGCCAGCGCCGACGGGTACTTTGCCGGCGAGGGCAGCGGCGCCCTGGTCCTCAAGCGCCAGGCCGACGTTGGCTCAGACGACAAGGTCTACGCCAGTGTCGCGGGCCTCACGTGCGCCGCGCAGCCCGCTGAAGCCGTGTCGCCGCTACTACTCCAAGTCCACAACGACGACAACGAGAAGAGGGTGGTGGAGATGGTGGAGCTCGCCGCCGACTCGGGTCGCCATGCGCCGCACTTGGCCAACTCGCCGCTGAGCGCCGAGTCGCAGCTGGAGCAAGTGTCCAAGTTGCTCGCGCACCAGGTGCCGGGCTCGGTGGCCATCGGCAGCGTGCGCGCCAACGTGGGAGACGTCGGGTACGCCTCGGGCGCCGCGAGCCTCATCAAGACGGCGCTGTGCCTCCACAACCGCTACCTCCCGGCCAACCCGCAGTGGGAGCGGCCGGTGGCGCCGGTCTCCGAGGCGCTGTTTACTTGCCCGCGCTCGCGTGCCTGGCTGAAGAACCCGGGCGAGTCGCGACTGGCGGCTGTCGCCAGTGCCTCCGAGAGCGGGTCCTGCTTTGGCGTGCTCCTCACAGACGAGTACGCCACTCATGAGAGCAGCAACCGCCTCTCGCTGGATGACGCCGCCCCCAAGCTCATCGCGATCCGTGGCGACACCGTTGACGATATCATGGCCAAGGTCAACGCCGAGCTGGCGCTCCTCCGAGCGCACGCCGAAACCGGGTCTGCTACTGACGACGACCCAGCTGCTGCTGTCGCTTTCACTGCTCATCGCTTGCGCTTTTTGCGGCTCGTAGGGGAGACGGTGGCTAGTCACGGTGCCACGGCGACCTTGTGTTTGGCCCTGCTGACAACGCCGGAGAAGCTGGAGAAGGAGTTGGAGCTGGCAGCCAAGGGTGTACCGCGAAGCGCCAAGGCCGGGCGCAACTGGATGTCGCCATCGGGCAGCGCCTTTGCGCCGACACCTGTGACCAGCGACCGCGTCGCGTTCATGTACGGCGAGGGCCGCAGCCCCTACTACGGCGTCGGGCTCGACCTGCACCGCCTGTGGCCGGCTTTGCACGAGCGCATCAACGACAAGACCGCGGCGCTGTGGGA GAACGGCGACTCGTGGCTCATGCCGCGCGCGGTGGATGCCGACTCGCAGCGCGCCGTGCAGACGGCCTTTGACGCGGACCAGATCGAGATGTTCCGCACGGGCATCTTCGTGTCCATCTGCCTCACCGACTACGCGCGCGACGTGCTCGGGGTGCAGCCCAAGGCGTGCTTCGGCCTCAGCCTCGGCGAGATCTCCATGCTCTTTGCGCTGTCGCGACGCAACTGCGGCCTGTCGGACCAGCTCACGCAGCGCCTACGCACCTCGCCGGTGTGGTCGACACAGCTGGCGGTGGAGTTCCAGGCCTTGCGCAAGCTATGGAACGTGCCGGCGGACGCCCCCGTGGAGTCCTTCTGGCAGGGCTACTTGGTTCGCGCCAGCCGCGCCGAAATCGAGAAGGCGATCGGGCCCGACAACCGCTTCGTGCGCCTGCTGATCGTCAACGACTCGAGCAGCGCGCTGATCGCCGGCAAACCTGCCGAGTGTCTGCGCGTGCTGGAGCGCCTGGGCGGGCGGTTGCCGCCGATGCCCGTCAAGCAAGGCATGATTGGGCACTGCCCCGAAGTGGCGCCCTACACGCCGGGCATCGCGCACATCCACGAGATTTTGGAGATTCCGGACAGCCCCGTCAAGATGTACACCTCGGTCACCAACGCCGAGCTGCGCGGGGGCAGCAACAGCAGCATCACCGAGTTCGTGCAGAAGTTGTACACGCGCATCGCCGACTTTCCGGGCATCGTCGACAAGGTCAGCCGTGACGGCCACGATGTCTTCGTCGAGGTGGGGCCGAACAACATGCGCTCCGCCGCGGTCAGTGACATTCTTGGCAAGGCTGCCACCCCGCATGTCTCCGTGGCGCTGGACCGCCCCAGTGAGTCGGCGTGGACGCAGACCCTCAAGTCGCTGGCGCTGCTGACCGCCCACCGCGTGCCCCTGCACAACCCGACTCTGTTTGCGGACCTGTACCACCCCACGTTCCTGACGGCTATCGACTCTGCGATGCAGGAGCCCCCGCCCAAGCCCAACCGCTTCCTTCGCAGCGTAGAGGTCAACGGGTACTTTTGCCCCGACGGCATCAGCAAGCAGGTTGCTGCTGCAAGTGCCAAACCCTCGACGCATTGCATGGTTCGTTTGCACCCAGCCAAGGCAGTTGTGGTTGCTGCTGCTGGTGCTGTGGTTGCTGATTCGACGCCCGTGGTCAAGGCCAAGCAGACGTCGTCGTCGTTGTTGGTTGGGGATGACGCCTTTCTGCGCTGCTACGACGTGGACTGGCCGCTCTACATGGGCGCCATGGCGGAAGGCATCTCGTCGGTAGACCTGGTGGTCGCTGCCGCCGAGGCCCGCATGCTGGCATCATTCGGAGCGGCCCGCTTGCCTATGGACCAGGTGGAACTCCAGATCCGTGAGATCCAGCAACGCACCTCCAACGCCTTTGCTGTCAACCTGATGCCGGGTCCTGACGAGGCCGCGACGGTGGACGCGCTGCTGCGCACGGGCGTCTCAATC GTCGAGGCATCGGGCTACACCGGCGCGCTCTCTGCAGACCTGGTGCGCTACCGTGTCACGGGTCTGCGACGAACTAGTTGCGGTGCTTCTGTGTCGGCGACTCACCGTGTGGTCGCCAAGGTGTCGCGCACCGAGGTGGCCGAGCACTTTCTGCGCCCGGCGCCGGCCGCCGTACTAGAGGCTTTGGTCGCCGCCAAACAGATTACGCCCGAGCAGGCCGCGCTGGCCAGCCGCGTCGCCATGGCCGACGACGTCGCGGTGGAGGCCGACTCGGGCGGGCACACCGACAACCGACCGATCCACGTGCTGCTGCCGCTCGTGGTGGCGCAGCGCAACCGCTGGCGCCACCTGGTGGACACGCCAGTGCGCGTCGGCGCCGGCGGCGGGATCGCCTGTCCGCGCGCCGCGCTGCTCGCCTTTTCCCTGGGCGCCGCCTTTGTGGTCACCGGGTCCGTCAACCAACTGGCCCGCGAGGCTGGCACCAGCGACGCGGTCCGACTACTGCTGGCGACGGCCACCTACTCGGACGTGGCCATGGCGCCGGGCGGCGTCCAGGTGCTCAAGAAGCAGACCATGTTCGCCGCGCGGGCCACGATGCTCGCCCAGCTGCAGGCCAAGTTCGGCTCCTTTGACGCCGTGCCGGAGCCGCAGCTGCGCAAGCTCGAGCGCTCCGTGTTCAAGCAGTCCGTGGCGGACGTGTGGGCTGCTGCACGCGAAAAGTTTGGTGTCGACGCTACCGCTGCAAGTCCGCAGGAGAGGATGGCGCTCTGTGTGCGCTGGTACATGTCGCAGTCGTCGCGATGGGCTACCGAGGCGACGTCCGCGCGCAAGGCGGACTACCAGATCTGGTGCGGCCCCGCCATCGGCAGCTTCAACGACTTCGTTCGCGGCACCAAGCTGGACGCGACCGCTGGCACCGGCGAGTTTCCGCGCGTCGTGGACATCAACCAGCACATCCTCCTCGGAGCCTCGCACTACCGCCGCGTGCAGCAACAA
CAACAGGACGACGACGTAGAATACATCATCGTATAA
SEQ ID NO:6示出了示例性的植物优化的PFA2基因的核苷酸序列,在本文中称为PFA2 v2:
ATGCCGTGTGACAACATTGCTGTGGTTGGAATGGCAGTTCAGTATGCTGGATGCAAGAACCAGGACGAGTTCTGGGACACACTGATGAGGAAGGAGATCAACAGCTCACCGATCTCAGCGGAGAGGCTTGGGACAAGATACAGAGACCTCCACTTCCATCCTCAGAGGAGCAAGTATGCAGACACCTTCTGCAATGACAGATATGGTTGTGTTGATGCTTCTGTTGACAATGAGCATGACTTGCTTGCTGACCTTGCCAGACGTGCTTTGCTTGATGCTGGGATCAACTTGGATGACGCCAGCACCACTGCCAACCTTCGTGACTTTGGGATTGTGAGTGGAT GCCTCTCCTTCCCGATGGACAATCTGCAAGGTGAGCTTTTGAATCTCTATCAAGTCCACGTTGAGAACCGTGTGGGTGCCCAGAGGTTCAGAGATTCAAGACCCTGGTCAGAAAGACCAAGAGCTGTGTCCCCTGAAGCCAGTGACCCGAGGGTCTACAGCGACCCTGCTTCCTTTGTGGCCAACCAGCTTGGTCTTGGTCCTGTCAGATACAGCCTTGATGCAGCTTGTGCGAGTGCGCTGTACTGCCTCAAGTTGGCTTCTGATCACTTGCTCTCCCGTTCTGCAGATGTCATGCTGTGTGGTGCCACATGCTTCCCAGACCCGTTTTTCATTCTCTCTGGGTTCTCCACATTCCAAGCGATGCCATTGGGTGGACCAGATGACAACCCACTCTCTGTGCCACTCCGTCAAGGCAGCCAAGGACTCACACCTGGAGAAGGTGGAGCCATCATGGTTCTGAAGCGTTTGGAAGATGCTGTGAGGGATGGTGATAGGATCTATGGCACCTTGCTTGGGACAAGTCTCAGCAATGCTGGTTGTGGTTTGCCACTTTCACCTCACCTGCCGTCTGAGAAAAGCTGCATGGAGGATTTGTACACGTCAGTTGGCATAGATCCATCTGAGGTTCAGTATGTCGAGTGTCATGCCACCGGAACTCCGCAAGGAGATGTGGTTGAAGTTGAGGCTCTGAGACATTGCTTCAGAGGCAACACTGACCACCCACCGAGGATGGGTTCCACCAAAGGAAACTTTGGTCACACCTTGGTTGCAGCTGGGTTTGCTGGAATGGCCAAAGTGTTGCTTTCCATGCAGCATGGCACGATCCCACCCACGCCTGGTGTTGATAGGAGCAACTGCATAGATCCGCTGGTCGTTGATGAGGCCATACCCTGGCCTTACAGCTCAGCTCAAGCGAGAGCTGGCAAACCTGGAGATGAATTGAAGTGTGCTTCCCTCTCAGCCTTTGGATTTGGTGGAACAAATGCTCATTGTGTGTTCAGAGAACACAGACAGATTGCTGCCACTGCGACAGCGTCTCCGGTCCTTCCTGAAGTCACCCCTGGACCCATTGCAATCATTGGGATGGATGCGACGTTTGGCACCCTCAAAGGACTTGATGCGTTTGAACAAGCGATCTACAAAGGCACGGATGGAGCATCTGATCTGCCATCCAAGAGATGGAGGTTCCTTGGTGCTGACACAGATTTCTTGACTGCAATGGGTCTGGATGCAGTCCCGAGAGGGTGCTATGTGAGGGATGTTGATGTGGACTACAAAAGACTCAGAAGTCCCATGATCCCTGAAGATGTCCTCAGACCCCAACAGCTTCTGGCAGTTGCCACGATGGATAGGGCACTTCAAGATGCTGGCATGGCCACGGGTGGAAAAGTTGCTGTCCTGGTGGGGTTGGGCACTGACACTGAGCTTTACAGACACCGTGCAAGGGTGACACTCAAGGAAAGGCTTGACCCAGCAGCTTTCTCCCCTGAACAAGTTCAAGAAATGATGGATTA CATCAATGATTGTGGAACCTCAACCAGCTACACTTCTTACATTGGGAATCTTGTGGCCACCAGAGTTTCCTCACAGTGGGGATTCACTGGTCCTTCTTTCACGGTCACTGAAGGTGCAAACTCAGTCTATCGTTGCCTTGAGCTGGGAAAGTTCCTTTTGGACACCCACCAAGTGGATGCAGTTGTGGTTGCTGGAGTTGATCTCTGTGCAACTGCTGAGAACCTTTACCTCAAGGCAAGAAGGTCTGCCATAAGCAGACAAGACCATCCACGTGCCAACTTTGAGGCTTCTGCTGATGGATACTTTGCTGGAGAGGGCAGTGGTGCTCTGGTCTTGAAGAGGCAAGCTGATGTTGGCTCAGATGACAAGGTCTATGCCAGTGTTGCTGGCCTCACATGTGCAGCGCAGCCTGCTGAAGCAGTTTCTCCTCTTCTCCTTCAAGTTCACAATGATGACAATGAGAAAAGGGTTGTGGAGATGGTGGAACTCGCAGCTGACTCTGGTCGTCATGCTCCCCACTTGGCCAACTCTCCTTTGAGTGCTGAATCACAGCTTGAGCAAGTGTCTAAACTCTTGGCTCATCAAGTCCCTGGTTCAGTCGCGATTGGAAGTGTTCGTGCCAATGTTGGAGATGTTGGATATGCGAGTGGTGCAGCTTCTCTCATAAAGACTGCGCTTTGCCTCCACAACCGTTACTTGCCTGCAAACCCACAGTGGGAAAGACCTGTGGCTCCAGTCTCAGAGGCTCTTTTCACCTGTCCAAGGTCCCGTGCTTGGCTCAAGAACCCTGGTGAGTCCAGACTTGCTGCAGTGGCCAGTGCTTCTGAGAGTGGGTCTTGCTTTGGAGTGCTTCTCACAGATGAGTATGCCACACATGAGTCCAGCAACAGATTGTCATTGGATGACGCTGCACCCAAACTCATAGCGATTCGTGGAGACACTGTTGATGACATCATGGCAAAAGTCAATGCTGAACTTGCGTTGCTCCGTGCTCATGCAGAAACTGGGTCTGCCACTGACGATGACCCAGCTGCAGCTGTTGCTTTCACTGCTCATCGTTTGAGGTTCTTGAGGCTTGTTGGTGAAACAGTTGCCAGTCACGGTGCCACAGCGACCTTGTGTTTGGCTCTGCTCACAACTCCAGAAAAGCTGGAGAAAGAATTGGAGTTGGCAGCCAAGGGTGTTCCAAGATCAGCCAAGGCTGGCAGAAACTGGATGTCACCATCTGGTTCTGCTTTTGCACCAACACCTGTCACCAGTGATCGTGTTGCGTTCATGTATGGTGAAGGGAGGTCTCCCTACTATGGTGTTGGGTTGGACCTTCACAGACTCTGGCCTGCTTTGCATGAGAGGATCAATGACAAGACAGCTGCACTTTGGGAGAATGGAGACTCCTGGCTCATGCCCAGAGCGGTTGATGCTGACTCTCAGAGGGCTGTCCAGACGGCTTTTGATGCTGACCAGATAGAGATGTTTAGGACGGGAATCTTTGTTTCCATTTGCCTCACAGACTATGCTCGTGATGTCCTTGGAGTCCAACCCAAGGCTTGCTTTGGACTCTCCCTTGGAGAAATCTCCATGCTCTTTGCACTTTCAAGGAGAAACTGTGGACTTTCTGACCAGCTCACTCAGAGGCTCAGAACCTCTCCGGTCTGGAGCACACAGCTTGCTGTGGAGTTCCAAGCCTTGAGGAAACTTTGGAATGTCCCTGCTGATGCTCCAGTTGAGTCCTTCTGGCAAGGCTACTTGGTTCGTGCCAGCAGAGCAGAGATTGAAAAGGCCATTGGACCGGACAACAGATTTGTTCGTTTGCTCATTGTCAACGACTCCAGCAGTGCCCTCATTGCTGGCAAACCTGCTGAGTGTCTGAGGGTGCTTGAGCGTCTTGGAGGTCGTTTGCCACCCATGCCAGTCAAGCAAGGCATGATTGGGCACTGCCCAGAAGTGGCTCCCTATACTCCTGGAATAGCTCACATCCACGAAATCTTGGAGATTCCTGACAGCCCTGTCAAGATGTATACCTCAGTCACCAATGCTGAGCTGAGAGGAGGCAGCAACTCTTCCATCACAGAGTTCGTTCAGAAGTTGTACACCAGAATAGCGGATTTCCCTGGCATTGTTGACAAGGTCAGCCGTGATGGCCATGATGTTTTCGTGGAAGTTGGTCCGAATAACATGAGGTCAGCAGCTGTCAGTGACATTCTTGGGAAGGCTGCAACTCCTCATGTCAGTGTGGCTCTTGATCGTCCAAGTGAGTCAGCTTGGACACAGACACTCAAATCTCTTGCCCTGCTCACTGCCCACAGAGTGCCTCTTCACAACCCGACTCTCTTTGCGGATCTTTACCACCCAACCTTCCTCACAGCCATAGATTCTGCAATGCAAGAACCACCTCCCAAGCCCAACAGATTCCTGAGGTCTGTTGAAGTCAATGGTTACTTCTGCCCTGATGGCATAAGCAAACAAGTTGCAGCTGCAAGTGCCAAACCCAGCACACATTGCATGGTTCGTCTCCATCCAGCCAAAGCTGTTGTGGTTGCAGCTGCCGGAGCTGTGGTTGCTGATTCAACACCGGTTGTCAAAGCCAAGCAGACTTCCTCATCTTTGCTTGTTGGAGACGATGCCTTCCTCAGATGCTATGATGTGGATTGGCCTCTCTACATGGGAGCGATGGCTGAAGGAATCTCCTCTGTTGACCTTGTGGTTGCAGCTGCAGAAGCTAGGATGCTTGCATCATTTGGAGCAGCGAGGCTTCCGATGGATCAAGTTGAACTCCAGATCCGTGAGATCCAACAGAGAACCTCCAATGCCTTTGCTGTCAACCTCATGCCTGGTCCTGATGAAGCTGCAACGGTGGATGCCCTTCTGAGAACGGGAGTCAGCATTGTGGAGGCGTCTGGTTACACGGGTGCGCTCTCTGCGGATCTGGTGAGATACCGTGTGACCGGTCTCAGAAGGACCTCCTGTGGTGCTTCTGTGTCAGCGACTCACCGTGTTGTGGCCAAAGTTTCAAGAACTGAGGTGGCTGAACATTTCCTG AGACCAGCACCTGCAGCTGTTCTTGAGGCTTTGGTGGCAGCCAAACAAATCACTCCTGAGCAAGCTGCGCTTGCCAGCAGAGTCGCGATGGCTGACGATGTCGCGGTGGAGGCAGATTCTGGAGGGCACACTGACAACCGTCCAATCCATGTGCTCCTTCCTTTGGTTGTGGCTCAGAGGAACAGATGGAGGCATCTGGTTGACACGCCAGTGCGTGTGGGAGCTGGAGGTGGGATAGCATGTCCGAGAGCAGCGTTGCTTGCCTTCTCCTTGGGTGCAGCCTTTGTGGTCACTGGAAGTGTCAACCAGCTTGCTCGTGAAGCTGGGACCTCTGATGCAGTCAGACTCCTTTTGGCGACTGCCACCTATAGTGATGTGGCGATGGCTCCTGGTGGAGTCCAAGTGTTGAAGAAACAAACCATGTTCGCTGCGAGAGCAACGATGTTGGCTCAGCTCCAAGCCAAGTTTGGTTCCTTTGATGCTGTGCCAGAACCGCAACTGAGAAAACTGGAGAGATCAGTGTTCAAGCAGAGTGTTGCTGATGTTTGGGCAGCTGCAAGGGAAAAGTTTGGGGTTGATGCCACGGCTGCAAGTCCGCAAGAGAGGATGGCTCTCTGTGTCAGATGGTACATGTCTCAAAGCTCACGTTGGGCAACAGAGGCCACTTCAGCAAGGAAAGCGGACTATCAGATTTGGTGTGGTCCTGCAATAGGCAGCTTCAATGACTTCGTCAGAGGCACCAAACTTGATGCCACGGCTGGGACTGGTGAGTTCCCGAGAGTTGTGGACATCAACCAGCACATCTTGCTGGGAGCCTCTCATTACAGAAGGGTTCAACAGCAA
CAGCAAGACGATGACGTTGAGTACATCATTGTTTGA
SEQ ID NO:7示出了示例性PFA3蛋白的氨基酸序列:
MTSSKKTPVWEMSKEELLDGKTVVFDYNELLEFAEGDVGQVFGPEFDIIDKYRRRVRLPAREYLLVSRVTLMDAEVNNFRVGSRMVTEYDVPVNGELSEGGDVPWAVLVESGQCDLMLISYMGIDFQCKGDRVYRLLNTSLTFFGVAHEGETLVYDIRVTGFAKGAGGEISMFFFEYDCFVDGRLLIEMRDGCAGFFTDAELAAGKGVLKTKAELAARAQIQKQDIAPFAPAPCSHKTSLDAREMRLLVDRQWARVFGSGMAGIDYKLCARKMLMIDRVTHLDPRGGAHGLGLLIGEKVLERDHWYFPCHFVRDEVMAGSLVSDGCSQLLKVYMLWLGLHTTVGAFDFRPVSGHANKVRCRGQISPHKGKLVYVMEIKEMGFDAKTGDPFAIADVDIIDVNFEEGQAFAGVEDLHSYGQGDLRKKIVVDFKGIALSLQKRKEQQKESMTVTTTTTTTSRVIAPPSGCLKGDPTAPTSVTWHPMAEGNGGPGPTPSFSPSAYPPRAVCFSPFPNNPLDNDHTPGQMPLTWFNMSEFMCGKVSNCLGPEFARFD ASKTSRSPAFDLALVTRVTSVADMEHGPFYNVDVNPGQGTMVGEFDCPADAWFFGASSRDDHMPYSILMEIALQTSGVLTSVLKAPLTMDKDDILFRNLDADAELVGDAMPDVRGKTIRNFTKCTGYSMLGKMGIHRFTFELSVDGAVFYKGSTSFGWFVPEVFESQTGLDNGKPRLPWYRENNVAVDTLSAPASASSAQGQLQLQRRGSQAQFLDTIHLAGSGAGVHGQGYAHGEKAVNKQDWFFSCHFWFDPVMPGSLGIESMFQLVEAWCVKQGLAARHGIAHPVFAHAPGATSWKYRGQLTPKNDRMDSEVHIKSVAAFSSWVDVVADGFLFVDGLRVYSADNLRVRIQTGAGHVEEQEVAAKATTKNSSIADVDVADLQALKQALLTLERPLQLDAGSEVPACAVSDLGDRGFMETYGVVAPLYSGAMAKGIASADLVIAMGQRKMLGSFGAGGLPMHVVRAGIEKIQAALPAGPYAVNLIHSPFDANLEKGNVDLFLEKGVRVVEASAFMELTPQVVRYRATGLSRDARGGSVRTAHKIIGKVSRTELAEMFIRPAPQAILDKLVASGEITPEQAALALEVPMADDIAVEADSGGHTDNRPIHVILPLILSLRNRLQRELKYPARHRVRVGAGGGIGCPQAALGAFHMGAAFVVTGTVNQLSRQAGTCDNVRRQLSRATYSDITMAPAADMFEQGVELQVLKKGTMFPSRAKKLFELFHKYDSFEAMPADELARVEKRIFSKSLAEVWAETKDFYITRLNNPEKIRKAENEDPKLKMSLCFRWYLGLSSFWANNGIADRTMDYQIWCGPAIGAFNDFIADSYLDVAVS
GEFPDVVQINLQILSGAAYLQRLLSVKLAPRIDVDTEDDLFTYRPDHAL
SEQ ID NO:8示出了示例性PFA3基因的核苷酸序列,在本文中被称为PFA3 v1,分离自破囊壶菌———裂殖壶菌属物种(表示为ATCC登录号PTA-9695):
ATGACATCATCGAAGAAGACTCCCGTGTGGGAGATGAGCAAGGAGGAGCTGCTGGACGGCAAGACGGTGGTCTTCGACTACAACGAGCTGCTCGAATTCGCCGAGGGCGACGTGGGCCAAGTGTTCGGACCCGAGTTCGACATCATCGACAAGTACCGGCGTCGCGTGCGGCTGCCGGCGCGCGAGTACCTGCTCGTGTCGCGCGTGACGCTGATGGACGCCGAGGTGAACAACTTCCGCGTCGGGTCGCGCATGGTGACCGAGTACGACGTGCCCGTGAACGGGGAGCTGTCGGAGGGCGGGGACGTGCCGTGGGCGGTGCTGGTGGAGTCGGGGCAGTGCGACCTGATGCTCATCTCGTACATGGGCATCGACTTCCAGTGCAAGGGCGACCGCGTGTACCGCCTGCTCAACACATCGCTCACCTTCTTCGGGGTGGCGCACGAGGGCGAGACGCTGGTGTACGACATCCGCGTCACGGG GTTCGCCAAGGGCGCGGGCGGGGAGATCTCGATGTTCTTCTTCGAGTACGACTGCTTCGTGGACGGCCGCCTGCTGATCGAGATGCGCGACGGGTGCGCCGGGTTCTTCACGGACGCCGAGCTGGCCGCCGGCAAGGGCGTGCTTAAGACCAAGGCGGAGCTGGCGGCGCGCGCGCAGATCCAGAAGCAGGACATCGCGCCCTTTGCGCCGGCGCCGTGCTCGCACAAGACCTCGCTGGACGCGCGCGAGATGCGGCTGCTCGTGGACCGCCAGTGGGCGCGCGTCTTCGGCAGCGGCATGGCGGGCATCGACTACAAGTTGTGCGCTCGCAAGATGCTCATGATCGACCGCGTCACGCACCTCGACCCGCGCGGCGGCGCGCACGGCCTCGGGCTGCTGATCGGGGAGAAGGTGCTGGAGCGCGACCACTGGTACTTCCCCTGCCACTTTGTGCGCGACGAGGTGATGGCCGGGTCGCTGGTCAGCGACGGCTGCTCGCAGCTCCTCAAGGTGTACATGCTGTGGCTCGGCCTGCACACGACCGTGGGCGCGTTCGACTTTCGTCCCGTGAGCGGGCACGCCAACAAGGTGCGGTGCCGCGGGCAGATCTCACCGCACAAGGGCAAGCTCGTGTACGTGATGGAGATCAAGGAAATGGGCTTTGACGCGAAGACGGGCGATCCGTTTGCGATCGCGGACGTGGACATCATCGACGTCAACTTCGAGGAGGGACAGGCGTTTGCGGGAGTGGAAGACCTGCACAGCTACGGCCAGGGCGACCTCCGCAAGAAGATCGTCGTCGACTTCAAGGGCATCGCGCTCTCCCTGCAGAAGCGGAAGGAGCAGCAGAAGGAAAGCATGACCGTGACTACGACGACGACGACGACGAGCCGGGTGATTGCGCCGCCCAGCGGGTGCCTCAAGGGCGACCCGACGGCGCCGACGAGCGTGACGTGGCACCCGATGGCGGAGGGCAACGGCGGGCCCGGACCGACGCCGTCGTTCTCGCCGTCCGCGTACCCGCCGCGGGCGGTGTGCTTCTCGCCGTTCCCCAACAACCCGCTTGACAACGACCACACGCCGGGCCAGATGCCGTTGACCTGGTTCAACATGTCCGAATTCATGTGCGGCAAAGTGTCCAACTGCCTGGGCCCCGAGTTTGCGCGCTTCGACGCGAGCAAGACGAGCCGCAGCCCGGCCTTTGACCTGGCGCTCGTGACGCGGGTGACGAGCGTGGCGGACATGGAGCACGGGCCGTTCTACAACGTGGACGTCAACCCGGGCCAGGGCACGATGGTGGGCGAGTTCGACTGTCCCGCGGACGCGTGGTTCTTCGGCGCCTCGAGCCGCGACGACCACATGCCGTACTCGATCCTGATGGAGATCGCGCTGCAGACGTCGGGCGTCCTCACCTCGGTGCTCAAGGCGCCGCTGACGATGGACAAGGACGACATCCTCTTCCGCAACCTCGACGCAGACGCCGAGCTCGTGG GCGACGCCATGCCGGACGTGCGCGGCAAGACGATCCGCAACTTCACCAAGTGCACAGGCTACAGCATGCTCGGCAAGATGGGCATCCACCGCTTCACCTTTGAGCTCAGCGTCGACGGCGCCGTCTTCTACAAGGGCAGCACCTCGTTTGGCTGGTTCGTCCCCGAGGTCTTCGAGTCGCAGACCGGTCTCGACAACGGCAAGCCGCGCCTGCCTTGGTACCGCGAGAACAACGTCGCCGTCGACACGCTCTCCGCGCCCGCCTCCGCTTCCTCCGCGCAAGGTCAGCTGCAGCTGCAGCGACGCGGGTCGCAGGCGCAGTTCCTGGACACAATCCACCTGGCGGGCAGCGGCGCCGGCGTGCACGGCCAGGGCTACGCGCACGGGGAGAAGGCCGTGAACAAGCAAGATTGGTTCTTCTCGTGCCACTTCTGGTTCGACCCCGTGATGCCCGGGTCCCTGGGCATCGAGTCGATGTTCCAGCTCGTCGAGGCGTGGTGCGTGAAGCAGGGACTCGCGGCGCGGCACGGCATCGCTCACCCAGTGTTCGCGCACGCGCCCGGGGCCACGAGCTGGAAGTACCGCGGGCAGCTAACCCCCAAGAACGACCGCATGGACAGCGAGGTGCACATCAAGTCGGTGGCGGCCTTCTCCTCCTGGGTCGACGTCGTCGCGGACGGGTTCCTCTTCGTCGACGGCCTCCGCGTCTACTCGGCAGACAACCTCCGCGTCCGCATCCAGACCGGCGCCGGCCACGTTGAAGAGCAAGAGGTTGCTGCCAAGGCCACAACCAAGAACAGCAGTATTGCTGATGTGGACGTGGCGGACCTGCAAGCGCTCAAGCAGGCGTTGCTGACGCTGGAGCGACCGCTGCAGCTGGACGCGGGGAGCGAGGTGCCCGCCTGCGCGGTGAGCGACCTGGGCGATAGGGGCTTCATGGAGACGTACGGGGTGGTGGCGCCGCTGTACAGCGGGGCGATGGCCAAGGGCATCGCGTCGGCGGACCTGGTGATCGCGATGGGCCAGCGCAAGATGCTGGGGTCGTTTGGCGCGGGCGGGCTCCCGATGCACGTCGTGCGCGCGGGGATTGAGAAGATCCAGGCAGCGCTGCCAGCGGGGCCATACGCGGTCAACCTGATTCACTCGCCTTTTGACGCCAACCTGGAGAAGGGCAACGTGGACCTCTTCCTGGAGAAGGGCGTGCGCGTCGTGGAGGCGTCGGCCTTCATGGAGCTCACGCCCCAGGTGGTGCGCTACCGCGCGACGGGCCTCTCTCGCGACGCGCGCGGCGGCTCCGTGCGCACGGCCCACAAGATCATCGGCAAGGTCAGCCGCACCGAGCTGGCCGAGATGTTTATCCGGCCCGCGCCGCAAGCCATTCTCGACAAGCTTGTGGCGTCCGGCGAGATCACCCCCGAGCAGGCGGCGCTGGCGCTCGAGGTGCCCATGGCGGACGACATCGCCGTCGAGGCCGATTCGGGCGGGCACACCGACAACCG CCCCATCCACGTCATCCTGCCCCTCATCCTCAGCCTGCGCAACCGCCTCCAGCGCGAGCTCAAGTACCCTGCGCGACACCGCGTGCGCGTCGGCGCCGGGGGCGGCATCGGGTGCCCGCAAGCGGCTCTGGGCGCCTTCCACATGGGCGCCGCGTTTGTGGTGACGGGCACGGTCAACCAGCTGAGCCGGCAGGCCGGGACATGCGACAATGTGCGGCGGCAGCTGTCGCGCGCGACGTACTCGGACATCACGATGGCGCCGGCGGCGGACATGTTCGAGCAGGGCGTCGAGCTGCAGGTGCTCAAGAAGGGCACGATGTTTCCCTCGCGCGCCAAGAAGCTGTTCGAGCTGTTTCACAAGTACGACTCGTTCGAGGCGATGCCGGCGGACGAGCTGGCGCGCGTCGAGAAGCGCATCTTCAGCAAGTCACTCGCCGAGGTGTGGGCCGAGACCAAGGACTTCTACATCACGCGGCTCAACAACCCGGAGAAGATCCGCAAGGCGGAGAACGAGGACCCCAAGCTCAAGATGTCACTCTGCTTCCGCTGGTACCTCGGGCTCAGCTCGTTCTGGGCCAACAACGGCATCGCGGACCGCACGATGGACTACCAGATCTGGTGCGGCCCTGCCATCGGCGCCTTCAACGACTTCATCGCCGACTCGTACCTCGACGTGGCCGTCTCGGGCGAGTTCCCCGACGTCGTGCAGATCAACCTGCAGATCCTGTCGGGCGCAGCCTACCTCCAGCGCCTCCTCTCCGTCAAGCTCGCACCGCGGATCGACGTCGACACCGAGGACGACCTCTTCACCTACCGC
CCCGACCACGCACTCTAA
SEQ ID NO:9示出了示例性的植物优化的PFA3基因的核苷酸序列,在本文中称为PFA3 v2:
ATGACATCTTCAAAGAAAACTCCTGTTTGGGAAATGAGCAAGGAAGAGCTGTTGGATGGCAAGACGGTTGTCTTTGACTACAACGAGCTGTTGGAGTTTGCGGAGGGTGATGTTGGTCAAGTGTTTGGACCAGAGTTTGACATCATTGACAAGTACAGAAGGCGTGTGAGGCTTCCAGCCAGAGAATACTTGCTTGTTTCAAGAGTGACTCTCATGGATGCCGAGGTGAATAACTTCAGAGTTGGCTCCAGAATGGTCACTGAGTATGATGTTCCAGTCAATGGTGAGTTGTCAGAGGGAGGTGATGTTCCCTGGGCAGTTCTTGTTGAAAGTGGGCAGTGTGACTTGATGCTCATCTCCTACATGGGGATTGACTTCCAGTGCAAAGGGGACCGTGTTTACAGATTGCTCAACACATCTCTCACCTTCTTTGGGGTTGCCCATGAAGGAGAAACCCTTGTGTATGACATCAGAGTCACTGGTTTCGCCAAGGGTGCTGGTGGGGAAATCTCAATGTTCTTTTTCGAGTATGACTGCTTTGTTGATGGCAGATTGCTCATAGAGATGAGAGATGGTTGTGCTGGCTTCTTTACTGATGCCGAACTTGCCGCTGGAAAAGGTGTGCTCAAAACGAAGGCTGAGCTTGCTGCACGTGCTCAGATCCAGAAACAAGACATTGCACCCTTTGCACCTGCACCGTGCAGTCACAAAACCAGCTTGGATGCCAGAGAAATGAGACTGCTTGTTGATAGGCAATGGGCAAGGGTCTTTGGTTCTGGAATGGCTGGCATAGACTACAAGTTGTGTGCGAGAAAGATGCTGATGATTGACAGAGTCACACACCTTGATCCGCGTGGAGGTGCTCACGGTCTTGGGCTTCTCATTGGGGAGAAAGTGCTTGAGAGGGACCACTGGTACTTCCCCTGCCACTTTGTGAGGGATGAGGTCATGGCTGGTTCTCTTGTCTCAGATGGATGCTCTCAGCTTCTCAAGGTTTACATGTTGTGGCTTGGCCTTCACACCACTGTTGGTGCGTTCGACTTTCGTCCAGTCAGTGGTCATGCCAACAAAGTGAGGTGTCGTGGACAGATTTCACCGCACAAGGGGAAACTTGTTTATGTCATGGAGATCAAAGAAATGGGCTTTGATGCCAAAACTGGAGATCCATTTGCCATAGCTGATGTTGACATCATTGATGTCAACTTTGAAGAGGGACAAGCGTTTGCTGGAGTTGAGGATCTTCACAGCTATGGCCAAGGAGATTTGAGGAAAAAGATAGTTGTGGATTTCAAGGGAATTGCGTTGTCACTGCAGAAAAGGAAGGAGCAACAGAAAGAGAGCATGACTGTCACCACTACGACCACGACAACCAGCAGAGTGATTGCTCCTCCAAGTGGATGCCTCAAAGGTGATCCCACTGCTCCCACCTCTGTCACGTGGCATCCAATGGCTGAGGGAAATGGAGGTCCTGGACCCACTCCGTCCTTCTCTCCTTCAGCGTATCCTCCCAGAGCTGTTTGCTTCTCTCCTTTCCCCAACAATCCGCTTGACAATGATCATACACCTGGCCAAATGCCGTTGACCTGGTTCAACATGTCTGAGTTCATGTGTGGAAAAGTGAGCAACTGCTTGGGTCCTGAGTTTGCCAGATTTGATGCTTCCAAGACATCCAGATCACCAGCTTTTGACCTGGCTCTTGTGACAAGGGTGACGAGTGTGGCTGACATGGAACATGGTCCTTTCTACAATGTGGATGTCAACCCTGGCCAAGGCACGATGGTGGGTGAGTTTGATTGTCCTGCAGATGCTTGGTTCTTTGGAGCCTCAAGCAGAGACGATCACATGCCGTACAGCATCTTGATGGAGATTGCTCTTCAGACTTCTGGAGTCCTCACATCTGTGCTCAAAGCTCCGCTCACAATGGACAAAGATGACATCCTTTTCAGAAACCTTGATGCAGATGCAGAACTTGTGGGTGATGCCATGCCTGATGTCAGAGGGAAAACCATAAGGAACTTCACCAAATGCACGGGATACTCCATGCTTGGCAAGATGGGA ATCCATCGTTTCACCTTCGAACTCTCTGTTGACGGAGCAGTTTTCTACAAAGGGAGCACCTCTTTTGGTTGGTTTGTTCCTGAGGTCTTTGAGAGCCAGACTGGATTGGACAATGGCAAGCCGAGGTTGCCTTGGTATAGGGAAAACAATGTGGCAGTGGACACACTCTCAGCACCTGCGTCAGCTTCTAGTGCCCAAGGTCAGCTTCAGCTTCAGAGGAGAGGGTCACAAGCGCAGTTCCTGGACACAATTCATCTTGCTGGGAGTGGAGCTGGAGTGCATGGCCAAGGTTATGCTCATGGGGAGAAAGCTGTGAACAAGCAAGATTGGTTCTTTTCTTGCCATTTCTGGTTTGACCCAGTGATGCCTGGGTCTTTGGGAATTGAGTCCATGTTCCAGCTTGTGGAAGCGTGGTGTGTCAAACAAGGCTTGGCTGCAAGGCATGGAATTGCTCATCCAGTCTTTGCACATGCACCTGGTGCCACCAGCTGGAAGTACAGAGGTCAGTTGACCCCAAAGAATGACAGAATGGACAGTGAAGTTCACATCAAGAGTGTTGCTGCCTTCTCCTCATGGGTTGATGTGGTTGCTGATGGGTTCCTCTTCGTTGATGGCCTCAGAGTCTATTCAGCAGACAACCTGAGGGTCAGAATCCAGACTGGAGCTGGCCATGTTGAAGAGCAAGAAGTTGCTGCCAAAGCCACCACAAAGAACTCCAGCATTGCTGATGTGGATGTGGCTGATCTTCAAGCTCTCAAACAAGCGTTGCTGACACTGGAGAGACCATTGCAGTTGGATGCTGGAAGTGAGGTGCCAGCCTGTGCTGTCAGCGATTTGGGAGACCGTGGATTCATGGAGACTTATGGGGTGGTTGCTCCGTTGTACAGTGGTGCGATGGCCAAGGGAATAGCCTCTGCGGATCTGGTCATAGCAATGGGTCAGAGGAAGATGTTGGGGAGCTTTGGAGCTGGTGGGTTGCCAATGCACGTTGTCCGTGCTGGGATTGAAAAGATCCAAGCTGCACTTCCCGCTGGTCCGTATGCTGTCAACCTCATCCACTCACCGTTCGATGCCAACCTGGAAAAGGGCAATGTTGATCTTTTCCTGGAAAAGGGAGTTCGTGTGGTTGAGGCGTCTGCCTTCATGGAACTCACACCACAAGTGGTCCGTTACAGAGCCACGGGACTCTCCAGAGATGCGAGAGGTGGCTCAGTGAGGACAGCACACAAGATCATAGGAAAGGTTTCCAGAACAGAGCTTGCGGAGATGTTCATCAGACCTGCACCTCAAGCAATTCTGGACAAACTTGTTGCGTCTGGTGAAATCACCCCTGAGCAAGCTGCGTTGGCTCTTGAAGTTCCAATGGCTGATGACATTGCAGTTGAGGCTGACAGTGGAGGGCACACTGACAACCGTCCCATTCATGTCATTCTGCCGTTGATCCTCAGTCTGAGGAATAGGCTCCAGAGGGAACTCAAGTACCCTGCCAGACACCGTGTTAGGGTTGGTGCTGG TGGAGGCATAGGTTGTCCTCAAGCTGCACTTGGAGCCTTCCACATGGGAGCTGCGTTTGTTGTGACTGGCACTGTCAACCAGCTGTCCCGTCAAGCTGGAACATGTGACAACGTGAGGCGTCAGCTCTCTCGTGCCACTTACTCTGACATCACGATGGCACCAGCTGCAGACATGTTTGAACAAGGAGTTGAACTGCAAGTTCTCAAGAAAGGAACGATGTTCCCATCTCGTGCCAAGAAACTCTTTGAACTGTTCCACAAGTATGATTCCTTTGAAGCAATGCCTGCGGATGAATTGGCTCGTGTTGAGAAGAGGATCTTCTCCAAGTCCCTTGCAGAAGTTTGGGCAGAGACCAAAGATTTCTACATCACTCGTCTCAACAATCCTGAAAAGATCAGAAAGGCTGAGAATGAGGACCCCAAGCTCAAGATGTCCCTCTGCTTCCGTTGGTACTTGGGTCTCAGCTCATTCTGGGCAAACAATGGCATAGCTGACCGTACGATGGATTACCAGATTTGGTGTGGACCTGCCATAGGAGCCTTCAACGATTTCATTGCAGACAGCTATCTTGATGTTGCAGTCTCTGGTGAGTTCCCTGATGTTGTGCAGATCAACCTTCAAATCCTGTCTGGTGCTGCGTATCTCCAGAGATTGCTCAGTGTCAAACTTGCACCAAGGATAGATGTGGACACTGAAGATGACCTCTTCACCTACAGA
CCAGATCATGCACTCTGA
SEQ ID NO:10示出了示例性HetI基因的核苷酸序列:
ATGCTTCAGCACACTTGGCTTCCGAAGCCTCCCAATCTGACCCTCTTGTCAGATGAGGTTCATCTCTGGAGGATTCCTCTTGACCAGCCTGAGTCACAACTTCAAGACCTTGCTGCCACCCTGAGCAGTGATGAATTGGCGAGGGCAAACAGATTCTACTTTCCAGAACACAGAAGGCGTTTCACTGCTGGGAGAGGCATCCTCAGATCCATCTTGGGTGGATACTTGGGAGTGGAACCGGGTCAAGTCAAGTTTGATTATGAGTCCCGTGGGAAACCGATCCTTGGTGACAGATTTGCTGAGAGTGGACTCCTGTTCAACTTGTCTCACAGCCAGAACCTTGCCTTGTGTGCTGTCAACTACACGCGTCAAATAGGCATTGATCTTGAATATCTGCGTCCAACATCTGACTTGGAGTCTCTTGCAAAGAGGTTCTTTCTCCCAAGAGAATATGAACTCTTGAGGTCACTCCCTGATGAGCAGAAACAGAAGATTTTCTTTCGTTACTGGACTTGCAAAGAGGCTTATCTCAAAGCAACGGGAGATGGAATAGCCAAACTTGAAGAGATCGAGATAGCACTCACCCCAACAGAACCTGCCAAGCTCCAAACAGCTCCTGCGTGGTCTCTGTTGGAGCTTGTGCCAGATGACAATTGTGTT
GCAGCTGTGGCTGTTGCGGGTTTTGGTTGGCAGCCCAAGTTCTGGCATTACTGA
SEQ ID NO:11示出了示例性SzACS2基因的核苷酸序列,其分离自裂殖壶菌ATCC登录号20888:
ATGGCTCCCACTCCCGACGCCACCGCGCCTCTGAACAAGCCGAGCGACTATGCCGTCTACCACGAGGAAGACGGCCCCTTCTGGACCGCCGATTCCAGCGGCGTCTCGCGCGTGAACTTTAGCGAGACCGGCGTGGGATCCGAGGGCGTCATCCCTGCGCTCACGCTCATCGACGTCTTCGAGAGGGCCGTCAAGCGCGGCGGAAACAGGATCGCCTTCCGCACGGAAAACATGCCCACGCTCCGCCGCGGCGAAGAGGCCCCGGACGCGCTGCCGCTCAAGGACTGGAAGTCCTGGTCCTGGAAACAGTACAAGGCCGACGTCCACCGCATCGCCAGGGCTCTCATGGACCTCGGCGTTGAGCAGCATGACGCCGTCTCCATTTTTGGCTTTAACTCGCCCGAATGGTTTCTCAGTGCCGTCGGCGCCGTGCACGCAGGTGCCAAGATTGCCGGCATTTACCCCTCAGACACGCCCGCCCAGGTCCAGTACAAGGCCTTCCACAGTGACACCGCTGTTGCCGTTGTCGAAAACGAGCAGTGCTTCAAGAAGTTCGCCGAGGTCGTCGAGGACCTTCCTTACCTCAAGGCCATTGTTTGCTGGGACTATGAAGCCACAGACATCACGCGCGAGGACGGCTCCGTCGTCGAGGTCCTCACCTTTGCCGAGTTCCTCAAGCGCGGCGACACCGTCGAGGCGGCCGCCCTTGACGAGCGCATCTCCAAGATCGAGCCCACCATGTGCGCTGCCCTTATTTACACCAGCGGTACTACCGGCCGCCCCAAGGCCGTTATGATTTCGCACGACAACCTTGTTTTCGAGGCCAGCGCCGTCGTCCCCAACCTCGGAGGAGCCTGTACGACCACTGCTGAGGAGCGCATTCTCTCGTACCTGCCTCTCTCGCACGTCGCTGGTATGATGGTTGATATTATTGCCCCCATCATTGCCACCGCCTTCCACAAGGGCCGCATCTGCGTCTGCTTTGCTCGCCCGTACGATTTGCGCACCGGCACGCTGGGCCAGCGCCTCAACGCCGTGGAGCCCACCATCTTCCTTGGCGTGCCCCGTGTGTGGGAAAAGATTCAGGAAAAGCTCATGGCCGTCGGTGCCAAAACCACCGGCCTCAAGAAGAAGCTCTCTACGGCCGCCAAGAAGCGTGGTCTTGAATTCCAGGAGGAGCAGCAAATCGGCCGCTCCGGTGCCAACCCTGGCTTTGGCCCCCTTGGCATCTACAAGAAGCTCCTCGGCCTCATCAAGGGCAAGCTGGGCCTCACCAAGTGCAAGTTTGCCTTTGCTGGTGCCGCGCCCATGACCCG TGAGACCCTTCAGTACTTTGGCGCGCTGAACATCAACATTAACGAGGTCTACGGCATGTCCGAGTGCTCCGGTGCCGCCACCTGGTCCACGGACAAGGCCCACGAGTGGGGCACTGTTGGCTACGAGATGCCCAGTTGCGAGGTCCGCGTCTTCAAGATTGCCGAGGACGGTACCAAGACCGAGTGCCCGCGCGCCGCCGACATTATGCATGCTACCGAGGAGGAGCAGGGCGAAGTTTGCTTCCGCGGCCGTAACATCATGATGGGCTACCTTGCCAACCCCAAGCTTGGCGACGACCACGTTGCCGAGATCGAGGAGAAGAACGCTGCCGCTATCGACTCCGAGGGCTGGCTCCACAGTGGTGATAAGGGCGCCATTTCTACCCGCGGCATGCTCAAGATCACGGGCCGCTACAAGGAGCTCATCATCGGCGCCGGTGGCGAGAACGTGGCGCCCGTCCCTATTGAGGACGCCATCAAGGCGCGCATGCCTTTTGTTTCCAACGCCATGATGGTCGGAGATAAGCGCAAGTTCATGGCTGTCCTCCTTACCCTCAAGACGGTTGGCGCCACGGGCGAGCTTCCCGGTACGAACAAGCTCATGGGCGCTGCCGCCGACTATGGTGAGACCATCGAGGACGCCTGCGACAACGAGGCGCTCATTGAGGAGATCACGCAGCAGCTCAAGGAGATCGGTGATGATGGCGATGTCACGCCCTCGAACGCGGCTCGCATCCAAAAGTTCACCATTCTCCCGCTCGACTTTTCCGTCTCCACGGACGAGCTCACGGCCACGCTCAAGCTCAAGCGCTCCGTGGTCGCAGACAAGTACGAAGACATCATCGAGGCCTTTTACGAGTCCAAGAGCGTTTTTGTGCCGTACTCGACCGTTGGCGCCTACGCCACGGGCGGCCCGGTCGACGACTCCGTTGTCGATGGCTCCTTCAAGGGCGACTTTAGCATGATTGGCGACGATGATCCGGATCTTCAAAAC
GTCGATGTCCTCGAGGCGATTGACGAGGACAATTAA
SEQ ID NO:12示出了在一些实施方案中采用的随机“间隔区”多核苷酸的核苷酸序列。
SEQ ID NO:13示出了示例性的5’截短的PFA3基因的核苷酸序列,所述基因在本文中被称为PFA3 v3:
ATGAGCAAGGAGGAGCTGCTGGACGGCAAGACGGTGGTCTTCGACTACAACGAGCTGCTCGAATTCGCCGAGGGCGACGTGGGCCAAGTGTTCGGACCCGAGTTCGACATCATCGACAAGTACCGGCGTCGCGTGCGGCTGCCGGCGCGCGAGTACCTGCTCGTGTCGCGCGTGACGCTGATGGACGCCGAGGTGAACAACTTCCGCGTCGGGTCGCGCATGGTGACCGAGTACGACGTGC CCGTGAACGGGGAGCTGTCGGAGGGCGGGGACGTGCCGTGGGCGGTGCTGGTGGAGTCGGGGCAGTGCGACCTGATGCTCATCTCGTACATGGGCATCGACTTCCAGTGCAAGGGCGACCGCGTGTACCGCCTGCTCAACACATCGCTCACCTTCTTCGGGGTGGCGCACGAGGGCGAGACGCTGGTGTACGACATCCGCGTCACGGGGTTCGCCAAGGGCGCGGGCGGGGAGATCTCGATGTTCTTCTTCGAGTACGACTGCTTCGTGGACGGCCGCCTGCTGATCGAGATGCGCGACGGGTGCGCCGGGTTCTTCACGGACGCCGAGCTGGCCGCCGGCAAGGGCGTGCTTAAGACCAAGGCGGAGCTGGCGGCGCGCGCGCAGATCCAGAAGCAGGACATCGCGCCCTTTGCGCCGGCGCCGTGCTCGCACAAGACCTCGCTGGACGCGCGCGAGATGCGGCTGCTCGTGGACCGCCAGTGGGCGCGCGTCTTCGGCAGCGGCATGGCGGGCATCGACTACAAGTTGTGCGCTCGCAAGATGCTCATGATCGACCGCGTCACGCACCTCGACCCGCGCGGCGGCGCGCACGGCCTCGGGCTGCTGATCGGGGAGAAGGTGCTGGAGCGCGACCACTGGTACTTCCCCTGCCACTTTGTGCGCGACGAGGTGATGGCCGGGTCGCTGGTCAGCGACGGCTGCTCGCAGCTCCTCAAGGTGTACATGCTGTGGCTCGGCCTGCACACGACCGTGGGCGCGTTCGACTTTCGTCCCGTGAGCGGGCACGCCAACAAGGTGCGGTGCCGCGGGCAGATCTCACCGCACAAGGGCAAGCTCGTGTACGTGATGGAGATCAAGGAAATGGGCTTTGACGCGAAGACGGGCGATCCGTTTGCGATCGCGGACGTGGACATCATCGACGTCAACTTCGAGGAGGGACAGGCGTTTGCGGGAGTGGAAGACCTGCACAGCTACGGCCAGGGCGACCTCCGCAAGAAGATCGTCGTCGACTTCAAGGGCATCGCGCTCTCCCTGCAGAAGCGGAAGGAGCAGCAGAAGGAAAGCATGACCGTGACTACGACGACGACGACGACGAGCCGGGTGATTGCGCCGCCCAGCGGGTGCCTCAAGGGCGACCCGACGGCGCCGACGAGCGTGACGTGGCACCCGATGGCGGAGGGCAACGGCGGGCCCGGACCGACGCCGTCGTTCTCGCCGTCCGCGTACCCGCCGCGGGCGGTGTGCTTCTCGCCGTTCCCCAACAACCCGCTTGACAACGACCACACGCCGGGCCAGATGCCGTTGACCTGGTTCAACATGTCCGAATTCATGTGCGGCAAAGTGTCCAACTGCCTGGGCCCCGAGTTTGCGCGCTTCGACGCGAGCAAGACGAGCCGCAGCCCGGCCTTTGACCTGGCGCTCGTGACGCGGGTGACGAGCGTGGCGGACATGGAGCACGGGCCGTTCTACAACGTGGACGTCAACCCGGGC CAGGGCACGATGGTGGGCGAGTTCGACTGTCCCGCGGACGCGTGGTTCTTCGGCGCCTCGAGCCGCGACGACCACATGCCGTACTCGATCCTGATGGAGATCGCGCTGCAGACGTCGGGCGTCCTCACCTCGGTGCTCAAGGCGCCGCTGACGATGGACAAGGACGACATCCTCTTCCGCAACCTCGACGCAGACGCCGAGCTCGTGGGCGACGCCATGCCGGACGTGCGCGGCAAGACGATCCGCAACTTCACCAAGTGCACAGGCTACAGCATGCTCGGCAAGATGGGCATCCACCGCTTCACCTTTGAGCTCAGCGTCGACGGCGCCGTCTTCTACAAGGGCAGCACCTCGTTTGGCTGGTTCGTCCCCGAGGTCTTCGAGTCGCAGACCGGTCTCGACAACGGCAAGCCGCGCCTGCCTTGGTACCGCGAGAACAACGTCGCCGTCGACACGCTCTCCGCGCCCGCCTCCGCTTCCTCCGCGCAAGGTCAGCTGCAGCTGCAGCGACGCGGGTCGCAGGCGCAGTTCCTGGACACAATCCACCTGGCGGGCAGCGGCGCCGGCGTGCACGGCCAGGGCTACGCGCACGGGGAGAAGGCCGTGAACAAGCAAGATTGGTTCTTCTCGTGCCACTTCTGGTTCGACCCCGTGATGCCCGGGTCCCTGGGCATCGAGTCGATGTTCCAGCTCGTCGAGGCGTGGTGCGTGAAGCAGGGACTCGCGGCGCGGCACGGCATCGCTCACCCAGTGTTCGCGCACGCGCCCGGGGCCACGAGCTGGAAGTACCGCGGGCAGCTAACCCCCAAGAACGACCGCATGGACAGCGAGGTGCACATCAAGTCGGTGGCGGCCTTCTCCTCCTGGGTCGACGTCGTCGCGGACGGGTTCCTCTTCGTCGACGGCCTCCGCGTCTACTCGGCAGACAACCTCCGCGTCCGCATCCAGACCGGCGCCGGCCACGTTGAAGAGCAAGAGGTTGCTGCCAAGGCCACAACCAAGAACAGCAGTATTGCTGATGTGGACGTGGCGGACCTGCAAGCGCTCAAGCAGGCGTTGCTGACGCTGGAGCGACCGCTGCAGCTGGACGCGGGGAGCGAGGTGCCCGCCTGCGCGGTGAGCGACCTGGGCGATAGGGGCTTCATGGAGACGTACGGGGTGGTGGCGCCGCTGTACAGCGGGGCGATGGCCAAGGGCATCGCGTCGGCGGACCTGGTGATCGCGATGGGCCAGCGCAAGATGCTGGGGTCGTTTGGCGCGGGCGGGCTCCCGATGCACGTCGTGCGCGCGGGGATTGAGAAGATCCAGGCAGCGCTGCCAGCGGGGCCATACGCGGTCAACCTGATTCACTCGCCTTTTGACGCCAACCTGGAGAAGGGCAACGTGGACCTCTTCCTGGAGAAGGGCGTGCGCGTCGTGGAGGCGTCGGCCTTCATGGAGCTCACGCCCCAGGTGGTGCGCTACCGCGCGACGGGCCTCTCTCGCGACGCGCGCGGCGGCTCCGTGCGCACGGCCCACAAGATCATCGGCAAGGTCAGCCGCACCGAGCTGGCCGAGATGTTTATCCGGCCCGCGCCGCAAGCCATTCTCGACAAGCTTGTGGCGTCCGGCGAGATCACCCCCGAGCAGGCGGCGCTGGCGCTCGAGGTGCCCATGGCGGACGACATCGCCGTCGAGGCCGATTCGGGCGGGCACACCGACAACCGCCCCATCCACGTCATCCTGCCCCTCATCCTCAGCCTGCGCAACCGCCTCCAGCGCGAGCTCAAGTACCCTGCGCGACACCGCGTGCGCGTCGGCGCCGGGGGCGGCATCGGGTGCCCGCAAGCGGCTCTGGGCGCCTTCCACATGGGCGCCGCGTTTGTGGTGACGGGCACGGTCAACCAGCTGAGCCGGCAGGCCGGGACATGCGACAATGTGCGGCGGCAGCTGTCGCGCGCGACGTACTCGGACATCACGATGGCGCCGGCGGCGGACATGTTCGAGCAGGGCGTCGAGCTGCAGGTGCTCAAGAAGGGCACGATGTTTCCCTCGCGCGCCAAGAAGCTGTTCGAGCTGTTTCACAAGTACGACTCGTTCGAGGCGATGCCGGCGGACGAGCTGGCGCGCGTCGAGAAGCGCATCTTCAGCAAGTCACTCGCCGAGGTGTGGGCCGAGACCAAGGACTTCTACATCACGCGGCTCAACAACCCGGAGAAGATCCGCAAGGCGGAGAACGAGGACCCCAAGCTCAAGATGTCACTCTGCTTCCGCTGGTACCTCGGGCTCAGCTCGTTCTGGGCCAACAACGGCATCGCGGACCGCACGATGGACTACCAGATCTGGTGCGGCCCTGCCATCGGCGCCTTCAACGACTTCATCGCCGACTCGTACCTCGACGTGGCCGTCTCGGGCGAGTTCCCCGACGTCGTGCAGATCAACCTGCAGATCCTGTCGGGCGCAGCCTACCTCCAGCGCCTCCTCTCCGTCAAGCTCGCACCGCGGATCGAC
GTCGACACCGAGGACGACCTCTTCACCTACCGCCCCGACCACGCACTCTAA
SEQ ID NO:14示出了示例性的5’截短的PFA3蛋白(PFA3v3)的氨基酸序列:
MSKEELLDGKTVVFDYNELLEFAEGDVGQVFGPEFDIIDKYRRRVRLPAREYLLVSRVTLMDAEVNNFRVGSRMVTEYDVPVNGELSEGGDVPWAVLVESGQCDLMLISYMGIDFQCKGDRVYRLLNTSLTFFGVAHEGETLVYDIRVTGFAKGAGGEISMFFFEYDCFVDGRLLIEMRDGCAGFFTDAELAAGKGVLKTKAELAARAQIQKQDIAPFAPAPCSHKTSLDAREMRLLVDRQWARVFGSGMAGIDYKLCARKMLMIDRVTHLDPRGGAHGLGLLIGEKVLERDHWYFPCHFVRDEVMAGSLVSDGCSQLLKVYMLWLGLHTTVGAFDFRPVSGHANKVRCR GQISPHKGKLVYVMEIKEMGFDAKTGDPFAIADVDIIDVNFEEGQAFAGVEDLHSYGQGDLRKKIVVDFKGIALSLQKRKEQQKESMTVTTTTTTTSRVIAPPSGCLKGDPTAPTSVTWHPMAEGNGGPGPTPSFSPSAYPPRAVCFSPFPNNPLDNDHTPGQMPLTWFNMSEFMCGKVSNCLGPEFARFDASKTSRSPAFDLALVTRVTSVADMEHGPFYNVDVNPGQGTMVGEFDCPADAWFFGASSRDDHMPYSILMEIALQTSGVLTSVLKAPLTMDKDDILFRNLDADAELVGDAMPDVRGKTIRNFTKCTGYSMLGKMGIHRFTFELSVDGAVFYKGSTSFGWFVPEVFESQTGLDNGKPRLPWYRENNVAVDTLSAPASASSAQGQLQLQRRGSQAQFLDTIHLAGSGAGVHGQGYAHGEKAVNKQDWFFSCHFWFDPVMPGSLGIESMFQLVEAWCVKQGLAARHGIAHPVFAHAPGATSWKYRGQLTPKNDRMDSEVHIKSVAAFSSWVDVVADGFLFVDGLRVYSADNLRVRIQTGAGHVEEQEVAAKATTKNSSIADVDVADLQALKQALLTLERPLQLDAGSEVPACAVSDLGDRGFMETYGVVAPLYSGAMAKGIASADLVIAMGQRKMLGSFGAGGLPMHVVRAGIEKIQAALPAGPYAVNLIHSPFDANLEKGNVDLFLEKGVRVVEASAFMELTPQVVRYRATGLSRDARGGSVRTAHKIIGKVSRTELAEMFIRPAPQAILDKLVASGEITPEQAALALEVPMADDIAVEADSGGHTDNRPIHVILPLILSLRNRLQRELKYPARHRVRVGAGGGIGCPQAALGAFHMGAAFVVTGTVNQLSRQAGTCDNVRRQLSRATYSDITMAPAADMFEQGVELQVLKKGTMFPSRAKKLFELFHKYDSFEAMPADELARVEKRIFSKSLAEVWAETKDFYITRLNNPEKIRKAENEDPKLKMSLCFRWYLGLSSFWANNGIADRTMDYQIWCGPAIGAFNDFIADSYLDVAVSGEFPDVVQINL
QILSGAAYLQRLLSVKLAPRIDVDTEDDLFTYRPDHAL
SEQ ID NO:15-38示出了在本文某些实例中采用的几种质粒的核苷酸序列。
实施本发明的模式
I.若干实施方案概述
在真核生物中的LC-PUFA合成的经典途径涉及饱和或单不饱和脂肪酸的延长与去饱和。经由PUFA合酶的LC-PUFA合成途径与所述经典途径差异很大。具体地说,PUFA合酶利用丙二酰辅酶A作为碳源,并产生最终的PUFA,而不释放任何显著量的中间体。同样,在PUFA合酶的作用下,在合成过程中利用 不需氧的机制添加适当的顺式双键。例如,NADPH可用作合成循环过程中的还原剂。
本文中描述了相对廉价的组合物和方法,用于在植物、植物种子、或植物油中高效率且有效地产生较长链的或更不饱和的PUFA(以及此类PUFA中富含的大量脂质,例如,TAG和PL)。此类脂肪酸及其生产方法可用于许多场合,包括饮食和工业应用。一种通过用PUFA合酶系统(例如,含有从破囊壶菌——裂殖壶菌藻鉴定的PUFA合酶组分和来自蓝藻细菌属——念珠藻属的磷酸泛酰巯基乙胺基转移酶(HetI),例如,还含有裂殖壶菌脂酰CoA合成酶同工酶2)遗传修饰重组宿主生物而在宿主生物(例如植物)中提供和提高PUFA产生的系统,相比于获得这些脂肪酸的方法具有显著的益处。
海洋破囊壶菌裂殖壶菌藻(如ATCC登录号PTA-9695代表)产生具有高ω-3/ω-6比率的油,也可作为作物转化用的PUFA合酶基因的来源。另外,裂殖壶菌可产生除了DHA之外还含有显著水平的EPA的油。这种产生显著量的EPA的能力与某些其他的破囊壶菌菌株(例如,裂殖壶菌属物种ATCC登录号20888)形成了鲜明对比。美国专利公开No.US2013/0150599A1;PCT国际专利公开No.WO2013/016546。该裂殖壶菌PUFA合酶系统当以异源方式在种类繁多的作物中表达时可发挥作用,正如本文在例如芥花、大豆、和模型植物拟南芥中所证明的,从而产生有商业意义水平的ω-3 LC-PUFA(例如,DHA和EPA)。因此,这个基因集在一些实施方案中相比于其他PUFA合酶基因集,可导致植物中产生显著更多的DHA和EPA。
本文中还描述了各种构建体设计的实用性,包括不同的种子特异性启动子和终止子的多样化、间隔元件的使用、转录取向的改变、基因在TDNA之内的不同相对定位、以及天然和修饰的基因序列的使用。可以利用这些构建体设计进一步提高回收的产LC-PUFA-事件的数目、以及ω-3 LC-PUFA性状在后续世代中的遗传力。
在本文的实例中,用载体转化芥花、大豆、和拟南芥植物,所述载体包含编码来自破囊壶菌裂殖壶菌藻的PUFA合酶的三个组分多肽(即,PFA1、PFA2、和PFA3)、以及来自念珠藻属的磷酸泛酰巯基乙胺基转移酶(HetI)的基因。在一些实例中,所有四种基因都被包含在一个构建体中,处于种子特异性启动子的控制之下,并且由处于不同构型的多个种子特异性启动子驱动。植物转化实验生成了包含所有四种转基因并在种子中表达所有四种多肽的事件。在来自所 得转基因事件的种子脂质中产生ω-3 LC-PUFA的DHA和EPA。还检测到ω-6LC-PUFA DPA。回收了在T1种子的批量分析中含有高达2.9%DHA和1.0%EPA(3.9%的总ω-3 LC-PUFA)、以及1.1%DHA+2.0%EPA的芥花事件。在T1芥花种子的单种子分析中检测到高达4.6%的DHA和3.7%的EPA。根据对T1种子的单种子分析,回收的大豆事件含有高达1.9%的DHA和2.2%的EPA。
II.缩写
ACS 乙酰CoA合成酶
DGAT 二脂酰甘油酰基转移酶
DHA 二十二碳六烯酸
DPA 二十二碳五烯酸
EPA 二十碳五烯酸
FAME 脂肪酸甲酯
HPLC 高效液相色谱法
LC-PUFA 长链多不饱和脂肪酸
LPAT 溶血磷脂酸酰基转移酶
LPCAT 溶血卵磷脂酰基转移酶
P1P2P3H 与HetI一起表达的PFA1、PFA2、和PFA3基因
P1P2P3H-ACS 与HetI和SzACS2一起表达的PFA1、PFA2、和PFA3基因
PDAT 磷脂:二脂酰甘油酰基转移酶
PL 磷脂
PPT酶 磷酸泛酰巯基乙胺转移酶
PTU 植物转录单位
PUFA 多不饱和脂肪酸
SzACS2 裂殖壶菌脂酰CoA合成酶同工酶2
TAG 三酰基甘油
III.术语
回交:回交方法可用于将核酸序列导入植物。回交技术已数十年广泛用于将新的性状导入植物。Jensen,N,Ed.Plant Breeding Methodology,John Wiley&Sons,Inc,1988。在典型的回交方案中,使感兴趣的原始品种(轮回亲本) 与携带要被转移的感兴趣基因的第二个品种(非轮回亲本)杂交。然后使从这种杂交得到的子代再与所述轮回亲本杂交,并重复该过程,直到获得植物时为止,其中除了来自非轮回亲本的转移的基因之外,所述轮回植物的基本上所有的所希望的形态学和生理学特性被回收在转换的植物中。
分离的:“分离的”生物组分(例如,核酸或蛋白质)已经与该组分天然存在的生物细胞中的其它生物组分(即,其它染色体或染色体外DNA和RNA、和蛋白质)实质上分离、与之分别产生、或从之纯化出来,在分离、产生和纯化的同时实现了该组分的化学或功能变化(例如核酸可以通过断裂连接该核酸与染色体中其余DNA的化学键而从染色体分离)。已经“分离的”核酸分子和蛋白质包括通过标准纯化方法纯化的核酸分子和蛋白质。该术语还包括通过在宿主细胞内重组表达制备的核酸分子和蛋白质,以及化学合成的核酸分子、蛋白质和肽。
核酸分子:如本文中使用的,术语“核酸分子”可以是指核苷酸的聚合物形式,可包括RNA、cDNA、基因组DNA的有义和反义链,以及上述情形的合成形式和混合聚合物。核苷酸可以是指核糖核苷酸、脱氧核糖核苷酸、或这两种类型核苷酸的任一者的修饰形式。如本文中使用的“核酸分子”与“核酸”和“多核苷酸”是同义词。除非另外指明,核酸分子通常在长度上具有至少10个碱基。所述术语包括DNA的单链和双链形式。核酸分子可以包括天然存在的核苷酸和通过天然存在和/或非天然存在的核苷酸连接而连接在一起的修饰核苷酸的任一者或两者。
正如本领域技术人员易于理解的,核酸分子可被化学修饰或生物化学修饰,或者可以含有非天然或衍生的核苷酸碱基。这些修饰包括,例如,标记物、甲基化、用类似物取代一个或多个天然存在的核苷酸、核苷酸间修饰(例如,如不带电连接(uncharged linkage)的修饰:例如甲基膦酸盐、磷酸三酯、氨基磷酸酯、氨基甲酸酯等;带电连接(chargedlinkage)的修饰:例如,硫代磷酸酯、二硫代磷酸酯等;悬垂部分的修饰:例如肽类;嵌入剂修饰:例如吖啶、补骨脂素等;螯合剂修饰;烷化剂(alkylator)修饰;和修饰的连接:例如α异头核酸等)。术语“核酸分子”还包括任何拓扑结构,包括单链的、双链的、部分双链体的、三链体的、发夹形的(hairpinned)、圆形的、挂锁形的结构。
可操作连接:当第一核酸序列置于与第二核酸序列的功能性关系中时,第一核酸序列与第二核酸序列是可操作连接的。当以重组方式产生时,可操作 连接的核酸序列通常是连续的,并且在这种情况下必需将两个蛋白质编码区连接在同一个阅读框内(例如,在多顺反子ORF中)。然而,可操作连接的核酸序列不必是连续的。
在有关调节序列和编码序列的情况下使用时,术语“可操作连接”意味着该调节序列影响该连接的编码序列的表达。“调节序列”或“控制元件”是指影响转录的周期和水平/量、RNA加工或稳定性、或相关编码序列的翻译的核苷酸序列。调节序列可包括:启动子;翻译前导序列;内含子;增强子;茎环结构;抑制子结合序列;终止序列;和多腺苷酸化识别序列。特定的调节序列可位于与其可操作连接的编码序列的上游和/或下游。并且,与编码序列可操作连接的特定调节序列可位于双链核酸分子的相关互补链上。
启动子:如本文中使用的,术语“启动子”是指可以在转录起始上游的、且可能涉及RNA聚合酶与其他蛋白质的识别和结合而启动转录的DNA区域。启动子可与用于在细胞中表达的编码序列可操作连接,或者启动子可与编码信号序列的核苷酸序列可操作连接,所述核苷酸序列可与用于在细胞中表达的编码序列可操作连接。“植物启动子”可以是能够启动植物细胞转录的启动子。在发育控制下的启动子的实例包括优先启动某些组织中的转录的启动子,所述组织例如叶、根、种子、纤维、木质部导管、管胞、或厚壁组织。这样的启动子称为“组织优先”启动子。仅启动某些组织中的转录的启动子被称为“组织特异性”启动子。“细胞类型特异性”启动子主要驱动一个或多个器官中某些细胞类型(例如,根或叶中的维管细胞)中的表达。“诱导型”启动子可以是可以在环境控制之下的启动子。可通过诱导型启动子启动转录的环境条件的实例包括厌氧条件和光的存在。组织特异性启动子、组织优先启动子、细胞类型特异性启动子、和诱导型启动子构成“非组成型”启动子类别。“组成型”启动子是在大多数环境条件下在生物的大多数细胞中可具有活性的启动子。
任何诱导型启动子均可以在本发明的某些实施方案中使用。参见Ward等人,(1993)Plant Mol.Biol.22:361-366。利用诱导型启动子,转录速率响应于诱导剂而增加。诱导型启动子的实例包括但不限于:来自响应于铜的ACEI系统的启动子;响应于苯磺酰胺除草剂安全剂的来自玉米的In2基因启动子;来自Tn10的Tet抑制子;和来自甾体激素基因的诱导型启动子,其转录活性可通过糖皮质激素诱导(Schena等人,(1991)Proc.Natl.Acad.Sci.USA 88:0421)。
组成型启动子的实例例如包括,但不限于:来自植物病毒的启动子,例 如来自CaMV的35S启动子;来自水稻肌动蛋白基因的启动子;泛素启动子;pEMU;MAS;玉米H3组蛋白启动子;和ALS启动子,欧洲油菜ALS3结构基因5'的Xba1/NcoI片段(或与所述Xba1/NcoI片段相似的核苷酸序列)(国际专利公开No.WO 96/30530)。
另外,在本发明的一些实施方案中可以利用任何组织特异性或组织优先启动子。用包含与组织特异性启动子可操作连接的编码序列的核酸分子转化的植物可唯一地或优先地在特异性组织中产生所述编码序列的产物。示例性的组织特异性或组织优先启动子包括但不限于:根特异性启动子,如来自菜豆蛋白基因的启动子;叶特异性和光诱导型启动子,如来自cab或rubisco的启动子;花药特异性启动子,如来自LAT52的启动子;花粉特异性启动子,如来自Zm13的启动子;小孢子优先启动子,如来自apg的启动子;以及种子特异性启动子(例如,来自PvDlec2、LfKCS3、FAE1、BoACP、或BnaNapinC的启动子)。
异源的:本文中适用于核酸(例如,多核苷酸、DNA、RNA、和基因)的术语“异源”意味着不同来源。例如,如果宿主细胞是用在自然界中不存在于未转化宿主细胞中的核酸转化的,则该核酸对于所述宿主细胞而言是异源的(并且是外源的)。而且,转化核酸的不同元件(例如,启动子、增强子、编码序列、终止子,等)彼此之间和/或相对于转化的宿主而言可以是异源的。如本文中使用的术语“异源”还可适用于一种或多种核酸,所述核酸的序列与已经存在于宿主细胞中的核酸相同,但是当前与不同的其他序列连接和/或以不同的拷贝数存在,等等。
天然的:如本文中使用的,术语“天然的”是指在自然界中发现的生物中或在生物的基因组中处于其天然位置的、与其自身的调节序列(如果存在的话)在一起的多核苷酸或基因形式。
内源的:如本文中使用的,术语“内源的”是指位于生物或基因组中的多核苷酸、基因、或多肽,所述生物或基因组在自然界中通常包含所述分子。
转化:如本文中使用的,术语“转化”或“转导”是指将一个或多个核酸分子转移到细胞中。当核酸分子通过核酸分子组入细胞基因组中、或通过附加型复制,而被该细胞稳定地复制时,则称细胞被转导到该细胞中的核酸分子“转化”。如本文中使用的,术语“转化”涵盖所有可将核酸分子导入这种细胞中的技术。实例包括但不限于:用病毒载体转染;用质粒载体转化;电穿孔(Fromm等人,(1986)Nature 319:791-3);脂质体转染(Felgner等人,(1987)Proc.Natl.Acad.Sci. USA 84:7413-7);显微注射(Mueller等人,(1978)Cell 15:579-85);土壤杆菌介导的转移(Fraley等人,(1983)Proc.Natl.Acad.Sci.USA 80:4803-7);直接DNA摄取;和微粒轰击(Klein等人,(1987)Nature 327:70)。
转基因:整合到宿主基因组中的外源核酸序列。在一些实例中,转基因可含有与该转基因的编码序列可操作连接的调节序列(例如,启动子)。
载体:引入到细胞中,例如产生转化的细胞的核酸分子。载体可以包含允许其在宿主细胞中复制的核酸序列,诸如复制起点。载体的实例包括但不限于:质粒;粘粒;噬菌体;和携带外源DNA进入细胞中的病毒。载体还可包括一种或多种基因、反义分子、和/或选择标志物基因和本领域已知的其他遗传元件。载体可以转导、转化或感染细胞,由此引起细胞表达核酸分子和/或由该载体编码的蛋白质。任选地,载体包括辅助核酸分子实现进入细胞中的物质(例如脂质体、和蛋白质包衣等)。
表达:如本文中使用的,术语“表达”可以是指由多核苷酸编码的mRNA的转录和稳定积累、或这样的mRNA翻译成多肽。如本文中使用的,术语“过表达”是指高于相同或密切相关基因的内源表达的表达。如果异源基因的表达高于与之密切相关的内源基因(例如,同源物),则所述异源基因被过表达。
外源的:术语“外源的”,如适用于本文中的核酸(例如,多核苷酸、DNA、RNA、和基因)的,是指在其特有的环境或背景中通常不存在的一种或多种核酸。例如,如果宿主细胞是用在自然界中不存在于未转化宿主细胞中的核酸转化的,则该核酸对于所述宿主细胞而言是外源的。如本文中使用的术语“外源的”还指一种或多种核酸,所述核酸的序列与已经存在于宿主细胞中的核酸相同,但是与已经存在于宿主细胞中的具有相同序列的核酸相比,位于不同的细胞或基因组背景中。例如,与通常整合在宿主细胞基因组中的具有相同序列的核酸相比,整合在宿主细胞基因组中不同位置的核酸对于宿主细胞而言是外源的。而且,当具有相同序列的核酸通常只存在于宿主细胞基因组中时,存在于宿主细胞中的质粒或载体中的核酸(例如,DNA分子)对于宿主细胞而言是外源的。
序列同一性:在两个核酸或多肽序列的情况下,如本文中使用的术语“序列同一性”或“同一性”可以是指在指定比较窗口上比对最大对应性时在这两个序列中相同的残基。
如本文中使用的,术语“序列同一性百分比”可以是指通过在比较窗口上 比较两个最优比对序列(例如核酸序列、和氨基酸序列)确定的值,其中在该比较窗口中的序列部分可以包含相比于参考序列(不包含添加或缺失)的添加或缺失(即,空位),用于这两个序列的最优比对。通过确定相同核苷酸或氨基酸残基出现在两个序列中的位置的数目而产生匹配位置的数目,用该匹配位置的数目除以比较窗口中的位置的总数,将结果乘以100而产生序列同一性的百分比,从而计算出该百分比。
用于比较的序列比对方法是本领域技术人员熟知的。各种程序和比对算法例如描述于Smith和Waterman(1981)Adv.Appl.Math.2:482;Needleman和Wunsch(1970)J.Mol.Biol.48:443;Pearson和Lipman(1988)Proc.Natl.Acad.Sci.U.S.A.85:2444;Higgins和Sharp(1988)Gene 73:237-44;Higgins和Sharp(1989)CABIOS 5:151-3;Corpet等人,(1988)Nucleic Acids Res.16:10881-90;Huang等人,(1992)Comp.Appl.Biosci.8:155-65;Pearson等人,(1994)Methods Mol.Biol.24:307-31;Tatiana等人,(1999)FEMSMicrobiol.Lett.174:247-50。序列比对方法和同源性计算的详细考虑事项可见于例如,Altschul等人,(1990)J.Mol.Biol.215:403-10。
美国国家生物技术信息中心(NCBI)基本局部比对搜索工具(BLASTTM;Altschul等人,(1990))可从几个来源获得,包括美国国家生物技术信息中心(Bethesda,MD)、以及在因特网上,其与几种序列分析程序结合使用。怎样使用该程序确定序列同一性的描述可在因特网的BLASTTM的“帮助”部分获得。为了比较核酸序列,可以采用利用默认参数的BLASTTM(Blastn)程序的“Blast 2序列”函数。在用这种方法评估时,与参考序列具有较大相似性的核酸序列将显示出同一性百分比的增加。
如本文中使用的,术语“基本上相同”可以是指85%以上相同的核苷酸序列。例如,基本上相同的核苷酸序列可以与参考序列至少85.5%;至少86%;至少87%;至少88%;至少89%;至少90%;至少91%;至少92%;至少93%;至少94%;至少95%;至少96%;至少97%;至少98%;至少99%;或至少99.5%相同。
在一些实施方案中,可通过使用核酸探针检测植物中异源核酸的存在。探针可以是DNA分子或RNA分子。可通过本领域已知的手段合成RNA探针,例如,使用DNA分子模板。探针可含有异源核酸的核苷酸序列的全部或部分、以及来自植物基因组的其他毗邻核苷酸序列。这在本文中被称为“毗邻探针”。 如常规理解的那样,取决于来自植物染色体的毗邻核苷酸序列是在异源核酸的5’侧还是在3’侧,所述另外的毗邻核苷酸序列称为异源核酸的“上游”或“下游”。如本领域普通技术人员公认的,获得包含在探针中的另外的毗邻核苷酸序列的过程可以几乎无限地重复(仅仅受到染色体长度的限制),由此沿着染色体鉴定出另外的核酸。在本发明的一些实施方案中可以使用上述各种探针的任一者和全部。
探针可含有与异源核酸不毗邻的核苷酸序列;在本文中将这种探针称为“非毗邻探针”。非毗邻探针的序列的位置充分靠近染色体上的异源核酸的序列,使得所述非毗邻探针与所述异源核酸遗传连锁。探针还可以是有待检测的异源核酸的精确拷贝。探针还可以是包含或其组成为与染色体DNA的克隆区段基本上相同的核苷酸序列的核酸分子,所述克隆区段包含有待检测的异源核酸。
可以合成方式或通过克隆制备寡核苷酸探针序列。适合的克隆载体是本领域技术人员熟知的。寡核苷酸探针可以是标记的或未标记的。存在多种用于标记核酸分子的技术,例如包括,但不限于:借助于切口平移的放射性标记术;随机引物法(random priming);借助于末端脱氧核糖核酸转移酶的加尾法,等等,其中所采用的核苷酸是标记的,例如,用放射性32P标记。可以使用其他标记物,例如包括,但不限于:荧光团;酶;酶底物;辅酶;酶抑制剂;等等。或者,提供可检测信号的标记物的使用(单独地或与其他反应剂结合使用),可以用与受体结合的配体代替,其中所述受体被标记(例如,借助于以上指示的标记物),以便通过它们自身或与其他试剂结合而提供可检测信号。参见,例如,Leary等人,(1983)Proc.Natl.Acad.Sci.USA 80:40459。
探针还可以是与待检测的核酸(“DNA靶”)的精确拷贝“可特异性杂交”或“特异性互补”的核酸分子。术语“可特异性杂交”和“特异性互补”表明有足够程度的互补性,使得核酸分子与DNA靶之间发生稳定且特异的结合。核酸分子与其可特异性杂交的靶序列不必是100%互补的。当有足够的互补程度时,核酸分子可特异性地杂交,以便避免核酸在特异性结合是期望的情况下(例如在严格杂交条件下)与非靶序列的非特异性结合。
导致特定严格程度的杂交条件会根据选择的杂交方法的性质和杂交的核酸序列的组成和长度而变化。通常,杂交温度和杂交缓冲液的离子强度(尤其是Na+和/或Mg++浓度)决定杂交的严格性,但洗涤时间也影响严格性。关于计算需要的获得特定严格性程度的杂交条件是本领域普通技术人员已知的,并且 在例如Sambrook等人(ed.)MolecularCloning:A Laboratory Manual,2nd ed.,vol.1-3,Cold Spring Harbor LaboratoryPress,Cold Spring Harbor,NY,1989,chapters9 and 11;以及Hames和Higgins(eds.)Nucleic Acid Hybridization,IRL Press,Oxford,1985中有论述。关于核酸杂交的进一步详细说明和指导例如可见于Tijssen,“Overview of principles of hybridization andthe strategy of nucleic acid probe assays,”in Laboratory Techniques inBiochemistry and Molecular Biology Hybridization with Nucleic Acid Probes,Part I,Chapter 2,Elsevier,NY,1993;和Ausubel等人,Eds.,Current Protocols inMolecular Biology,Chapter 2,Greene Publishing and Wiley-Interscience,NY,1995。
如本文中使用的,“严格条件”涵盖如下的条件,在此条件下,只有当杂交分子与DNA靶之间的错配小于25%时才发生杂交。“严格条件”包括另外的特殊严格性水平。因此,如本文中使用的,“中度严格性”条件为具有25%以上序列错配的分子不会杂交的条件;“中等严格性”条件为具有15%以上错配的分子不会杂交的条件;并且“高严格性”条件为具有10%以上错配的序列不会杂交的条件。“极高严格性”条件为具有6%以上错配的序列不会杂交的条件。
在具体的实施方案中,严格条件为在65℃在6x盐水柠檬酸钠(SSC)缓冲液、5x邓哈特溶液溶液、0.5%SDS、和100μg剪切的鲑睾丸DNA中杂交,然后在65℃在2x SSC缓冲液和0.5%SDS中连续洗涤15--30分钟,随后用1x SSC缓冲液和0.5%SDS,最后用0.2x SSC缓冲液和0.5%SDS洗涤。
关于上文论述的所有探针,探针可包含额外的核酸序列,例如,启动子、转录信号、和/或载体序列。
优化的:如本文中使用的,在编码蛋白质的核酸的语境中,术语“优化的”是指这样的核酸,其中异源核苷酸序列已经被改变,以反映靶宿主生物的密码子偏好。在一些实施方案中,可进一步改变核苷酸序列,以去除可能干扰基因表达的遗传元件。
应当理解,由于遗传密码的冗余,可设计多个DNA序列来编码单个氨基酸序列。因此,例如,优化的DNA序列可以被设计为去除多余的限制性位点和不希望的RNA二级结构,同时优化编码区的核苷酸序列,使得密码子组成近似于其中将要表达DNA的宿主的总体密码子组成。关于合成的DNA序列的设计和产生的指南可例如在国际专利申请WO2013016546、WO2011146524、和WO1997013402;以及美国专利6,166,302和5,380,831中找到。
保守性取代:如本文中使用的术语“保守性取代”是指其中氨基酸残基被替换为相同类别的另一种氨基酸的取代。非保守性氨基酸取代为其中残基不属于相同类别的取代,例如,碱性氨基酸到中性或非极性氨基酸的取代。可为了进行保守性取代的目的而定义的氨基酸的类别是本领域已知的。
在一些实施方案中,保守性取代包括第一脂肪族氨基酸到第二种不同的脂肪族氨基酸的取代。例如,如果第一种氨基酸为Gly、Ala、Pro、Ile、Leu、Val、和Met之一,则该第一种氨基酸可被替换为选自Gly、Ala、Pro、Ile、Leu、Val、和Met的第二种不同的氨基酸。在特定的实例中,如果第一种氨基酸为Gly;Ala、Pro、Ile、Leu、和Val之一,则该第一种氨基酸可被替换为选自Gly;Ala、Pro、Ile、Leu、和Val的第二种不同的氨基酸。在涉及疏水性脂肪族氨基酸取代的具体实例中,如果第一种氨基酸为Ala、Pro、Ile、Leu、和Val之一,则该第一种氨基酸可被替换为选自Ala、Pro、Ile、Leu、和Val的第二种不同的氨基酸。
在一些实施方案中,保守性取代包括第一芳香族氨基酸到第二种不同的芳香族氨基酸的取代。例如,如果第一种氨基酸为His、Phe、Trp、和Tyr之一,则该第一种氨基酸可被替换为选自His、Phe、Trp、和Tyr的第二种不同的氨基酸。在涉及不带电的芳香族氨基酸取代的具体实例中,如果第一种氨基酸为Phe、Trp、和Tyr之一,则该第一种氨基酸可被替换为选自Phe、Trp、和Tyr的第二种不同的氨基酸。
在一些实施方案中,保守性取代包括第一疏水性氨基酸到第二种不同的疏水性氨基酸的取代。例如,如果第一种氨基酸为Ala、Val、Ile、Leu、Met、Phe、Tyr、和Trp之一,则该第一种氨基酸可被替换为选自Ala、Val、Ile、Leu、Met、Phe、Tyr、和Trp的第二种不同的氨基酸。在涉及非芳香族疏水性氨基酸取代的具体实例中,如果第一种氨基酸为Ala、Val、Ile、Leu、和Met之一,则该第一种氨基酸可被替换为选自Ala、Val、Ile、Leu、和Met的第二种不同的氨基酸。
在一些实施方案中,保守性取代包括第一极性氨基酸到第二种不同的极性氨基酸的取代。例如,如果第一种氨基酸为Ser、Thr、Asn、Gln、Cys、Gly、Pro、Arg、His、Lys、Asp、和Glu之一,则该第一种氨基酸可被替换为选自Ser、Thr、Asn、Gln、Cys、Gly、Pro、Arg、His、Lys、Asp、和Glu的第二种不同的氨基酸。在涉及不带电的极性氨基酸取代的具体实例中,如果第一种氨基酸 为Ser、Thr、Asn、Gln、Cys、Gly、和Pro之一,则该第一种氨基酸可被替换为选自Ser、Thr、Asn、Gln、Cys、Gly、和Pro的第二种不同的氨基酸。在涉及带电的极性氨基酸取代的具体实例中,如果第一种氨基酸为His、Arg、Lys、Asp、和Glu之一,则该第一种氨基酸可被替换为选自His、Arg、Lys、Asp、和Glu的第二种不同的氨基酸。在涉及带电的极性氨基酸取代的其他实例中,如果第一种氨基酸为Arg、Lys、Asp、和Glu之一,则该第一种氨基酸可被替换为选自Arg、Lys、Asp、和Glu的第二种不同的氨基酸。在涉及带正电的(碱性的)极性氨基酸取代的具体实例中,如果第一种氨基酸为His、Arg、和Lys之一,则该第一种氨基酸可被替换为选自His、Arg、和Lys的第二种不同的氨基酸。在涉及带正电的极性氨基酸取代的其他实例中,如果第一种氨基酸为Arg或Lys,则该第一种氨基酸可被替换为Arg和Lys中的另一个氨基酸。在涉及带负电的(酸性的)极性氨基酸取代的具体实例中,如果第一种氨基酸为Asp或Glu,则该第一种氨基酸可被替换为Asp和Glu中的另一种氨基酸。
在一些实施方案中,保守性取代包括第一电中性氨基酸到第二种不同的电中性氨基酸的取代。例如,如果第一种氨基酸为Gly、Ser、Thr、Cys、Asn、Gln、和Tyr之一,则该第一种氨基酸可被替换为选自Gly、Ser、Thr、Cys、Asn、Gln、和Tyr的第二种不同的氨基酸。
在一些实施方案中,保守性取代包括第一非极性氨基酸到第二种不同的非极性氨基酸的取代。例如,如果第一种氨基酸为Ala、Val、Leu、Ile、Phe、Trp、Pro、和Met之一,则该第一种氨基酸可被替换为选自Ala、Val、Leu、Ile、Phe、Trp、Pro、和Met的第二种不同的氨基酸。
在许多实例中,可以选择在保守性取代中用来替换第一种氨基酸的具体的第二种氨基酸,以使得第一种和第二种氨基酸属于尽可能多的相同的前述类别。因此,如果第一种氨基酸是Ser(极性的非芳香族的电中性氨基酸),则第二种氨基酸可以是另一种极性氨基酸(即,Thr、Asn、Gln、Cys、Gly、Pro、Arg、His、Lys、Asp、或Glu);另一种非芳香族氨基酸(即,Thr、Asn、Gln、Cys、Gly、Pro、Arg、His、Lys、Asp、Glu、Ala、Ile、Leu、Val、或Met);或另一种电中性氨基酸(即,Gly、Thr、Cys、Asn、Gln、或Tyr)。然而,可能优选的是,在这种情况下的第二种氨基酸为Thr、Asn、Gln、Cys、和Gly之一,因为这些氨基酸按照极性、非芳香性、和电中性的分类均相同。本领域已知有其他的标准,可以任选用来选择保守性取代中使用的特定的第二种氨基酸。例 如,当Thr、Asn、Gln、Cys、和Gly可用于保守性取代为Ser时,可从选择中排除Cys,以避免形成不希望的交联键和/或二硫键。同样,可从选择中排除Gly,因为它缺乏烷基侧链。在这种情形下,例如,可以选择Thr,以便保留侧链羟基基团的功能性。然而,在保守性取代中要使用的具体的第二种氨基酸的选择最终都属于本领域技术人员的裁量。
PUFA:如本文中使用的,术语“多不饱和脂肪酸”或“PUFA”是指碳链长度至少为16个碳(例如,至少18个碳、至少20个碳、和22个或更多个碳)、具有至少3个或更多个双键(例如,4个或更多个双键、5个或更多个双键、以及6个或更多个双键)的脂肪酸,其中所有双键都处于顺式构型。
如本文中使用的,术语“长链多不饱和脂肪酸”或“LC-PUFA”是指这样的脂肪酸,其碳链长度为20或更多个碳,含有3个更多个双键;或者为22个或更多个碳,含有3个更多个双键(例如,4个或更多个双键、5个或更多个双键、以及6个或更多个双键)。ω-6系列的LC-PUFA包括,例如,但不限于,二-均-γ-亚麻酸(C20:3 n-6)、花生四烯酸(C20:4 n-6)、肾上腺酸(也称为二十二碳四烯酸或DTA;C22:4 n-6)、和二十二碳五烯酸(C22:5 n-6)。ω-3系列的LC-PUFA包括,例如,但不限于,二十碳三烯酸(C20:3 n-3)、二十碳四烯酸(C20:4 n-3)、二十碳五烯酸(C20:5 n-3)、二十二碳五烯酸(C22:5 n-3)、和二十二碳六烯酸(C22:6n-3)。LC-PUFA还包括具有多于22个碳和4个或更多个双键的脂肪酸,例如但不限于,C28:8(n-3)。
如本文中使用的术语“PUFA合酶”或“PFA”是指产生PUFA(例如,LC-PUFA)的酶、以及在系统或复合物中的这种酶的结构域。术语PUFA合酶包括,例如但不限于,用于产生PUFA的PUFA PKS系统或PKS-样系统。本文通过另外的表示法来命名一些特异性PUFA合酶(“裂殖壶菌PUFA合酶”、PFA1、PFA2、和PFA3;例如,来自裂殖壶菌属物种ATCC登录号PTA-9695)。术语“PUFA合酶系统”是指一种或多种PUFA合酶和能够影响PUFA合酶的功能的任何异源辅助酶(例如,PPT酶和ACS)。
PPT酶:如本文中使用的术语“磷酸泛酰巯基乙胺基转移酶”或“PPT酶”是指这样的酶,它通过将辅因子(例如,4-磷酸泛酰巯基乙胺)从辅酶A(CoA)转移到PUFA合酶中的一个或多个ACP结构域而激活PUFA合酶。能够激活本文实施方案中所用的PUFA合酶的一个或多个ACP结构域的PPT酶的一个实例是念珠藻属物种的HetI蛋白(例如,来自PCC 7120、以前称为鱼腥藻属物种PCC 7120的HetI),在本文中命名为“NoHetI”。
ACS:如本文中使用的术语“脂酰CoA合成酶”、“ACoAS”或“ACS”,是指这样的酶,它催化长链多不饱和游离脂肪酸(FFA)转化为脂酰CoA。本文的具体实施方案中采用的来源于裂殖壶菌ATCC登录号20888的特异性脂酰CoA合成酶用附加标记来称谓;例如,“SzACS2”。
植物:本文中使用的术语“植物”包括其任何后代、细胞、组织、种子、种子油、或部分。
性状或表型:术语“性状”和“表型在本文中可互换使用。为本公开的目的,特别感兴趣的性状包括可以例如在油料作物中表达的ω-3 LC-PUFA性状。
功能性食品:如本文中使用的术语“功能性食品”是指基于一般存在于常规食品的未改变的源材料中的组分比例的改变、作为平常饮食的一部分消费并且具有提高的营养价值和/或特殊饮食益处的在外观上类似于常规食品的食品。
除非特别指明或暗示,如本文中使用的术语“一个”、“一种”和“该”表示“至少一个/种”。
除非另外特别地解释,本文中使用的全部技术术语和科学术语具有与属于本公开的领域之内的普通技术人员通常所理解的相同的含义。可以在以下出版物中发现分子生物学中常见术语的定义:例如,Lewin B,Genes V,Oxford University Press,1994(ISBN 0-19-854287-9);Kendrew等人(eds.),The Encyclopedia of Molecular Biology,Blackwell Science Ltd,1994(ISBN0-632-02182-9);和Meyers R.A.(ed.),MolecularBiology and Biotechnology:A Comprehensive Desk Reference,VCH Publishers,Inc,1995(ISBN1-56081-569-8)。除非另有说明,所有百分比均以重量计,所有溶剂混合物比例以体积计。所有温度以摄氏度计。
IV.异源PUFA合酶系统
裂殖壶菌PUFA合酶
本文中的实施方案包括经过遗传修饰从而表达PUFA合酶的宿主生物(例如,植物)。在一些实施方案中,生物经过修饰而表达异源PUFA合酶系统,例如,包含PUFA合酶及其至少一种辅助蛋白的功能性异源蛋白质系统。本文中的遗传修饰在一些实施方案中也可以用来在以内源方式表达PUFA合酶的宿主生物中提高PUFA的产量。
PUFA合酶系统可包含若干多功能蛋白(并且可包括单功能蛋白),所述蛋白可一起发挥作用进行脂肪酸链的迭代加工以及非迭代加工,包括在选定循环中的反式-顺式异构化和烯酰还原反应。这些蛋白质在本文中被称为核心PUFA合酶酶系统或核心PUFA合酶。关于包含在这些蛋白质中的结构域和基序的一般信息和详情可见于,例如:美国专利6,140,486和6,566,583;美国专利公开2002/0194641、2004/0235127、和2005/0100995;国际专利公开WO 2006/135866;和Metz等人,(2001)Science 293:290-3。功能性PUFA合酶结构域可作为单一蛋白质出现(例如,结构域和蛋白质为同义词),或作为单一蛋白质中的两个或更多个结构域之一出现。
本领域已知有众多具有PUFA合酶活性的多肽的实例(以及多核苷酸及其编码基因),可以在包含本文中公开的异源PUFA合酶的经过遗传修饰的宿主中组合它们。这样的PUFA合酶蛋白(或结构域)包括细菌和非细菌PUFA合酶。非细菌PUFA合酶可以是真核PFA。某些细菌PUFA合酶描述例如于美国专利公开2008/0050505。可产生本发明的遗传修饰的植物,所述植物将非细菌PUFA合酶功能结构域与细菌PUFA合酶功能结构域整合,并整合来自其他PKS系统(例如,I型迭代或模块化的、II型、和III型)和/或FAS系统的PUFA合酶功能结构域或蛋白质。
在一些实施方案中,异源PUFA合酶包含选自下组的生物活性结构域,所述生物活性结构域通常包含在三种、四种、或更多种蛋白质上:至少一个烯酰基ACP还原酶(ER)结构域;多个酰基载体蛋白(ACP)结构域(例如,至少一个到四个,或至少五个ACP结构域,并且在一些实施方案中多达六个、七个、八个、九个、十个、或十个以上ACP结构域);至少两个β酮脂酰基ACP合酶(KS)结构域;至少一个酰基转移酶(AT)结构域;至少一个β酮脂酰基-ACP还原酶(KR)结构域;至少两个FabA样β羟脂酰基-ACP脱水酶(DH)结构域;至少一个链长因子(CLF)结构域;以及至少一个丙二酰CoA:ACP酰基转移酶(MAT)结构域。在具体的实施方案中,异源PUFA合酶还包括含脱水酶保守性活性部位基序的至少一个区域。
在一些实施方案中,异源PUFA合酶系统包括来自破囊壶菌——裂殖壶菌藻的PUFA合酶(例如,PFA1、PFA2、和PFA3)。例如,根据本文中实施方案的异源PUFA合酶系统可包括,例如但不限于,至少一种包含与SEQ ID NO:1;SEQ ID NO:4;SEQ ID NO:7;和/或SEQ IDNO:14具有至少80%(例如,至少81%;至少82%;至少83%;至少84%;至少85%;至少86%;至少87%;至少88%;至少89%;至少90%;至少91%;至少92%;至少93%;至少94%;至少95%;至少96%;至少97%;至少98%;和至少99%)同一性之氨基酸序列的蛋白质。在具体实例中,异源PUFA合酶系统包括至少一种含有SEQ ID NO:1;SEQ ID NO:4;SEQ ID NO:7;和/或SEQ ID NO:14的蛋白质。在具体实例中,异源PUFA合酶系统包括至少一种具有选自SEQ ID NO:1;SEQ ID NO:4;SEQ ID NO:7;和SEQ ID NO:14之氨基酸序列的蛋白质。
一些实施方案包括含有SEQ ID NO:1;SEQ ID NO:4;SEQ ID NO:7;和/或SEQ IDNO:14的至少一个功能等同物的异源PUFA合酶系统。例如,该系统可包括SEQ ID NO:1;SEQID NO:4;SEQ ID NO:7;和/或SEQ ID NO:14的变体、部分、片段、或衍生物,其中这样的多肽具有PUFA合酶活性。例如,可以在本领域中可得的文献和生物信息学数据库中鉴定其他PUFA合酶多肽的序列(及其编码基因)。例如,可以通过以已知的PUFA合酶基因或多肽序列对公众可访问的数据库进行BLAST搜索来鉴定这样的序列。在这样的方法中,同一性可基于使用默认参数的Clustal W比对方法,所述默认参数为空位罚分=10,空位长度罚分=0.1,和Gonnet 250系列的蛋白质权重矩阵。
另外,本文中公开的PUFA合酶基因或多肽序列可用来鉴定自然界中的其他PUFA合酶同源物。例如,本文中公开的每个PUFA合酶核酸片段都可用来分离编码同源蛋白质的基因。使用序列依赖性方案分离同源基因是本领域熟知的。序列依赖性方案的实例包括,例如但不限于:核酸杂交方法;DNA和RNA扩增方法,如通过核酸扩增技术的不同用途例示的(例如,聚合酶链反应(PCR)、连接酶链反应(LCR)、和链置换扩增(SDA);以及借助于互补的文库构建与筛选方法。
在一些实施方案中,异源PUFA合酶包含裂殖壶菌PUFA合酶结构域(例如、ER结构域、ACP结构域、KS结构域、AT结构域、KR结构域、DH结构域、CLF结构域、MAT结构域、和脱水酶保守性活性部位基序),其中所述结构域与来自不同的PUFA合酶的一个或多个结构域结合而形成具有PUFA合酶活性的完整的PUFA合酶。
在一些实施方案中,包含异源PUFA合酶的经过遗传修饰的生物可进一步用另一种PUFA合酶的至少一个结构域或其生物活性片段进行修饰。在具体的实施方案中,PUFA合酶的任何结构域可在它们的天然结构基础上被修饰,以 改变或增强所述结构域在PUFA合酶系统中的功能(例如,改变由所述系统产生的PUFA类型或其比率)。
磷酸泛酰巯基乙胺基转移酶
磷酸泛酰巯基乙胺基转移酶(PPT酶)是一个家族的酶,它们涉及脂肪酸合成、聚酮化合物合成、和非核糖体肽合成。具体地说,PUFA合酶酶类中存在的ACP结构域需要通过辅因子(4-磷酸泛酰巯基乙胺)从辅酶A附接到酰基载体蛋白(ACP)上而活化。这种辅因子的附接由PPT酶来执行。如果宿主生物的内源PPT酶不能活化PUFA合酶ACP结构域,就有必要提供能够执行这个功能的PPT酶。
PPT酶的一个实例是念珠藻属物种的HetI蛋白,其已被证明可识别ACP结构域作为底物。HetI存在于念珠藻属的一个基因簇中,已知该簇基因负责这种生物中某些脂肪酸的合成。Black和Wolk(1994)J.Bacteriol.176:2282-92;Campbell等人,(1997)Arch.Microbiol.167:251-8。HetI可能活化该簇中的蛋白质HglE的ACP结构域。
在实施方案中,PUFA合酶系统包括至少一个PPT酶或4'-磷酸泛酰巯基乙胺基转移酶结构域,作为PUFA合酶的辅助结构域或蛋白质。许多具有PPT酶活性的多肽的实例在本领域中已知,如果它们能够活化所使用的特定PUFA合酶的ACP结构域的话,就可用于本文中的遗传修饰生物。在这样的异源PUFA合酶系统中可包括的多肽的实例包括,例如但不限于,包含与由SEQ ID NO:10编码的多肽(NoHetI蛋白)具有至少80%(例如,至少81%;至少82%;至少83%;至少84%;至少85%;至少86%;至少87%;至少88%;至少89%;至少90%;至少91%;至少92%;至少93%;至少94%;至少95%;至少96%;至少97%;至少98%;和至少99%)同一性的氨基酸序列的至少一种蛋白质。在具体的实例中,异源PUFA合酶系统包括由SEQ ID NO:10编码的多肽。
一些实施方案包括含有由SEQ ID NO:10编码的多肽的功能等同物的异源PUFA合酶系统。例如,该系统可包括由SEQ ID NO:10编码的多肽的变体、部分、片段、或衍生物,其中这样的多肽具有磷酸泛酰巯基乙胺基转移酶活性。例如,可在本领域可得的文献和生物信息学数据库中鉴定其他PPT酶的序列(及其编码基因)。这样的序列例如可以通过用已知的PPT酶基因或多肽序列对公众可访问的数据库进行BLAST搜索来鉴定。在这样的方法中,同一性可基 于使用默认参数的Clustal W比对方法,所述默认参数为空位罚分=10,空位长度罚分=0.1,和Gonnet 250系列的蛋白质权重矩阵。本文中公开的PPT酶序列可用来鉴定自然界中的其他PPT酶同源物。例如,本文中的PPT酶核酸(例如,SEQ ID NO:10)可用来分离编码同源蛋白的基因。
根据上文,在一些实施方案中,遗传修饰生物(例如,植物)和/或其后代、细胞、组织、或部分包含异源PUFA合酶(例如,来自破囊壶菌裂殖壶菌藻的PUFA合酶)和异源PPT酶(例如,NoHetI PPT酶)。
脂酰CoA合成酶
脂酰CoA合成酶(ACS,或者ACoAS)蛋白催化长链PUFA游离脂肪酸(FFA)转化为脂酰CoA。具有ACoAS活性的多肽的许多实例在本领域中已知,并可用于本文中的实施方案。例如,裂殖壶菌属物种ATCC登录号20888具有一种或多种AcoAS,包括由SEQ ID NO:11编码的多肽(SzACS2蛋白),它们能够将其PUFA合酶的游离脂肪酸产物转化为脂酰CoA。
在一些实施方案中,异源PUFA合酶系统包括,例如但不限于,至少一种包含与由SEQ ID NO:11编码的多肽具有至少80%(例如,至少81%;至少82%;至少83%;至少84%;至少85%;至少86%;至少87%;至少88%;至少89%;至少90%;至少91%;至少92%;至少93%;至少94%;至少95%;至少96%;至少97%;至少98%;和至少99%)同一性的氨基酸序列的蛋白质。在具体的实例中,异源PUFA合酶系统包括由SEQ ID NO:11编码的多肽。
一些实施方案包括含有由SEQ ID NO:11编码的多肽的功能等同物的异源PUFA合酶系统。例如,该系统可包括由SEQ ID NO:11编码的多肽的变体、部分、片段、或衍生物,其中这样一种多肽具有脂酰CoA合成酶活性。例如,可在本领域可得的文献和生物信息学数据库中鉴定出其他ACoAS的序列(及其编码基因)。这样的序列例如可以通过用已知的ACoAS基因或多肽序列对公众可访问的数据库进行BLAST搜索来鉴定。在这样的方法中,同一性可基于使用默认参数的Clustal W比对方法,所述默认参数为空位罚分=10,空位长度罚分=0.1,和Gonnet 250系列的蛋白质权重矩阵。本文中公开的ACoAS序列可用来鉴定自然界中的其他ACoAS同源物。例如,本文中的ACoAS核酸(例如,SEQ ID NO:11)可用来分离编码同源蛋白的基因。
根据上文,在一些实施方案中,遗传修饰的生物(例如植物)和/或其后代、 细胞、组织、或部分包含异源PUFA合酶(例如,来自破囊壶菌裂殖壶菌属物种的PUFA合酶);异源PPT酶(例如,NoHetI PPT酶);和异源ACoAS(例如,来自ATCC登录号20888的裂殖壶菌ACoAS)。
功能等同物包括但不限于,在参考氨基酸序列(即,SEQ ID NO:1;SEQ ID NO:4;SEQ ID NO:7;由SEQ ID NO:10编码的多肽;由SEQ ID NO:11编码的多肽;或SEQ ID NO:14)中添加或取代氨基酸残基,但导致沉默变化,从而产生在功能上等同的基因产物。例如,可以基于涉及的残基在极性、电荷、可溶性、疏水性、亲水性、和/或两亲性方面的相似性来进行保守性氨基酸取代。
可以对PUFA合酶、PPT酶、和/或ACoAS进行定点突变(采用本领域技术人员熟知的随机诱变技术),并分析所得的突变酶以证实预期的活性。例如,可将SEQ ID NO:1;SEQ IDNO:4;SEQ ID NO:7;由SEQ ID NO:10编码的多肽;由SEQ ID NO:11编码的多肽;或SEQ IDNO:14与同源物和其他相关蛋白进行比对,其中指明相同的氨基酸残基和保守性残基。在可变化的位置处可以构建保守性改变以产生保留功能的多肽;所述功能例如,PUFA合酶活性、磷酸泛酰巯基乙胺基转移酶活性、和脂酰CoA合成酶活性。
本文中的实施方案通过,例如,提供一种或多种包含编码异源PUFA合酶系统之至少一个组分的多核苷酸的转基因生物(例如,植物),实现异源PUFA合酶系统的表达。
在一些实施方案中,编码异源PUFA合酶系统之至少一个组分的异源多核苷酸包括编码来自破囊壶菌裂殖壶菌属物种的PUFA合酶的至少一种多核苷酸。例如,本文中实施方案的异源多核苷酸可编码,例如但不限于,包含与SEQ ID NO:1;SEQ ID NO:4;SEQ ID NO:7;和/或SEQ ID NO:14具有至少80%(例如,至少81%;至少82%;至少83%;至少84%;至少85%;至少86%;至少87%;至少88%;至少89%;至少90%;至少91%;至少92%;至少93%;至少94%;至少95%;至少96%;至少97%;至少98%;至少99%;和至少100%)同一性的氨基酸序列的至少一种蛋白质。
在一些实例中,编码来自破囊壶菌裂殖壶菌属物种的PUFA合酶的多核苷酸包含与SEQ ID NO:2;SEQ ID NO:3;SEQ ID NO:5;SEQ ID NO:6;SEQ ID NO:8;SEQ ID NO:9;和/或SEQ ID NO:13具有至少70%(例如,至少71%;至少72%;至少73%;至少74%;至少75%;至少76%;至少77%;至少78%;至少79%;至少80%;至少81%;至少82%;至少83%;至少84%;至少85%;至 少86%;至少87%;至少88%;至少89%;至少90%;至少91%;至少92%;至少93%;至少94%;至少95%;至少96%;至少97%;至少98%;至少99%;和100%)同一性的核苷酸序列。
在具体的实例中,编码来自破囊壶菌——裂殖壶菌属物种的PUFA合酶的异源多核苷酸在严格条件下(例如,极严格条件)与SEQ ID NO:2和/或SEQ ID NO:3;SEQ ID NO:5和/或SEQ ID NO:6;SEQ ID NO:8、SEQ ID NO:9、和/或SEQ ID NO:13杂交。
在一些实施方案中,编码异源PUFA合酶系统的至少一个组分的异源多核苷酸包括编码来自蓝藻细菌属——念珠藻属的磷酸泛酰巯基乙胺基转移酶(HetI)的多核苷酸。例如,本文中实施方案的异源多核苷酸可编码,例如但不限于,包含与由SEQ ID NO:10编码的多肽(即,NoHetI)具有至少80%(例如,至少81%;至少82%;至少83%;至少84%;至少85%;至少86%;至少87%;至少88%;至少89%;至少90%;至少91%;至少92%;至少93%;至少94%;至少95%;至少96%;至少97%;至少98%;至少99%;和100%)同一性的氨基酸序列的至少一种蛋白质。
在一些实例中,编码来自蓝藻细菌属——念珠藻属的磷酸泛酰巯基乙胺基转移酶(HetI)的多核苷酸包含与SEQ ID NO:10具有至少70%(例如,至少71%;至少72%;至少73%;至少74%;至少75%;至少76%;至少77%;至少78%;至少79%;至少80%;至少81%;至少82%;至少83%;至少84%;至少85%;至少86%;至少87%;至少88%;至少89%;至少90%;至少91%;至少92%;至少93%;至少94%;至少95%;至少96%;至少97%;至少98%;至少99%;和100%)同一性的核苷酸序列。
在具体实例中,编码念珠藻属磷酸泛酰巯基乙胺基转移酶(NoHetI)的多核苷酸在严格条件下(例如,极严格条件下)与SEQ ID NO:10杂交。
在一些实施方案中,编码异源PUFA合酶系统的至少一个组分的异源多核苷酸包括编码来自裂殖壶菌的ACoAS的多核苷酸。例如,本文中实施方案的异源多核苷酸可编码,例如但不限于,至少一种包含与由SEQ ID NO:11编码的多肽(即,SzACS2)具有至少80%(例如,至少81%;至少82%;至少83%;至少84%;至少85%;至少86%;至少87%;至少88%;至少89%;至少90%;至少91%;至少92%;至少93%;至少94%;至少95%;至少96%;至少97%;至少98%;至少99%;和100%)同一性的氨基酸序列的蛋白质。
在一些实例中,编码来自裂殖壶菌(例如,ATCC登录号20888)的异源ACoAS的多核苷酸包含与SEQ ID NO:11具有至少70%(例如,至少71%;至少72%;至少73%;至少74%;至少75%;至少76%;至少77%;至少78%;至少79%;至少80%;至少81%;至少82%;至少83%;至少84%;至少85%;至少86%;至少87%;至少88%;至少89%;至少90%;至少91%;至少92%;至少93%;至少94%;至少95%;至少96%;至少97%;至少98%;至少99%;和100%)同一性的核苷酸序列。
在具体实例中,编码异源ACoAS的多核苷酸在严格条件下(例如,极严格条件下)与SEQ ID NO:11杂交。
在实施方案中,编码异源PUFA合酶的至少一个组分的一种或多种多核苷酸可以包括编码来自破囊壶菌——裂殖壶菌属物种的PUFA合酶至少一种多核苷酸,并且具有或没有编码来自蓝藻细菌属——念珠藻属的磷酸泛酰巯基乙胺基转移酶(HetI)的多核苷酸和/或编码来自裂殖壶菌属的ACoAS的异源多核苷酸。在一些实例中,编码前述组分的至少一种多核苷酸存在于单个核酸分子中。在一些实例中,所述至少一种多核苷酸存在于多个核酸分子中。
一些实施方案包括含有编码异源PUFA合酶的至少一个组分的一种或多种多核苷酸的载体(例如,质粒)。在实例中,这样的载体包括与多核苷酸可操作连接的调节序列,以实现所述多核苷酸在靶宿主生物中表达。这样的载体的具体实例包括重组表达载体,如pDAB101429(SEQ ID NO:15);pDAB101454(SEQ ID NO:16);pDAB101496(SEQ ID NO:17);pDAB109525(SEQ ID NO:18);pDAB109584(SEQ ID NO:19);pDAB109588(SEQ ID NO:20);pDAB112210(SEQ ID NO:21);pDAB112206(SEQ ID NO:22);pDAB107962(SEQ ID NO:23);pDAB109591(SEQ ID NO:24);pDAB109592(SEQ ID NO:25);pDAB107960(SEQ ID NO:26);pDAB110132(SEQ ID NO:27);pDAB107961(SEQ ID NO:28);pDAB110151(SEQ ID NO:29);pDAB112285(SEQ ID NO:30);pDAB117501(SEQ ID NO:31);pDAB117502(SEQ ID NO:32);pDAB112200(SEQ ID NO:33);pDAB112201(SEQ ID NO:34);pDAB112203(SEQ ID NO:35);pDAB112205(SEQ ID NO:36);pDAB112208(SEQ ID NO:37);和pDAB112209(SEQ ID NO:38)。
可以在某些实施方案中使用重组DNA技术中的已知技术,例如但不限于,通过操纵多核苷酸在宿主细胞内的拷贝数;通过操纵多核苷酸的转录效率;通 过操纵所得转录物的翻译效率;以及通过操纵翻译后修饰的效率来提高异源多核苷酸的表达控制。作为进一步的实例,可以对启动子序列进行基因工程改造,使其与参考启动子相比在宿主中的表达水平提高。因此,可用于控制核酸分子表达的技术包括,例如但不限于,将核酸分子稳定整合到一个或多个宿主细胞染色体中,向质粒添加载体稳定性序列,替换或修饰转录控制信号(例如,启动子、操纵基因、和增强子),替换或修饰翻译控制信号(例如,核糖体结合位点和Shine-Dalgarno序列),修饰核酸分子使其与宿主细胞的密码子利用率相应,和删除导致转录物不稳定的序列。
V.制造遗传修饰的生物的方法
为了产生显著高产量的一种或多种期望的多不饱和脂肪酸,可对宿主生物(例如,植物)进行遗传修饰,以将异源PUFA合酶系统导入生物中。在一些实施方案中,利用这种过程来产生包含异源PUFA合酶系统的遗传修饰植物。一些实例还包括提高或增加这种遗传修饰的效果的方法,例如,提高或增加PUFA合酶系统的最终产物(例如LC-PUFA,如DHA和EPA)的产生和/或积累的方法。本文中的具体实施方案可导致如上文所述的一种或多种裂殖壶菌属PUFA合酶和PPT酶的表达,从而增加PUFA在异源宿主中的产生和/或积累。特定的实施方案还可导致ACS在宿主中表达。
在遗传修饰的生物(包括,例如但不限于,植物)中表达基因的方法在本领域中是已知的。在一些实施方案中,可针对目标宿主细胞,对编码要表达的PUFA合酶系统组分的异源多核苷酸的编码区进行密码子优化。在重组宿主细胞(包括,例如但不限于,植物细胞)中的基因表达可能需要与感兴趣编码区可操作连接的启动子、和/或转录终止子。在一些实施方案中,编码PUFA合酶系统组分的异源多核苷酸与种子特异性启动子(例如,PvDlec2、LfKCS3、FAE1、BoACP、和BnaNapinC)可操作连接。在一些实施方案中,编码PUFA合酶系统组分的异源多核苷酸与叶特异性启动子(例如,泛素和CsVMV)可操作连接。可在某些实施方案中使用的启动子的其他非限制性实例包括酰基载体蛋白启动子(国际专利公开WO 1992/18634)和菜豆β菜豆蛋白启动子(及截短形式)。参见,例如,Slightom等人,(1983)Proc.Natl.Acad.Sci.U.S.A.80:1897-1901;Sengupta-Gopalan等人,(1985)Proc.Nat.Acad.Sci.U.S.A.82:3320-4;van der Geest等人,(1997)Plant Mol.Biol.33:553-7;和Bustos等人,(1991)EMBO J.10:1469-79。
一些实施方案包括含有编码PUFA合酶系统组分的一种或多种异源多核苷酸的重组载体(例如,质粒)。重组载体是工程化的(例如,人工产生的)核酸分子,其用作操纵选择的核酸序列、和/或将这样的核酸序列导入宿主细胞中的工具。因此,重组载体可适合用于克隆、测序、和/或以别的方式操纵在其中的多核苷酸,例如通过表达该多核苷酸和/或将该多核苷酸递送到宿主细胞中形成重组细胞。载体可含有这样的核苷酸序列:其在自然条件下不出现在要克隆或递送的多核苷酸的邻近。载体还可含有这样的调节性核酸序列(例如,启动子、非翻译区):调节性核酸序列在自然条件下出现在所述多核苷酸邻近,或者对该多核苷酸的表达有用。整合的多核苷酸可受到染色体启动子的控制、天然或质粒启动子的控制、或几种启动子的联合控制。载体可以是RNA或DNA,并且可以是原核的或真核的。载体可作为染色体外元件(例如,质粒)维持,或者可以整合到重组生物(例如,微生物、和植物细胞)的染色体中。完整的载体可保持在宿主细胞中的适当位置,或者在某些条件下,可以删除外来DNA(例如,不需要的质粒序列),留下编码PUFA合酶系统组分的一种或多种异源多核苷酸。单个或多个异源多核苷酸拷贝可整合到宿主基因组中。本发明的重组载体可含有至少一种选择标志物。
在一些实施方案中,包含编码PUFA合酶系统组分的一种或多种异源多核苷酸的重组载体是表达载体,例如,植物表达载体。在这样的实施方案中,可以将至少一个编码要生成的产物(例如,裂殖壶菌属PUFA合酶、NoHetI、和SzACS2)的多核苷酸以一定方式插入重组载体中,使得多核苷酸与载体中的调节序列可操作连接,使重组宿主细胞内的核酸序列能够转录和翻译。可用于转化多种宿主生物和细胞的载体是本领域中已知的。通常,载体含有选择标志物、以及允许在期望宿主中自主复制或染色体整合的序列。
用于宿主细胞转化的适合方法包括任何能将DNA导入细胞中的方法,如通过原生质体转化(参见,例如,美国专利5,508,184),通过干燥/抑制介导的DNA摄取(参见,例如,Potrykus等人.(1985)Mol.Gen.Genet.199:183-8),通过电穿孔(参见,例如,美国专利5,384,253),通过用碳化硅纤维搅拌(参见,例如,美国专利5,302,523和5,464,765),通过土壤杆菌介导的转化(参见,例如,美国专利5,563,055;5,591,616;5,693,512;5,824,877;5,981,840;和6,384,301),以及通过加速DNA包被的颗粒(参见,例如,美国专利5,015,580;5,550,318;5,538,880;6,160,208;6,399,861;和6,403,865)。通过应用诸如此类的这些技术,几乎任何物种的细胞都可被稳定转化,包括单子叶植物和双子叶植物两者。在一些实施方案中,转化DNA被整合到宿主细胞的基因组中。在多细胞物种的情况下,转基因细胞可再生为转基因生物。任何这些技术可用来产生转基因单子叶或双子叶植物,其包含例如在转基因植物基因组中编码PUFA合酶系统组分的一种或多种异源多核苷酸。
最广泛使用的将表达载体导入植物中的方法是基于土壤杆菌的天然转化系统。根癌土壤杆菌和发根土壤杆菌是将植物细胞遗传转化的植物致病性土壤细菌。根癌土壤杆菌和发根土壤杆菌的Ti和Ri质粒分别携带负责植物遗传转化的基因。Ti(肿瘤诱导性)质粒含有一个被称为T-DNA的大片段,该片段可被转移到转化的植物中。Ti质粒的另一个片段,vir区,负责T-DNA的转移。T-DNA区的边界为末端重复序列。在修饰的双元载体中,已删除肿瘤诱导基因,利用vir区的功能来转移与T-DNA边界序列毗邻的外来DNA。T区还可含有选择标志物,用于高效地回收转基因植物和细胞,以及多克隆位点,用于插入供转移的序列,诸如编码核酸的dsRNA。
因此,在一些实施方案中,植物转化载体来源于根癌土壤杆菌的Ti质粒(参见,例如,美国专利4,536,475、4,693,977、4,886,937、和5,501,967;以及欧洲专利EP 0 122791)或发根土壤杆菌的Ri质粒。其他的植物转化载体包括,例如但不限于,由Herrera-Estrella等人,(1983)Nature 303:209-13;Bevan等人,(1983)Nature 304:184-7;Klee等人,(1985)Bio/Technol.3:637-42;以及在欧洲专利EP 0 120 516中所描述的那些载体,以及从任何前述文献来源的那些载体。可以修饰天然地与植物相互作用的其他细菌,如中华根瘤菌属、根瘤菌属、和中慢生根瘤菌属,以介导到许多各种各样的植物中的基因转移。通过获取卸甲Ti质粒和适合的双元载体,可以使这些植物相关的共生细菌能够胜任基因转移。
在提供外源DNA到受体细胞之后,通常鉴定出转化的细胞用于进一步培养和植物再生。为了提高鉴定转化细胞的能力,可能期望在用来再生转化体的转化载体中采用选择标志物或筛选标志物基因,如前文所述的。在采用选择标志物的情况下,通过使细胞暴露于选择剂或药剂,鉴定出在潜在转化的细胞群中的转化细胞。在采用筛选标志物的情况下,可针对期望的标志物基因性状来筛选细胞。
暴露于选择剂后存活的细胞、或者在筛选测定中已被评分为阳性的细胞,可以在支持植物再生的介质中进行培养。在一些实施方案中,可通过包含其他 物质,如生长调节剂来改良任何适合的植物组织培养基(例如,MS和N6培养基)。可将组织维持在具有生长调节剂的基本培养基上,直到可得到足够的组织开始植物再生的努力时为止,或者在重复轮的手动选择之后,直到组织形态适合于再生时为止(例如,至少2周),然后转移到有助于茎芽形成的介质中。定期转移培养物,直到已经出现充分的茎芽形成时为止。一旦茎芽形成,将它们转移到有助于根形成的介质中。一旦形成足够的根,可将植物转移到土壤中,以便进一步生长和成熟。
为了证实在再生植物中感兴趣核酸分子(例如,编码PUFA合酶系统组分的异源多核苷酸)的存在,可进行多种测定。这样的测定例如包括:分子生物学测定,如Southern和northern印迹、PCR、和核酸测序;生物化学测定,如检测蛋白质产物的存在,例如通过免疫学手段(ELISA和/或western印迹)或借助于酶功能;植物部分测定,如叶或根测定;和再生的全植物的表型分析。
可例如通过使用对感兴趣核酸分子特异的寡核苷酸引物进行PCR扩增来分析整合事件。PCR基因分型应当理解为包括但不限于,来源于分离的宿主植物愈伤组织的基因组DNA的聚合酶链反应(PCR)扩增,所述愈伤组织预期含有整合到基因组中的感兴趣核酸分子,然后进行标准克隆和PCR扩增产物的序列分析。PCR基因分型方法已得到详尽描述(例如Rios,G等人,(2002)Plant J.32:243-53),并可应用于来源于任何植物物种(例如,玉米或大豆)或组织类型(包括细胞培养物)的基因组DNA。
采用依赖于土壤杆菌的转化方法形成的转基因植物一般含有插入一个染色体中的单个重组DNA序列。所述单个重组DNA序列被称为“转基因事件”或“整合事件”。这样的转基因植物对于插入的外源序列而言是杂合的。在一些实施方案中,通过含有单个外源基因序列的独立分离的转基因植物与自身(例如T0植物)有性交配(自交),可获得相对于转基因为纯合的转基因植物,以产生Tl种子。所产生的Tl种子的四分之一相对于所述转基因是纯合的。萌发Tl种子将产生可测试杂合性的植物,所述测试一般使用SNP测定或热扩增测定,使得允许在杂合子和纯合子之间进行区分(即,接合型测定)。
除了用重组核酸分子直接转化植物之外,可通过使具有至少一个转基因事件的第一植物与缺乏这种事件的第二植物杂交来制造转基因植物。例如,可将包含编码PUFA合酶系统组分的一种或多种异源多核苷酸的重组核酸分子导入易于转化的第一植物品系中而产生转基因植物,其中转基因植物可与第二植 物品系杂交而使多核苷酸渗入到第二植物品系中。
一些实施方案包括将异源PUFA合酶系统多肽的表达靶向到宿主的一个或多个细胞器上。例如,在一些实施方案中,异源PUFA合酶系统的表达被靶向到植物的质体上。多种质体靶向序列是本领域中已知的,并且可以在宿主为植物或植物细胞的实施方案中使用,其中靶向到质体上是期望的。在一些实施方案中,异源PUFA合酶系统的表达被靶向到细胞质。在一些实施方案中,脂酰-CoA合成酶(ACoAS)在细胞质中表达,以将LC-PUFA游离脂肪酸转化为脂酰-CoA,脂酰-CoA进而被酰基转移酶利用。在一些实施方案中,异源PUFA合酶系统的表达被靶向到植物的质体和细胞质两者。
具体的实施方案包括将至少一种裂殖壶菌属PUFA合酶与NoHetI PPT酶一道靶向到细胞器(例如,靶向到植物中的质体或叶绿体)的应用。位于各种蛋白质的氨基端的信号序列控制基因产物靶向到质体或叶绿体,这种信号序列在导入(import)的过程中被切除,从而产生成熟蛋白。参见,例如,Comai等人,(1988)J.Biol.Chem.263:15104-9。为了将异源产物导入叶绿体中,可以将这些信号序列融合到异源基因产物上。van den Broeck等人,(1985)Nature313:358-63。例如,可以从编码RUBISCO蛋白、CAB蛋白、EPSP合酶、EPSP合酶、GS2蛋白、和许多其他已知的叶绿体定位蛋白质的cDNA分离出编码适当信号序列的DNA。
在具体实施方案中采用的将基因定位到叶绿体或质体的替代手段包括叶绿体或质体转化。可以产生在其中仅仅叶绿体DNA被改变为结合异源PUFA合酶系统多肽的重组植物。在叶绿体中起作用的启动子是本领域中已知的。Hanley-Bowden等人,(1987)Trends inBiochem.Sci.12:67-70。用于获得含有在其中已经插入异源DNA的叶绿体的细胞的方法和组合物描述于,例如,美国专利5,693,507和5,451,513中。
重组宿主的前述遗传操作可使用标准遗传技术和筛选来实施,并且可以在任何适合于遗传操作的宿主细胞中进行。在一些实施方案中,重组宿主是高等植物,包括双子叶植物和单子叶植物两者,以及消费性植物,包括使用其油脂的作物和植物。因此,可以选择如以下进一步描述的任何植物物种或植物细胞。
VI.转基因植物
任何表达异源PUFA合酶系统,例如包含PUFA合酶及其至少一种辅助蛋白的功能性异源蛋白质系统,的植物或植物细胞都被包括在本文具体的实施方案中。具体的实施方案包括含有编码裂殖壶菌属PUFA合酶的异源多核苷酸与编码NoHetI PPT酶的多核苷酸的植物细胞,其中植物细胞还可含有编码裂殖壶菌属ACoAS的多核苷酸。在一些实例中,这样的转基因植物已被进一步遗传修饰,以表达另一种多肽(例如,ACoAS、GPAT、LPAAT、DAGAT、和乙酰CoA羧化酶(ACCase)),以便改善宿主对PUFA或PUFA合酶的其他生物活性产物的产生和/或累积。
在一些实施方案中,遗传修饰的植物(和/或其植物细胞)选自例如但不限于:高等植物;双子叶植物;单子叶植物;可消费植物(例如,使用其油脂的作物和植物);大豆;油菜籽;亚麻子;玉米;红花;向日葵;烟草;豆科植物(豆科(Leguminosae)、豆科(legumefamily)、豆科(pea family)、豆科(bean family)、豆科(pulse family);大豆属植物(例如,变白大豆(G.albicans)、G.aphyonota、沙生大豆(G.arenari)、G.argyrea、灰毛大豆(G.canescens)、澎湖大豆(G.clandestine)、弯荚大豆(G.curvata)、弯裂片大豆(G.cyrtoloba)、镰荚大豆(G.falcate)、G.gracei、硬毛茎大豆(G.hirticaulis)、G.hirticaulis subsp.leptosa、乳绿大豆(G.lactovirens)、宽叶大豆(G.latifolia)、紫色大豆(G.latrobeana)、小叶大豆(G.microphylla)、G.montis-douglas、G.peratosa、G.pescadrensis、新拟大豆(G.pindanica)、G.pullenii、G.rubiginosa、G.stenophita、G.syndetika、烟豆(G.tabacina)、短绒野大豆(G.tomentella)、野生大豆(G.soja)、和大豆(G.max)(黄豆);花生;菜豆(Phaseolus vulgaris)、蚕豆(Vicia faba);以及豌豆(Pisumsativum)。
在一些实施方案中,遗传修饰的植物为已知产生用作药剂、调味剂、营养剂、功能性食物成分或化妆品活性剂的化合物的植物,或经过基因工程改造以产生这些化合物/作用剂的植物。
在一些实施方案中,遗传修饰的植物为油料植物,其中油料种子、和/或来自油料种子的油含有异源PUFA合酶系统所产生的LC-PUFA。在具体的实施方案中,这样的油含有可检出量的至少一种目标或主要的(primary)LC-PUFA,所述LC-PUFA为PUFA合酶的产物(例如,DHA和EPA)。在一些实施方案中,这样的油可以基本上不含这样的中间产物或副产物:所述中间产物或副产物不是目标或主要的PUFA产物,并且在自然状态下并非由野生型植物中的内源FAS系统产生(例如,野生型植物经由FAS系统产生一些较短链的或中链的PUFA,如18碳PUFA,但是由于异源PUFA合酶的遗传修饰,该植物中会有新的或另外的脂肪酸)。
在一些实施方案中,表达本文中描述的异源PUFA合酶系统的转基因植物或种子也可在其基因组中包含至少一个其他的转基因事件,包括但不限于:编码杀虫蛋白(例如,苏云金芽孢杆菌杀虫蛋白)的基因;耐除草剂基因(例如,提供草甘膦耐受性的基因);以及促成转基因植物中的期望表型的基因,所述期望表型例如产量增加、脂肪酸代谢改变、或细胞质雄性不育的恢复。在具体的实施方案中,编码至少一种裂殖壶菌属PUFA合酶的多核苷酸与此类另外的转基因的组合是通过重组DNA技术,或通过与已经包含该另外转基因的植物进行常规育种而实现的。
在一些实施方案中还包括表达如本文中描述的异源PUFA合酶系统的植物部分。这样的植物部分包括任何植物部分,例如但不限于,种子(包括成熟种子和未成熟种子);组织;花粉;胚;花;果实;茎芽;叶;根;茎;和外植体。具体的实施方案包括表达如本文中描述的异源PUFA合酶系统的植物后代。
VII.商业产品
本文实施方案包括本文描述的植物、后代、植物部分、或细胞所产生或来源的产品,包括,例如但不限于从其产生的油类。因此,一些实施方案包括含有一种或多种本文描述的异源PUFA合酶系统的多肽和/或多核苷酸的商业产品,其中所述商业产品是从表达异源PUFA合酶系统的重组植物或种子产生的。含有一种或多种本文描述的异源PUFA合酶系统的多肽和/或多核苷酸的商业产品包括,例如但不限于:含有一种或多种多肽和/或多核苷酸的重组植物或种子的粕、油类、碾碎的或完整的籽粒或种子,以及任何包含粕、油类、或碾碎的或完整的籽粒的食品。在本文考虑到的一种或多种植物商业产品或植物商业产品中检出含有本文描述的异源PUFA合酶系统的多肽和/或多核苷酸,则事实上证明该商业产品或商业产品由表达所述异源PUFA合酶系统的转基因植物构成。例如,若在油中检出本文描述的异源PUFA合酶系统的多肽和/或多核苷酸的污染,则事实上证明该油是表达异源PUFA合酶系统的转基因植物产生的。
本文中的实施方案通过利用异源PUFA合酶系统开发出遗传修饰植物,这这些植物产生该植物物种原本不产生的PUFA,使得产生富含一种或多种期望的(目标或主要)PUFA的商业上有价值的脂质成为可能。在一些实施方案中,本发明的遗传修饰的生物产生一种或多种多不饱和脂肪酸,包括但不限于EPA(C20:5,n-3)、DHA(C22:6,n-3)、DPA(C22:5,n-6或n-3)、及其任何组合。本文中的一些实施方案特别地包括获自包含这些PUFA的如本文描述的遗传修饰植物的油料种子和油。
尚未知晓有植物内源性地含有PUFA合酶,因此,本文中的实施方案为人们提供了培育具有独特的脂肪酸产生能力的植物的机会。一些实施方案可帮助人们创造各种各样的“设计师油”,这些油包含由来自植物的不同形式的脂肪酸以各种比例配合的新颖组合。在一些实施方案中,应用本文中描述的异源PUFA合酶系统可扩展PUFA生产的范围,并且能够在大多数作物的种植温度范围内成功地产生这样的PUFA。
在一些实施方案中,植物商业产品“基本上不含”PUFA合成系统的中间产物或副产物。如在本文中的该语境中使用的,术语“基本上不含”意指由于异源PUFA系统的导入或存在,在遗传修饰的植物(和/或植物部分和/或种子油部分)中产生的任何中间产物或副产物脂肪酸(非目标PUFA)(例如,不为野生型植物或用作指示的遗传修饰的受体的亲本植物所产生的脂肪酸)存在的量为,例如但不限于:按总脂肪酸的重量计小于10%;按总脂肪酸的重量计小于9%;按总脂肪酸的重量计小于8%;按总脂肪酸的重量计小于7%;按总脂肪酸的重量计小于6%;按总脂肪酸的重量计小于5%;按总脂肪酸的重量计小于4%;按总脂肪酸的重量计小于3%;按总脂肪酸的重量计小于2%;按总脂肪酸的重量计小于1%;以及按总脂肪酸的重量计小于0.5%。
在一些实施方案中,表达异源PUFA合酶系统的遗传修饰的植物、其后代、细胞、组织、或部分,或从遗传修饰的植物、其后代、细胞、组织、或部分获得的油或种子,包含可检出量的DHA(二十二碳六烯酸(C22:6,n-3))、DPA(n-6)(二十二碳五烯酸(C22:5,n-6))、和/或EPA(二十碳五烯酸(C20:5,n-3))。
在具体的实施方案中,表达异源PUFA合酶系统的遗传修饰的植物、其后代、细胞、组织、或部分,或从遗传修饰的植物、其后代、细胞、组织、或部分获得的油或种子包含,例如但不限于,按总脂肪酸的重量计至少0.01%、至少0.02%、至少0.03%、至少0.04%、至少0.05%、至少0.06%、至少0.07%、至 少0.08%、至少0.09%、至少0.1%、至少0.2%、至少0.3%、至少0.4%、至少0.5%、至少0.6%、至少0.7%、至少0.8%、至少0.9%、至少1%、至少1.5%、至少2%、至少2.5%、至少3%、至少3.5%、至少4%、至少4.5%、至少5%、至少5.5%、至少6%、至少6.5%、至少7%、至少7.5%、至少8%、至少8.5%、至少9%、至少9.5%、至少10%、至少10.5%、至少11%、至少11.5%、至少12%、至少12.5%、至少13%、至少13.5%、至少14%、至少14.5%或至少15%的DHA。可在任何这些值之间选择有用的范围,例如,按总脂肪酸的重量计0.01%到15%、0.05%到10%以及1%到5%的DHA。
在具体的实施方案中,表达异源PUFA合酶系统的遗传修饰的植物、其后代、细胞、组织、或部分,或从遗传修饰的植物、其后代、细胞、组织、或部分获得的油或种子包含,例如但不限于,按总脂肪酸的重量计至少0.01%、至少0.02%、至少0.03%、至少0.04%、至少0.05%、至少0.06%、至少0.07%、至少0.08%、至少0.09%、至少0.1%、至少0.2%、至少0.3%、至少0.4%、至少0.5%、至少0.6%、至少0.7%、至少0.8%、至少0.9%、至少1%、至少1.5%、至少2%、至少2.5%、至少3%、至少3.5%、至少4%、至少4.5%、至少5%、至少5.5%、至少6%、至少6.5%、至少7%、至少7.5%、至少8%、至少8.5%、至少9%、至少9.5%、和/或至少10%的EPA。可在任何这些值之间选择有用的范围,例如,按总脂肪酸的重量计0.01%到10%、0.05%到5%以及0.1%到5%的EPA。
在具体的实施方案中,表达异源PUFA合酶系统的遗传修饰的植物、其后代、细胞、组织、或部分,或从遗传修饰的植物、其后代、细胞、组织、或部分获得的油或种子包含,例如但不限于,按总脂肪酸的重量计至少0.01%、至少0.02%、至少0.03%、至少0.04%、至少0.05%、至少0.06%、至少0.07%、至少0.08%、至少0.09%、至少0.1%、至少0.2%、至少0.3%、至少0.4%、至少0.5%、至少0.6%、至少0.7%、至少0.8%、至少0.9%、至少1%、至少1.5%、至少2%、至少2.5%、至少3%、至少3.5%、至少4%、至少4.5%、至少5%、至少5.5%、至少6%、至少6.5%、至少7%、至少7.5%、至少8%、至少8.5%、至少9%、至少9.5%、和/或至少10%的DPA(n-6)。可在任何这些值之间选择有用的范围,例如,按总脂肪酸的重量计0.01%到10%、0.01%到5%、0.01%到1%、0.01%到0.05%、0.05%到5%以及0.1%到5%的DPA(n-6)。
除非另有说明,PUFA的百分比量为按提取的总脂肪酸的重量计的百分比。在一些实施方案中,通过脂肪酸甲酯(FAME)制备物的气相色谱(GC)分析测定 总脂肪酸,但总脂肪酸的测定并不限于这种方法。
在具体的实施方案中,表达异源PUFA合酶系统的遗传修饰的植物、其后代、细胞、组织、或部分,或从遗传修饰的植物、其后代、细胞、组织、或部分获得的油或种子包含的EPA:DHA为,例如但不限于,按总脂肪酸的重量计至少10:1、至少9.5:1、至少9:1、至少8.5:1、至少8:1、至少7.5:1、至少7:1、至少6.5:1、至少6:1、至少5.5:1、至少5:1、至少4.5:1、至少4:1、至少3.5:1、至少3:1、至少2.5:1、至少2:1、至少1.5:1、至少1:1、至少1:1.5、至少1:2、至少1:2.5、至少1:3、至少1:3.5、至少1:4、至少1:4.5、至少1:5、至少1:5.5、至少1:6、至少1:6.5、至少1:7、至少1:7.5、至少1:8、至少1:8.5、至少1:9、至少1:10、至少1:11、至少1:12、至少1:13、至少1:14、至少1:15、至少1:16、至少1:17、至少1:18、至少1:19、至少1:20、至少1:21、至少1:22、至少1:23、至少1:24、至少1:25、至少1:26、至少1:27、至少1:28、至少1:29、或至少1:30。可在任何这些值之间选择有用的范围,例如,按总脂肪酸的重量计10:1、5:1到1:1、2:1到1:1、1到1:30、1:1到1:25、1:1到1:20、1:1到1:15、1:1到1:10、1:1到1:5、1:1到1:3、以及1:1到1:2的EPA:DHA比率。
在具体的实施方案中,表达异源PUFA合酶系统的遗传修饰的植物、其后代、细胞、组织、或部分,或从遗传修饰的植物、其后代、细胞、组织、或部分获得的油或种子包含的DPA(n-6):DHA的比率为,例如但不限于,按总脂肪酸的重量计至少1:1、至少1:1.5、至少1:2、至少1:2.5、至少1:3、至少1:3.5、至少1:4、至少1:4.5、至少1:5、至少1:5.5、至少1:6、至少1:6.5、至少1:7、至少1:7.5、至少1:8、至少1:8.5、至少1:9、或至少1:10。可在任何这些值之间选择有用的范围,例如,按总脂肪酸的重量计1:1到1:10、1:1到1:5、1:1到1:3和1:1到1:2的DPA(n-6):DHA比率。
在具体的实施方案中,表达异源PUFA合酶系统的遗传修饰的植物、其后代、细胞、组织、或部分,或从遗传修饰的植物、其后代、细胞、组织、或部分获得的油或种子,包含例如但不限于:按油的重量计至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、或至少99%的甘油三酯。在一些实施方案中,从本发明的遗传修饰的植物、其后代、细胞、组织、或部分或种子获得的油包含按油的重量计70%到99%的甘油三酯、按油的重量计75%到99%的甘油三酯、按油的重量计80%到99%的甘油三酯、按油的重量计85%到99%的甘油三酯、或按油的重量计90%到99%的甘油三酯。这样的甘油三酯可包含 由异源PUFA合酶系统产生的LC-PUFA。
在具体的实施方案中,当异源PUFA合酶系统的目标产物是LC-PUFA,诸如DHA、DPA(n-6或n-3)、或EPA等时,不以显著量存在于表达该系统的遗传修饰的植物的总脂质中的中间产物和副产物包括,例如但不限于:γ-亚麻酸(GLA;18:3,n-6);十八碳四烯酸(STA或SDA;18:4,n-3);二高-γ-亚麻酸(DGLA或HGLA;20:3,n-6)、花生四烯酸(ARA,C20:4,n-6);二十碳三烯酸(ETA,20:3,n-9),以及不同的其他中间产物或副产物,如20:0;20:1(Δ5);20:1(Δ11);20:2(Δ8,11);20:2(Δ11,14);20:3(Δ5,11,14);20:3(Δ11,14,17);米德酸(20:3;Δ5,8,11);或20:4(Δ5,1,14,17)。
在一些实施方案中,通过纯化过程从表达异源PUFA合酶系统的遗传修饰的植物回收由所述系统产生的PUFA,所述纯化过程从所述植物、其后代、细胞、组织、或部分提取化合物。在一些实施方案中,通过收获所述植物、其后代、细胞、组织、或部分回收PUFA。在一些实施方案中,通过从所述植物、其后代、细胞、组织、或部分(例如,从油料种子)收获油而回收PUFA。在一些实施方案中,所述植物、其后代、细胞、组织、或部分以其天然状态被消费,或者被进一步加工成可消费产品。
在本文的一些实施方案中,来自表达异源PUFA合酶系统的遗传修饰植物的油可以在非烹调或非膳食过程和组合物中使用。这些用途包括工业、化妆品、或医疗行业等(例如,这些油可用于抗感染的保护性屏障中,以及用来提高移植物存活率(美国专利6,210,700))。来自表达异源PUFA合酶系统的遗传修饰植物的油还可用于本发明的油适合的任何应用中。一般而言,这些油可用来替代,例如,在多种应用中的矿物油、酯类、脂肪酸、或动物脂肪,如润滑剂、润滑添加剂、金属加工液、液压流体和阻燃液压流体。这些油还可用作生产改性油过程中的材料。用于改性油的技术的实例包括,分馏、氢化、改变油的油酸或亚麻酸含量、以及本领域技术人员已知的其他改性技术。
来自表达异源PUFA合酶系统的遗传修饰植物的油的化妆品用途的实例包括:用作化妆品组合物中的软化剂;用作凡士林替代品;用作肥皂的组成部分、用作生产肥皂过程中的材料;用作口服治疗溶液的组成部分;用作衰老治疗组合物的组成部分;以及用作皮肤或发用泡沫气雾剂的组成部分。
提供以下实施例以展示某些具体特征和/或实施方案。不应将这些实施例解释为将本公开限制为所例示的具体特征或实施方案。
实施例
实例1:材料和方法
除非另外指明,通过标准方法进行后续实施例中描述的分子生物学和生物化学操作,所述方法公开于,例如,Ausubel等人,(1995)Current Protocols in MolecularBiology,John Wiley&Sons;Sambrook等人,(1989)Molecular Cloning:A LaboratoryManual,Cold Spring Harbor Laboratory Press;等等。
植物优化的多核苷酸。
设计并合成了具有芥花密码子偏好的多个DNA序列,以便在转基因植物中产生PUFA合酶蛋白。从保存在GenBank(可在互联网上ncbi.nlm.nih.gov访问)中的序列获得蛋白质编码序列,根据该编码序列计算芥花(欧洲油菜L.)的密码子使用表。省略任何使用低于该氨基酸的密码子总使用量约10%的同义密码子之后,计算出重标的(rescaled)芥花密码子集。使用下列公式计算针对每一个密码子的重设表示:
C1的重标%=1/(%C1+%C2+%C3…)x%C1 x 100,
其中C1为讨论中的密码子,%C1、%C2、和%C3…代表剩余同义密码子的原始%使用值。
为了推导编码SEQ ID NO:1的PFA1蛋白、SEQ ID NO:4的PFA2蛋白、和SEQ ID NO:7的PFA3蛋白的氨基酸的芥花密码子优化的DNA序列,针对以实验确定的(天然的)PFA1 DNA序列(SEQ ID NO:2)、PFA2 DNA序列(SEQ ID NO:5)、和PFA3 DNA序列(SEQ ID NO:8)进行密码子置换,使得所得的DNA序列具有芥花优化的密码子偏好表的总体密码子组成。
进一步精修序列,以消除不期望的限制酶识别位点、潜在的植物内含子剪接位点、A/T或C/G残基的长段、以及可能干扰编码区在植物细胞中的mRNA稳定性、转录或翻译的其他基序。进行其他改变以导入期望的限制酶识别位点,以及消除长的内部开放阅读框(除+1之外的框)。进行这些改变时均遵守约束,即保留芥花偏好的重标密码子组成。合成了包含所得的芥花密码子优化的DNA核苷酸序列的多核苷酸。表1。
表1.密码子优化的序列
脂质提取与分析
通过FAME分析法对分离的种子进行分析,以鉴定包含LC-PUFA的转基因植物事件(从大豆、芥花、和拟南芥获得),与在相同条件下培养的对照植物进行比较。将LC-PUFA含量(按重量计%FAME)定量并将其与阴性对照植物进行比较。对单个种子进行FAME分析,或在来自每个单独的转基因事件的成批种子进行FAME分析,测定采用下文描述的方法进行。
拟南芥和芥花种子分析。使用钢球磨,在含有作为三酰基甘油内标的十七碳酸三甘油酯(Nu-ChekTM Prep,Elysian,MN)的庚烷中将转基因种子样品(单一的芥花种子或批量拟南芥种子样品)均质化。在均质化之前,加入0.25M的新鲜配制的甲醇钠(Sigma-Aldrich,St.Louis,MO)甲醇溶液。在40℃在不断振摇下进行提取和衍生化。FAME提取重复三次,并在分析之前合并庚烷层。拟南芥和芥花种子批量分析分别包括10mg等份的拟南芥或8-12粒芥花种子。为了促使衍生化反应完成,首先用庚烷将来自批量芥花种子和单一大豆种子的油提取三次。然后,取一等份合并的油提取物在FAME中衍生化。在第四次提取/衍生化中检测内源FAME的存在,以核实反应的完成。使用Agilent 6890气相色谱仪(AgilentTechnologies,Santa Clara,CA)和SGE(Austin,TX)产的毛细管柱BPX 70TM(15m x 0.25mmx 0.25μm),通过GC-FID分析所得的FAME。根据保留时间鉴别每种FAME,并通过注射添加有适当的长链脂肪酸(Nu-Chek Prep,Elysian MN)的菜籽油参考混合物(作为校正标准品,产自Matreya LLC(Pleasant Gap,PA))对FAME定量。下文描述了在拟南芥、大豆、和芥花中产生DHA和其他LC-PUFA的结果。
实例2:PUFA合酶基因在植物中的表达
构建含有植物转录单位(PTU)的双元载体,这些植物转录单位包含天然的 和密码子优化的PUFA合酶系统转基因(PFA1、PFA2、和PFA3),与启动子和3’-UTR可操作连接。所得的双元载体还包括一个包含与启动子和3’-UTR可操作连接的HetI转基因的PTU。仅有一个双元载体包含与启动子和3’-UTR可操作连接的SzACS2转基因(pDAB101429)。将启动子和3’-UTR序列的不同组合纳入双元载体中,以驱动PUFA合酶系统和HetI转基因的表达。在PTU的设计中采用这些不同的调节基因元件是为了改变和变化转基因的表达水平。同样,将PTU以不同的取向定位在双元载体中,以测试PTU的取向是否改变或变化了转基因的表达水平。
测试了三种不同的PTU取向。包含以第一种取向布置的PTU的双元载体是头对尾构型。
包含以第二种取向布置的PTU的双元载体是利用3’UTR的双方向性来构建的。PFA1和HetI PTU共享一个3’UTR,并以下列构型取向:启动子::感兴趣基因::3’UTR::感兴趣基因::启动子。同样,PFA3和PFA2 PTU共享一个3’UTR,并以下列构型取向:启动子::感兴趣基因::3’UTR::感兴趣基因::启动子。
最后,第三种取向纳入了一个随机DNA间隔序列(SEQ ID NO:12)。该DNA间隔区定位在两个朝向随机DNA间隔区上游的PTU和两个朝向该随机DNA间隔区下游的PTU之间。这两组PTU均以构建为头对头取向。相应地,取向如下:←PFA1 PTU::HetI PTU→::随机DNA间隔区::←PFA3 PTU::PFA 2 PTU→。
第一种取向
pDAB101429.pDAB101429质粒(SEQ ID NO:15)含有三个PUFA合酶PTU、一个脂酰CoA合成酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有截短的菜豆植物凝集素L基因启动子(Dlec2启动子v2;GenBank登录号X06336),拟南芥AT2S3基因5'非翻译区(2S 5'UTR;GenBank登录号M_118850)、裂殖壶菌属物种多不饱和脂肪酸合酶PFA1 v2和拟南芥2S白蛋白基因3'非翻译区终止子v1(At2S SSP终止子v1;GenBank登录号M22035)。第二PUFA合酶PTU含有PvDlec2启动子v2、2S5'UTR、裂殖壶菌属物种多不饱和脂肪酸合酶PFA2 v2、和At2S SSP终止子v1。第三PUFA合酶PTU含有PvDlec2启动子v2、2S 5'UTR、裂殖壶菌属物种多不饱和脂肪酸合酶PFA3 v2、和At2S SSP终止子v1。脂酰CoA合成酶PTU 含有PvDlec2启动子v2、2S 5'UTR、裂殖壶菌属物种脂酰CoA合成酶(SzACS-2v3)和At2S SSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvDlec2启动子v2、2S 5'UTR、念珠藻属物种4'磷酸泛酰巯基乙胺基转移酶HetI(NoHetIv3)和At2S SSP终止子v1。这五个PTU以头对尾取向置于植物转化双元载体(pDAB7333)的T链DNA边界区内。基因的顺序为:PFA1 v2、PFA2 v2、PFA3 v2、SzACS-2 v3、NoHetI v3。植物转化双元载体含有膦丝菌素乙酰转移酶PTU:木薯叶脉花叶病毒启动子(CsVMV启动子v2;Verdaguer等人,Plant Molecular Biology 31:1129-1139;1996)、膦丝菌素乙酰转移酶(PAT v5;Wohlleben等人,Gene 70:25-37;1988)和根癌土壤杆菌ORF1 3’非翻译区(AtuORF1 3'UTR v4;Huang等人,J.Bacteriol.172:1814-1822;1990),以及过驱动(Overdrive)(Toro等人,PNAS 85(22):8558-8562;1988)和T-链边界序列(T-DNA边界A和T-DNA边界B;Gardner等人,Science 231:725–727;1986以及国际公开No.WO 2001/025459A1)等其他调节元件。分离重组质粒,并通过限制性酶消化和DNA测序测试PTU是否掺入。
pDAB101454.pDAB101454质粒(SEQ ID NO:16)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA1 v2;和At2S SSP终止子v1。第二PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA2 v2;和At2S SSP终止子v1。第三PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA3 v2;和At2S SSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvDlec2启动子v2;2S 5'UTR;NoHetI v3;和At2S SSP终止子v1。上述这四个PTU以头对尾取向置于植物转化双元载体pDAB7333的T链DNA边界区内。基因的顺序为:PFA1 v2、PFA2 v2、PFA3 v2、NoHetI v3。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。分离重组质粒,并采用限制性酶消化和DNA测序测试是否有PTU掺入。
pDAB101496.pDAB101496质粒(SEQ ID NO:17)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA1 v2;和At2S SSP终止子v1。第二PUFA合酶PTU含有PvPhas启动子v4;PvPhas 5’UTR;裂殖壶菌属物种PFA2 v2;和根癌土壤杆菌Ti质粒pTi15955开放阅读框23/24 3'非翻译区(AtuORF23 3’-UTR v1GenBank登录号AF242881.1)。 第三PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA3v3(SEQ ID NO:13,其编码多肽SEQ ID NO:14);和At2S SSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v5;PvPhas 5’UTR;NoHetI v3;和AtuORF23 3’-UTR v1。这四个PTU以头对尾取向置于植物转化双元载体pDAB7333的T链DNA边界区内。基因的顺序为:PFA1v2、PFA2 v2、PFA3 v3、NoHetI v3。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。分离重组质粒,并采用限制性酶消化和DNA测序测试是否有PTU掺入。
pDAB109525.pDAB109525质粒(SEQ ID NO:18)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA1 v1;和At2S SSP终止子v1。第二PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA2 v1;和At2S SSP终止子v1。第三PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA3 v3;和At2S SSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvDlec2启动子v2;2S 5'UTR;NoHetI v3;和At2S SSP终止子v1。这四个PTU以头对尾取向置于植物转化双元载体pDAB7333的T链DNA边界区内。基因的顺序为:PFA1 v1、PFA2 v1、PFA3 v3、NoHetI v3。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。然后分离含有四个PTU的重组质粒,并采用限制性酶消化和DNA测序测试是否有所述四个PTU的掺入。
pDAB109584.pDAB109584质粒(SEQ ID NO:19)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有欧洲油菜napin基因启动子(BnaNapinC启动子v1;GenBank登录号M64633.1)、欧洲油菜napin基因5'非翻译区(BnaNapinC 5'UTR v1;GenBank登录号M64633.1)、裂殖壶菌属物种PFA1 v2;和欧洲油菜napin基因3'非翻译区(BnaNapinC 3’-UTR v1;GenBank登录号M64633.1)。第二PUFA合酶PTU含有截短的菜豆β菜豆蛋白启动子(PvPhas启动子v4;GenBank登录号J01263.1);菜豆β菜豆蛋白5'非翻译区(PvPhas 5’UTR;GenBank登录号J01263.1);裂殖壶菌属物种PFA2 v2、菜豆β菜豆蛋白3'非翻译区(PvPhas 3’-UTR v1;GenBank登录号J01263.1);和菜豆β菜豆蛋白3’MAR(PvPhas 3'MAR v2;GenBank登录号J01263.1)。第三PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA3 v3;和At2S SSP终止子v1。磷酸泛酰巯基乙胺基 转移酶PTU含有甘蓝酰基载体蛋白基因启动子(BoACP启动子v1;国际公开WO 1992/18634);甘蓝酰基载体蛋白基因5'非翻译区(BoACP 5'UTR v2;国际公开WO 1992/18634);NoHetI v3;和欧洲油菜酰基载体蛋白基因3’非翻译区(BnACP05 3’-UTR v1;GenBank登录号X64114.1)。这四个PTU以头对尾取向置于植物转化双元载体pDAB7333的T链DNA边界区内。基因的顺序为:PFA1v2、PFA2 v2、PFA3 v3、NoHetI v3。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。分离重组质粒,并采用限制性酶消化和DNA测序测试是否有所述PTU的掺入。
pDAB109588.pDAB109588质粒(SEQ ID NO:20)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有菜豆β菜豆蛋白启动子(PvPhas启动子v3;GenBank登录号J01263.1);PvPhas 5’UTR;裂殖壶菌属物种PFA1 v2;PvPhas3’-UTR v1;和PvPhas 3'MAR v2。第二PUFA合酶PTU含有BnaNapinC启动子v1;BnaNapinC 5'UTR v1;裂殖壶菌属物种PFA2 v2;和BnaNapinC 3’-UTRv1。第三PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA3v2;和At2SSSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有BoACP启动子v1;甘蓝酰基载体蛋白基因5'非翻译区(BoACP 5'UTR v1;国际公开WO 1992/18634);NoHetI v3;和AtuORF23 3’-UTRv1。这四个PTU以头对尾取向置于植物转化双元载体pDAB7333的T链DNA边界区内。基因的顺序为:PFA1v2、PFA2 v2、PFA3 v2、NoHetI v3。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。分离重组质粒,并采用限制性酶消化和DNA测序测试是否有所述PTU的掺入。
pDAB112210.pDAB112210质粒(SEQ ID NO:21)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA1 v1;和At2S SSP终止子v1。第二PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA2 v1;和At2S SSP终止子v1。第三PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA3 v1;和At2S SSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvDlec2启动子v2;2S 5'UTR;NoHetI v3;和At2S SSP终止子v1。这四个PTU以头对尾取向置于植物转化双元载体pDAB7333的T链DNA边界区内。基因的顺序为:PFA1 v1、PFA2 v1、PFA3 v1、NoHetI v1。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。分离重组质粒,并采用限制性酶消化和DNA测序测试四个PTU的掺入。
pDAB112206.pDAB112206质粒(SEQ ID NO:22)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA1 v2;和At2S SSP终止子v1。第二PUFA合酶PTU含有PvPhas启动子v4;PvPhas 5’UTR;裂殖壶菌属物种PFA2 v2;PvPhas 3’-UTRv1;和PvPhas 3'MARv2。第三PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA3 v3;和At2S SSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有截短的菜豆β菜豆蛋白启动子(PvPhas启动子v6;GenBank登录号J01263.1);PvPhas5’UTR;NoHetI v3;PvPhas3’-UTR v1;和PvPhas 3'MAR v2。上述这四个PTU以头对尾取向置于植物转化双元载体pDAB7333的T链DNA边界区内。基因的顺序为:PFA1 v2、PFA2 v2、PFA3 v3、NoHetI v3。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。分离重组质粒,并采用限制性酶消化和DNA测序测试四个PTU的掺入。
第二种取向
pDAB107962.pDAB107962质粒(SEQ ID NO:23)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA1 v2;和At2S SSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v6;PvPhas 5’UTR;NoHetI v3;PvPhas 3’-UTRv1;PvPhas 3'MAR v2;和AtuORF23 3’-UTR v1。第二PUFA合酶PTU含有PvDlec2启动子v2;2S5'UTR;裂殖壶菌属物种PFA3 v2;和At2S SSP终止子v1。第三PUFA合酶PTU含有PvPhas启动子v6;PvPhas 5’UTR;裂殖壶菌属物种PFA2 v1;PvPhas 3’-UTR v1;PvPhas 3'MAR v2;和AtuORF23 3’-UTR v1。PFA1 v2和NoHetI v3被置于尾对尾取向,并且AtuORF23 3’UTR被置于两个PTU之间;NoHetI v3和PFA3 v2被置于头对头取向;PFA3 v2和PFA2 v1被置于尾对尾取向,并且AtuORF233’UTR被置于植物转化双元载体pDAB7333的T-链DNA边界区内的两个PTU之间。基因的顺序为:PFA1 v2、NoHetI v3、PFA3 v2、PFA2 v1。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。分离重组质粒,并采用限制性酶消 化和DNA测序测试是否有所述PTU的掺入。
pDAB109591.pDAB109591质粒(SEQ ID NO:24)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA1 v2;和At2S SSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v6;PvPhas启动子PvPhas 5’UTR;NoHetI v3;PvPhas 3’-UTR v1;PvPhas3'MAR v2;和AtuORF23 3’-UTR v1。第二PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA3 v3;和At2S SSP终止子v1。第三PUFA合酶PTU含有PvPhas启动子v6;PvPhas 5’UTR;裂殖壶菌属物种PFA2 v2;PvPhas 3’-UTR v1;PvPhas 3'MAR v2;和AtuORF23 3’-UTR v1。PFA1 v2和NoHetI v3被置于尾对尾取向,并且AtuORF23 3’UTR被置于两个PTU之间;NoHetI v3和PFA3 v3被置于头对头取向;PFA3 v3和PFA2 v2被置于尾对尾取向,并且AtuORF23 3’UTR被置于植物转化双元载体pDAB7333的T-链DNA边界区内的两个PTU之间。基因的顺序为:PFA1 v2、NoHetI v3、PFA3 v3、PFA2 v2。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。分离重组质粒,并采用限制性酶消化和DNA测序测试是否有所述PTU的掺入。
pDAB109592.pDAB109592质粒(SEQ ID NO:25)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有BnaNapinC启动子v1;BnaNapinC 5'UTR v1;裂殖壶菌属物种PFA1 v2;和BnaNapinC 3’-UTR v1。磷酸泛酰巯基乙胺基转移酶PTU含有BoACP启动子v1;甘蓝酰基载体蛋白基因5'非翻译区(BoACP 5'UTR v2;国际公开WO 1992/18634);NoHetI v3;BnACP05 3’-UTR v1;和AtuORF23 3’-UTR v1。第二PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA3 v3;和At2S SSP终止子v1。第三PUFA合酶PTU含有PvPhas启动子v6;菜豆β菜豆蛋白5'非翻译区(PvPhas启动子PvPhas 5’UTR;GenBank登录号J01263.1);裂殖壶菌属物种PFA2v2;PvPhas 3’-UTR v1;PvPhas3'MAR v2;和AtuORF23 3’-UTR v1。PFA1 v2和NoHetI v3被置于尾对尾取向,并且AtuORF23 3’UTR被置于两个PTU之间;NoHetI v3和PFA3 v3被置于头对头取向;PFA3 v3和PFA2 v2被置于尾对尾取向,并且AtuORF23 3’UTR被置于植物转化双元载体pDAB7333的T-链DNA边界区内的两个PTU之间。基因的顺序为:PFA1 v2、NoHetI v3、PFA3 v3、PFA2 v2。pDAB7333还含有如前所述 的膦丝菌素乙酰转移酶PTU。然后分离含有四个PTU的重组质粒,并采用限制性酶消化和DNA测序测试这四个PTU的掺入。
pDAB107960.pDAB107960质粒(SEQ ID NO:26)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA1 v1;和At2S SSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v6;PvPhas启动子PvPhas 5’UTR;NoHetI v3;PvPhas 3’-UTR v1;PvPhas3'MAR v2;AtuORF23 3’-UTR v1。第二PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA3 v3;和At2S SSP终止子v1。第三PUFA合酶PTU含有PvPhas启动子v6;PvPhas 5’UTR;裂殖壶菌属物种PFA2 v1;PvPhas3’-UTR v1;PvPhas 3'MAR v2;和AtuORF23 3’-UTR v1。PFA1 v1和NoHetI v3被置于尾对尾取向,并且AtuORF233’UTR被置于两个PTU之间;NoHetI v3和PFA3 v3被置于头对头取向;PFA3 v3和PFA2 v1被置于尾对尾取向,并且AtuORF23 3’UTR被置于植物转化双元载体pDAB7333的T-链DNA边界区内的两个PTU之间。基因的顺序为:PFA1 v1、NoHetI v3、PFA3 v3、PFA2 v1。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。分离重组质粒,并采用限制性酶消化和DNA测序测试是否有所述PTU的掺入。
pDAB110132.pDAB110132质粒(SEQ ID NO:27)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有菜豆β菜豆蛋白启动子(PvPhas启动子v3;GenBank登录号J01263.1);菜豆β菜豆蛋白5'非翻译区(PvPhas启动子PvPhas5’UTR;GenBank登录号J01263.1);裂殖壶菌属物种PFA1 v2;PvPhas 3’-UTR v1;和PvPhas 3'MAR v2。磷酸泛酰巯基乙胺基转移酶PTU含有BoACP启动子v1;BoACP 5'UTR v2;NoHetI v3;BnACP05 3’-UTR v1;和AtuORF23 3’-UTR v1。第二PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA3v2;和At2S SSP终止子v1。第三PUFA合酶PTU含有BnaNapinC启动子v1;BnaNapinC 5'UTR v1;裂殖壶菌属物种PFA2 v1;BnaNapinC 3’-UTR v1;和AtuORF23 3’-UTR v1。PFA1 v2和NoHetI v3被置于尾对尾取向,并且AtuORF233’UTR被置于两个PTU之间;NoHetI v3和PFA3 v2被置于头对头取向;PFA3 v2和PFA2 v1被置于尾对尾取向,并且AtuORF23 3’UTR被置于植物转化双元载体pDAB7333的T-链DNA边界区内的两个PTU之间。基因的顺序为:PFA1 v2、NoHetI v3、PFA3 v2、PFA2 v1。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。分离重组质粒,并采用限制性酶消化和DNA测序测试是否有所述PTU的掺入。
pDAB107961.pDAB107961质粒(SEQ ID NO:28)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有PvPhas启动子v3;PvPhas启动子PvPhas 5’UTR;裂殖壶菌属物种PFA1 v1;PvPhas 3’-UTRv1;和PvPhas 3'MAR v2。磷酸泛酰巯基乙胺基转移酶PTU含有BoACP启动子v1;BoACP 5'UTRv2;NoHetI v3;BnACP05 3’-UTR v1;和AtuORF23 3’-UTR v1。第二PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA3 v3;和At2S SSP终止子v1。第三PUFA合酶PTU含有BnaNapinC启动子v1;BnaNapinC 5'UTR v1;裂殖壶菌属物种PFA2 v1;BnaNapinC3’-UTR v1;和AtuORF23 3’-UTR v1。PFA1v1和NoHetI v3被置于尾对尾取向,并且AtuORF233’UTR被置于两个PTU之间;NoHetI v3和PFA3 v3被置于头对头取向;PFA3 v3和PFA2 v1被置于尾对尾取向,并且AtuORF23 3’UTR被置于植物转化双元载体pDAB7333的T-链DNA边界区内的两个PTU之间。基因的顺序为:PFA1 v1、NoHetI v3、PFA3 v3、PFA2 v1。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。分离重组质粒,并采用限制性酶消化和DNA测序测试是否有所述PTU的掺入。
pDAB110151.pDAB110151质粒(SEQ ID NO:29)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有BnaNapinC启动子v1;BnaNapinC 5'UTR v1;裂殖壶菌属物种PFA1 v2;和BnaNapinC 3’-UTR v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v6;PvPhas启动子PvPhas 5’UTR;NoHetI v3;PvPhas3’-UTR v1;PvPhas 3'MAR v2;和AtuORF23 3’-UTR v1。第二PUFA合酶PTU含有BnaNapinC启动子v1;BnaNapinC 5'UTR v1;裂殖壶菌属物种PFA3 v2;和At2SSSP终止子v1。第三PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA2v1;和At2S SSP终止子v1。PFA1 v2和NoHetI v3被置于尾对尾取向,并且AtuORF23 3’UTR被置于两个PTU之间;NoHetI v3和PFA3 v2被置于头对头取向;PFA3 v2和PFA2 v1被置于尾对尾取向,并且AtuORF233’UTR被置于植物转化双元载体pDAB7333的T-链DNA边界区内的两个PTU之间。基因的顺序为:PFA1 v2、NoHetI v3、PFA3 v2、PFA2 v1。pDAB7333还 含有如前所述的膦丝菌素乙酰转移酶PTU。分离重组质粒,并采用限制性酶消化和DNA测序测试是否有所述PTU的掺入。
pDAB112285.pDAB112285质粒(SEQ ID NO:30)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA1 v2;和At2S SSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v6;PvPhas启动子PvPhas 5’UTR;NoHetI v3;PvPhas 3’-UTR v1;PvPhas3'MAR v2;和AtuORF25/26 3’-UTR v3。第二PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA3 v2;和At2S SSP终止子v1。第三PUFA合酶PTU含有PvPhas启动子v6;PvPhas 5’UTR;裂殖壶菌属物种PFA2 v1;PvPhas 3’-UTR v1;PvPhas 3'MAR v2;和AtuORF23 3’-UTR v1。PFA1 v2和NoHetI v3被置于尾对尾取向,并且AtuORF25/26 3’UTR被置于两个PTU之间;NoHetI v3和PFA3 v2被置于头对头取向;PFA3 v2和PFA2 v1被置于尾对尾取向,并且AtuORF23 3’UTR被置于植物转化双元载体pDAB7333的T-链DNA边界区内的两个PTU之间。基因的顺序为:PFA1 v2、NoHetI v3、PFA3 v2、PFA2 v1。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。然后分离重组质粒,并采用限制性酶消化和DNA测序测试是否有所述PTU的掺入。
pDAB117501.pDAB117501质粒(SEQ ID NO:31)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA1 v1;和At2S SSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v6;PvPhas启动子PvPhas 5’UTR;NoHetI v3;PvPhas 3’-UTR v1;PvPhas3'MAR v2;GenBank登录号J01263.1;和AtuORF25/26 3’-UTRv3。第二PUFA合酶PTU含有大豆β伴大豆球蛋白α主要亚基基因启动子和5'非翻译区(SSPRO2745.1;GenBank登录号GU723691.1);裂殖壶菌属物种PFA3 v1;PvPhas3’-UTR v1;和PvPhas 3'MAR v2。第三PUFA合酶PTU含有BnaNapinC启动子v1;BnaNapinC 5'UTR v1;裂殖壶菌属物种PFA2 v1;BnaNapinC 3’-UTR v1。PFA1 v1和NoHetI v3被置于尾对尾取向,并且AtuORF25/26 3’UTR被置于两个PTU之间;NoHetI v3和PFA3 v1被置于头对头取向;PFA3v1和PFA2 v1被置于尾对尾取向,并且AtuORF23 3’UTR被置于植物转化双元载体pDAB7333的T-链DNA边界区内的两个PTU之间。基因的顺序为:PFA1 v1、NoHetI v3、PFA3 v1、PFA2v1。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。分离重组质粒,并采用限制性酶消化和DNA测序测试是否有所述PTU的掺入。
pDAB117502.pDAB117502质粒(SEQ ID NO:32)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有PvPhas启动子v3;PvPhas启动子PvPhas 5’UTR;裂殖壶菌属物种PFA1 v1;PvPhas 3’-UTRv1;和PvPhas 3'MAR v2。磷酸泛酰巯基乙胺基转移酶PTU含有BnaNapinC启动子v1;BnaNapinC 5'UTR v1;NoHetI v3;BnaNapinC 3’-UTR v1;和AtuORF25/26 3’-UTR v1。第二PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA3 v1;和At2SSSP终止子v1。第三PUFA合酶PTU含有SSPRO2745.1;裂殖壶菌属物种PFA2 v1;PvPhas 3’-UTR v1;和PvPhas 3'MAR v2。PFA1 v1和NoHetI v3被置于尾对尾取向,并且AtuORF25/26 3’UTR被置于两个PTU之间;NoHetI v3和PFA3 v1被置于头对头取向;PFA3 v1和PFA2 v1被置于尾对尾取向,并且AtuORF23 3’UTR被置于植物转化双元载体pDAB7333的T-链DNA边界区内的两个PTU之间。基因的顺序为:PFA1 v1、NoHetI v3、PFA3 v1、PFA2 v1。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。分离重组质粒,并采用限制性酶消化和DNA测序测试是否有所述PTU的掺入。
第三种取向
pDAB112200.pDAB112200质粒(SEQ ID NO:33)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA1 v2;和At2S SSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有PvPhas启动子v4;PvPhas 5’UTR;NoHetI v3;AtuORF23 3’-UTRv1;和随机DNA间隔区。第二PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA3 v2;和At2S SSP终止子v1。第三PUFA合酶PTU含有PvPhas启动子v5;PvPhas 5’UTR;裂殖壶菌属物种PFA2 v2;和AtuORF23 3’-UTR v1。PFA1 v2和NoHetI v3被置于头对头取向;NoHetI v3和PFA3 v2被置于尾对尾取向,其中随机DNA间隔区被置于两个PTU之间;PFA3 v2和PFA2 v2以头对头取向置于植物转化双元载体pDAB7333的T-链DNA边界区内。基因的顺序为:PFA1 v2、NoHetI v3、PFA3 v2、PFA2 v2。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。分离重组质粒,并采用限制性酶消化和DNA测序测试是否有所述PTU的掺入。
pDAB112201.pDAB112201质粒(SEQ ID NO:34)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有雷斯克勒(Lesquerella fendleri)3酮脂酰-CoA合成酶基因启动子和5'非翻译区(LfKCS3启动子v2;GenBank登录号AF367052.1);裂殖壶菌属物种PFA1 v2;和3酮脂酰-CoA合成酶基因3'非翻译区(SSTER2742.1;GenBank登录号AF367052.1)。磷酸泛酰巯基乙胺基转移酶PTU含有BoACP启动子v1;BoACP 5'UTR v2;NoHetI v3;BnACP05 3’-UTR v1;和随机DNA间隔区。第二PUFA合酶PTU含有LfKCS3启动子v2;裂殖壶菌属物种PFA3 v2;和SSTER2742.1。第三PUFA合酶PTU含有BoACP启动子v1;BoACP 5'UTR v2;裂殖壶菌属物种PFA2 v2;和BnACP05 3’-UTR v1。PFA1 v2和NoHetI v3被置于头对头取向;NoHetI v3和PFA3 v2被置于尾对尾取向,其中随机DNA间隔区被置于两个PTU之间;PFA3 v2和PFA2 v2以头对头取向置于植物转化双元载体pDAB7333的T-链DNA边界区内。基因的顺序为:PFA1 v2、NoHetI v3、PFA3v2、PFA2 v2。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。分离重组质粒,并采用限制性酶消化和DNA测序测试是否有所述PTU的掺入。
pDAB112203.pDAB112203质粒(SEQ ID NO:35)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有SSPRO2745.1;裂殖壶菌属物种PFA1 v2;PvPhas3’-UTR v1;和PvPhas 3'MAR v2。磷酸泛酰巯基乙胺基转移酶PTU含有大豆Kunitz胰蛋白酶抑制剂3基因启动子和5'非翻译区(SSPRO2743.1;GenBank登录号AF233296.1);NoHetI v3;大豆Kunitz胰蛋白酶抑制剂3基因3'非翻译区(SSTER2744.1;GenBank登录号AF233296.1);和随机DNA间隔区。第二PUFA合酶PTU含有SSPRO2745.1;裂殖壶菌属物种PFA3 v2;PvPhas 3’-UTR v1;和PvPhas 3'MAR v2。第三PUFA合酶PTU含有SSPRO2743.1;裂殖壶菌属物种PFA2 v2;和SSTER2744.1。PFA1 v2和NoHetI v3被置于头对头取向;NoHetI v3和PFA3 v2被置于尾对尾取向,其中随机DNA间隔区被置于两个PTU之间;PFA3 v2和PFA2 v2以头对头取向置于植物转化双元载体pDAB7333的T-链DNA边界区内。基因的顺序为:PFA1 v2、NoHetI v3、PFA3 v2、PFA2 v2。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。分离重组质粒,并采 用限制性酶消化和DNA测序测试是否有所述PTU的掺入。
pDAB112205.pDAB112205质粒(SEQ ID NO:36)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA1 v2;和At2S SSP终止子v1。磷酸泛酰巯基乙胺基转移酶PTU含有BoACP启动子v1;BoACP 5'UTR v2;NoHetI v3;BnACP05 3’-UTRv1;和随机DNA间隔区。第二PUFA合酶PTU含有SSPRO2743.1;裂殖壶菌属物种PFA3 v2;和SSTER2744.1。第三PUFA合酶PTU含有SSPRO2745.1;裂殖壶菌属物种PFA2 v2;PvPhas 3’-UTR v1;和PvPhas 3'MAR v2。PFA1 v2和NoHetI v3被置于头对头取向;NoHetI v3和PFA3v2被置于尾对尾取向,其中随机DNA间隔区被置于两个PTU之间;PFA3 v2和PFA2 v2以头对头取向置于植物转化双元载体pDAB7333的T-链DNA边界区内。基因的顺序为:PFA1 v2、NoHetI v3、PFA3 v2、PFA2v2。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。然后分离重组质粒,并采用限制性酶消化和DNA测序测试是否有所述PTU的掺入。
pDAB112208.pDAB112208质粒(SEQ ID NO:37)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有SSPRO2743.1;裂殖壶菌属物种PFA1 v2;和SSTER2744.1。磷酸泛酰巯基乙胺基转移酶PTU含有SSPRO2745.1;NoHetI v3;PvPhas 3’-UTR v1;PvPhas 3'MAR v2;和随机DNA间隔区。第二PUFA合酶PTU含有SSPRO2743.1;裂殖壶菌属物种PFA3 v2;和SSTER2744.1。第三PUFA合酶PTU含有SSPRO2745.1;裂殖壶菌属物种PFA2 v2;和PvPhas 3'MAR v2。PFA1 v2和NoHetI v3被置于头对头取向;NoHetI v3和PFA3 v2被置于尾对尾取向,其中随机DNA间隔区被置于两个PTU之间;PFA3 v2和PFA2 v2以头对头取向置于植物转化双元载体pDAB7333的T-链DNA边界区内。基因的顺序为:PFA1 v2、NoHetI v3、PFA3 v2、PFA2 v2。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。分离重组质粒,并采用限制性酶消化和DNA测序测试是否有所述PTU的掺入。
pDAB112209.pDAB112209质粒(SEQ ID NO:38)含有三个PUFA合酶PTU、一个磷酸泛酰巯基乙胺基转移酶PTU、和一个膦丝菌素乙酰转移酶PTU。具体地说,第一PUFA合酶PTU含有SSPRO2743.1;裂殖壶菌属物种PFA1 v2;和SSTER2744.1。磷酸泛酰巯基乙胺基转移酶PTU含有BoACP启动子v1;BoACP 5'UTR v2;NoHetI v3;BnACP05 3’-UTR v1;和随机DNA间隔区。第二PUFA合酶PTU含有SSPRO2745.1;裂殖壶菌属物种PFA3 v2;PvPhas 3’-UTR v1;和PvPhas 3'MAR v2。第三PUFA合酶PTU含有PvDlec2启动子v2;2S 5'UTR;裂殖壶菌属物种PFA2 v2;和At2S SSP终止子v1。PFA1 v2和NoHetI v3被置于头对头取向;NoHetI v3和PFA3v2被置于尾对尾取向,其中随机DNA间隔区被置于两个PTU之间;PFA3 v2和PFA2 v2以头对头取向置于植物转化双元载体pDAB7333的T-链DNA边界区内。基因的顺序为:PFA1 v2、NoHetI v3、PFA3v2、PFA2 v2。pDAB7333还含有如前所述的膦丝菌素乙酰转移酶PTU。分离重组质粒,并采用限制性酶消化和DNA测序测试是否有所述PTU的掺入。
根癌土壤杆菌转化。
将选定的双元构建体转化到土壤杆菌菌株中用于植物转化。转化所选用的菌株为根癌土壤杆菌菌株EHA 105的衍生物。将下列两个根癌土壤杆菌菌株AGL1和DA2552(参见国际专利公开WO2012016222)用双元构建体进行转化,并通过限制酶消化和测序加以验证。
采用基本上如Clough和Bent(1998)Plant J.16(6):735-43中所述的花序浸渍法,用包含双元质粒的根癌土壤杆菌转化拟南芥而产生T0事件,所述双元质粒编码在如上所述的植物表达元件控制下的PUFA合酶基因和HetI(在一些情况下SzACS2)。获得拟南芥T0事件并加以选择,培植至成熟并自花受精。收获所得的T1种子并种植之。通过喷施膦丝菌素选择转化的T1植物,以选出那些含有作为选择标志物的功能性pat基因的植物。对存活的T1植物采取叶组织样品,通过pat基因特异性定量PCR反应进行分析,以鉴定出那些含有单拷贝选择标志物(以及相关的转基因)的植物。将这些植物培植至成熟,收获T2种子并分析LC-PUFA含量(表示为总可提取FAME的%)。
芥花转化。
种子萌发。将野生型芥花种子(品种DH12075;ncbi.nlm.nih.gov/pmc/articles/PMC1456120/)在10%Clorox中进行表面消毒10分钟,并用无菌蒸馏水冲洗三次(在这个过程中种子盛放在钢制滤网中)。将种子种植在容纳在植物培养盒(PhytaTray)中的1/2MS芥花介质(1/2X MS、2%蔗糖、0.8%琼脂)上,每植物培养盒25粒种子,置于Percival GrowthChamberTM中,培 植方案设置为25℃,16小时光照和8小时黑暗的光周期,萌发5天。
预处理。在第5天,无菌切下长度约3mm的下胚轴节段,弃去根和芽段(通过在切除过程中将下胚轴节段放入10ml的无菌水中以防止下胚轴干燥)。将下胚轴节段平放在无菌滤纸上的愈伤组织诱导培养基MSK1D1(1X MS、1mg/L激动素、1mg/L 2,4-D、3%蔗糖,0.7%)上,在Percival Growth ChamberTM中预处理3天,培植方案设置为22--23℃、以及16小时光照和8小时黑暗的光周期。
与土壤杆菌共培养。在用土壤杆菌处理之前一天,接种含适当抗生素的YEP培养基的烧瓶。将下胚轴节段从滤纸转移到空的含10mL液体M培养基的100 x 25mm培养皿中,以防下胚轴节段干燥。在这个阶段,使用刮铲舀起节段并转移。用移液管移除液体M培养基,添加40mL土壤杆菌悬液到培养皿中(500个节段,40mL土壤杆菌溶液)。通过对培养皿的周期性涡旋将节段处理30分钟,使得下胚轴可保持浸没在土壤杆菌溶液中。
在处理期结束时,将土壤杆菌溶液吸移到废液烧杯中,高压灭菌并丢弃(完全移除土壤杆菌溶液以防土壤杆菌生长过度)。用镊子将处理过的下胚轴转移返回到含MSK1D1的具有滤纸的原平板上(仔细地确保节段不干燥)。在降低的光强度下(通过用铝箔覆盖平板)将下胚轴节段连同对照节段送回到Percival Growth ChamberTM,并将处理过的下胚轴与土壤杆菌共培养3天。
在选择培养基上诱导愈伤组织。在共培养3天之后,用镊子逐一地将下胚轴节段转移到愈伤组织诱导培养基MSK1D1H1(1X MS、1mg/L激动素、1mg/L2,4-D、0.5gm/L MES、5mg/LAgNo3、300mg/L200mg/L CarbenicillinTM、1mg/L HerbiaceTM、3%蔗糖、0.7%)上。将下胚轴节段固定在培养基上,但未包埋到培养基中。
选择和芽再生。在愈伤组织诱导培养基上7天之后,将形成愈伤组织的下胚轴节段转移到具有选择MSB3Z1H1的芽再生培养基1(1X MS、3mg/L BAP、1mg/L玉米素、0.5gm/LMES、5mg/L AgNo3、300mg/L200mg/L CarbenicillinTM、1mg/L HerbiaceTM、3%蔗糖、0.7%)上。14天之后,将具有芽的下胚轴转移到具有增加的选择MSB3Z1H3的再生培养基2(1X MS、3mg/L BAP、1mg/L玉米素、0.5gm/L MES、5mg/L AgNo3、300mg/L 200mg/L CarbenicillinTM、3mg/L HerbiaceTM、3%蔗糖、0.7%)上。
芽伸长。14天之后,具有芽的节段转移到芽伸长培养基MSMESH5(1X MS、300mg/L5mg/L HerbiaceTM、2%蔗糖,0.7%TC AgarTM)上。分离已经伸长的芽,并转移到MSMESH5。14天之后,将其余在第一轮中伸长了的芽放置在MSMESH5上,并转移到具有相同组成的新鲜的选择培养基。在这个阶段,弃去所有剩余的下胚轴节段。分离在MSB3Z1H3培养基上2周后伸长了的芽,并转移到MSMESH5培养基。分离其余的在MSMESH5上的在第一轮中伸长了的芽,并转移到具有相同组成的新鲜的选择培养基。在这个阶段,弃去所有剩余的下胚轴节段。
根诱导。14天之后,将芽转移到MSMEST培养基(1X MS、0.5g/L MES、300mg/L2%蔗糖、0.7%TC AgarTM)上以进行根诱导。在MSMEST培养基上的在第一次转移中未生根的芽转移到MSMEST培养基上进行第二个或第三个循环,直到获得生根的植物为止。
PCR分析。在MSMESH5培养基上培养芽至少14天之后,分离用于PCR的样品。通过PCR测试来自绿色芽的叶组织是否存在pat选择标志物基因。所有萎黄的芽均弃去,不进行PCR测定。保留PCR反应为阳性的样品,将芽留在MSMEST培养基上使其伸长并产生根。弃去根据PCR测定为阴性的芽。将在MSMESH5或MSMEST上生根且为PCR阳性的植物移送种植到土壤中。炼苗之后,进一步分析T0芥花植物的含有所有转基因PTU盒的事件,并将这些植物转移到温室,培植至成熟,收获T1种子进行脂肪酸组成分析。
大豆转化。
子叶节大豆。--按照Zeng等人,(2004)Plant Cell Rep.22(7):478-82的程序的修改版,使用含双元载体的土壤杆菌菌株进行土壤杆菌介导的大豆(Glycine max c.v.,Maverick)的转化。该方案经过修改,包含除草剂草铵膦作为选择剂。另外,另一处修改包括让消毒大豆种子在以3g/L PhytagelTM(Sigma-Aldrich,St.Louis,Mo.)固化的B5基础培养基(Gamborg等人,1968)Exp Cell Res.50(1):151-8)上萌发。该方案的最后一处修改使用了子叶节外植体,所述子叶节外植体是从5-6日龄的苗制备的,并如由Zhang等人,(1999)Plant Cell Tiss.Org.56:37-46所述用土壤杆菌进行了感染。如Zeng等人,(2004)所述的,在共培养培养基上进行了5天的共培养。芽起始、芽伸长、和生根培养基均补充有50mg/LCefotaximeTM、50mg/L和50mg/L万可霉素TM,并用3g/L PhytagelTM固化。
分割种子大豆转化方法。--通过Paz等人,(2005)Plant Cell Rep.25:206-13的程序的修改版,使用含双元载体的土壤杆菌菌株进行土壤杆菌介导的大豆(Glycine maxc.v.,Maverick)的转化。简要地说,将大豆种子沿种脐纵向对半切开,分开种子并去除种皮。切下胚轴,并从子叶节点除去任何主芽(axial shoot/bud)。所得的半种子外植体用土壤杆菌感染。芽起始、芽伸长、和生根培养基补充有50mg/L头孢噻肟(Cefotaxime)TM、50mg/L和50mg/L万可霉素TM,并用3g/L PhytagelTM固化。利用草铵膦选择来抑制非转化芽(non-transformed shoot)的生长。
利用具有部分胚轴的分裂种子进行的大豆转化方法。使用含双元载体的土壤杆菌菌株,通过美国临时申请No.61/739,349中描述的具有部分胚轴的分裂种子外植体的大豆转化方案,进行土壤杆菌介导的大豆(Glycine max c.v,Maverick)转化。在转化之后,使用美国临时申请No.61/739,349中描述的组织培养方法,培养大豆组织。利用草铵膦选择来抑制非转化芽的生长。将选择的芽转移到生根培养基上以使根发育,然后转移到土壤预混物上以使小植株驯化。
对选定小植株的顶生小叶(terminal leaflet)用草铵膦局部处理(涂叶技术(leaf paint technique),以筛选推定的转化体。将筛选到的小植株转移至温室,驯化,然后用草铵膦涂叶以再次确认耐受性。对这些推定转化的T0植物取样,利用分子分析来确认PTU内转基因的存在。让鉴定的T0植物在温室中自花受精,以产生用于脂肪酸组成分析的T1种子。
来自转基因大豆事件的成熟T1种子的脂质分析。
将来自3个构建体pDAB101454、pDAB101496和pDAB107960的T0植物在温室中培植至成熟。选择含有PAT v5的拷贝和伴随的四个基因的植物进行DHA生产。使这些植物自花受精,在成熟时收获生成的T1种子。通过FAME GC-FID分析单颗的种子以确定T1大豆种子中的LC-PUFA和DHA含量。逐一地分析每株植物的十二粒完整成熟种子,压榨机碾碎种子,并使用钢球和球磨(Spex SamplePrep,LLC)将其均质化。用己烷将组织脱脂三次,对合并的己烷级分进行蒸发至干燥,将残渣称重,并在己烷中复原以进行FAME分析。在替代物十七碳酸三甘油酯(Nu-Chek Prep,Elysian,MN)的存在下,用0.25M新鲜配制的甲醇钠(Sigma-Aldrich,St.Louis,MO)甲醇溶液对已知量的油渣 实施转甲基反应。在温和加热(40℃)和不断震摇下进行反应,用庚烷提取所得的FAME。通过回收反应的十七烷酸甲酯替代物核实反应的完成。使用Agilent 6890气相色谱仪(Agilent Technologies,Santa Clara,CA)和SGE(Austin,TX)产的15m x 0.25mm x 0.25μm BPX 70毛细管柱,通过GC-FID分析FAME提取物。根据每个FAME峰的保留时间鉴定每个FAME峰,并通过注入来自Matreya LLC(PleasantGap,PA)的菜籽油参照预混物对每个FAME峰进行定量。校准标准品含有分别添加的标准品DHA(C22:6)、EPA(C20:5)、DPA(n-6)(C22:5)、γ-亚麻酸(C18:3)以及来自Nu-Chek的花生四烯酸甲酯。使用ChemStation4软件(Agilent)进行数据分析。
DHA占那些含LC-PUFA的T2种子中的LC-PUFA总含量的60%。在T2大豆种子中仅检测了两种新的LC-PUFA:DHA和DPA(n-6)。预期会在大豆种子中出现的脂肪酸均以正常水平检出,例外之处是由于LC-PUFA的存在,总C18脂肪酸成比例地偏低。在这些转基因大豆种子中检测出两种其他的脂肪酸(γ亚麻酸和花生四烯酸)处于低水平(总共小于1%)。
植物转化体的分子确认。
编码区的拷贝数分析和检测。从上述转化中鉴定和选择了T0植物。进一步分析这些转化体以鉴定含有每一个所述的转基因PTU表达盒的植物。进行了一种类似于的水解探针测定,以初步筛选和确认PFA1、PFA2、PFA3、HetI、SzACS2、和pat转基因的存在,以及VirD2土壤杆菌基因的不存在。如以前在国际专利公开WO2013016546和WO2011146524中描述来部署测定。使用从这些定量PCR研究产生的数据来确定转基因的存在和拷贝数。选择含有全部PTU的事件,以进一步产生T1植物。
芥花和拟南芥种子中PUFA合酶蛋白的检测。开发了一种定量Western印迹法检测来自芥花和拟南芥种子样品的PUFA合酶多肽。重组表达具有N端HIS标签的全长PFA1和PFA3的抗原,通过钴亲和色谱法进行部分纯化。全长PFA2的抗原不含HIS标签,从包涵体分离。还重组了一个N端PFA2片段、以及一个与预期的ER结构域重叠的PFA3片段作为抗原。以凝胶片的形式将所有这些片段交付用于在兔体内产生多克隆抗体。在BL21(DE3)大肠杆菌细胞(Invitrogen;Carlsbad,CA)中重组表达具有N端6X His的全长HetI的抗原,并通过钴亲和色谱法进行高度纯化。抗原以TBS缓冲的可溶蛋白的方式以约2mg/mL的浓度交 付用于在兔体内产生多克隆抗体。通过蛋白G抗体亲和色谱纯化所有的抗血清。
在Arctic Express(DE3)RIL(Invitrogen;Carlsbad,CA)中异源表达和产生PFA1、PFA2、PFA3、和HetI的重组参照标准品,通过His-ComAC纯化法来进行纯化。通过密度测定法来确定蛋白质浓度,使用供凝胶中定量的BSA标准曲线,变性SDS-PAGE,考马斯亮蓝染色。
制备用于分析的种子样品:如上所述,在Kleco Bead BeaterTM(Garcia Machine,Visalia,CA)中利用两个不锈钢珠使干燥的拟南芥种子裂开,或加工批量芥花种子FAME分析所生成的脱脂饼。将提取缓冲液(50mM Tris,10mM EDTA,2%SDS)加入到种子样品中,并将含有样品和提取缓冲液的管轻轻摇动15-30分钟。样品在3,000x g下离心30分钟。收集上清液并用于分析。
使用Pierce 660nm Protein AssayTM(Thermo Scientific,Rockford,IL)确定种子提取物中的总可溶蛋白的量。样品经过标准化达到1.55mg/mL总可溶蛋白,在LDS样品缓冲液(Invitrogen,Carlsbad,CA)中配制,缓冲液中含有40mM DTT,标准上样量为每泳道20μg总可溶蛋白。样品在3-8%Tris乙酸凝胶(Invitrogen,Carlsbad,CA)中电泳,然后转移到硝酸纤维素膜上。在封闭缓冲液中封闭印迹,利用针对不同PUFA合酶多肽(PFA1、PFA2、和PFA3)的抗体进行探测。使用抗兔荧光标记二抗——山羊抗兔(Goat Anti-Rabbit)AF 633TM(Invitrogen,Carlsbad,CA)进行检测。在Typhoon Trio Plus Fluorescent ImagerTM(GEHealthcare,New Brunswick NJ)上将印迹可视化。所得到的来自成熟种子拟南芥T2种子、大豆T1种子、和芥花T1种子的提取物的SDS-PAGE Western印迹当用PFA1、PFA2、PFA3、和HetI特异性抗血清探测时,产生了正确大小的条带。
用SDS-PAGE Western印迹检测事件101454[267]-26702.001的T1大豆种子提取物中的PUFA合酶多肽PFA1、PFA2、PFA3、和HetI,结果产生了具有预期分子量的条带。
同样,在下列事件:6580[2]-016.Sx001;6580[2]-017.Sx001;6580[2]-017.Sx002;6580[2]-018.Sx001;6580[2]-019.Sx001;6580[2]-020.Sx001;6580[2]-021.Sx001;6580[2]-021.Sx002;6580[2]-024.Sx001;6580[2]-039.Sx001;和6580[2]-039.Sx002的T1芥花种子提取物中,用SDS-PAGE Western印迹检测PUFA合酶多肽PFA1、PFA2、PFA3、和HetI均产生了具有预期分子量的条带。
然后,利用针对每种多肽的5点(100ng、50ng、25ng、12.5ng和6.25ng)标准曲线,通过SDS-PAGE Western印迹对PUFA合酶特异性蛋白定量。表2和 表3分别概述了拟南芥和芥花的结果。
表2.在批量T2拟南芥种子中的PUFA合酶多肽含量的总结。
表3.在芥花事件的批量T1种子中的PUFA合酶多肽含量的总结。
实施例3:在用PUFA合酶转化的拟南芥种子中的LC-PUFA产生。
表4中总结了获自用编码PUFA合酶基因的构建体产生的转基因拟南芥T1事件的种子的DHA和其他LC-PUFA油含量。使用真实的14C-标记的标准品鉴别DHA和EPA的HPLC保留时间。图2.使用1-14C-标记的DHA标准曲线进行PUFA的定量。分析的每个事件的LC-PUFA含量显示在图3中。这些数据表明,构建体PTU的构型类型,以及用于表达PUFA合酶和HetI基因的特定调节元件组合的用法,可以用来改变所获得的在T2拟南芥种子中产生LC-PUFA的转基因事件的数目。
表4.用PUFA合酶和HetI转基因转化的、且含有单拷贝的pat转基因的拟南芥事件的T2种子中的LC-PUFA含量的总结。
1LC-PUFA含量>总种子FAME的1%的事件的数目,其中占总事件的百分比在括号中
2平均总LC-PUFA含量(DHA(n-3)+EPA(n-3)+DPA(n-6)),表示为总种子FAME的%
3分析的所有T2种子样品的最大总LC-PUFA含量,表示为总FAME的%
4在所有产LC-PUFA的事件中的平均n-3 LC-PUFA(DHA+EPA)/总LC-PUFA含量
例如,pDAB101454的所有单拷贝事件仅有22%产生了DHA,而65%的pDAB101496事件和79%的pDAB112206事件产生了DHA。与pDAB101454比较,pDAB101496双元载体含有更多样化的调节元件。同样,与pDAB101454比较, pDAB112206构建体既有更多样化的调节元件,又有改变的PTU结构。另一构建体,pDAB109584,包含额外的调节元件多样化,并且含有PFA3基因的天然编码序列形式,而非“植物优化的”形式。在这种情况下,所有单拷贝事件的82%产生了LC-PUFA。
在第二种取向PTU结构中,由于调节元件的进一步修饰、构建体结构、以及天然基因序列的使用,结果获得了这样的构建体,其产生的转基因拟南芥植物的所有单拷贝事件中有61-80%产生LC-PUFA。而且,这些第二种取向的PTU结构构建体还产生了这样的转基因植物,它们中有更高比例的事件(41-62%)在T2拟南芥种子中的LC-PUFA含量>1%。天然(相对于植物优化的)的PUFA合酶基因序列的存在也提高了>1%LC-PUFA事件的比例。例如,含有天然基因序列的pDAB109525和pDAB112210分别有60%和54%的单拷贝事件是LC-PUFA>1%的。相比之下,包含所有植物优化的基因(处于相同的形式并使用相同的调节元件)的pDAB101454仅仅有5%事件的LC-PUFA>1%。
来自利用不同构建体产生的事件的T2种子的最大LC-PUFA含量从0.71%到2.14%不等。最大DHA含量从0.39%到1.59%不等。最高水平的DHA是第二种取向PTU构型的构建体,例如pDAB109591、pDAB107962和pDAB107960获得的。这些构建体含有两种不同的启动子/终止子组合来驱动四个转基因、以及一个或三个天然的PUFA合酶基因。
在产生的所有构建体和事件中的最大EPA含量在0-1.17%的范围。构建体pDAB112203(第三种取向PTU构型)、pDAB112200(第三种取向PTU构型)、pDAB112201(第三种取向PTU构型)和pDAB101496(第一种取向PTU构型)可有效产生与其他构建体相比相对高水平的EPA。来自这些构建体的产LC-PUFA的事件含有与DHA(LC-PUFA的37-45%)相比相对高比例的EPA(39-56%的LC-PUFA),而其他构建体一般含有较低比例的EPA(LC-PUFA的9-27%)、以及较高比例的DHA(LC-PUFA的60-76%)。
这些数据显示,构建体构型和基因调节元件的选择可导致在拟南芥种子中产生两种ω-3 LC-PUFA(DHA和EPA)的效率均提高,并且可以通过选择构建体结构和基因调节元件来增加作物植物中产生两种ω-3 LC-PUFA(DHA和EPA)的效率。
拟南芥T3种子。
种植来自高产LC-PUFA的拟南芥事件的T2种子,并通过针对pat基因和其他转基因的定量PCR反应来对T2植物的叶组织取样。鉴定含有转基因的两个拷贝的植物(即,纯合子),并使其生长至成熟。收获所得的T3种子,并分析LC-PUFA含量。构建体pDAB101454和pDAB101429,它们含有重复的启动子/终止子表达元件并使用所有“植物优化的”PUFA合酶基因序列,在后续的T3种子世代中展现出很差的LC-PUFA性状稳定性,在T3种子后代中检出极少的LC-PUFA或没有LC-PUFA。用具有不同的PTU构型和/或多样化的表达元件的构建体(pDAB109588、pDAB101496)转化的其他事件产生了在T3种子世代中具有不同的可检出水平的LC-PUFA的转基因拟南芥品系(表5,图4)。来自具有完全多样化的启动子/终止子组合的构建体(pDAB109584)、或来自具有按照第一种取向PTU格式的完全天然的PUFA合酶基因序列的构建体(pDAB109525)的品系在T3种子世代中显示出极好的稳定性。组合使用多样化的启动子/终止子、和/或使用一个或三个按照第二种取向或第三种取向的PTU格式的天然PUFA合酶序列,也导致T3种子世代中一致的稳定性(例如,对于构建体pDAB107960和pDAB107961而言)。这产生了含有高达1.77%的DHA、高达1.1%的EPA、和高达2.57%的总LC-PUFA的个体T3纯合种子系。
表5.来自选定的转基因拟南芥的产DHA T2系的T3种子后代的LC-PUFA分析。
总的LC-PUFA、DHA和EPA含量为总FAME的%
1.分析了来自5-20个单独的纯合植物的T3种子批次。
表6显示了示例性的对于产DHA的转基因为纯合的个体拟南芥T3品系的完整种子脂肪酸概貌,与T3同胞无效事件(sibling nulls)的平均脂质概貌相比较。由PUFA合酶驱动的LC-PUFA的产生与天然长链脂肪酸尤其是二十碳烯酸(22:1)含量的降低、以及油酸(18:1)和亚油酸(18:2)含量的轻度增加相关。饱和脂肪酸棕榈酸(16:0)和硬脂酸(18:0)的含量没有显著变化。
表6.用PUFA合酶和HetI转基因转化的拟南芥事件的纯合T3种子的脂肪酸概貌。
种植选定的高产DHA的纯合T3系,分析来自这些植物的T4种子。分析了来自pDAB109591、pDAB109584、pDAB109525、pDAB109592、pDAB107960、和pDAB107961转化的十个系。这些系在T4种子世代中继续产生DHA(高达1.85%)和EPA(高达1.00%),表明ω-3 LC-PUFA性状通过三个自交种子世代的稳定传递。
实例4:在用裂殖壶菌属PUFA合酶转化的芥花种子中的LC-PUFA产生。
利用双元构建体pDAB101496、pDAB109584、pDAB109592、pDAB107960、pDAB107961、pDAB107962和pDAB117501(都含有PUFA合酶基因PFA1、PFA2、PFA3、和念珠藻属PPT酶NoHetI)产生了转基因芥花,并通过分子确认证实其含有T-链转基因的一个拷贝。
从单独的T0转基因芥花植物收获T1种子,对来自每份T1种子样品的约10粒种子的批量种子样品如前所述地分析LC-PUFA含量。
在针对每个构建体分析的这些T1样品中,高比例(81-93%)的样品含有LC-PUFA。表7。对于pDAB107960而言,在芥花T1种子样品中观察到的最大DHA含量是3.04%。对于pDAB101496而言,观察到的最大EPA含量为1.97%。对于pDAB107960而言,最大总ω-3 LC-PUFA含量(DHA+EPA)为4.20%。
表7.在用PUFA合酶和HetI转基因转化的芥花事件的T1种子中的LC-PUFA含量的总结。
为了及早获得转基因性状分离的指示,分析了来自选定的T1种子样品的48粒种子的LC-PUFA含量。由于孟德尔分离,在单个基因座处具有T-DNA插入的事件预期会产生大致25%的无效种子。在所分析的42个来自pDAB101496事件的T1种子样品中,发现24个样品中有12%到35%的种子不含LC-PUFA(在所有24个样品中无效种子的平均比例为24%)。表8。单个种子检出的DHA最高达5.41%、EPA最高达3.72%、总ω-3 LC-PUFA(DHA+EPA)最高达7.33%。
表8.来自用pDAB101496转化的转基因事件的纯合的T2芥花种子的LC-PUFA含量。
将选定的T1芥花种子样品种植在温室中以产生约60-75株T1植物。从4-5叶期的苗取得叶样品用于DNA分析,以确定每株T1分离植物中的转基因拷贝数。拷贝数分析通过对转基因的水解探针测定来进行,使用如上所述的方案。通过这些分析,鉴定出就转基因而言为纯合的、杂合的、和无效的植物。对来自9个系的纯合植物的叶样品提取的基因组DNA进行Southern分析,探测PFA1转基因、pat转基因(在T-DNA的每个末端)、和来自质粒骨架的SpecR基因的存在。来自6580[1]-035.Sx001和6580[1]-035.Sx002的T1植物的Southern带型相似,表 明这些事件很可能为克隆起源,6580[1]-052.Sx001和6580[1]-057.Sx001亦然。Southern分析的结果显示在表9中。
表9.来自用pDAB101496转化的十二个T1芥花产DHA-系的Southern分析的总结。
将对于pDAB101496转基因为纯合的芥花植物(包括一些杂合和无效植物)培植至成熟,收获T2种子,并分析批量种子样品的LC-PUFA含量。表10。所有十个选择的pDAB101496芥花系均在T2种子中产生了DHA和EPA。最大LC-PUFA含量为3.26%的DHA(6580[1]-035.Sx002系)和1.42%的EPA(6580[1]-035.Sx001系)。在这些系中的ω-3 LC-PUFA(DHA和EPA)的量为总LC-PUFA的80-88%(平均85%),剩余12-20%为ω-6DPA。半合的T1植物产生的LC-PUFA较少,原因是T2种子中PUFA合酶性状如预期的分离。图5。芥花系6580[1]-035.Sx002的纯合和无效种子的完整FAME概貌显示在表10中。该系产生了3.3%的DHA和1.3%的EPA。α-亚麻酸(C18:3)和亚油酸(C18:2)有少许增加,而油酸(C18:1)含量降低。除了预期的LC-PUFA,DHA、EPA、和DPA之外,还可检出低水平的新的ω-6脂肪酸,如γ-亚麻酸和花生四烯酸(分别为0.4%和0.7%)。
表10.来自芥花事件6580[1]-035.Sx002的无效和纯合植物的批量T2芥花种子的FAME概貌。每种脂肪酸的脂质含量显示为总FAME的%。
芥花系6580[1]-035.Sx002在批量种子分析中展现出较高水平的DHA和EPA产生,对于来自该系的同胞纯合和半合植物的T2种子批次进行了单种子LC-PUFA分析。图5。来自纯合植物的种子的DHA含量相当一致,变异系数(CV)低于14%。分析了来自对于转基因为纯合的植物的四份样品,包括48个单颗的种子,这四份样品的平均DNA含量为3.70%(SD=0.44,CV=14%)、3.67%(SD=0.31,CV=8%)、3.11%(SD=0.36,CV=12%)、和3.11%(SD=0.35,CV=11%)。来自半合植物的种子每个48种子样品含有平均15粒无效种子,接近于根据单基因座孟德尔分离预测的值,即12粒种子。这些半合植物的单独种子的DHA含量可变化至最高达5.81%。图5。
将来源于用pDAB101496转化的四个芥花事件的纯合系的T2种子种植在温室中,使其生长产生T3种子。所有的系均在收获的T3种子中继续产生DHA和EPA。来源于[6]-274.Sx001和6580[1]-035.Sx002这两个事件的系的LC-PUFA产生是特别稳定的,在个体植物的T3批量种子测量中分别产生平均:3.16%的DHA(范围2.73%–3.61%,在来自三个T2系的13株植物中)与0.78%的EPA(范围0.48%–1.13%);以及3.34%的DHA(范围2.85%–3.89%,在来自8个T2系的53株植物中)与1.12%的EPA(范围0.75%–1.71%)。
实施例5:在用PUFA合酶转化的大豆种子中的LC-PUFA产生。
利用双元构建体DAB101454(101454[16]-341.001和101454[267]26702.001)、pDAB101496(101454[330]33007.001、101454[333]33308.001、和101454[334]33402.001)、以及pDAB10796(107960[12]-626.001、107960[12]-641.001、107960[12]-644.001、107960[26]-655.001、和107960[26]-733.001)转化植物而产生的转基因T0大豆事件在温室中生长至成熟。选择含有pat转基因和伴随的PUFA合酶和HetI转基因的拷贝的大豆事件。使这些选择的转基因植物自花受精,在成熟时收获生成的T1种子。获得单颗的种子并通过FAMEsGC-FID进行分析,以确定LC-PUFA和DHA含量。通过如下方式逐一地分析每株植物的十二粒完整成熟种子:通 过压榨机碾碎种子,并使用钢球和球磨将其均质化。用己烷将组织脱脂三次,合并己烷级分并蒸发至干燥,将残渣称重,并在己烷中复原,如前面实施例中所述进行FAME分析。与在相同时间在相同条件下培植在温室中的非转基因Maverick对照栽培种相比,转基因种子的油含量(单独的FAME的质量的总和除以种子质量)以及由转基因T1系产生的种子的数目并无显著差异。选定事件的单颗T1种子LC-PUFA含量的平均及最大水平(%)汇总于表11中。DHA含量最高达2.0%,总PUFA达5.1%。此外,在T1大豆种子中检出了3种新的非内源LC-PUFA;DHA、EPA、和DPA(n-6)。表11.
表11.表达3种包含PFA1、PFA2、PFA3和NoHetI基因的构建体的10个事件的T1种子FAME分析。单颗种子分析结果表示为LC-PUFA、EPA、DHA和DPA的最大含量,还加入了每个事件的所有T1种子的平均值。计算了n3LC-PUFA(EPA和DHA)/总LC-PUFA的比率。
在那些含LC-PUFA的T1种子中,DHA和EPA占LC-PUFA总含量的90%到99%。最高的LCPUFA含量(5.1%)是在构建体107960的事件107960[12]-626.001中达到的。
来自大豆事件101454[16]-341.Sx001、pDAB101496{330}33007.001、107960[12]-626.001、和107960[12]-641.001的单颗T1种子的完整脂质概貌显示在表12中。加入来自Maverick对照的两颗种子用于比较。列出了所有检出的FAME。
表12.来自3个构建体和对照WT Maverick的单颗种子T1的脂肪酸甲酯分析。所有组成均以检出脂肪酸的重量%表示。分析时未对全部脂肪酸定量(NA)。数值0对应于在定量限之下的水平。
实施例6:来自转基因大豆事件的成熟T2种子的脂质分析。
为了评估LC-PUFA性状的遗传及其跨世代的稳定性,测试了来自三个构建体101454[16]-341.Sx001、107960[12]-641.001、107960[12]-644.001和pDAB101496{334}33402.001的若干代表性事件,并且基于其LCPUFA含量选择在温室中培植。使T1种子在温室中萌发,并测定了T1小植物的PAT、PFA1和NoHetI转基因的存在。使具有这些转基因的T1植物生长至成熟,收获自交产生的T2种子,用于进一步油分析。通过实施例1中描述的方法,逐一地分析来自每个T2植物的5到11粒T2种子的FAME。表13中加入了T1种子的结果,以粗体表示,作为参照。事件107960[12]-644.001和pDAB101496{334}33402.001的T1系不是纯合的,因此,一些T2分离种子不含LC-PUFA(最小LC-PUFA为0)。事件101454[16]-341.Sx001的T2种子显示出稳定的LC-PUFA含量(2.2%到5.6%),与T1相当(3%)。观察到平均PUFA的少量增加是由于选择转基因基因座纯合的植物,从而消除了T2子代中的同胞无效种子所致。大多数LC-PUFA是n3(比率=0.9),分为EPA(0.6到2.4%)和DHA(1.3到2.7%)。来自事件107960[12]-641.001的T2种子与亲本种子相比显示出相似的趋势。LC-PUFA含量(1.5%到2.1%)与T1种子相当(3.2%)。所有从事件pDAB101496{334}33402.001选出的系均具有无LC-PUFA的T2种子,表明T1植物的转基因基因座未固定。T2种子的平均LC-PUFA含量(0.1%到1.1%)与T1相当(0.6%)。所有这些构建体的LC-PUFA性状均被遗传到下一代,累积的LC-PUFA的量没有显著性差异。
表13.选自三个构建体的三个事件的T2种子油分析。单颗种子的分析结果显示为总LC-PUFA、EPA、DHA和DPA的最小和最大含量,并在所有分析的种子之间取平均。计算了n3LC-PUFA(EPA和DHA)/总LC-PUFA的比率。
实施例7:田间栽培的pDAB101496的芥花种子的LC-PUFA产生。
将来源于产生中等到高水平DHA的六个pDAB101496(SEQ ID NO:17)芥花事件(上述)的若干纯合T1植物的T2芥花种子独立地合并批次。将该种子于2013年种植在明尼苏达州和北达科他州的田间。将来自未转化植物的入选芥花种子用作对照,用市售的芥花系用作核对(check)。每种入选种子播种四块重复样地(1.2 x 6m),并且在成熟时从每块样地收获所得的种子(在转基因样品的情况下为T3种子)分析LC-PUFA含量。对来自四块重复田间样地中的每一块的批量籽粒采取三份试样,每份10粒,根据所述试样的FAME提取物确定从每块实验样地收获的芥花籽粒的LC-PUFA含量。表14.
在每种入选种子的四块田间样地中,事件6580[1]-035.Sx002的最大DHA和EPA含量分别为4.27%和0.65%。单块样地的最大DHA含量为4.54%。将每个事件用于田间种植的同一成批T2种子系也在温室中进行培育,以比较所得T3种子的LC-PUFA含量。排名最前的四种田间种植的pDAB101496系的DHA 含量比温室中培育的等同系平均高22%。表14.
表14.在田间和温室中培植的用pDAB101496转化的转基因事件的T3芥花种子的LC-PUFA含量(总FAME%)。
*对于田间样品为来自田间样地的批量种子;对于温室样品为来自各单株植物的批量种子的数目
产DHA的转基因芥花系相对于非转基因DH12075植物籽粒产量没有显著性差异。表15。所有在田间培育的系产生的种子的平均油含量>40%g油/g种子。在转基因和非转基因对照之间,种子的叶绿素含量或提取油之后的每克菜籽粕的种子蛋白%没有显著性差异。花期和成熟时间(time to maturity)在转基因系和对照植物之间没有变化。
表15.用pDAB101496转化的纯合T2转基因产DHA芥花植物田间种植后的T3种子产量,与非转基因DH12075芥花比较。产量为每个位置四块样地的平均值(SD=均值的标准差)。
合并来自田间试验的多批籽粒,碾碎用于提取含LC-PUFA的油,并使用标准方法通过精炼、漂白和脱臭进行油处理。处理两批种子,产生含3.02%DHA和1.0%EPA的1.2kg的RBD油,以及含4.1%DHA和0.7%EPA的1.0kg的RBD油。这证明,来自表达PUFA合酶和HetI的转基因芥花植物的籽粒可以加工产生高度富含DHA和EPA的芥花油。
实例8:pDAB107960芥花事件在多个种子世代中的LC-PUFA性状稳定性。
对于质粒pDAB107960,当在拟南芥中进行测试时,通过结合使用多样化的启动子/终止子组合,以及在第二种取向PTU形式中的三个天然PUFA合酶序列,导致直到T3种子世代LC-PUFA性状都是一致稳定的。表5。类似地测试了用pDAB107960产生的芥花事件经过三个自交的作物种子世代的LC-PUFA性状稳定性。
通过如前所述的T1种子单颗种子分析选定了九个pDAB107960芥花事件,将它们的T1种子种植在温室中。将pDAB107960转基因纯合且作为单个孟德尔基因座分离的植物培植至成熟,从植物收获T2种子,并分析种子样品的LC-PUFA含量。所有来自九个选定的pDAB107960芥花事件的植物均在T2种子中产生DHA和EPA。表16、将来自七个事件(113株植物)的T2种子种植在温室中,培植至成熟,从这些植物收获T3种子。再次分析来自每个子代植物的种子样品的LC-PUFA含量。来自这七个选定的pDAB107960事件的所有113株T2芥花植物均在T3种子中产生DHA和EPA。表16。将来源于六个事件(137株植物)的T3种子种植在温室中,培植至成熟,从这些植物收获T4种子。来自该六个选定的pDAB107960事件的所有137株芥花T3植物均在T4种子中产生DHA和EPA。表16。测试的六个事件中的五个在每个种子世代中保持了相似 的高水平DHA,从而证明了在多个事件中的DHA性状稳定性。
表16.来自pDAB107960芥花事件的纯合系的T2、T3、和T4芥花种子的LC-PUFA含量。LC-PUFA含量显示为总FAME的%。
如前所述地确定了在达到T4种子世代的六个单基因座pDAB107960芥花事件中的转基因拷贝数。事件107960[6]-106、107960[6]-107、107960[7]-111、和107960[6]-353含有所有转基因的两个拷贝,而事件107960[7]-085和107960[6]-352含有所有转基因(PFA1、PFA2、PFA3、NoHetI)的一个拷贝。因此,LC-PUFA性状与转基因集的一个或两个拷贝一起传递,并在三个种子世代中保持稳定。
来源于两个不同事件(107960[7]-085和107960[6]-353)的两个T3植物的批量T4种子样品的完整FAME概貌显示在表17中。这些种子分别含有4.4%和4.6%的DHA、以及0.6%和0.7%的EPA。伴随有油酸(C18:1)含量的增加(-8%)、和亚油酸(18:2)含量的稍微增加(+2%),除此之外,该概貌并未由于新的LC-PUFA的存在而显著改变。除了DHA、EPA、和DPA(n-6)这几种预期的LC-PUFA之外,还可检出低水平的新的ω-6脂肪酸——γ-亚麻酸(GLA,18:3)和花生四烯酸(ARA,20:4)(总计约1%)。
表17.来源于两个pDAB107960事件的T4芥花种子的FAME概貌,与来自非转基因的DH12075对照种子比较。脂肪酸含量以总FAME的%表示。
*没有质粒
实施例9:田间栽培的来自pDAB107960的T4芥花种子中的LC-PUFA产生。
将来源于六个不同的pDAB107960产生约3%DHA的芥花事件(上述)的纯合T2植物的T3芥花种子各自独立地合并批次。这种种子于2014年种植在北达科他州两个地点的田间。来自未转化的DH12075植物的入选芥花种子用作对照,并且市售的芥花系用作核对(check)。每种入选种子种植四块重复样地(1.2 x 6m),从每块样地收获所得的种子(用于转基因样品的T4种子),并通过FAME分析如前所述分析LC-PUFA含量。自四块重复田间样地的每一块的批量籽粒采取三批技术重复,每批10粒种子,对技术重复进行FAME提取。表18。
表18:在北达科他州田间培育的用pDAB107960转化的转基因事件的T4芥花种子的LC-PUFA含量(表示为总FAME的%)。各数值为每个地点的四块重复样地的平均值。
在地点1,事件107960[6]-353和107960[6]-106的最大DHA和EPA含量(每个项目的四块样地的平均值)分别为3.98%和0.88%。在地点1,事件107960[6]-353的来自单块样地的最大DHA含量为4.69%。将每个事件用于田间种植的同一成批T3种子系也在温室中进行培育,以比较所得T4种子的LC-PUFA含量。表16。在两个地点的所有六个田间培植的pDAB107960事件中的平均DHA含量为3.24%,而在温室中培植的所有等同事件中的平均DHA含量为3.06%。因此,田间培植的芥花的DHA含量比等同的温室培植的材料平均高+6%。

Claims (71)

1.一种遗传修饰植物,其包含:
编码来自产生具有显著水平的二十碳五烯酸(C20:5,n-3)(EPA)的油的裂殖壶菌(Schizochytrum)的多不饱和脂肪酸(PUFA)合酶的至少一种多肽的多核苷酸,和
编码来自念珠藻属物种的至少一种磷酸泛酰巯基乙胺基转移酶(PPT酶)的多核苷酸。
2.权利要求1的遗传修饰植物的细胞、组织、或部分。
3.权利要求1的遗传修饰植物,其中所述植物选自下组:高等植物;双子叶植物;单子叶植物;拟南芥;可消费植物;油料植物;大豆;油菜;芥花;亚麻;玉米;红花;向日葵;烟草;豆科植物;大豆属植物;花生;菜豆;蚕豆;和豌豆。
4.权利要求1的遗传修饰植物,其中所述多核苷酸与下述的至少一种可操作连接:启动子;种子特异性启动子;叶特异性启动子;5’UTR;3’UTR;和终止序列。
5.权利要求1的遗传修饰植物,其中所述多核苷酸与种子特异性启动子及终止序列可操作连接。
6.权利要求1的遗传修饰植物,其中所述多核苷酸与选自下组的启动子可操作连接:PvDlec2;LfKCS3;FAE1;BoACP;BnaNapinC;泛素;CsVMV;SSPRO2745.1;和SSPRO2743.1启动子。
7.权利要求1的遗传修饰植物,其中所述植物或其细胞、组织、种子、或部分包含可检出量的DHA(二十二碳六烯酸(C22:6,n-3));和/或EPA(二十碳五烯酸(C20:5,n-3))。
8.权利要求1的遗传修饰植物,其中所述植物或其细胞、组织、种子、或部分包含按总脂肪酸的重量计介于0.01%和15%之间的DHA量。
9.权利要求1的遗传修饰植物,其中所述植物或其细胞、组织、种子、或部分包含按总脂肪酸的重量计介于0.05%和10%之间的DHA量。
10.权利要求1的遗传修饰植物,其中所述植物或其细胞、组织、种子、或部分包含按总脂肪酸的重量计介于0.05%和5%之间的DHA量。
11.权利要求1的遗传修饰植物,其中所述植物或其细胞、组织、种子、或部分包含按总脂肪酸的重量计介于0.01%和10%之间的EPA量。
12.权利要求1的遗传修饰植物,其中所述植物或其细胞、组织、种子、或部分包含按总脂肪酸的重量计介于0.05%和5%之间的EPA量。
13.权利要求1的遗传修饰植物,其中所述植物或其细胞、组织、种子、或部分包含按总脂肪酸的重量计介于0.05%和1%之间的EPA量。
14.权利要求1-13中任一项的遗传修饰植物,其中所述植物或其细胞、组织、种子、或部分包含按总脂肪酸的重量计介于1:1和1:30之间的EPA:DHA比。
15.权利要求14的遗传修饰植物,其中所述植物或其细胞、组织、种子、或部分包含按总脂肪酸的重量计介于1:1和1:3之间的EPA:DHA比。
16.从权利要求1-15中任一项的遗传修饰植物获得的种子。
17.从权利要求1-16中任一项的遗传修饰植物获得的商业产品。
18.权利要求17的商业产品,其中所述商业产品包含:
可检出量的编码来自产生具有显著水平的二十碳五烯酸(C20:5,n-3)(EPA)的油的裂殖壶菌的多不饱和脂肪酸(PUFA)合酶多肽的多核苷酸、或可检出量的来自产生具有显著水平的EPA的裂殖壶菌的PUFA合酶多肽;以及
可检出量的编码来自念珠藻属物种的磷酸泛酰巯基乙胺基转移酶(PPT酶)的多核苷酸、或可检出量的来自念珠藻属物种的PPT酶。
19.权利要求18的商业产品,其中该产品进一步包含:可检出量的编码异源裂殖壶菌脂酰CoA合成酶(ACS)的多核苷酸、或可检出量的异源裂殖壶菌ACS。
20.权利要求17的商业产品,其中该产品为:精制油;未精制油;粗制油;饲料或粕组合物;或功能食品。
21.权利要求17的商业产品,其中该产品为油。
22.一种调和油,其包含权利要求21的油和另一种油。
23.一种获得包含至少一种PUFA的油的方法,该方法包括从权利要求1-15中任一项的遗传修饰植物或其细胞、组织、种子、或部分回收油。
24.一种生产包含至少一种PUFA的油的方法,所述方法包括:
培植权利要求1-15中任一项的遗传修饰植物;并且
从该遗传修饰的植物、或从其细胞、组织、种子、或部分回收油。
25.权利要求1的遗传修饰植物,其中所述植物包含下述的至少一种:与SEQ ID NO:2和/或SEQ ID NO:3至少70%相同的多核苷酸;与SEQ ID NO:5和/或SEQ ID NO:6至少70%相同的多核苷酸;以及与SEQ ID NO:8、SEQ ID NO:9、和/或SEQ ID NO:13至少70%相同的多核苷酸。
26.权利要求1的遗传修饰植物,其中所述植物包含下述的至少一种:SEQ ID NO:2;SEQID NO:3;SEQ ID NO:5;SEQ ID NO:6;SEQ ID NO:8;SEQ ID NO:9;和SEQ ID NO:13。
27.权利要求1的遗传修饰植物,其中PUFA合酶的多肽选自PFA1、PFA2、和PFA3。
28.权利要求27的遗传修饰植物,其中所述多肽包含:与SEQ ID NO:1至少80%相同的氨基酸序列;与SEQ ID NO:4至少80%相同的氨基酸序列;和/或与SEQ ID NO:7或SEQ IDNO:14至少80%相同的氨基酸序列。
29.权利要求27的遗传修饰植物,其中所述多肽包含:SEQ ID NO:1;SEQ ID NO:4;SEQID NO:7;和/或SEQ ID NO:14。
30.权利要求1的遗传修饰植物,其中编码念珠藻属PPT酶的多核苷酸与SEQ ID NO:10至少80%相同。
31.权利要求30的遗传修饰植物,其中编码念珠藻属PPT酶的多核苷酸为SEQ ID NO:10。
32.权利要求1的遗传修饰植物,其中所述植物包含PFA1、PFA2、PFA3、和NoHetI。
33.权利要求32的遗传修饰植物,其中PFA1、PFA2、PFA3、和NoHetI的编码区以头对尾构型布置。
34.权利要求32的遗传修饰植物,其中PFA1和NoHetI的编码区以尾对尾构型布置,并且其中PFA3和PFA2的编码区以尾对尾构型布置。
35.权利要求32的遗传修饰植物,其中PFA1和NoHetI的编码区以头对头构型布置,并且其中PFA3和PFA2的编码区以头对头构型布置。
36.权利要求1的遗传修饰植物,其中至少一个所述多核苷酸在严格条件下与
SEQ ID NO:2和/或SEQ ID NO:3;
SEQ ID NO:5和/或SEQ ID NO:6;
SEQ ID NO:8、SEQ ID NO:9、和/或SEQ ID NO:13;和/或
SEQ ID NO:10
的互补物杂交。
37.一种遗传修饰植物,其包含
编码来自产生具有显著水平的二十碳五烯酸(C20:5,n-3)(EPA)的油的裂殖壶菌的多不饱和脂肪酸(PUFA)合酶的至少一种多肽的多核苷酸;
编码来自念珠藻属物种的至少一种磷酸泛酰巯基乙胺基转移酶(PPT酶)的多核苷酸;以及
编码至少一种异源裂殖壶菌脂酰CoA合成酶(ACS)的多核苷酸。
38.权利要求37的遗传修饰植物,其中所述裂殖壶菌ACS与SEQ ID NO:11至少80%相同。
39.权利要求38的遗传修饰植物,其中所述裂殖壶菌ACS为SEQ ID NO:11。
40.权利要求37的遗传修饰植物,其中所述生物包含PFA1、PFA2、PFA3、NoHetI、和SzACS2。
41.权利要求37的遗传修饰植物,其中至少一个所述多核苷酸在严格条件下与
SEQ ID NO:2和/或SEQ ID NO:3;
SEQ ID NO:5和/或SEQ ID NO:6;
SEQ ID NO:8、SEQ ID NO:9、和/或SEQ ID NO:13;
SEQ ID NO:10;和/或
SEQ ID NO:11
的互补物杂交。
42.一种分离的核酸,其包含植物特异性启动子,其中所述启动子与:
编码来自产生具有显著水平的二十碳五烯酸(C20:5,n-3)(EPA)的油的裂殖壶菌的多不饱和脂肪酸(PUFA)合酶的至少一种多肽的多核苷酸、以及来自念珠藻属物种的磷酸泛酰巯基乙胺基转移酶(PPT酶)
可操作连接。
43.权利要求42的分离的核酸,其中所述多核苷酸包含下列的至少一种:与SEQ ID NO:2和/或SEQ ID NO:3至少70%相同的多核苷酸;与SEQ ID NO:5和/或SEQ ID NO:6至少70%相同的多核苷酸;以及与SEQ ID NO:8、SEQ ID NO:9、和/或SEQ ID NO:13至少70%相同的多核苷酸。
44.权利要求42的分离的核酸,其中所述多核苷酸包含下列中的至少一种:SEQ ID NO:2;SEQ ID NO:3;SEQ ID NO:5;SEQ ID NO:6;SEQ ID NO:8;SEQ ID NO:9;和SEQ ID NO:13。
45.权利要求42的分离的核酸,其中所述PUFA合酶的多肽选自PFA1、PFA2、和PFA3。
46.权利要求45的分离的核酸,其中所述多肽包含:与SEQ ID NO:1至少80%相同的氨基酸序列;与SEQ ID NO:4至少80%相同的氨基酸序列;和/或与SEQ ID NO:7或SEQ ID NO:14至少80%相同的氨基酸序列。
47.权利要求45的分离的核酸,其中所述多肽包含SEQ ID NO:1;SEQ ID NO:4;SEQ IDNO:7;和/或SEQ ID NO:14。
48.权利要求42的分离的核酸,其中编码念珠藻属PPT酶的多核苷酸与SEQ ID NO:10至少80%相同。
49.权利要求48的分离的核酸,其中编码念珠藻属PPT酶的多核苷酸为SEQ ID NO:10。
50.权利要求42的分离的核酸,其中所述多核苷酸编码PFA1、PFA2、PFA3、和NoHetI。
51.权利要求50的分离的核酸,其中PFA1、PFA2、PFA3、和NoHetI的编码区以头对尾构型布置。
52.权利要求50的分离的核酸,其中PFA1和NoHetI的编码区以尾对尾构型布置,并且其中PFA3和PFA2的编码区以尾对尾构型布置。
53.权利要求50的分离的核酸,其中PFA1和NoHetI的编码区以头对头构型布置,并且其中PFA3和PFA2的编码区以头对头构型布置。
54.一种用于产生遗传修饰植物的系统,该系统包含分离的核酸,其中:
来自产生具有显著水平的二十碳五烯酸(C20:5,n-3)(EPA)的油的裂殖壶菌的多不饱和脂肪酸合酶(PFA)多肽PFA1、PFA2、和PFA3,以及来自念珠藻属物种NoHetI的磷酸泛酰巯基乙胺基转移酶(PPT酶)
分别由一种或多种所述分离的核酸中的多核苷酸所编码。
55.一种用于产生遗传修饰的植物的系统,该系统包含分离的核酸,其中至少一种分离的核酸在严格条件下与:
来自产生具有显著水平的二十碳五烯酸(C20:5,n-3)(EPA)的油的裂殖壶菌的多不饱和脂肪酸合酶(PFA)多肽PFA1、PFA2、和PFA3、以及来自念珠藻属物种NoHetI的磷酸泛酰巯基乙胺基转移酶(PPT酶)
的互补物分别杂交。
56.权利要求55的系统,其中至少一个所述分离的核酸在严格条件下与
SEQ ID NO:2和/或SEQ ID NO:3;
SEQ ID NO:5和/或SEQ ID NO:6;
SEQ ID NO:8、SEQ ID NO:9、和/或SEQ ID NO:13;和
SEQ ID NO:10
的互补物分别杂交。
57.一种包含植物特异性启动子的分离的核酸,其中所述启动子与编码
来自产生具有显著水平的二十碳五烯酸(C20:5,n-3)(EPA)的油的裂殖壶菌的多不饱和脂肪酸(PUFA)合酶;来自念珠藻属物种的磷酸泛酰巯基乙胺基转移酶(PPT酶);以及异源裂殖壶菌脂酰CoA合成酶(ACS)
中至少一种多肽的多核苷酸可操作连接。
58.权利要求57的分离的核酸,其中裂殖壶菌ACS与SEQ ID NO:11至少80%相同。
59.权利要求58的分离的核酸,其中裂殖壶菌ACS为SEQ ID NO:11。
60.权利要求57的分离的核酸,其中所述多核苷酸编码PFA1、PFA2、PFA3、NoHetI、和SzACS2。
61.一种用于产生遗传修饰植物的系统,该系统包含分离的核酸,其中来自产生具有显著水平的二十碳五烯酸(C20:5,n-3)(EPA)的油的裂殖壶菌的多不饱和脂肪酸合酶(PFA)多肽PFA1、PFA2、和PFA3;来自念珠藻属物种的磷酸泛酰巯基乙胺基转移酶(PPT酶)NoHetI;以及异源裂殖壶菌脂酰CoA合成酶(ACS)SzACS2
分别由一种或多种所述分离的核酸中的多核苷酸所编码。
62.一种用于产生遗传修饰植物的系统,该系统包含分离的核酸,其中至少一种所述分离的核酸在严格条件下与
来自产生具有显著水平的二十碳五烯酸(C20:5,n-3)(EPA)的油的裂殖壶菌的多不饱和脂肪酸合酶(PFA)多肽PFA1、PFA2、和PFA3、来自念珠藻属物种的磷酸泛酰巯基乙胺基转移酶(PPT酶)NoHetI、以及异源裂殖壶菌脂酰CoA合成酶(ACS)SzACS2
的互补物分别杂交。
63.权利要求62的系统,其中至少一种所述分离的核酸在严格条件下与SEQ ID NO:2和/或SEQ ID NO:3;
SEQ ID NO:5和/或SEQ ID NO:6;
SEQ ID NO:8、SEQ ID NO:9、和/或SEQ ID NO:13;
SEQ ID NO:10;和
SEQ ID NO:11
的互补物分别杂交。
64.权利要求41-53和57-60中任一项的核酸,其中所述核酸为重组表达载体。
65.权利要求64的核酸,其中所述核酸选自SEQ ID NO:14-37。
66.权利要求54-56和61-63中任一项的系统,其中核酸分子为一种或多种重组表达载体。
67.权利要求66的系统,其中所述核酸分子分别选自SEQ ID NOs:14-37。
68.一种用于产生遗传修饰植物的方法,该方法包括:
将权利要求42-53和57-60的任何核酸、或来自权利要求54-56和61--63的任何系统的核酸导入植物中,由此产生遗传修饰植物。
69.根据权利要求68的方法,其中所述核酸通过转化导入植物中。
70.根据权利要求68的方法,其中所述核酸从已经包含所述核酸的不同植物通过基因渗入而导入该植物中。
71.一种生产包含至少一种PUFA的油的方法,所述方法包括:
将权利要求42-53和57-60的任何核酸、或来自权利要求54-56和61-63的任何系统的核酸导入植物中,以产生遗传修饰植物;
培植该遗传修饰植物;并且
从该遗传修饰植物或从其细胞、组织、种子、或部分回收油。
CN201480074043.2A 2013-11-26 2014-11-26 通过破囊壶菌PUFA合酶在油料作物中产生ω‑3长链多不饱和脂肪酸 Pending CN106413389A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361909289P 2013-11-26 2013-11-26
US61/909,289 2013-11-26
PCT/US2014/067729 WO2015081270A1 (en) 2013-11-26 2014-11-26 Production of omega-3 long-chain polyunsaturated fatty acids in oilseed crops by a thraustochytrid pufa synthase

Publications (1)

Publication Number Publication Date
CN106413389A true CN106413389A (zh) 2017-02-15

Family

ID=53199655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480074043.2A Pending CN106413389A (zh) 2013-11-26 2014-11-26 通过破囊壶菌PUFA合酶在油料作物中产生ω‑3长链多不饱和脂肪酸

Country Status (17)

Country Link
US (3) US9994828B2 (zh)
EP (2) EP3073817A4 (zh)
JP (1) JP2016537985A (zh)
KR (1) KR20160111915A (zh)
CN (1) CN106413389A (zh)
AR (1) AR098539A1 (zh)
AU (3) AU2014354631B2 (zh)
BR (1) BR102014029437A2 (zh)
CA (1) CA2928870A1 (zh)
CL (1) CL2016001278A1 (zh)
IL (1) IL245787B (zh)
MX (1) MX2016006675A (zh)
RU (1) RU2728854C2 (zh)
TW (1) TW201525136A (zh)
UA (1) UA120172C2 (zh)
UY (1) UY35856A (zh)
WO (1) WO2015081270A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3012998C (en) * 2009-03-19 2021-09-07 Dsm Ip Assets B.V. Polyunsaturated fatty acid synthase nucleic acid molecules and polypeptides, compositions, and methods of making and uses thereof
TW201525136A (zh) * 2013-11-26 2015-07-01 Dow Agrosciences Llc 利用破囊壺菌PUFA合成酶於油籽作物中生成ω-3長鏈多不飽和脂肪酸
MX2017006304A (es) 2014-11-14 2018-02-16 Basf Plant Science Co Gmbh Materiales y metodos para aumentar el contenido de tocoferol en semillas oleaginosas.
CN109477079A (zh) * 2016-05-12 2019-03-15 帝斯曼知识产权资产管理有限公司 增加微藻中ω-3多不饱和脂肪酸产量的方法
BR112018076649A2 (pt) * 2016-06-20 2019-03-26 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College transportador de bicarbonato de alga verde e suas utilizações

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201389213Y (zh) * 2009-04-03 2010-01-27 陈春芬 一种新型吸痰器
CN101849014A (zh) * 2007-05-16 2010-09-29 马泰克生物科学公司 嵌合pufa聚酮合酶系统及其用途
CN102741267A (zh) * 2009-03-19 2012-10-17 马太克生物科学公司 多不饱和脂肪酸合酶核酸分子和多肽,及其组合物、制备方法和用途
WO2013016546A2 (en) * 2011-07-26 2013-01-31 Dow Agrosciences Llc Production of dha and other lc-pufas in plants
CN103080319A (zh) * 2010-05-17 2013-05-01 陶氏益农公司 在植物中制造dha和其他lc-pufa

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693977A (en) 1982-08-23 1987-09-15 Queen's University At Kingston Enzyme immobilization for producing cephalosporin antibiotics
US4536475A (en) 1982-10-05 1985-08-20 Phytogen Plant vector
NL8300698A (nl) 1983-02-24 1984-09-17 Univ Leiden Werkwijze voor het inbouwen van vreemd dna in het genoom van tweezaadlobbige planten; agrobacterium tumefaciens bacterien en werkwijze voor het produceren daarvan; planten en plantecellen met gewijzigde genetische eigenschappen; werkwijze voor het bereiden van chemische en/of farmaceutische produkten.
NZ207765A (en) 1983-04-15 1987-03-06 Lubrizol Genetics Inc Plant expression of transferred dna(t-dna)from plasmids associated with agrobacterium sp
US5380831A (en) 1986-04-04 1995-01-10 Mycogen Plant Science, Inc. Synthetic insecticidal crystal protein gene
US4886937A (en) 1985-05-20 1989-12-12 North Carolina State University Method for transforming pine
EP0270496B1 (de) 1986-12-05 1993-03-17 Ciba-Geigy Ag Verbessertes Verfahren zur Transformation von pflanzlichen Protoplasten
US5015580A (en) 1987-07-29 1991-05-14 Agracetus Particle-mediated transformation of soybean plants and lines
US5416011A (en) 1988-07-22 1995-05-16 Monsanto Company Method for soybean transformation and regeneration
US5693507A (en) 1988-09-26 1997-12-02 Auburn University Genetic engineering of plant chloroplasts
US5302523A (en) 1989-06-21 1994-04-12 Zeneca Limited Transformation of plant cells
US5501967A (en) 1989-07-26 1996-03-26 Mogen International, N.V./Rijksuniversiteit Te Leiden Process for the site-directed integration of DNA into the genome of plants
US7705215B1 (en) 1990-04-17 2010-04-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
US5550318A (en) 1990-04-17 1996-08-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
WO1991010725A1 (en) 1990-01-22 1991-07-25 Dekalb Plant Genetics Fertile transgenic corn plants
US5484956A (en) 1990-01-22 1996-01-16 Dekalb Genetics Corporation Fertile transgenic Zea mays plant comprising heterologous DNA encoding Bacillus thuringiensis endotoxin
US5451513A (en) 1990-05-01 1995-09-19 The State University of New Jersey Rutgers Method for stably transforming plastids of multicellular plants
US6403865B1 (en) 1990-08-24 2002-06-11 Syngenta Investment Corp. Method of producing transgenic maize using direct transformation of commercially important genotypes
US5384253A (en) 1990-12-28 1995-01-24 Dekalb Genetics Corporation Genetic transformation of maize cells by electroporation of cells pretreated with pectin degrading enzymes
DK0580649T3 (da) 1991-04-09 2001-08-27 Unilever Nv Plantepromotor inddraget i kontrol af lipidbiosyntese i frø
EP0604662B1 (en) 1992-07-07 2008-06-18 Japan Tobacco Inc. Method of transforming monocotyledon
AU670316B2 (en) 1992-07-27 1996-07-11 Pioneer Hi-Bred International, Inc. An improved method of (agrobacterium)-mediated transformation of cultured soybean cells
US5659026A (en) 1995-03-24 1997-08-19 Pioneer Hi-Bred International ALS3 promoter
ES2330168T3 (es) 1995-10-13 2009-12-04 Dow Agrosciences Llc Gen mopdificado de bacillus thuringiensis para combatir los lepidopteros en plantas.
US5693512A (en) 1996-03-01 1997-12-02 The Ohio State Research Foundation Method for transforming plant tissue by sonication
US6210700B1 (en) 1997-01-14 2001-04-03 Novartis Nutrition Ag Enhancement of transplant graft survival through nutritional immunomodulation with omega-9 fatty acid dietary supplement therapy
US5981840A (en) 1997-01-24 1999-11-09 Pioneer Hi-Bred International, Inc. Methods for agrobacterium-mediated transformation
US6140486A (en) 1997-06-04 2000-10-31 Calgene Llc Production of polyunsaturated fatty acids by expression of polyketide-like synthesis genes in plants
US6566583B1 (en) 1997-06-04 2003-05-20 Daniel Facciotti Schizochytrium PKS genes
US7247461B2 (en) 1999-01-14 2007-07-24 Martek Biosciences Corporation Nucleic acid molecule encoding ORFA of a PUFA polyketide synthase system and uses thereof
US7217856B2 (en) 1999-01-14 2007-05-15 Martek Biosciences Corporation PUFA polyketide synthase systems and uses thereof
WO2000042207A2 (en) 1999-01-14 2000-07-20 Monsanto Technology Llc Soybean transformation method
US7211418B2 (en) 1999-01-14 2007-05-01 Martek Biosciences Corporation PUFA polyketide synthase systems and uses thereof
KR100785946B1 (ko) 1999-09-30 2007-12-14 니뽄 다바코 산교 가부시키가이샤 식물 형질전환 벡터
US20040172682A1 (en) 2003-02-12 2004-09-02 Kinney Anthony J. Production of very long chain polyunsaturated fatty acids in oilseed plants
DK1689222T3 (da) * 2003-11-14 2010-05-31 Consejo Superior Investigacion Solsikkeolie, solsikkefrø og solsikkeplanter med modificeret fedtsyrefordeling i triacylglycerolmolekylet
EP1720988B1 (de) * 2004-02-27 2011-10-12 BASF Plant Science GmbH Verfahren zur herstellung von ungesättigten omega-3-fettsäuren in transgenen organismen
WO2006135866A2 (en) 2005-06-10 2006-12-21 Martek Biosciences Corporation Pufa polyketide synthase systems and uses thereof
US7868228B2 (en) 2006-01-31 2011-01-11 Monsanto Technology Llc Phosphopantetheinyl transferases from bacteria
WO2007106905A2 (en) * 2006-03-15 2007-09-20 Martek Biosciences Corporation Polyunsaturated fatty acid production in heterologous organisms using pufa polyketide synthase systems
JP6530887B2 (ja) 2010-07-29 2019-06-12 ダウ アグロサイエンシィズ エルエルシー 植物形質転換率を高めるように改変されたアグロバクテリウム(Agrobacterium)株
TW201525136A (zh) * 2013-11-26 2015-07-01 Dow Agrosciences Llc 利用破囊壺菌PUFA合成酶於油籽作物中生成ω-3長鏈多不飽和脂肪酸

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101849014A (zh) * 2007-05-16 2010-09-29 马泰克生物科学公司 嵌合pufa聚酮合酶系统及其用途
CN102741267A (zh) * 2009-03-19 2012-10-17 马太克生物科学公司 多不饱和脂肪酸合酶核酸分子和多肽,及其组合物、制备方法和用途
CN201389213Y (zh) * 2009-04-03 2010-01-27 陈春芬 一种新型吸痰器
CN103080319A (zh) * 2010-05-17 2013-05-01 陶氏益农公司 在植物中制造dha和其他lc-pufa
WO2013016546A2 (en) * 2011-07-26 2013-01-31 Dow Agrosciences Llc Production of dha and other lc-pufas in plants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
METZ JAMES G. ET AL.: "Biochemical characterization of polyunsaturated fatty acid synthesis in Schizochytrium: Release of the products as free fatty acids", 《PLANT PHYSIOLOGY AND BIOCHEMISTRY》 *

Also Published As

Publication number Publication date
MX2016006675A (es) 2017-01-16
US20150299676A1 (en) 2015-10-22
EP3666066A1 (en) 2020-06-17
EP3073817A1 (en) 2016-10-05
TW201525136A (zh) 2015-07-01
IL245787A0 (en) 2016-07-31
US11046968B2 (en) 2021-06-29
JP2016537985A (ja) 2016-12-08
RU2728854C2 (ru) 2020-07-31
RU2016125219A (ru) 2018-01-09
CL2016001278A1 (es) 2017-01-20
IL245787B (en) 2019-09-26
AU2019250139A1 (en) 2019-10-31
AU2017272160B2 (en) 2019-08-08
US20180282711A1 (en) 2018-10-04
CA2928870A1 (en) 2015-06-04
AR098539A1 (es) 2016-06-01
AU2014354631B2 (en) 2017-12-21
US20210395765A1 (en) 2021-12-23
AU2014354631A1 (en) 2016-05-19
BR102014029437A2 (pt) 2015-07-07
AU2017272160A1 (en) 2017-12-21
KR20160111915A (ko) 2016-09-27
UA120172C2 (uk) 2019-10-25
US9994828B2 (en) 2018-06-12
UY35856A (es) 2015-06-30
WO2015081270A1 (en) 2015-06-04
EP3073817A4 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
US20220170037A1 (en) Production of dha and other lc pufas in plants
US11053511B2 (en) Production of DHA and other LC PUFAs in plants
JP6186463B2 (ja) 植物種子の飽和脂肪酸含量の低減
US20210395765A1 (en) Production of omega-3 long-chain polyunsaturated fatty acids in oilseed crops by a thraustochytrid pufa synthase
CA2609367C (en) Safflower with elevated gamma-linolenic acid

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170215