CN103050516A - 精确控制eb结位置和eb结反向击穿电压的结构 - Google Patents

精确控制eb结位置和eb结反向击穿电压的结构 Download PDF

Info

Publication number
CN103050516A
CN103050516A CN2011103105228A CN201110310522A CN103050516A CN 103050516 A CN103050516 A CN 103050516A CN 2011103105228 A CN2011103105228 A CN 2011103105228A CN 201110310522 A CN201110310522 A CN 201110310522A CN 103050516 A CN103050516 A CN 103050516A
Authority
CN
China
Prior art keywords
type
doping
base
withstand voltage
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103105228A
Other languages
English (en)
Other versions
CN103050516B (zh
Inventor
韩峰
刘冬华
胡君
段文婷
石晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Hua Hong NEC Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Hua Hong NEC Electronics Co Ltd filed Critical Shanghai Hua Hong NEC Electronics Co Ltd
Priority to CN201110310522.8A priority Critical patent/CN103050516B/zh
Priority to US13/613,151 priority patent/US20130092981A1/en
Publication of CN103050516A publication Critical patent/CN103050516A/zh
Application granted granted Critical
Publication of CN103050516B publication Critical patent/CN103050516B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • H01L29/0817Emitter regions of bipolar transistors of heterojunction bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66242Heterojunction transistors [HBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • H01L29/7375Vertical transistors having an emitter comprising one or more non-monocrystalline elements of group IV, e.g. amorphous silicon, alloys comprising group IV elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)

Abstract

本发明公开了一种精确控制锗硅异质结三极管EB结位置及其反向耐压的结构,包括是集电区,基区和发射区;集电区由有源区通过N型掺杂构成;基区有锗硅外延生长构成,生长过程中掺入P型杂质;而发射区则是由多晶硅构成;基区外延层中的覆盖层中的掺杂类型为N型。本发明主要是优化基区的掺杂分布,将基区外延层中的覆盖层中的掺杂类型由P型的硼(B)替换成N型的磷或者砷(As)。藉由外延生长中精确控制掺入N型杂质的位置和浓度,与原外延中硼的掺杂配合,从而达到精确控制EB结的位置,同时也实现了EB结反向耐压的可调。本发明能增加工艺稳定性,改善面内的均匀性,减少原本为控制EB位置的热过程。

Description

精确控制EB结位置和EB结反向击穿电压的结构
技术领域
本发明涉及集成电路制造领域。
背景技术
在射频应用中,需要越来越高的器件特征频率,RFCMOS虽然在先进的工艺技术中可实现较高频率,但还是难以完全满足射频要求,如很难实现40GHz以上的特征频率,而且先进工艺的研发成本也是非常高;化合物半导体可实现非常高的特征频率器件,但由于材料成本高、尺寸小的缺点,加上大多数化合物半导体有毒,限制了其应用。SiGe HBT则是超高频器件的很好选择,首先其利用SiGe与Si的能带差别,提高发射区的载流子注入效率,增大器件的电流放大倍数;其次利用SiGe基区的高掺杂,降低基区电阻,提高特征频率;另外SiGe工艺基本与硅工艺相兼容,因此SiGe HBT已经成为超高频器件的主力军。
由此可见,为了进一步提高特征频率,基区减薄和提高基区的掺杂浓度是有效而易被采用的手段之一。但掺杂浓度的提高带来的负面影响就是EB结反向耐压的降低。
另一方面,基区的减薄,对精确控制EB结的形成位置也带来更高的要求。其对工艺不稳定性的容忍度也减低。而为了形成合适的EB结,就必须控制好最后的退火温度和时间,使多晶硅发射极中的N型杂质扩散进基区外延层。如果扩散进太少,电流增益会太小;反之则会造成增益太大,B V c e o太小,工艺稳定性不可控。
发明内容
本发明所要解决的技术问题是提供一种精确控制锗硅异质结三极管EB结位置及其反向耐压的结构,它可以精确控制EB结的位置,同时也实现了EB结反向耐压的可调,能增加工艺稳定性,改善面内的均匀性,减少原本为控制EB位置的热过程。
为了解决以上技术问题,本发明提供了一种精确控制锗硅异质结三极管EB结位置及其反向耐压的结构,其特征在于,包括是集电区,基区和发射区;集电区由有源区通过N型掺杂构成;基区有锗硅外延生长构成,生长过程中掺入P型杂质;而发射区则是由多晶硅构成;基区外延层中的覆盖层中的掺杂类型为N型。
本发明的有益效果在于:提供了一种精确控制锗硅异质结三极管EB结位置及其反向耐压的器件设计。此器件设计主要是优化基区的掺杂分布,将基区外延层中的覆盖层中的掺杂类型由P型的硼(B)替换成N型的磷或者砷(As)。藉由外延生长中精确控制掺入N型杂质的位置和浓度,与原外延中硼的掺杂配合,从而达到精确控制EB结的位置,同时也实现了EB结反向耐压的可调。本发明能增加工艺稳定性,改善面内的均匀性,减少原本为控制EB位置的热过程。
基区外延层主要有三成构成:缓冲层,锗硅层,覆盖层。
所述缓冲层不掺入任何杂质。
所述锗硅层中掺入锗和P型杂质,浓度有器件目标性能来决定。
覆盖层掺入N型杂质,其浓度和掺杂位置与锗硅层的P型杂质一起决定了EB结的位置与EB结反向击穿耐压。
基区外延层中的覆盖层中的掺杂类型为N型的磷或者砷。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细说明。
图1是本发明所述锗硅HBT器件结构示意图;
图2(1)是现有SiGe HBT基区和发射区的热退火之前的掺杂分布示意图;
图2(2)是现有SiGe HBT基区和发射区的热退火之后的掺杂分布示意图;
图2(3)是本发明SiGe HBT基区和发射区的热退火之前的掺杂分布示意图;
图2(4)是本发明SiGe HBT基区和发射区的热退火之后的掺杂分布示意图。
具体实施方式
本发明的具体技术方案如图1、图2所示,包括:
1.完整的器件结构如图1所示;其主要构成部分是集电区1,基区2和发射区3;
2.集电区由有源区通过N型掺杂构成;基区有锗硅外延生长构成,生长过程中掺入P型杂质;而发射区则是由多晶硅构成;
3.多晶硅通过注入或者在位掺杂掺入N型杂质,然后通过退火使杂质扩散进外延基区;传统的做法是通过这道退火来控制EB结形成在外延层中有锗的区域,其对退火的温度、时间和多晶硅中掺杂的浓度要求很高;
4.基区外延层主要有三成构成:缓冲层,这一层不掺入任何杂质;锗硅层:此层中掺入锗和P型杂质,浓度有器件目标性能来决定;覆盖层:参入N型杂质,请浓度和掺杂位置与锗硅层的P型杂质一起决定了EB结的位置与EB结反向击穿耐压;
5.最后一步退火过程只要求实现多晶硅中的杂质在多晶硅中分布均匀,并扩散进基区外延层的覆盖层与N型的覆盖层实现良好连接;无需这一步退火来实现对EB结成型的控制。因此退火温度可降低,或者退火时间减少,大大提高工艺窗口,增加工艺稳定性。
本发明提出的此种EB节位置反向耐压优化设计的锗硅异质结三极管器件,该器件的主要特征有:
1、优化设计锗硅外延层掺杂分布,达到精确控制EB结位置和反向耐压的目的;
2、发射极多晶硅采用非掺杂的多晶硅;
3、工艺稳定性和硅片的面内均匀性得以改善;相关热过程减少。
本发明并不限于上文讨论的实施方式。以上对具体实施方式的描述旨在于为了描述和说明本发明涉及的技术方案。基于本发明启示的显而易见的变换或替代也应当被认为落入本发明的保护范围。以上的具体实施方式用来揭示本发明的最佳实施方法,以使得本领域的普通技术人员能够应用本发明的多种实施方式以及多种替代方式来达到本发明的目的。

Claims (6)

1.一种精确控制锗硅异质结三极管EB结位置及其反向耐压的结构,其特征在于,包括是集电区(1),基区(2)和发射区(3);
集电区由有源区通过N型掺杂构成;
基区有锗硅外延生长构成,生长过程中掺入P型杂质;
而发射区则是由多晶硅构成;
基区外延层中的覆盖层中的掺杂类型为N型。
2.如权利要求1所述的精确控制锗硅异质结三极管EB结位置及其反向耐压的结构,其特征在于,基区外延层主要有三成构成:缓冲层,锗硅层,覆盖层。
3.如权利要求2所述的精确控制锗硅异质结三极管EB结位置及其反向耐压的结构,其特征在于,所述缓冲层不掺入任何杂质。
4.如权利要求2所述的精确控制锗硅异质结三极管EB结位置及其反向耐压的结构,其特征在于,所述锗硅层中掺入锗和P型杂质,浓度有器件目标性能来决定。
5.如权利要求2所述的精确控制锗硅异质结三极管EB结位置及其反向耐压的结构,其特征在于,覆盖层掺入N型杂质,其浓度和掺杂位置与锗硅层的P型杂质一起决定了EB结的位置与EB结反向击穿耐压。
6.如权利要求2所述的精确控制锗硅异质结三极管EB结位置及其反向耐压的结构,其特征在于,基区外延层中的覆盖层中的掺杂类型为N型的磷或者砷。
CN201110310522.8A 2011-10-13 2011-10-13 精确控制eb结位置和eb结反向击穿电压的结构 Active CN103050516B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201110310522.8A CN103050516B (zh) 2011-10-13 2011-10-13 精确控制eb结位置和eb结反向击穿电压的结构
US13/613,151 US20130092981A1 (en) 2011-10-13 2012-09-13 Sige hbt having a position controlled emitter-base junction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110310522.8A CN103050516B (zh) 2011-10-13 2011-10-13 精确控制eb结位置和eb结反向击穿电压的结构

Publications (2)

Publication Number Publication Date
CN103050516A true CN103050516A (zh) 2013-04-17
CN103050516B CN103050516B (zh) 2016-04-13

Family

ID=48063102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110310522.8A Active CN103050516B (zh) 2011-10-13 2011-10-13 精确控制eb结位置和eb结反向击穿电压的结构

Country Status (2)

Country Link
US (1) US20130092981A1 (zh)
CN (1) CN103050516B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048584A (zh) * 2019-12-23 2020-04-21 复旦大学 一种高线性氮化镓hbt射频功率器件及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6086648B2 (ja) * 2012-03-12 2017-03-01 国立研究開発法人産業技術総合研究所 フォトトランジスタおよび撮像装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1351284A2 (en) * 2002-04-01 2003-10-08 Matsushita Electric Industrial Co., Ltd. SiGe heterojunction bipolar transistor and method for fabricating the same
US20070105330A1 (en) * 2005-11-04 2007-05-10 Enicks Darwin G Bandgap and recombination engineered emitter layers for SiGe HBT performance optimization
CN101599435A (zh) * 2009-07-24 2009-12-09 上海宏力半导体制造有限公司 单层多晶硅hbt非本征基区的掺杂方法
CN102412285A (zh) * 2011-11-01 2012-04-11 上海华虹Nec电子有限公司 一种锗硅异质结三极管器件结构及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105250A (en) * 1990-10-09 1992-04-14 Motorola, Inc. Heterojunction bipolar transistor with a thin silicon emitter
KR100275544B1 (ko) * 1995-12-20 2001-01-15 이계철 선택적 컬렉터 박막 성장을 이용한 초자기정렬 바이폴러 트랜지스터의 제조방법
US8377788B2 (en) * 2010-11-15 2013-02-19 National Semiconductor Corporation SiGe heterojunction bipolar transistor and method of forming a SiGe heterojunction bipolar transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1351284A2 (en) * 2002-04-01 2003-10-08 Matsushita Electric Industrial Co., Ltd. SiGe heterojunction bipolar transistor and method for fabricating the same
US20070105330A1 (en) * 2005-11-04 2007-05-10 Enicks Darwin G Bandgap and recombination engineered emitter layers for SiGe HBT performance optimization
CN101599435A (zh) * 2009-07-24 2009-12-09 上海宏力半导体制造有限公司 单层多晶硅hbt非本征基区的掺杂方法
CN102412285A (zh) * 2011-11-01 2012-04-11 上海华虹Nec电子有限公司 一种锗硅异质结三极管器件结构及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048584A (zh) * 2019-12-23 2020-04-21 复旦大学 一种高线性氮化镓hbt射频功率器件及其制备方法
CN111048584B (zh) * 2019-12-23 2021-05-11 复旦大学 一种高线性氮化镓hbt射频功率器件及其制备方法

Also Published As

Publication number Publication date
CN103050516B (zh) 2016-04-13
US20130092981A1 (en) 2013-04-18

Similar Documents

Publication Publication Date Title
CN102117827B (zh) BiCMOS工艺中的寄生垂直型PNP器件
CN100530684C (zh) 异质结双极型晶体管及其制造方法
CN109244125A (zh) 引入外延层场阑区的反向传导igbt及其制备方法
CN107342319A (zh) 一种复合应变Si/SiGe异质结双极晶体管及其制备方法
CN104091825B (zh) 超结集电区SiGe异质结双极晶体管
CN102446965A (zh) 锗硅异质结双极晶体管
CN109166916A (zh) 一种绝缘栅双极型晶体管及其制备方法
CN102931226B (zh) 自对准锗硅异质结双极型三极管及其制作方法
CN1303696C (zh) Ac性能改进的高电压npn双极型器件的生产方法
CN103681817B (zh) Igbt器件及其制作方法
CN103050516A (zh) 精确控制eb结位置和eb结反向击穿电压的结构
CN104681599B (zh) 晶体管、放大器电路和集成电路
CN103035731A (zh) 射频横向双扩散场效应晶体管及其制造方法
CN103296072B (zh) 一种提高了BVcbo的双极型晶体管及其生产工艺
CN103035674A (zh) 射频横向双扩散场效应晶体管及其制造方法
CN102412285B (zh) 一种锗硅异质结三极管器件结构及其制造方法
CN102931220A (zh) 锗硅异质结双极型三极管功率器件及制造方法
CN106981510B (zh) 一种碳化硅双极结型晶体管
CN102064190B (zh) SiGe BiCMOS工艺中的SiGe PNP双极晶体管
CN102420243B (zh) 锗硅异质结双极晶体管及制造方法
CN102412283B (zh) 锗硅hbt器件及其制造方法
CN102956480A (zh) 有赝埋层的锗硅hbt降低集电极电阻的制造方法及器件
CN103426881B (zh) 一种bcd集成器件及其制造方法
CN106158941A (zh) 一种双向耐压的绝缘栅双极晶体管结构
CN102412280B (zh) 锗硅hbt工艺中的横向型寄生pnp器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SHANGHAI HUAHONG GRACE SEMICONDUCTOR MANUFACTURING

Free format text: FORMER OWNER: HUAHONG NEC ELECTRONICS CO LTD, SHANGHAI

Effective date: 20140109

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 201206 PUDONG NEW AREA, SHANGHAI TO: 201203 PUDONG NEW AREA, SHANGHAI

TA01 Transfer of patent application right

Effective date of registration: 20140109

Address after: 201203 Shanghai city Zuchongzhi road Pudong New Area Zhangjiang hi tech Park No. 1399

Applicant after: Shanghai Huahong Grace Semiconductor Manufacturing Corporation

Address before: 201206, Shanghai, Pudong New Area, Sichuan Road, No. 1188 Bridge

Applicant before: Shanghai Huahong NEC Electronics Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant