CN103011829B - 一种二硼化锆陶瓷材料的烧结方法 - Google Patents

一种二硼化锆陶瓷材料的烧结方法 Download PDF

Info

Publication number
CN103011829B
CN103011829B CN201210582545.9A CN201210582545A CN103011829B CN 103011829 B CN103011829 B CN 103011829B CN 201210582545 A CN201210582545 A CN 201210582545A CN 103011829 B CN103011829 B CN 103011829B
Authority
CN
China
Prior art keywords
zrb
sic
zrsi
sintering
zrc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210582545.9A
Other languages
English (en)
Other versions
CN103011829A (zh
Inventor
王海龙
陈建宝
赵笑统
张锐
张钲
卢红霞
许红亮
陈德良
范冰冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN201210582545.9A priority Critical patent/CN103011829B/zh
Publication of CN103011829A publication Critical patent/CN103011829A/zh
Application granted granted Critical
Publication of CN103011829B publication Critical patent/CN103011829B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

本发明属于无机复合材料制备技术领域,特别涉及一种二硼化锆陶瓷材料的烧结方法。以ZrB2,ZrC和Si粉为原料,采用放电等离子烧结工艺制备出ZrB2-SiC-ZrSi2陶瓷材料。本发明在较低的温度(1500℃)制备出完全致密化和性能优异的ZrB2-SiC-ZrSi2超高温陶瓷复合材料。

Description

一种二硼化锆陶瓷材料的烧结方法
技术领域
本发明属于无机复合材料制备技术领域,特别涉及一种二硼化锆陶瓷材料的烧结方法。
背景技术
随着航空航天、国防事业的高速发展,现代飞行器(如超高音速飞行器、导弹、航天飞机等)正向着高速、高空和更安全的方向发展,这对超高温材料提出了越来越苛刻的要求:能够适应超高音速巡航飞行、大气层再入、跨大气层长航时飞行和火箭推进等一些极端环境。关于超高温材料的研究是发展航空航天和国防事业的关键技术需要。因此,对超高温材料的研究在国家的航空航天和国防事业方面具有非常重要的战略意义。
ZrB2具有高熔点(3245℃)、高强度、高硬度、好的导电导热性、好的抗腐蚀性等优点,将在航空航天等领域内发挥重要作用,具体可以作为高超音速飞行器机身材料,尤其是机翼前端、鼻锥和窗户及引擎口等承受高温的部件使用。还可以作为再入飞行器的机身及鼻锥等高温部件材料使用。火箭的鼻锥、固体火箭喷管和航天飞机的机翼前缘的保护层也可以用其制备。但是由于ZrB2共价键结合特点,使得其很难被烧结,一般烧结温度在2000℃以上,脆性大并且其强度随着使用温度的升高而降低,在温度大于1200℃环境下使用容易被氧化,这些都大大限制了ZrB2的应用。
SiC和ZrSi2因其优越的性能而被广泛用作ZrB2陶瓷的增韧增强相。SiC和ZrSi2不仅促进ZrB2陶瓷的致密化,还提高了ZrB2陶瓷的各项性能。因此,采用SiC、 ZrSi2或SiC和ZrSi2一起复合ZrB2陶瓷是今年来的研究热点。目前,向ZrB2陶瓷基体中引入SiC和ZrSi2的方式主要是购买现成的SiC和ZrSi2进行添加,以球磨混料方式进行混合,这种引入的方式存在着一些缺陷,如混料过程中SiC和ZrSi2在基体分散均匀性的问题,还有SiC和ZrSi2可能会部分损坏等,同时这种引入方式难以在低温下更好促进ZrB2陶瓷的致密化。
发明内容
本发明的目的在于提供一种二硼化锆陶瓷材料的烧结方法,可以克服现有方法存在的SiC和ZrSi2在基体分散方面的不均匀以及在低温下不能很好促进ZrB2陶瓷致密化的问题。
本发明采用的技术方案如下:
一种二硼化锆陶瓷材料的烧结方法,以ZrB2, ZrC和Si粉为原料,采用放电等离子烧结工艺制备出ZrB2-SiC-ZrSi2陶瓷材料。
原位生成的SiC和ZrSi2总质量和ZrB2基体的质量比为1:1.5-9。
将ZrB2, ZrC和Si粉混合后,用酒精和氧化锆磨球在球磨机上球磨2-4h,然后过滤、真空干燥和过筛2-3遍。
磨球的质量和混合粉体质量比优选为2:1,酒精量优选为球料体积的1.5-2倍。
将ZrB2, ZrC和Si粉混合后,以50-200℃/min的升温速率升温至烧结温度。
采用放电等离子烧结时,真空氛围下在1450-1550℃、20-50MPa压力下保压5-20min制备出ZrB2-SiC-ZrSi2陶瓷复合块体材料。
本发明采用反应放电等离子烧结工艺,以ZrB2, ZrC和Si粉为原料,利用ZrC和Si粉之间的反应,在烧结过程中在ZrB2基体中原位生成SiC和ZrSi2,借助ZrC和3Si粉之间的原位反应向ZrB2基体材料中引入SiC和ZrSi2,使得SiC和ZrSi2在基体内分布均匀,与基体结合较好,这不但促进了ZrB2在烧结过程中的致密化在较低的温度下制备出了高致密的ZrB2-SiC-ZrSi2陶瓷,同时也改善了材料的结构,提高了材料的各项性能。另外不需要购买昂贵的SiC和ZrSi2,降低了材料的制备成本。由于SiC和ZrSi2是在材料制备过程中原位合成的,同时也避免了外界杂质元素的污染。随着SiC和ZrSi2生成量的增加,样品的致密度和各项性能都得到显著的提高。采用此技术在1500℃下制备出了致密度为100%的ZrB2-SiC-ZrSi2陶瓷复合块体材料,其断裂韧性最高为7.33 MPa· m1/2,弯曲强度最高为471MPa,硬度最高为18.10 GPa。
以ZrB2, ZrC和Si粉为原料,其原料配比是根据ZrC和Si粉的反应式ZrC + 3Si → ZrSi2 +  SiC和原位合成的SiC和ZrSi2总质量占烧结后ZrB2 -SiC-ZrSi2陶瓷材料的质量比来确定ZrC和Si粉的加入量。
本发明相对于现有技术,有以下优点:
本发明在较低的温度(1500℃)制备出完全致密化和性能优异的ZrB2-SiC-ZrSi2超高温陶瓷复合材料。同时也解决了第二相SiC和ZrSi2等在基体材料中分散均匀性的问题,使得原位生成的SiC和ZrSi2与基体ZrB2结合更好,改善材料的结构,SiC和ZrSi2协同作用促进了ZrB2在烧结过程中的致密化,提高了材料的性能,降低了材料的制备成本,同时也避免了外界杂质元素的污染。对积极推动ZrB2基超高温陶瓷复合材料的应用发展,具有显著的社会效益和经济效益。
附图说明
图1为实施例1-4烧结样品的XRD图谱;
图2为实施例1烧结样品的断面SEM图;
图3为实施例2烧结样品的断面SEM图;
图4为实施例3烧结样品的断面SEM图。
具体实施方式
   以下以具体实施例来说明本发明的技术方案,但本发明的保护范围不限于此:
实施例1
称取 ZrB2粉40g,ZrC粉5.5059g,Si粉4.4941g,将称取好的料全部倒入球磨罐中,加入酒精和100g的氧化锆磨球,在磨球机上以150转/min球磨混料4h。将球磨好的料过滤后于真空干燥箱干燥,干燥完后过筛3遍得到混好的原料混合料。
称取25g上述混好的原料混合料,装入直径为30mm的石墨模具中,真空气氛下进行放电等离子烧结,以100℃/min升温至1500℃后保温5min,压力40MPa,自然冷却后即得到ZrB2-SiC-ZrSi2陶瓷复合材料,材料中SiC和ZrSi2的理论质量百分含量为20wt%。
图1中ZBZSS20图谱为烧结样品的XRD图谱,从图中可以看出除了看到ZrB2的衍射峰外,还可以看到SiC和ZrSi2的衍射峰,且没有发现原料ZrC和Si的衍射峰存在。这说明了ZrC和3Si粉之间的反应已完成,原位合成了SiC和ZrSi2。图2为烧结样品的断面SEM图,可以看出样品有极少量的气孔存在,说明随着原位合成的SiC和ZrSi2量增加,样品致密度显著提高。对样品性能进行表征,得到ZrB2-SiC-ZrSi2陶瓷复合材料常温下的断裂韧性为6.11 MPa·m1/2,弯曲强度为443 MPa,致密度为95.8%。
实施例2
称取 ZrB2粉35g,ZrC粉8.2588g,Si粉6.7412g,将称取好的料全部倒入球磨罐中,加入酒精和100g的氧化锆磨球,在磨球机上以150转/min球磨混料4h。将球磨好的料过滤后放到真空干燥箱干燥,干燥完后过筛3遍得到混好的原料混合料。
称取25g上述混好的原料混合料,装入直径为30mm的石墨模具中,真空气氛下进行放电等离子烧结,以100℃/min升温至1500℃,后保温10min,压力30MPa,自然冷却后得到ZrB2-SiC-ZrSi2陶瓷复合材料,材料中的SiC和ZrSi2的理论质量百分含量为30wt%。
图1中ZBZSS30图谱为烧结样品的XRD图谱,从图中可以看出除了看到ZrB2的衍射峰外还可以看到SiC和ZrSi2的衍射峰,且比实施例1的还要强。图3为烧结样品的断面SEM图,可以看出样品没有气孔存在。对样品性能进行表征,得到ZrB-SiC-ZrSi2陶瓷复合材料常温下的断裂韧性为7.33 MPa·m1/2,弯曲强度为471 MPa,致密度为100%。
实施例3
称取 ZrB2粉30g,ZrC粉11.0117g,Si粉8.9883g,将称取好的料全部倒入球磨罐中,加入酒精和100g的氧化锆磨球,在磨球机上以150转/min球磨混料4h。将球磨好的料过滤后放到真空干燥箱干燥,干燥完后过筛3遍得到混好的原料混合料。
称取25g上述混好的原料混合料,装入直径为30mm的石墨模具中,真空气氛下进行放电等离子烧结,以100℃/min升温至1500℃,后保温15min,压力20MPa,自然冷却后即得到ZrB2-SiC-ZrSi2陶瓷复合材料,材料中的SiC和ZrSi2的理论质量百分含量为40wt%。
图1中ZBZSS40图谱为烧结样品的XRD图谱,从图中可以看出除了看到ZrB2的衍射峰外还可以看到SiC和ZrSi2的衍射峰,SiC和ZrSi2的衍射峰相对其他几个配方样品是最强的。图4为烧结样品的断面SEM图,可以看出样品样也没有气孔存在,对样品性能进行表征,得到ZrB2-SiC-ZrSi2陶瓷复合材料常温下的断裂韧性为6.68 MPa·m1/2,弯曲强度为454 MPa,致密度为100%。
实施例4
采用放电等离子技术烧结混好的原料混合料,以100℃/min升温至1450℃,后保温20min,压力50MPa,自然冷却后得到ZrB2 -SiC-ZrSi2陶瓷复合材料。其他同实施例2。
实施例5
采用放电等离子技术烧结混好的原料混合料,以200℃/min升温至1500℃,后保温15min,压力40MPa,自然冷却后得到ZrB2 -SiC-ZrSi2陶瓷复合材料。其他同实施例2。
实施例6
采用放电等离子技术烧结混好的原料混合料,以50℃/min升温至1550℃,后保温20min,压力20MPa,自然冷却后得到ZrB2 -SiC-ZrSi2陶瓷复合材料。其他同实施例2。
实施例7
采用放电等离子技术烧结混好的原料混合料,以100℃/min升温至1550℃,后保温5min,压力20MPa,自然冷却后得到ZrB2 -SiC-ZrSi2陶瓷复合材料。其他同实施例2。
实施例8
采用放电等离子技术烧结混好的原料混合料,以200℃/min升温至1550℃,后保温5min,压力40MPa,自然冷却后得到ZrB2 -SiC-ZrSi2陶瓷复合材料。其他同实施例2。
上述实施例为本发明优选的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明所作的改变均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (3)

1.一种二硼化锆陶瓷材料的烧结方法,其特征在于,以ZrB2, ZrC和Si粉为原料,采用放电等离子烧结工艺制备出ZrB2-SiC-ZrSi2陶瓷材料;
原位生成的SiC和ZrSi2总质量与ZrB2基体的质量比为1:1.5~9;
采用放电等离子烧结时,真空氛围下在1450-1550℃、20-50MPa压力下保压5-20min制备出ZrB2-SiC-ZrSi2陶瓷复合块体材料。
2.如权利要求1所述的二硼化锆陶瓷材料的烧结方法,其特征在于,将ZrB2, ZrC和Si粉混合后,以50-200℃/min的升温速率升温至烧结温度。
3.如权利要求2所述的二硼化锆陶瓷材料的烧结方法,其特征在于,将ZrB2, ZrC和Si粉混合后,用酒精和氧化锆磨球在球磨机上球磨2-4h,然后过滤、真空干燥和过筛2-3遍。
CN201210582545.9A 2012-12-28 2012-12-28 一种二硼化锆陶瓷材料的烧结方法 Active CN103011829B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210582545.9A CN103011829B (zh) 2012-12-28 2012-12-28 一种二硼化锆陶瓷材料的烧结方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210582545.9A CN103011829B (zh) 2012-12-28 2012-12-28 一种二硼化锆陶瓷材料的烧结方法

Publications (2)

Publication Number Publication Date
CN103011829A CN103011829A (zh) 2013-04-03
CN103011829B true CN103011829B (zh) 2014-03-26

Family

ID=47960997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210582545.9A Active CN103011829B (zh) 2012-12-28 2012-12-28 一种二硼化锆陶瓷材料的烧结方法

Country Status (1)

Country Link
CN (1) CN103011829B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553626B (zh) * 2013-09-27 2015-12-09 大连理工大学 一种高致密度陶瓷基复合材料及其制备方法和应用
CN103803890B (zh) * 2014-03-11 2015-10-07 山东理工大学 陶瓷复合微珠制备低密度油井固井水泥试块的方法
CN106007727A (zh) * 2016-05-11 2016-10-12 合肥工业大学 一种快速烧结制备LaB6/ZrB2共晶复合材料的方法
CN108503390B (zh) * 2018-05-04 2021-02-02 西北工业大学 碳/碳复合材料表面镶嵌SiC-ZrB2-ZrSi2复合抗氧化涂层的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1837044A (zh) * 2006-04-13 2006-09-27 武汉理工大学 一种放电等离子烧结高致密二硼化锆块体材料的方法
CN101104561A (zh) * 2007-03-16 2008-01-16 中国科学院上海硅酸盐研究所 二硼化锆基复相陶瓷的原位反应制备方法
CN101215173A (zh) * 2008-01-04 2008-07-09 中国科学院上海硅酸盐研究所 一种ZrB2-SiC-ZrC复相陶瓷材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1837044A (zh) * 2006-04-13 2006-09-27 武汉理工大学 一种放电等离子烧结高致密二硼化锆块体材料的方法
CN101104561A (zh) * 2007-03-16 2008-01-16 中国科学院上海硅酸盐研究所 二硼化锆基复相陶瓷的原位反应制备方法
CN101215173A (zh) * 2008-01-04 2008-07-09 中国科学院上海硅酸盐研究所 一种ZrB2-SiC-ZrC复相陶瓷材料的制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Comparison of ZrB2-ZrC-SiC Composites Fabricated by Spark Plasma Sintering and Hot-Pressing;Valentina Medri et al.;《Advanced Engineering Materials》;20051231;第7卷(第3期);第159-163页 *
Hailong Wang et al..Processing and Mechanical Properties of Zirconium Diboride-Based Ceramics Prepared by Spark Plasma Sintering.《Journal of the American Ceramic Society》.2007,第90卷(第7期),1992-1997.
Mechanical Properties of ZrB2-SiC(ZrSi2) Ceramics;Oleg N.Grigoriev et al.;《Journal of the European Ceramic Society》;20100516;第30卷;2173-2181 *
Oleg N.Grigoriev et al..Mechanical Properties of ZrB2-SiC(ZrSi2) Ceramics.《Journal of the European Ceramic Society》.2010,第30卷2173-2181.
Processing and Mechanical Properties of Zirconium Diboride-Based Ceramics Prepared by Spark Plasma Sintering;Hailong Wang et al.;《Journal of the American Ceramic Society》;20070731;第90卷(第7期);1992-1997 *
Valentina Medri et al..Comparison of ZrB2-ZrC-SiC Composites Fabricated by Spark Plasma Sintering and Hot-Pressing.《Advanced Engineering Materials》.2005,第7卷(第3期),第159-163页.

Also Published As

Publication number Publication date
CN103011829A (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
CN103145422B (zh) 一种碳化硼-硼化钛-碳化硅高硬陶瓷复合材料及其制备方法
CN102964114B (zh) 一种利用陶瓷前驱体制备复相陶瓷材料的方法
CN108640687B (zh) 一种碳化硼/碳化硅复相陶瓷及其制备方法
CN104150940B (zh) 氮化硅与碳化硅复相多孔陶瓷及其制备方法
CN105884359B (zh) 一种以复合结构作为增韧相的b4c复合陶瓷及其制备方法
CN103553627B (zh) 一种陶瓷基复合材料及其制备方法和应用
CN103011829B (zh) 一种二硼化锆陶瓷材料的烧结方法
CN102515870A (zh) 一种C/SiC-ZrB2-ZrC超高温陶瓷基复合材料的制备方法
CN106882974B (zh) 一种高HfC含量C/HfC-SiC复合材料的制备方法
CN103204693A (zh) 一种短切碳纤维/碳化硅复合材料的制备方法
CN101255055B (zh) 碳纳米管硼化锆-碳化硅基复合材料
CN103553626B (zh) 一种高致密度陶瓷基复合材料及其制备方法和应用
CN102976760A (zh) 添加稀土氧化物的硼化锆-碳化硅复相陶瓷材料及其制备方法
Hu et al. Microstructure and properties of ZrB2–SiC and HfB2–SiC composites fabricated by spark plasma sintering (SPS) using TaSi2 as sintering aid
CN102603344B (zh) 一种碳化硅晶须增韧二硼化锆陶瓷的制备工艺
CN102060554A (zh) 一种高强高韧性的二硼化锆-碳化硅-氧化锆陶瓷基复合材料及其制备方法
CN111732437A (zh) 超高温复相陶瓷粉体的制备方法及其致密化工艺
CN103981385A (zh) 一种钼-铬-硼化锆复合材料的制备方法
CN104045349A (zh) 一种纳米氧化铝增强氮氧化铝陶瓷及其制备方法
Wang et al. Fabrication of carbon fiber reinforced ceramic matrix composites with improved oxidation resistance using boron as active filler
CN102674874A (zh) 一种ZrC-SiC-LaB6三元超高温陶瓷复合材料及其制备方法
CN103938023A (zh) 一种原位自生钛铝碳强韧化TiAl3金属间化合物及其制备方法
CN104844214B (zh) 致密化高强度碳化锆和碳化铪陶瓷材料及其低温制备方法
CN113416077A (zh) 一种双复合结构的高温陶瓷刀具材料及其制备方法与应用
CN101948326A (zh) 一种SiC晶须增韧ZrC基超高温陶瓷复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant