CN102959827A - 蓄电器控制电路和蓄电装置 - Google Patents

蓄电器控制电路和蓄电装置 Download PDF

Info

Publication number
CN102959827A
CN102959827A CN2011800325239A CN201180032523A CN102959827A CN 102959827 A CN102959827 A CN 102959827A CN 2011800325239 A CN2011800325239 A CN 2011800325239A CN 201180032523 A CN201180032523 A CN 201180032523A CN 102959827 A CN102959827 A CN 102959827A
Authority
CN
China
Prior art keywords
storage means
electric storage
control unit
monocell
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800325239A
Other languages
English (en)
Other versions
CN102959827B (zh
Inventor
中尾亮平
河原洋平
工藤彰彦
江守昭彦
坂部启
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Publication of CN102959827A publication Critical patent/CN102959827A/zh
Application granted granted Critical
Publication of CN102959827B publication Critical patent/CN102959827B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • H02J7/00716Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current in response to integrated charge or discharge current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

提供一种蓄电器控制电路和蓄电装置,在具有使多个单电池串联连接而成的电池组的蓄电装置中,能够消除单电池间产生的电压或充电状态的差异、或者防止单电池长期维持过充电状态。分别由多个单电池(111)构成的单电池组(112)多个串联连接构成电池组(110)。对各单电池组设置的单电池控制单元(121),从分配的单电池组供电而动作,并且监视和控制该单电池组的单电池的状态。电池组控制单元(150)根据来自多个单电池控制单元的信息控制单电池控制单元。电池组控制单元,在存在充电状态比规定的充电状态高的单电池组时,在电池组的充放电停止时使监视充电状态高的单电池组的单电池控制单元的动作继续,由此使单电池放电而降低充电状态。

Description

蓄电器控制电路和蓄电装置
技术领域
本发明涉及构成蓄电部的多个蓄电器的控制电路和蓄电装置。
背景技术
搭载于电动车(EV)和插电式混合动力车(PHEV)、混合动力车(HEV)的蓄电装置中,一般使多个蓄电器串联连接构成蓄电部。此处,在蓄电器之间存在容量的差异和自放电差异这样的蓄电器的个体差异的情况下,蓄电装置具备的各蓄电器的充电状态(State of Charge:SOC)中会产生差异。该差异产生时,在多个蓄电器中以SOC最高的蓄电器为基准进行充电控制,以SOC最低的蓄电器为基准进行放电控制,所以蓄电部能够使用的能量减小。此外,设想PHEV或者EV这样SOC的使用范围是宽范围的情况下,在SOC较高或较低的状况下,蓄电器的劣化容易发展,所以需要在SOC过高的情况下使SOC降低、或者在SOC过低的情况下防止SOC进一步降低等的对策。于是,为了消除使多个蓄电器串联连接的情况下可能产生的蓄电器之间的SOC的差异,提出了安装与蓄电器并联连接的由旁通电阻和旁通开关构成的电压均等化电路、和监视蓄电器的状态的蓄电器控制单元,蓄电器控制单元基于电压的差异量控制均等化电路的旁通开关的方法。即,使电压较高的蓄电器强制放电、进行电压的均等化的方法。
但是,特别在要求大容量的蓄电器的情况下,与电压差异的程度相应地,仅在蓄电装置运转中进行的均等化存在极限。即,电压差异越大,电压的均等化所需的时间越长。因此,研究了在蓄电装置的运转中以外,在蓄电装置停止后也执行电压均等化的方式。作为这样的方式的一例,在日本特开2002-354698号公报中,公开了在蓄电装置停止时使蓄电器控制单元定期地起动,控制电压均等化电路的旁通开关的通断,由此使SOC较高的蓄电器放电,进行电压均等化的方法。此外,日本特开2005-328603号公报中,公开了在蓄电装置停止时,也用来自蓄电器的电力,使电压均等化电路起动规定时间,控制旁通开关的通断,由此使放电对象的蓄电器放电的方法。
现有技术文献
专利文献
专利文献1:日本特开2002-354698号公报
专利文献2:日本特开2005-328603号公报
发明内容
发明要解决的课题
上述蓄电装置优选能够实现简单的处理、较少的命令数、并且尽量抑制蓄电部的能量损失的控制。此外,蓄电器的SOC较高,要使其快速降低等情况下,与通常情况相比用更大的电流使蓄电器放电也是重要的。
本发明的目的在于提供一种能够解决上述课题的蓄电器控制电路和蓄电装置。
用于解决课题的方案
本发明中,在具备从蓄电器接受电力而动作、并监视蓄电器的状态的蓄电器控制单元的蓄电装置中,使在蓄电装置停止时也监视SOC高的蓄电器的蓄电器控制电路,以通常动作模式动作直到满足规定条件。具体而言,在蓄电器控制单元中,设置管理放电对象的蓄电器的目标电压、或者放电对象的蓄电器的SOC达到目标SOC的时间的管理部。蓄电装置的动作停止后,基于来自管理部的信息使监视SOC高的蓄电器的蓄电器控制单元以通常动作模式动作,由此能够进行SOC高的蓄电器的放电。即,蓄电装置的动作停止后,仅使蓄电器控制单元动作,即能够降低SOC。经过了放电对象的蓄电器的电压达到目标电压、或者放电对象的蓄电器的SOC达到目标SOC的时间后,监视蓄电器的蓄电器控制单元依次转移到低耗电模式。
蓄电部是使多个蓄电器电串联连接构成的。蓄电器控制单元可以对于串联连接有多个蓄电器的蓄电器组分别设置一个,也可以对各蓄电器分别设置一个。
此外,设置有基于来自多个蓄电器控制单元的信息控制各蓄电器控制单元的蓄电部控制单元。蓄电部控制单元决定多个蓄电器控制单元监视的蓄电器的放电结束条件,对各蓄电控制单元发送放电结束条件后转移到低耗电模式。
发明效果
根据本发明,能够实现简单的处理、较少的命令数、并且尽量抑制蓄电部的能量损失的蓄电器控制电路或蓄电装置的控制方法。
附图说明
图1是表示本发明的插电式混合动力车的蓄电装置的结构例的框图。
图2是表示单电池控制单元的电路结构例的框图。
图3是表示SOC与OCV的相关关系的特性图。
图4是用于说明用放电单元1进行的SOC均等化的图。
图5是用于说明用放电单元2进行的SOC均等化的图。
图6是用于说明本发明中的蓄电装置的动作例的流程图。
图7A是说明车辆行驶中或充电中的电池组控制单元的动作例的流程图。
图7B是说明车辆停止中的电池组控制单元的动作例的流程图。
图8A是说明车辆行驶中或充电中的单电池控制单元的动作例的流程图。
图8B是说明车辆停止中的单电池控制单元的动作例的流程图。
图9是说明本发明的效果的时序图。
图10是说明本发明的效果的图。
图11是说明本发明的效果的时序图。
图12是表示设想PHEV和EV的情况下,满充电容量的不同对SOC差异的消除造成的影响的时序图。
图13是说明设想PHEV和EV的情况下,在高SOC范围中用于消除SOC的差异的方法的图。
图14是用于估算SOC均等化所需的天数的仿真的说明图。
图15是表示仅在车辆行驶中进行电压均等化的情况下的SOC均等化的状况的仿真结果图。
图16是表示在车辆行驶中以外,在停止期间也进行电压均等化的情况下的SOC均等化的状况的仿真图。
图17是表示本发明的插电式混合动力车的蓄电装置的结构例的框图。
图18是表示单电池控制单元的电路结构的框图。
图19是表示本发明的插电式混合动力车的蓄电装置的结构例的框图。
图20是表示单电池控制单元的电路结构的框图。
图21是用于说明本发明中的蓄电装置的动作例的流程图。
图22是用于说明本发明中的电池组控制单元的动作例的流程图。
图23是用于说明本发明中的单电池控制单元的动作例的流程图。
图24是表示本发明的效果的时序图。
图25是表示本发明的效果的图。
图26是表示本发明的效果的时序图。
图27是表示在停止期间通过使单电池控制单元动作而进行电压均等化的情况下的SOC均等化的状况的仿真结果的图。
图28是表示本发明的插电式混合动力车的蓄电装置的结构例的框图。
图29是表示单电池控制单元的电路结构的框图。
图30是说明单电池控制单元的动作例的流程图。
图31是表示单电池控制单元的电路结构的框图。
图32是说明变更电压检测电路的采样速度、增大消耗电流的方法的图。
图33是说明变更计时器的周期、增大消耗电流的方法的图。
具体实施方式
以下基于附图说明本发明的实施例。以下实施例中,举出对于构成插电式混合动力车(PHEV)的电源的蓄电装置应用本发明的情况为例进行说明,但本发明也能够应用于构成混合动力车(HEV)、电动车(EV)等乘用车和混合动力铁道车辆这样的工业用车的电源的蓄电装置的蓄电器控制电路。
此外,以下实施例中,举出用锂离子电池作为构成蓄电部的蓄电器的情况为例进行说明,但此外也能够使用镍氢电池、铅电池、双电层电容器、复合电容器等作为蓄电器。此外,以下实施例中的电池组与蓄电部对应,单电池与蓄电器对应,单电池组与蓄电器组对应,单电池控制单元与蓄电器控制单元对应,电池组控制单元与蓄电部控制单元对应。单电池控制单元和电池组控制单元作为电路基板上的集成电路实现。
[实施例1]
基于图1至图13说明本发明的第一实施例。
图1表示本实施例中的插电式混合动力车的蓄电装置的结构例。
首先说明蓄电装置100的结构。蓄电装置100具备由多个单电池111构成的电池组110、监视单电池111的状态的单电池管理单元120、检测蓄电装置100中流过的电流的电流检测单元130、检测电池组110的总电压的电压检测单元140、和进行电池组110的控制的电池组控制单元150。电池组控制单元150中,输入从单电池管理单元120发送的单电池111的电池电压和温度、从电流检测单元130发送的蓄电装置100中流过的电流值、从电压检测单元140发送的电池组110的总电压值,根据输入的信息进行电池组110的状态检测等。此外,电池组控制单元150进行的处理的结果被发送到单电池管理单元120和车辆控制单元200。
车辆控制单元200根据电池组控制单元150的信息,进行与蓄电装置100经由继电器300、310连接的逆变器400和经由继电器320、330连接的充电器420的控制。车辆行驶中,蓄电装置100与逆变器400连接,基于电池组110蓄积的能量驱动电动发电机410。充电时,蓄电装置100与充电器420连接,用来自家用电源或充电站的电力供给充电。
电池组110是使能够蓄积和释放电能(直流电力的充放电)的多个单电池111(锂离子电池)电串联连接而构成的。举出一个单电池111输出电压为3.0~4.2V(平均输出电压:3.6V)、单电池111的开路电压(OCV:Open Circuit Voltage)和SOC成如图3所示的相关关系的情况为例进行说明,但也可以是除此以外的电压规格。
构成电池组110的单电池111在进行状态的管理、控制的基础上,以规定的单位数进行分组。分组后的单电池111电串联连接,构成单电池组112a、112b。规定的单位数例如有1个、4个、6个这样等分的情况,或者组合4个和6个这样复合区分的情况。此外,高电位侧的单电池组112a与低电位侧的单电池组112b经由开关与熔断器串联连接而成的维护、检查用的检修断路器(Service Disconnecter)180电串联连接。
监视构成电池组110的单电池111的状态的单电池管理单元120,由多个单电池控制单元121a、121b构成,对于如上所述分组后的单电池组112a、112b分配1个单电池控制单元121a、121b。单电池控制单元121a、121b接收来自分配的单电池组112a、112b的电力而动作,监视和控制构成单电池组112a、112b的单电池111的状态。
本实施例中,为了简化说明,假设电池组110具备合计8个单电池111,使4个单电池111电串联连接构成2个单电池组112a、112b,进而使单电池组之间经由检修断路器180电串联连接。此外,单电池组112a、112b中,分别设置有用于监视单电池111的状态的单电池控制单元121a、121b。
电池组控制单元150中,输入包括从单电池管理单元120输出的单电池111的电池电压和温度的计测值、进而单电池111是否过充电或过放电的诊断结果和单电池管理单元120中发生通信错误等的情况下输出的异常信号、来自电流检测单元130的电流值、从电压检测单元140输出的电池组110的总电压值、从上级控制装置即车辆控制单元200输出的信号的多个信号。此处,基于输入的信号、预先存储的单电池111的内部电阻、SOC与OCV的关系(图3),执行单电池111的SOC运算、之后说明的包括放电结束条件的用于进行电压均等化控制的运算、用于控制充放电量的运算等。然后,将该运算结果和基于它的指令输出到单电池管理单元120和车辆控制单元200。
电池组控制单元150与单电池管理单元120经由光电耦合器这样的绝缘元件170,通过信号通信单元160进行信号的发送接收。设置绝缘元件170是因为在电池组控制单元150和单电池管理单元120中动作电源不同。即,单电池管理单元120从电池组110接收电力动作,相对的,电池组控制单元150使用车载辅助设备用的电池(例如14V类的电池)作为电源。绝缘元件170可以安装在构成单电池管理单元120的电路基板上,也可以安装在构成电池组控制单元150的电路基板上。当然,也可以将单电池管理单元120和电池组控制单元150安装在1个电路基板上。此外,根据系统结构也能够省略绝缘元件170。
对本实施例中的电池组控制单元150与单电池控制单元121a、121b的通信单元进行说明。单电池控制单元121a、121b按照分别监视的单电池组112a、112b的电位从高到低的顺序串联连接。电池组控制单元150发送的信号经由绝缘元件170用信号通信单元160对单电池控制单元121a输入。单电池控制单元121a的输出与单电池控制单元121b的输入之间也同样地通过信号通信单元160连接,进行信号的传输。其中,本实施例中,单电池控制单元121a与单电池控制单元121b之间不经过绝缘元件170,但也可以经过绝缘元件170。然后,单电池控制单元121b的输出经由绝缘元件170,经过电池组控制单元150的输入用信号通信单元160传输。这样,电池组控制单元150与单电池控制单元121a和单电池控制单元121b通过信号通信单元160环状连接。该环状连接有时也称为菊花链连接(Daisy Chain)。
图2表示本实施例中的单电池控制单元121a、121b的电路结构。单电池控制单元121a、121b具有由旁通电阻122和旁通开关123构成的电压均等化电路、驱动旁通开关123的BSW驱动电路125、计测作为管理对象的单电池111的电池电压的电压检测电路124、用于使单电池控制单元121a、121b动作的电源126、存储由电池组控制单元150运算的监视各单电池111的单电池控制单元121的向低耗电模式(低消耗电流模式)的转移条件的动作模式管理电路127、基于来自电池组控制单元150的信息进行单电池控制单元121a、121b的控制的控制电路128、进行与电池组控制单元150或相邻的单电池控制单元121之间的信号的发送接收的信号输入输出电路129。
其中,低耗电模式是消耗电流小于通常模式的运转模式。低耗电模式例如通过仅使单电池控制单元121a、121b的多个功能中的一部分动作,而成为与通常模式相比较能够减小来自单电池组112a、112b的能量供给的状态。例如,低耗电模式是仅使单电池控制单元121能够因来自外部的通信而转移到通常模式的功能动作的状态,即至少对信号输入输出电路129和控制电路128进行电力供给的状态。转移到低耗电模式后的单电池控制单元121能够因为来自电池组控制单元150的指令而转移到通常模式。
动作模式管理电路127中,存储有由电池组控制单元150运算的向低耗电模式的转移条件。具体而言,在动作模式管理电路127中存储有目标电压值和达到目标值所需的时间,详情在后文中叙述。
控制电路128经由信号输入输出电路129接收从电池组控制电路150发送的电压取得命令和与均等化控制相关的信息,对信号输入输出电路129输出用电压检测电路124检测出的电池电压和基于它的信息。蓄电装置停止动作之前,从电池组控制单元150输入向低耗电模式的转移条件,向低耗电模式的转移条件存储在动作模式管理电路127中。然后,控制电路128基于检测出的电池电压和动作模式管理电路127中存储的向低耗电模式的转移条件进行BSW驱动电路125和电源126的控制。
本实施例中,能够使用以下所示的放电单元1和放电单元2这两种方法进行放电。以下说明各放电单元的详情。
放电单元1在蓄电装置停止时,使监视放电对象的单电池组112的单电池控制单元121维持通常的动作模式,由此使单电池组112放电至目标电压(目标OCV)或SOC(目标SOC)。其中,目标OCV或目标SOC例如是构成电池组110的多个单电池111中的某些过充电的情况下,用于消除该情况而设定的规定的电压或SOC,详情在后文中叙述。
如上所述,蓄电装置100停止时,使单电池控制单元121以通常动作模式动作直到所有单电池组112成为目标OCV或目标SOC,从放电单元1进行的放电结束的单电池控制单元121起依次转移到低耗电模式。其中,本实施例中是电池组控制单元150对单电池控制单元121发送放电结束条件1、存储在动作模式管理电路127中的结构,但也可以是从其他控制器对单电池控制单元121发送放电结束条件1的结构。
对放电结束条件1进行说明。其中,用于决定放电结束条件1的算式的说明中,将单电池111的个数8个置换为N个,单电池组112的个数2个置换为M个,构成单电池组112的单电池111的个数4个置换为L个(=N/M)进行说明。
放电结束条件1的决定方法中,有基于单电池111的电池电压决定的第一方法,和计算转移到低耗电模式所需的时间、根据该结果决定的第二方法。其中,本实施例中对于放电结束条件1说明上述两种方法,但不限定于上述两种方法。
对本实施例中的决定放电结束条件1的第一方法进行说明。
对于每个单电池组112,根据式(1-1)计算构成单电池组112的多个单电池111中OCV最小的单电池111。
[式1]
OCV min 1 = MIN ( OCV 11 , OCV 12 , OCV 13 , . . . , OCV 1 L ) OCV min 2 = MIN ( OCV 21 , OCV 22 , OCV 23 , . . . , OCV 2 L ) OCV min 3 = MIN ( OCV 31 , OCV 32 , OCV 33 , . . . , OCV 3 L ) . . . OCV min M = MIN ( OCV M 1 , OCV M 2 , OCV M 3 , . . . , OCV ML ) - - - ( 1 - 1 )
对用式(1-1)求出的OCVmin和作为目标的OCV(目标OCV)进行比较,将具有OCVmin比目标OCV高的单电池111的单电池组112决定为放电对象。然后,蓄电装置100停止时,对于对象单电池组112,用单电池控制单元121的通常动作模式的消耗电流使其放电。放电对象的单电池组112的最小电压值与目标OCV相等时,判断放电结束,该单电池控制单元121从通常动作模式转移到低耗电模式。
对本实施例中的决定放电结束条件1的第二方法进行说明。
决定放电结束条件1的第二方法中,计算确保规定的放电量所需的时间,在蓄电装置100停止时,以通常动作模式动作直到经过计算出的时间,经过了计算出的时间后放电结束,转移到低耗电模式。因此,本方法中,为了判断是否经过了计算出的时间,在单电池控制单元121中设置计时器等时间计测单元。
首先,根据所有单电池111的OCV测定结果(式(1-1)),基于SOC与OCV的相关关系推算SOC,用式(2-1)对每个单电池组112检测构成单电池组112的单电池111中SOC最小的单电池111的SOC(SOCmin)。以下设各单电池组112的最小SOC为SOCmin1、……、SOCminM
[式2]
SOC min 1 = MIN ( SOC 11 , SOC 12 , . . . , SOC 1 L ) SOC min 2 = MIN ( S OC 21 , SOC 22 , . . . , SOC 2 L ) SOC min 3 = MIN ( SOC 31 , SOC 32 , . . . , SOC 3 L ) . . . SOC min M = MIN ( S OC M 1 , SOC M 2 , . . . , SOC ML ) - - - ( 2 - 1 )
按照以下式(2-2)求出以上用式(2-1)计算出的SOCmin与作为目标的SOC(目标SOC)的差ΔSOC1。
[式3]
Figure BDA00002677413800102
根据求出的ΔSOC1,按照以下式(2-3)求出调整所需的时间t1。
[式4]
t 1 1 = ( Δ SOC 1 1 × Q max 1 ) / I C t 1 2 = ( Δ SOC 1 2 × Q max 2 ) / I C t 1 3 = ( ΔSOC 1 3 × Q max 3 ) / I C . . . t 1 M = ( Δ SOC 1 M × Q max M ) / I C - - - ( 2 - 3 )
此处,Qmax表示单电池111的满充电容量[Ah],Ic表示单电池控制单元121的消耗电流[A]。基于式(2-3)的结果,在蓄电装置100停止时,单电池控制单元121使通常动作模式下的动作维持t1的时间,由此用单电池控制单元121的通常动作模式的消耗电流使放电对象的单电池组112放电,经过了时间t1时,结束放电。即,从经过了t1的单电池控制单元121起依次转移到低耗电模式。
用图4说明放电单元1引起的SOC的变化。放电单元1中,抽出各单电池组112中电压最小的单电池111的SOC,使单电池控制单元121以通常动作模式动作直到各单电池组112的最小SOC一致。单电池组112是使单电池111串联连接的结构,所以构成单电池组112的所有单电池111以单电池控制单元121的消耗电流放电。因此,如图4所示,构成单电池组112的单电池111的SOC同样地降低,各单电池组112的最小SOC一致时,使放电单元1结束。
其中,本说明中,用构成电池组110的单电池111的最小电压值或最小SOC作为目标值,决定放电结束条件1,但不限于此。
接着,对放电单元2进行说明。本实施例中的放电单元2,是在构成单电池组112的单电池111中,对于电压或SOC较高的单电池111,用由旁通电阻122和旁通开关123构成的电压均等化电路使其放电的单元。即,使与放电对象的单电池111并联连接的旁通开关123接通,使用旁通电阻122,由此使单电池111强制地放电,降低至作为目标的电压(目标OCV)或SOC(目标SOC)。此处,目标OCV或目标SOC如上所述,是构成电池组110的多个单电池111中的某些过充电的情况下,为了消除该情况而设定的规定的电压或SOC,详情在后文中叙述。其中,本实施例中,对于放电结束条件2说明以下两种方法,但不限定于以下两种方法。
决定放电结束条件2的方法,与放电结束条件1同样,有基于单电池111的电池电压决定的第一方法,和计算出单电池111放电所需的时间并基于该结果决定的第二方法。
对决定放电结束条件2的第一方法进行说明。检测构成单电池组112的多个单电池111的电池电压,与按每个单电池组112设定的目标OCV进行比较,将具有比目标OCV更高的电压的单电池111决定为放电对象的单电池111。使与放电对象的单电池111并联连接的旁通开关123接通,使单电池111强制放电。放电对象的单电池111的电池电压与目标OCV相等时,结束放电。
对决定放电结束条件2的第二方法进行说明。决定放电结束条件2的第二方法中,与放电结束条件1同样,计算确保规定的放电量所需的时间,经过了计算出的时间后结束放电。因此,本方法中,为了判断是否经过了计算出的时间,在单电池控制单元121中设置计时器等时间计测单元。
首先,根据所有单电池111的OCV测定结果,基于SOC与OCV的相关关系推算SOC,按照以下式(2-4)求出各单电池111的SOC与目标SOC的差ΔSOC2。
[式5]
Figure BDA00002677413800121
根据求出的ΔSOC2,按照以下式(2-5)求出调整所需的时间t2。
[式6]
t 2 1 X = ( Δ SOC 2 1 X × Q max 1 X ) / I B t 2 2 X = ( Δ SOC 2 2 X × Q max 2 X ) / I B t 2 3 X = ( Δ SOC 2 3 X × Q max 3 X ) / I B . . . t 2 MX = ( Δ SOC 2 MX × Q max MX ) / I B ( X = 1,2,3 , . . . , L ) - - - ( 2 - 5 )
此处,Qmax表示单电池111的满充电容量[Ah],IB表示旁通电阻中流过的旁通电流[A],X表示构成单电池组的单电池111的编号。基于式(2-5)的结果,使放电对象的单电池111放电,在经过了确保规定的放电量所需的时间时,结束放电。
用图5说明放电单元2引起的SOC的变化。放电单元2中,以构成单电池组112的单电池111的电池电压与按每个单电池组112设定的目标值全部一致的方式,用均等化电路使OCV较高的单电池111放电。图示的例子的情况下,单电池组112a的目标值为A,单电池组112b的目标值为B。从而,如图5所示,构成单电池组112的单电池111中作为放电对象的单电池111的电池电压降低,构成单电池组112的所有单电池111的电池电压与目标值一致时结束放电单元2。
此外,本实施例中,也能够消除构成电池组110的单电池111的电压差异,进行电压的均等化。该情况下,设定构成电池组110的单电池111的最小电压值或最小SOC值作为放电单元1的放电结束的目标值,按每个单电池组112检测设定单电池控制单元121管理的单电池111中的最小电压值或最小SOC值作为放电单元2的放电的目标值即可。
接着,基于图6的流程图说明本实施例的蓄电装置中的动作流程。
步骤100中,判定车辆是否正在从充电器420充电或者正在行驶。充电或行驶中的情况下前进到步骤101,不是充电或行驶中的情况下前进到步骤104。
步骤101中,电池组控制单元150决定放电结束条件2,对单电池控制单元121发送放电结束条件2之后,前进到步骤102。步骤101中的电池组控制单元150的动作流程,用图7A在后文中说明。
步骤102中,单电池控制单元121用放电单元2使放电对象的单电池111放电。步骤102中的单电池控制单元121的动作流程,用图8A在后文中说明。
步骤103中,判定蓄电装置是否接收了充电的停止信号或车辆停止信号。接收了充电的停止信号或车辆停止信号的情况下,前进到步骤104。其中,车辆停止信号例如是表示车辆的点火开关断开、车辆停止的信号,蓄电装置100的充放电也停止。此外,本说明中,步骤102中即使是放电没有结束的状态,接收了车辆停止信号的情况下,也前进到步骤104,使放电单元2进行的放电结束,但也能够在车辆停止后继续进行步骤102中没有结束的处理。
步骤104中,电池组控制单元150决定使用单电池控制单元121的消耗电流进行的电压均等化的放电结束条件1,对单电池控制单元121发送放电结束条件1之后,前进到步骤105。步骤104中的电池组控制单元150的动作流程,用图7B在后文中说明。
步骤105中,单电池控制单元121基于放电结束条件1实施电压均等化。步骤105中的单电池控制单元121的动作流程,用图8B在后文中说明。
接着,基于图7A的流程图说明本实施例中的决定电池组控制单元150的放电结束条件2的动作流程。图7A是车辆行驶中或充电中的电池组控制单元150的动作流程图。
首先,步骤110中,取得所有单电池111无负载时或电流微弱可以视为无负载时的情况下的电压(OCV)。接着前进到步骤111,判定构成单电池组112的单电池111的电压或SOC与作为目标的电压或SOC是否存在差异。如果判定存在差异,则前进到步骤112。
步骤112中,决定使用由旁通电阻122和旁通开关123构成的均等化电路的放电单元2的放电结束条件2,在步骤113中对单电池控制单元121发送放电结束条件2。
接着,基于图7B的流程图说明本实施例中的决定电池组控制单元150的放电结束条件1的动作流程。图7B是车辆停止中的电池组控制单元150的动作流程图。
步骤114中,取得所有单电池111的OCV,前进到步骤115。步骤115中,判定构成单电池组112的单电池111的最小电压或SOC中是否存在差异。如果没有电压或SOC的差异,则前进到步骤117,使单电池控制单元121转移到低耗电模式,在步骤119中使电池组控制单元150转移到低耗电模式。步骤115的判定中,如果判定单电池111的电压或SOC中存在差异,则前进到步骤116。
步骤116中,决定放电结束条件1,在步骤118中对单电池控制单元121发送放电结束条件1。之后,在步骤119中使电池组控制单元150转移到低耗电模式。此处,电池组控制单元150的低耗电模式,是消耗电流比车辆起动中的运转模式小的运转模式。例如,是在电池组控制单元150具有的功能中,停止SOC的运算和运算上述放电结束条件的功能等,使接收下次车辆起动时从车辆控制单元200发送的向通常模式的转移命令用的功能动作,由此与通常模式相比,减小来自车载辅助设备用的电池的能量供给的运转模式。
接着,基于图8A的流程图说明本实施例中的单电池控制单元121的放电单元2的动作流程。图8A是说明车辆行驶中或充电中的单电池控制单元121的动作的流程图。
首先,步骤120中,单电池控制单元121接收从电池组控制单元150发送的放电结束条件2。接着,前进到步骤121,使用由旁通电阻122和旁通开关123构成的均等化电路,开始从放电对象的单电池111放电。
步骤122中,判定构成单电池组112的所有单电池的放电是否结束。如果判定已结束,则单电池控制单元121结束处理。步骤122的判定中判定所有单电池111的放电尚未结束的情况下,前进到步骤123,判定是否存在满足放电结束条件2的单电池111。如果存在放电结束的单电池111,则前进到步骤124,从放电结束的单电池111起依次使旁通开关123断开。之后,返回步骤122,继续处理直到构成单电池组112的所有单电池111的放电结束。
接着,基于图8B的流程图说明本实施例中的单电池控制单元121的放电单元1的动作流程。图8B是说明车辆停止中的单电池控制单元121的动作的流程图。
首先,步骤125中,单电池控制单元121接收从电池组控制单元150发送的放电结束条件1。接着,前进到步骤126,用放电单元1开始单电池111的放电。
步骤127中,判定构成单电池组112的单电池111的放电是否结束。判定已结束的情况下,使单电池控制单元121转移到低耗电模式。
这样,在车辆行驶中或充电中,用放电单元2使用由旁通电阻122和旁通开关123构成的电压均等化电路进行的放电而进行构成单电池组121的单电池111的电压或SOC的均等化,在车辆停止中,用放电单元1使单电池控制单元121维持通常动作模式而用消耗的消耗电流进行单电池组之间的电压均等化。其中,在蓄电装置100停止中,也可以在放电单元1之外还用放电单元2同时进行均等化。
图9表示在单电池控制单元121的管理单位即单电池组112之间产生电压差异的情况下的电动发电机410或充电器420进行的充电动作例。此处,假设构成单电池组112的单电池111之间没有差异。图示的情况下,仅有单电池控制单元121a管理的单电池组112a超过目标电压,单电池控制单元121b管理的单电池组112b没有超过目标电压。
电池组控制单元150按每个单电池控制单元对目标电压与单电池组121的电压进行比较,将具有比目标电压高的单电池111的单电池组121决定为放电对象。图9的情况下,单电池控制单元121b管理的单电池组112b已经低于目标电压,所以对单电池控制单元121b的动作模式管理电路127设定0,或者对单电池控制单元121b发送向低耗电模式的转移命令。另一方面,单电池控制单元121a管理的单电池组112a超过目标电压,所以仅使单电池控制单元121a独立地继续通常模式的动作,使单电池组112a放电。结果,在电池组控制单元150的动作停止后,单电池控制单元121a也能够进行单电池111的管理,以使单电池组112a的电池电压不继续超过目标电压。
其中,本实施例中,也能够消除构成电池组110的单电池111的电压或SOC的差异,进行电压的均等化。该情况下,设定构成电池组110的单电池111的最小电压值或者确保规定的放电量所需的时间作为放电单元1进行的放电的目标值即可。此外,关于放电单元2进行的放电的目标值,同样着眼于构成单电池组112的单电池111中电压或SOC最小的单电池111,设定构成单电池组112的单电池111的最小电压值或从放电对象的单电池111确保规定的放电量所需的时间即可。
图10和图11中,表示在构成单电池组112a或单电池组112b的4个单电池111的电压中产生差异,进而在单电池组112a与单电池组112b之间电压也有差异的情况下的电压均等化的状况。这样的情况下,用放电单元1和放电单元2两个方法进行电压均等化,能够消除电压差异。以下说明消除电压差异的方法。
图10(a)是车辆行驶中或充电中用旁通电流进行的调整的说明图,图10(b)是车辆停止中的用消耗电流进行的调整的说明图,图10(c)是表示调整后的状态的图。首先,构成单电池组112a和单电池组112b的单电池111中,存在如图10(a)所示的电压或SOC差异,所以用放电单元2消除该电压或SOC差异。此处,对于电压或SOC,单电池组121a的目标值设定为A,单电池组121b的目标值设定为B,放电结束后的目标值设定为C。目标值C设定为目标值A、B中较小的一方,该情况下设定为与目标值B相同。
从均等化结束的单电池111起,依次使与单电池111并联连接的旁通开关123断开,最终构成单电池组112a、112b的单电池111的电压或SOC全部均等时,使放电单元2进行的放电停止。在图10(b)中表示各单电池组内的差异消除后的状况。图10(b)中,构成单电池组112a、112b的单电池111的电压或SOC差异被消除,所以只要消除单电池组112a与单电池组112b之间产生的SOC或电压差异即可。该SOC或电压差异通过用放电单元1使单电池组112a放电而消除。满足放电结束条件1后,单电池控制单元121a转移到低耗电模式。这样,单电池111的电压调整结束后,如图10(c)所示能够消除所有单电池111的SOC或电压差异。
图11中,表示与图10同样,在构成单电池组112a或单电池组112b的4个单电池111的电压中产生差异,进而在单电池组112a与单电池组112b之间电压也有差异的情况下,用电动发电机410或充电器420进行的充电动作例。基于电动发电机410或充电器420进行的充电控制之前测定的单电池111的OCV测定结果,设定放电结束条件2,进行充电控制时,使用旁通电阻122或旁通开关123进行放电,由此使单电池控制单元121的管理单位内的单电池111的电压均等化。接收车辆停止信号、充电控制结束后,再次测定各单电池的OCV,电池组控制单元150基于该测定结果决定放电结束条件1。电池组控制单元150将放电结束条件1发送到单电池控制单元121之后,电池组控制单元150转移到低耗电模式。
图11的例子的情况下,将单电池控制单元121a监视的单电池组112a决定为放电对象的单电池组121,仅使单电池控制单元121a独立地继续通常模式的动作,使单电池组112a放电。结果,电池组控制单元150的动作停止后,通过对单电池控制单元112a进行放电,单电池控制单元121a使单电池组112a的电压与单电池组112b的电压相等,电压均等化完成,在车辆停止后也能够正确地进行电压的均等化。
其中,进行电池组110的控制时,优选可以在目标SOC附近进行单电池111的SOC均等化。例如,PHEV或EV中,进行充电至高SOC,这样的状况下,单电池111的劣化状态加速。因此,在高SOC下,SOC有差异时劣化状态中也会产生差异。从而,PHEV或EV的情况下,优选在高SOC区域中SOC变得均等。图12中举例表示了PHEV或EV的SOC变化的状况。图12中,表示了单电池组112a由满充电容量较大的单电池111构成,单电池组112b由满充电容量较小的单电池111构成的情况下,电池组110进行充放电的状况。先在高SOC区域中执行SOC的均等化,差异减小,但进行放电时,因为满充电容量的不同,SOC中产生差异。为了消除该SOC差异,放电结束后,用放电单元1进行SOC的均等化之后,进行充电时,因为满充电容量的不同而在高SOC区域中产生SOC差异。
于是,为了防止高SOC下的SOC差异,电池组控制单元150在EEPROM等记录介质中存储有根据图13所示的目标SOC与超过目标SOC的单电池组112的SOC差异求出的放电对象的单电池组112a的放电时间(设为放电时间1),仅基于放电时间1进行电压均等化即可。然后,电池组控制单元150对单电池控制单元121a发送放电时间1,转移到低耗电模式。监视放电对象的单电池组112a的单电池控制单元121a,在车辆停止中计测单电池控制单元121a监视的单电池组112a进行放电的时间(设为放电时间2)。放电对象的单电池组112a的放电没有结束车辆就开始动作的情况下,单电池控制单元121a对电池组控制单元150发送放电时间2,电池组控制单元150从放电时间1中减去放电时间2计算确保剩余的放电量所需的剩余放电时间并存储。然后,执行下一次均等化时,按存储的剩余放电时间从放电对象的单电池组112a放电。这样,在图13所示的高SOC范围中,能够使SOC均等。
对于应用本发明的情况下SOC均等化所需的天数,用仿真进行了估算。用图14说明仿真方法。仿真中,设想如图1和图2所示,将8个单电池111分为2个单电池组112a、112b,使单电池控制单元121a、121b与单电池组112a、112b对应的情况。图14表示了PHEV或EV的一天的运转模式例。首先,从家用电源等进行充电,直到8个单电池111中的某一个达到规定的SOC(上限SOC)。充电结束后,进行运转(放电)直到8个单电池111中的某一个达到规定的SOC(下限SOC),运转结束后,进入停止期间。本次仿真中,设车辆的运转期间为每天2小时,剩余22小时为停止期间。将其作为1天的循环,设每天反复相同的循环。
设想单电池111的容量为20Ah,旁通电路122中流过的电流为20mA,单电池控制单元121的动作所需的消耗电流为3mA。设单电池111的SOC全部都有差异,8个单电池111中,4个SOC较高的单电池111构成单电池组112a,其余4个SOC较小的单电池111构成单电池组112b。进行电压均等化前SOC最高的单电池111与SOC最小的单电池111的SOC的差为5%,对消除该SOC差异5%所需的天数进行估算。
图15(a)(b)表示仅在车辆行驶中进行电压均等化的情况下的SOC的均等化的状况。此外,图16(a)(b)表示不仅在车辆行驶中,在停止中也使监视放电对象的单电池的单电池控制单元动作,由此从单电池组放电,进行电压均等化的情况下的SOC的均等化的状况。
图15(a)和图16(a)表示电池组110充电结束后的各单电池111的SOC的状况。构成电池组110的单电池111中SOC最高的单电池111最先达到作为充电目标的上限SOC,充电结束。因此,SOC最高的单电池111以外的单电池111即使充电结束也没有达到充电目标的SOC,但开始电压均等化时,随着天数经过,SOC的差异逐渐消除,SOC最大的单电池111以外的单电池111也逐渐接近作为充电目标的上限SOC。
图15(b)和图16(b)表示电池组110的放电结束后,经过停止期间后充电开始之前的各单电池111的SOC。放电结束时,与充电结束时相反,如果SOC最小的单电池111达到下限的SOC值,则结束放电。从而,充电结束时构成电池组110的多个单电池111中SOC最小的单电池111最先达到放电的下限SOC,SOC最小的单电池111以外的单电池111达到放电的下限SOC之前,放电结束,但开始电压均等化后,随着天数经过,SOC的差异逐渐消除,SOC最小的单电池111以外的单电池111也逐渐接近作为目标的放电的下限SOC。
如上所述,电压均等化进行时,构成电池组110的所有单电池111的SOC接近作为充电目标值的上限SOC、或者接近放电的下限SOC,所以充放电期间中的SOC作范围变宽。
根据图15和图16对上述电压均等化结束所需的时间进行估算,仅在车辆行驶时进行电压均等化的情况下(图15),电压均等化所需的天数是25天,相对的,不仅在行驶中、在停止期间中也进行电压的均等化的情况下(图16)所需的天数是14天,与仅在行驶中进行电压均等化的情况相比,能够使电压均等化所需的天数缩短约10天。
其中,本实施例中,主要说明了在车辆停止中仅用放电单元1进行电压均等化的方法,但在车辆停止中,构成单电池组的单电池中存在电压或SOC的差异的情况下,可以在车辆停止中也用放电单元2实施放电。
根据本实施例,只要设定单电池控制单元121向低耗电模式的转移条件,则能够管理单电池的电池电压或SOC,所以能够用简单的处理、较少的命令数实现能够控制电池组110的蓄电器控制电路或蓄电装置。
[实施例2]
基于图17和图18说明本发明的第二实施例。
图17表示本实施例中的插电式混合动力车的蓄电装置100的结构例。本实施例中,使2个单电池111电并联连接构成并联单电池113,使其电串联连接8组,构成电池组110。此外,本实施例中,使4个并联单电池113串联连接构成单电池组112a、112b。
对于如上所述分组后的单电池组112a、112b分配单电池控制单元121a、121b。单电池控制单元121a、121b对于单电池组112a、112b并联连接,监视、控制构成分配的单电池组112a、112b的并联单电池113的状态。
如上所述,本实施例中只有电池组110的结构与实施例1不同,此外的电流检测单元130和电池组控制单元150等结构与实施例1相同。
图18中表示本实施例中的单电池控制单元121的电路结构图。本实施例中,与实施例1相比,仅在使2个单电池111并联连接而成的并联单电池113串联连接的结构这一点上不同。由旁通电阻122和旁通开关123构成的均等化电路,对于1组并联单电池113并联连接,是能够用BSW驱动电路125驱动旁通开关123的结构。
对本实施例中的放电结束条件的决定方法进行说明。本实施例中,因为是2个单电池111并联连接的结构,所以仅有决定放电结束条件1和放电结束条件2的第二方法、即运算确保规定放电量所需的时间的方法与实施例1不同。决定放电结束条件1和放电结束条件2的第一方法、即基于并联单电池113的电池电压决定放电结束条件的方法,与实施例1中记载的方法相同。于是,对本实施例中的确保规定放电量所需的时间的计算方法进行说明。
对本实施例中的决定放电结束条件1的第二方法进行说明。首先,测定构成电池组的并联单电池113的OCV,基于SOC与OCV的相关关系推算SOC。然后,按照式(2-1)计算构成单电池组112a、112b的并联单电池113中SOC最小的并联单电池113的SOC(SOCmin)。以下设构成各单电池组112a、112b、……的单电池111的最小SOC为SOCmin1、……、SOCminM
为了基于以上式(2-1)的计算结果决定放电结束条件1,而按照式(2-2)求出各单电池组112的SOCmin与作为目标的SOC(目标SOC)的差ΔSOC1。
根据求出的ΔSOC1,按照以下式(2-3')求出调整所需的时间t1'。
[式7]
t 1 1 ′ = ( Δ SOC 1 1 × Q max 1 ) / I C × 2 t 1 2 ′ = ( Δ SOC 1 2 × Q max 2 ) / I C × 2 t 1 3 ′ = ( Δ SOC 1 3 × Q max 3 ) / I C × 2 . . . t 1 M ′ = ( Δ SOC 1 M × Q max M ) / I C × 2 - - - ( 2 - 3 , )
此处,Qmax是单电池111的满充电容量[Ah]。Ic表示单电池控制单元121的消耗电流[A]。确保规定的放电量所需的时间,需要乘以并联连接的单电池111的个数求出。因此,如式(2-3')所示乘以并联连接的单电池111的个数(本实施例中为2)。基于上述计算结果使放电对象的单电池组112放电,经过了确保规定放电量所需的时间时,结束放电。
同样地,对本实施例中的决定放电结束条件2的第二方法进行说明。
基于用式(2-1)计算出的结果,按照式(2-4)求出单电池组112的SOCmin与并联单电池113的SOC的差ΔSOC2。
根据求出的ΔSOC2,按照以下式(2-5')求出调整所需的时间t2'。
[式8]
t 2 1 X ′ = 2 × ( Δ SOC 2 1 X × Q max 1 X ) / I B t 2 2 X ′ = 2 × ( Δ SOC 2 2 X × Q max 2 X ) / I B t 2 3 X ′ = 2 × ( Δ SOC 2 3 X × Q max 3 X ) / I B . . . t 2 MX ′ = 2 × ( Δ SOC 2 MX × Q max MX ) / I B ( X = 1,2,3 , . . . , L ) - - - ( 2 - 5 , )
此处,IB表示与并联单电池113并联连接的均等化电路中流过的旁通电流[A]。此处,与式(2-5')同样乘以构成并联单电池113的单电池111的个数(本实施例中为2个)。基于式(2-5')的结果,使放电对象的并联单电池113放电,经过了放电所需的时间时,结束放电。
本实施例中的蓄电装置的动作流程与实施例1中的蓄电装置的动作(图6)相同。
本实施例中的电池组控制单元150的动作与实施例1中的电池组控制单元150的动作(图7A、图7B)相同。
本实施例中的单电池控制单元121的动作与实施例1中的单电池控制单元121的动作(图8A、图8B)相同。
根据本实施例,因为构成并联单电池113的2个单电池111的电压相等,所以通过用放电单元1和放电单元2使放电对象的并联单电池113放电,能够期待与实施例1同样的效果。
[实施例3]
基于图19至图27说明本发明的第三实施例。其中,本实施例中,是使1个单电池控制单元121与1个单电池111对应的结构,1个单电池控制单元121监视1个单电池111的状态。这一点与实施例1不同。
图19中表示本实施例中的插电式混合动力车的包括驱动系统的蓄电装置100的结构例。本实施例中,为了简化说明而假设与实施例1同样由8个单电池111构成电池组110。
此外,图20中表示本实施例中的单电池控制单元121的电路结构。使1个单电池控制单元121与1个单电池对应的情况下,能够仅通过使用单电池控制单元121的动作所需的消耗电流的放电单元1进行单电池111之间的电压的调整。从而,不需要使用基于利用了旁通电阻122和旁通开关123构成的均等化电路的放电单元2的放电单元2。由此,与第一实施例中的单电池控制单元121的电路结构相比,不需要旁通电阻122、旁通开关123和驱动旁通开关123的BSW驱动电路125,所以能够使单电池控制单元121的电路结构成为简单的结构。
对本实施例中的放电结束条件1的决定方法进行说明。其中,为了决定放电结束条件1而应用的算式的说明中,将单电池111的个数8个置换为N个进行说明。
对本实施例中的决定放电结束条件1的第一方法进行说明。分别检测出构成电池组110的单电池111的OCV,对作为目标的OCV(目标OCV)与检测出的单电池111的OCV进行比较。结果,将OCV比目标OCV高的单电池决定为放电对象的单电池,对于对象单电池111,在车辆停止时用单电池控制单元121的通常模式的消耗电流使其放电。放电对象的单电池111的电压值与目标OCV相等时,结束放电,使监视结束了放电的单电池111的单电池控制单元121转移到低耗电模式。
对本实施例中的决定放电结束条件1的第二方法进行说明。决定放电结束条件1的第二方法中,计算确保规定的放电量所需的时间,在车辆停止时用单电池控制单元121的通常模式的消耗电流使对象单电池111放电。然后,经过了计算出的时间后结束放电,使监视结束了放电的单电池的单电池控制单元转移到低耗电模式。因此,本方法中,在单电池控制单元121中设置用于计测计算出的时间的计时器等时间计测单元。
首先,根据构成电池组110的单电池111的OCV测定结果,基于SOC与OCV的相关关系推算SOC,按照以下式(3-1)求出各单电池111的SOC与作为目标的SOC(目标SOC)的差ΔSOC3。
[式9]
Figure BDA00002677413800231
根据求出的ΔSOC3,按照以下式(3-2)求出调整所需的时间t3。
[式10]
t 3 1 = ( Δ SOC 3 1 × Q max 1 ) / I C t 3 2 = ( Δ SOC 3 2 × Q max 2 ) / I C t 3 3 = ( ΔSOC 3 3 × Q max 3 ) / I C . . . t 3 N = ( Δ SOC 3 N × Q max N ) / I C - - - ( 3 - 2 )
此处,Qmax表示单电池111的满充电容量[Ah],Ic表示单电池控制单元121的消耗电流[A]。基于式(3-2)的结果,在车辆停止时,使放电对象的单电池111放电,经过了确保规定的放电量所需的时间时,结束放电。
其中,本实施例中,与实施例1同样能够消除构成电池组110的单电池111的电压差异,进行电压的均等化。该情况下,设定构成电池组110的单电池111的最小电压值或最小SOC值作为放电单元1进行的放电的目标值即可。
接着,基于图21的流程图说明本实施例中的蓄电装置的动作流程。
首先,步骤300中,判定蓄电装置是否接收了充电的停止信号或车辆停止信号。接收了充电的停止信号或车辆停止信号的情况下,前进到步骤301。
步骤301中,电池组控制单元150决定使用单电池控制单元121的消耗电流进行的电压均等化的放电结束条件1,对单电池控制单元121发送放电结束条件1。步骤301中的电池组控制单元150的动作流程参照图22在后文中说明。
接着,步骤302中,基于放电结束条件1,实施单电池控制单元121监视的单电池111的放电。步骤302中的单电池控制单元121的动作流程参照图23在后文中说明。
基于图22的流程图说明本实施例中的电池组控制单元150的动作流程。
首先,步骤310中,取得构成电池组110的单电池111的OCV。之后,前进到步骤311,对取得的OCV的值与目标OCV的值进行比较,判定是否存在电压或SOC的差异。步骤311中判定没有电压或SOC的差异的情况下,前进到步骤314,使单电池控制单元112转移到低耗电模式。
步骤311中判定存在电压或SOC的差异的情况下,前进到步骤312,决定使用单电池控制单元121的消耗电流的放电单元1的放电结束条件1,在步骤313中对单电池控制单元121发送放电结束条件。之后,步骤315中,使电池组控制单元150转移到低耗电模式。
接着,基于图23的流程图说明本实施例中的单电池控制单元121的动作流程。
首先,步骤320中,单电池控制单元121接收从电池组控制单元150发送的放电结束条件1。接着,前进到步骤321,开始使用单电池控制单元121的消耗电流放电。步骤322中,判定构成电池组110的单电池111的放电是否结束。判定结束的情况下,前进到步骤323,使单电池控制单元121转移到低耗电模式。
图24表示了在单电池控制单元121监视的单电池111之间产生电压差异的情况下的电动发电机410或充电器420进行的充电动作例。
电池组控制单元150在充放电停止时,对单电池控制单元121监视的单电池111的电压与目标电压进行比较,将比目标电压高的单电池111决定为放电对象。此处,对于监视电压已经低于目标电压的单电池111的单电池控制单元121的动作模式管理电路127设定0,或者对单电池控制单元121发送向低耗电模式的转移命令。另一方面,对于监视具有比目标电压高的电压的单电池111的单电池控制单元121,仅使该单电池控制单元121独立地继续通常模式的动作,使放电对象的单电池111放电。然后,从监视放电结束的单电池111的单电池控制单元121起依次转移到低耗电模式。结果,在电池组控制单元150的动作停止后,单电池控制单元121也能够进行单电池111的管理,以使单电池111的电池电压不继续超过目标电压。
图25和图26表示构成电池组110的8个单电池111的电压中产生差异的情况下的电压均等化的状况。本实施例中,与实施例1不同,能够仅用放电单元1进行电压的均等化。以下对消除电压或SOC的差异的方法进行说明。
图25中表示本实施例中的电压均等化的状况。蓄电装置停止后的8个单电池111的SOC如图25的右上图所示全部存在差异。
此处,蓄电装置停止时,基于用式(3-2)求出的确保规定放电量所需的时间这样的放电结束条件,使监视调整对象的单电池111的单电池控制单元121以通常模式动作,进行电压均等化。然后,如图25的右中部的图所示,从调整结束的单电池控制单元121起依次转移到低耗电模式。这样,调整结束后,如图25的右下图所示能够使所有单电池111的电压均等化。
图26表示了单电池控制单元121监视的单电池111之间产生电压差异的情况下的电动发电机410或充电器420进行的充电动作例。接收车辆停止信号后,电池组控制单元150从构成电池组110的单电池111的电池电压中抽出最小电压值,设定为目标电压值。对单电池控制单元121监视的单电池111的电压与目标电压值进行比较,将比目标电压高的单电池111决定为放电对象。此处,对于监视电压已经低于目标电压的单电池111的单电池控制单元121的动作模式管理电路127设定0,或者对单电池控制单元121发送向低耗电模式的转移命令。另一方面,对于监视具有比目标电压高的电压的单电池111的单电池控制单元121,仅使该单电池控制单元121独立地继续通常模式的动作,使放电对象的单电池111放电,从监视放电结束的单电池111的单电池控制单元起依次转移到低耗电模式。结果,在电池组控制单元150的动作停止后,单电池控制单元121也能够进行单电池111的管理,以使单电池111的电池电压不继续超过目标电压。
如果用以上说明的方法进行电压的均等化,则在车辆的蓄电装置停止后也能够正确地进行电压的均等化。此外,电池组110由满充电容量不同的单电池111构成的情况下,如果用实施例1中叙述的方法设定放电结束条件1,则能够在目标SOC的范围内进行电压的均等化。
图27(a)(b)表示了在与实施例1中用图14说明的方法同样的循环下,对SOC均等化所需的天数进行估算的结果。本次仿真中,对1个单电池111分配1个单电池控制单元121,没有由旁通开关122和旁通电阻123构成的放电电路。即,电压均等化仅在车辆的停止期间进行。图27(a)表示充电结束后的各单电池111的SOC的变化,图27(b)表示充电开始前的各单电池的SOC的变化。图的纵轴是SOC(%),横轴是天数。
本实施例中也与实施例1的图15和图16同样,充电结束后构成电池组110的所有单电池111逐渐接近作为充电目标的上限SOC,充电开始前,构成电池组110的所有单电池111接近放电的下限SOC。根据附图,SOC均等化所需的天数是18天,与仅在车辆行驶中进行电压均等化的情况下的24天(图15)相比,能够减少SOC均等化所需的天数。
根据本实施例,只要设定单电池控制单元121向低耗电模式的转移条件,则能够管理单电池111的电池电压或SOC,所以能够用简单的处理、较少的命令数实现能够控制电池组110的蓄电器控制电路或蓄电装置。
[实施例4]
基于图28和图29说明本发明的第四实施例。图28是表示本实施例中的插电式混合动力车的包括驱动系统的蓄电装置的结构例的图。图29是单电池控制单元121的电路结构图。
本实施例中,使8组由2个单电池111电并联连接而成的并联单电池113电串联连接,构成电池组110,与实施例3相比,仅有这一点不同。
对本实施例中的放电结束条件的决定方法进行说明。本实施例中,与实施例3同样仅用放电单元1从单电池111进行放电。
对本实施例中的放电结束条件1的决定方法进行说明。其中,为了决定放电结束条件1而应用的算式的说明中,将并联单电池113的个数8个置换为N个进行说明。
本实施例中的决定放电结束条件1的第一方法与实施例3相同。
对本实施例中的决定放电结束条件1的第二方法进行说明。首先,根据构成电池组110的并联单电池113的OCV测定结果,基于SOC与OCV的相关关系推算SOC,按照式(3-1)求出上述检测结果与构成电池组110的并联单电池113的SOC与作为目标的SOC(目标SOC)的差ΔSOC3。根据求出的ΔSOC3,按照以下式(3-2')求出调整所需的时间t3'。
[式11]
t 3 1 ′ = ( Δ SOC 3 1 × Q max 1 ) / I C × 2 t 3 2 ′ = ( Δ SOC 3 2 × Q max 2 ) / I C × 2 t 3 3 ′ = ( Δ SOC 3 3 × Q max 3 ) / I C × 2 . . . t 3 N ′ = ( Δ SOC 3 N × Q max N ) / I C × 2 - - - ( 3 - 2 , )
此处,Qmax表示单电池111的满充电容量[Ah],Ic表示单电池控制单元121的消耗电流[A]。与实施例2同样,乘以构成并联单电池113的单电池111的个数(本实施例中为2个)。基于式(3-2')的结果,使放电对象的并联单电池113放电,在经过了确保规定的放电量所需的时间时,结束放电。
本实施例中的蓄电装置的动作,与实施例3中的蓄电装置的动作(图21)相同。
本实施例中的电池组控制单元150的动作,与实施例3中的电池组控制单元150的动作(图22)相同。
本实施例中的单电池控制单元121的动作,与实施例3中的单电池控制单元121的动作(图23)相同。
根据本发明,因为构成并联单电池113的2个单电池111在无负载时SOC相等,所以能够期待与实施例3同样的效果。
[实施例5]
基于图30说明本发明的第五实施例。本实施例能够应用于具备从单电池111接收电力而动作、并且监视单电池111的状态的单电池控制单元121的蓄电装置100。
本实施例具备在电池组控制单元150与单电池控制单元121之间发生通信错误、不能够正确接收放电结束条件的情况下,自动地使单电池控制单元121转移到低耗电模式的功能。本实施例中的电池组控制单元150的动作与图7或图22相同。
基于图30说明本实施例中的单电池控制单元121的动作。其中,图30中的单电池控制单元121的流程图,说明蓄电装置100接收车辆停止信号、用电池组控制单元150运算了放电结束条件之后的单电池控制单元121的动作。
首先,步骤500中,判定是否从电池组控制单元150接收到放电结束条件。
正确地接收到放电结束条件的情况下,前进到步骤501,用放电单元1实施电压均等化。之后,电压均等化结束后,前进到步骤502,使单电池控制单元121转移到低耗电模式。
步骤500中未能接受放电结束条件的情况下,前进到步骤503。步骤503中,判定车辆停止后是否经过了规定时间。步骤503中没有经过规定时间的情况下,返回步骤500,再次判定是否接收到放电结束条件1。
步骤503中经过了规定时间的情况下,判定电池组控制单元150与单电池控制单元121之间发生通信错误、单电池控制单元121未能正确接收放电结束条件,前进到步骤502,使单电池控制单元121转移到低耗电模式。
根据本实施例,在电池组控制单元150与单电池控制单元121之间发生通信错误的情况下,也能够防止单电池控制单元121保持动作的状态,能够防止单电池111成为过放电状态。
[实施例6]
对本发明的第六实施例进行说明。
本实施例中,着眼于单电池控制单元121的动作所需的消耗电流的个体差异引起的差异。单电池控制单元121中存在消耗电流较小的和较大的。单电池控制单元121如图2所示用来自单电池组112的能量供给、或者如图20所示用来自单电池111的能量供给进行动作,所以单电池控制单元121的消耗电流的个体差异较大的情况下,因该个体差而产生单电池组112或单电池111的电压或SOC差异。
于是,在单电池控制单元121制造时预先测定单电池控制单元121的消耗电流差异,将测定结果存储在电池组控制单元150中。电池组控制单元150利用预先存储的消耗电流的值,将式(2-3)、式(2-5)、式(2-3')、式(2-5')、式(3-2)、式(3-2')的消耗电流值Ic置换为各单电池控制单元121的消耗电流值,计算出确保规定的放电量所需的时间。然后,电池组控制单元150对单电池控制单元121发送确保规定放电量所需的时间。之后,电池组控制单元150转移到低耗电模式,单电池控制单元121在以通常模式动作了电池组控制单元150计算出的时间后,转移到低耗电模式。这样,能够抑制单电池控制单元121的个体差异引起的消耗电流的差异对电压或SOC差异造成的影响而进行SOC管理。
其中,上述说明中,是在电池组控制单元150中存储与消耗电流的差异相关的信息的结构,但也可以使单电池控制单元121存储各自的消耗电流值。这样的情况下,在接收到车辆停止信号之后,将单电池控制单元121中存储的消耗电流的值与单电池111的信息一同发送到电池组控制单元150即可。接收到单电池控制单元121的信息的电池组控制单元150,将式(2-3)、式(2-5)、式(2-3')、式(2-5')、式(3-2)、式(3-2')中的消耗电流值Ic置换为各单电池控制单元121的消耗电流之,计算出确保规定放电量所需的时间。电池组控制单元150对单电池控制单元121发送确保规定放电量所需的时间,转移到低耗电模式。然后,使单电池控制单元121按电池组控制单元150计算出的时间以通常模式动作而进行单电池111的放电,由此能够抑制单电池控制单元121的个体差异引起的消耗电流的差异对电压或SOC差异造成的影响而进行SOC管理。
本实施例能够应用于具备从单电池111接收电力而动作、并且监视单电池111的状态的单电池控制单元121的蓄电装置。
[实施例7]
基于图31至图33说明本发明的第七实施例。
本实施例的蓄电装置100,具有以监视SOC的差异较大的单电池111的单电池控制单元121的消耗电力增大的方式变更动作、促进电压或SOC差异的消除的功能。
图31中表示本实施例中的单电池控制单元121的电路结构。本实施例中,以图20所示的单电池控制单元121的电路中,增加消耗电力变更电路128',进而对于一个单电池111具备一个单电池控制单元121的结构为例进行说明。此外,此处的电压检测电路124基于来自电池组控制单元150的指令开始取得单电池111的电压。
图31所示的消耗电力变更电路128',在单电池控制单元121接收来自电池组控制单元150的放电结束条件、将信号内的时间信息设定到动作模式管理电路127、单电池控制单元121继续通常模式的动作直到经过了设定的时间时,变更电压检测电路124的采样速度。
用图32说明本实施例中的电压检测电路124的动作。本实施例中,在动作模式管理电路127中设定时间信息,单电池控制单元121继续通常模式的动作直到经过设定时间时,即使没有来自电池组控制单元150的指令,电压检测电路124也转移到连续检测单电池111的电压的模式。然后,经过了动作模式管理电路127中设定的时间的情况下,单电池控制单元121转移到低耗电模式,与此同时电压检测电路124的动作也停止。
通过上述基于消耗电力变更电路128'的电压检测电路124的动作变更,能够以增加单电池控制单元121的消耗电流的方式进行变更,所以能够使单电池控制单元121的管理对象的单电池111的能量消耗比通常增大。结果,能够在比较短的时间内使单电池111的SOC或电压降低。使用本实施例的单电池控制单元121时,能够在比较短的时间中避免如图9所示超过目标SOC的状态下的单电池111的搁置状态。进而,也能够缩短如图11所示使用单电池控制单元121进行的所有单电池111的电压或SOC均等化所需的时间。
本实施例中的单电池控制单元121具备的消耗电力变更电路128',也可以进一步实施单电池控制单元121具备的计时器的周期变更。用图33进一步说明单电池控制单元121具备的计时器的周期变更。单电池控制单元121中,为了控制信号输入输出电路129的采样时刻等而具备多个计时器。对动作模式管理电路127设定了保持通常模式动作的时间的情况下,消耗电力变更电路128'变更单电池控制单元121具备的一个以上的计时器的动作周期。由此,单电池控制单元121的消耗电流处于增加的方向,所以管理对象的单电池111消耗的能量增加,结果单电池111的SOC或电压的降低处于加快的方向。由此,能够避免图9和图24的超过目标SOC的状态下的单电池111的搁置状态,缩短如图11、图26所示用单电池控制单元121进行的所有单电池111的SOC均等化所需的时间。
其中,本实施例中以对于一个单电池111具备一个单电池控制单元121的结构为例进行了说明,但也可以是对于多个单电池111具备一个单电池控制单元121的结构。该情况下,用本实施例中的消耗电力变更电路128'的功能,能够使管理对象的单电池组112的SOC或电压降低加速。
根据以上所述,通过使用本实施例的单电池控制单元121,能够在比较短的时间中避免超过目标SOC或目标电压的单电池111的状态,能够缩短所有单电池111的SOC均等化所需的时间。
其中,本实施例中,关于增大消耗电流的方法,说明了变更电池电压的采样速度的方法、和进行计时器的周期变更的方法这2种,但不限定于此。此外,也能够同时使用两者。
此外,本实施例能够应用于具备从单电池111接收电力而动作、并且监视单电池111的状态的单电池控制单元121的蓄电装置。
此外,也能够使以上说明的各实施例与变形例的一个或多个组合。变形例也能够任意地组合。
以上说明只是一例,本发明并不限定于上述实施例的结构。
符号说明
100  蓄电装置
110  电池组
111  单电池
112  单电池组
120  单电池管理单元
121  单电池控制单元
122  旁通电阻
123  旁通开关
124  电压检测电路
125  BSW驱动电路
126  电源电路
127  动作模式管理电路
128  控制电路
128' 消耗电力变更电路
129  信号输入输出电路
130  电流检测单元
140  电压检测单元
150  电池组控制单元
160  信号通信单元
170  绝缘元件
200  车辆控制单元
400  逆变器
410  电动发电机
420  充电器

Claims (16)

1.一种蓄电器控制电路,其特征在于,包括:
多个蓄电器控制单元,其分别被分别由多个蓄电器构成的串联连接构成蓄电部的多个蓄电器组供电而动作,并且监视和控制接受其供电的蓄电器组的各个蓄电器的状态;和
蓄电部控制单元,其根据来自所述多个蓄电器控制单元的信息控制所述多个蓄电器控制单元,
所述蓄电部控制单元,在存在充电状态比规定的充电状态高的蓄电器组时,在所述蓄电部的充放电停止时使监视所述充电状态高的蓄电器组的蓄电器控制单元的动作继续,来降低充电状态。
2.一种蓄电器控制电路,其特征在于,包括:
多个蓄电器控制单元,其分别被串联连接构成蓄电部的多个蓄电器供电而动作,并且监视和控制接受其供电的蓄电器的状态;和
蓄电部控制单元,其根据来自所述多个蓄电器控制单元的信息控制所述多个蓄电器控制单元,
所述蓄电部控制单元,在存在充电状态比规定的充电状态高的蓄电器时,在所述蓄电部的充放电停止时使监视所述充电状态高的蓄电器的蓄电器控制单元的动作继续,来降低充电状态。
3.如权利要求1或2所述的蓄电器控制电路,其特征在于:
所述蓄电部控制单元,决定所述多个蓄电器控制单元监视的所述蓄电器的放电结束条件,在对所述多个蓄电器控制单元发送了放电结束条件之后,转移到低耗电模式。
4.如权利要求3所述的蓄电器控制电路,其特征在于:
所述多个蓄电器控制单元,根据从所述蓄电部控制单元发送的所述放电结束条件实施充电状态的调整,从完成了调整的蓄电器控制单元起依次转移到低耗电模式。
5.如权利要求1所述的蓄电器控制电路,其特征在于:
所述蓄电器控制电路具备电压平均化电路,该电压平均化电路具有与构成监视对象的蓄电器组的各蓄电器并联连接的旁通电阻和旁通开关,
在构成所述蓄电器组的蓄电器的充电状态比规定的充电状态高的情况下,所述蓄电器控制单元利用所述电压平均化电路使所述充电状态高的蓄电器放电,来降低充电状态。
6.如权利要求1或2所述的蓄电器控制电路,其特征在于:
所述蓄电部控制单元决定所述多个蓄电器控制单元监视的所述蓄电器的放电结束条件,
所述蓄电器控制单元,接收从所述蓄电部控制单元发送的所述放电结束条件,根据接收到的放电结束条件实施充电状态的调整,在所述蓄电部的充放电停止后的规定时间内没有接收到所述放电结束条件的情况下,转移到低耗电模式。
7.如权利要求3所述的蓄电器控制电路,其特征在于:
所述蓄电部控制单元,根据预先存储的所述多个蓄电器控制单元的各个的消耗电流值,决定所述放电结束条件。
8.如权利要求1或2所述的蓄电器控制电路,其特征在于:
具有使所述蓄电器控制单元的动作所需的消耗电流增大的模式,在所述蓄电器控制单元的动作继续时切换到所述模式,促进所述充电状态的降低。
9.一种蓄电装置,其特征在于,包括:
蓄电部,其串联连接分别由多个蓄电器构成的多个蓄电器组;
多个蓄电器控制单元,其对各蓄电器组分别设置一个,被从分配的蓄电器组供电而动作,并且监视和控制该蓄电器组的各蓄电器的状态;和
蓄电部控制单元,其根据来自所述多个蓄电器控制单元的信息控制所述多个蓄电器控制单元,
所述蓄电部控制单元,在存在充电状态比规定的充电状态高的蓄电器组时,在所述蓄电部的充放电停止时使监视所述充电状态高的蓄电器组的蓄电器控制单元的动作继续,来降低充电状态。
10.一种蓄电装置,其特征在于,包括:
蓄电部,其电串联连接多个蓄电器电而构成;
多个蓄电器控制单元,其对各个蓄电器分别设置一个,被从分配的蓄电器供电而动作,并且监视和控制该蓄电器的状态;和
根据来自所述多个蓄电器控制单元的信息控制所述多个蓄电器控制单元的蓄电部控制单元,
所述蓄电部控制单元,在存在充电状态比规定的充电状态高的蓄电器时,在所述蓄电部的充放电停止时使监视所述充电状态高的蓄电器的蓄电器控制单元的动作继续,来降低充电状态。
11.如权利要求9或10所述的蓄电装置,其特征在于:
所述蓄电部控制单元,决定所述多个蓄电器控制单元监视的所述蓄电器的放电结束条件,在对所述多个蓄电器控制单元发送了放电结束条件之后,转移到低耗电模式。
12.如权利要求11所述的蓄电装置,其特征在于:
所述多个蓄电器控制单元,根据从所述蓄电部控制单元发送的所述放电结束条件实施充电状态的调整,从完成了调整的蓄电器控制单元起依次转移到低耗电模式。
13.如权利要求9所述的蓄电装置,其特征在于:
所述蓄电器控制电路,具备电压平均化电路,该电压平均化电路具有与构成监视对象的蓄电器组的各蓄电器并联连接的旁通电阻和旁通开关,
在构成所述蓄电器组的蓄电器的充电状态比规定的充电状态高的情况下,所述蓄电器控制单元利用所述电压平均化电路使所述充电状态高的蓄电器放电,来降低充电状态。
14.如权利要求9或10所述的蓄电装置,其特征在于:
所述蓄电部控制单元决定所述多个蓄电器控制单元监视的所述蓄电器的放电结束条件,
所述蓄电器控制单元,接收从所述蓄电部控制单元发送的所述放电结束条件,根据接收到的放电结束条件实施充电状态的调整,在所述蓄电部的充放电停止后的规定时间内没有接收到所述放电结束条件的情况下,转移到低耗电模式。
15.如权利要求11所述的蓄电装置,其特征在于:
所述蓄电部控制单元,根据预先存储的所述多个蓄电器控制单元的各个的消耗电流值,决定所述放电结束条件。
16.如权利要求9或10所述的蓄电装置,其特征在于:
具有使所述蓄电器控制单元的动作所需的消耗电流增大的模式,在所述蓄电器控制单元的动作继续时切换到所述模式,促进所述充电状态的降低。
CN201180032523.9A 2010-06-28 2011-02-28 蓄电器控制电路和蓄电装置 Active CN102959827B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010-146734 2010-06-28
JP2010146734A JP5546370B2 (ja) 2010-06-28 2010-06-28 蓄電器制御回路及び蓄電装置
PCT/JP2011/054466 WO2012002002A1 (ja) 2010-06-28 2011-02-28 蓄電器制御回路及び蓄電装置

Publications (2)

Publication Number Publication Date
CN102959827A true CN102959827A (zh) 2013-03-06
CN102959827B CN102959827B (zh) 2016-05-11

Family

ID=45401740

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180032523.9A Active CN102959827B (zh) 2010-06-28 2011-02-28 蓄电器控制电路和蓄电装置

Country Status (5)

Country Link
US (1) US9362759B2 (zh)
EP (1) EP2587621B1 (zh)
JP (1) JP5546370B2 (zh)
CN (1) CN102959827B (zh)
WO (1) WO2012002002A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104619564A (zh) * 2013-07-23 2015-05-13 株式会社小松制作所 混合动力工程机械及混合动力工程机械的信息通知控制方法
CN106662902A (zh) * 2014-07-03 2017-05-10 高通股份有限公司 用于降低集成电路功率的多域异构工艺‑电压‑温度跟踪
CN106877482A (zh) * 2015-09-24 2017-06-20 三星Sdi株式会社 不间断电源
CN107005070A (zh) * 2014-12-08 2017-08-01 株式会社Lg 化学 用于控制电池架继电器的设备和方法
CN107113206A (zh) * 2015-01-05 2017-08-29 株式会社自动网络技术研究所 车载中继装置
CN110011368A (zh) * 2013-04-25 2019-07-12 株式会社杰士汤浅国际 蓄电元件保护装置、蓄电装置及蓄电元件保护方法
CN111152668A (zh) * 2020-01-08 2020-05-15 青岛昌轮变速器有限公司 适用于马达驱动设备的双重混合电池组
CN112470326A (zh) * 2018-07-25 2021-03-09 松下知识产权经营株式会社 管理装置以及电源系统
CN114407715A (zh) * 2022-01-20 2022-04-29 株洲中车特种装备科技有限公司 一种轨道车辆储能系统充电方法
CN114641446A (zh) * 2019-11-12 2022-06-17 瑞尔科技有限公司 智能高处安装设备升降装置及其控制方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5453184B2 (ja) 2010-06-28 2014-03-26 日立ビークルエナジー株式会社 電池制御回路
US10536007B2 (en) 2011-03-05 2020-01-14 Powin Energy Corporation Battery energy storage system and control system and applications thereof
EP2814132B1 (en) * 2012-02-09 2016-10-19 Mitsubishi Electric Corporation Parallel accumulator system and method of control thereof
JP2014057398A (ja) * 2012-09-11 2014-03-27 Panasonic Corp 蓄電池管理装置および蓄電池管理方法
US9831691B2 (en) * 2012-09-18 2017-11-28 Nec Energy Devices, Ltd. Power storage system and cell protection method which protects the cell by both cutting from the cell pack and the cell pack from the system
JP6234127B2 (ja) 2012-10-11 2017-11-22 株式会社Gsユアサ 蓄電装置
JP6042192B2 (ja) * 2012-12-03 2016-12-14 三洋電機株式会社 車両用電源装置
JP5812025B2 (ja) * 2013-02-25 2015-11-11 トヨタ自動車株式会社 定置用蓄電システム及び制御方法
JP6087675B2 (ja) * 2013-03-15 2017-03-01 株式会社東芝 電池モジュール
CN103943905B (zh) * 2013-11-01 2016-05-11 陈永强 蓄电池综合维护仪及在浮充状态下提升蓄电池性能的方法
JP2015191878A (ja) * 2014-03-31 2015-11-02 株式会社日立製作所 リチウムイオン二次電池システムおよびリチウムイオン二次電池の状態診断方法
US10263436B2 (en) * 2014-10-20 2019-04-16 Powin Energy Corporation Electrical energy storage unit and control system and applications thereof
US10396582B2 (en) * 2015-07-01 2019-08-27 Maxim Integrated Products, Inc. Master slave charging architecture with communication between chargers
US10153521B2 (en) 2015-08-06 2018-12-11 Powin Energy Corporation Systems and methods for detecting a battery pack having an operating issue or defect
US10254350B2 (en) 2015-08-06 2019-04-09 Powin Energy Corporation Warranty tracker for a battery pack
US10122186B2 (en) 2015-09-11 2018-11-06 Powin Energy Corporation Battery management systems (BMS) having isolated, distributed, daisy-chained battery module controllers
US9923247B2 (en) 2015-09-11 2018-03-20 Powin Energy Corporation Battery pack with integrated battery management system
US9882401B2 (en) 2015-11-04 2018-01-30 Powin Energy Corporation Battery energy storage system
EP3398239A1 (en) * 2015-12-29 2018-11-07 Vito NV Device and method for the reconfiguration of a rechargeable energy storage device into separate battery connection strings
CN108602444B (zh) * 2016-01-29 2022-06-24 丰田自动车欧洲公司 控制设备和用于放电可再充电电池的方法
US10699278B2 (en) 2016-12-22 2020-06-30 Powin Energy Corporation Battery pack monitoring and warranty tracking system
JP6794889B2 (ja) * 2017-03-21 2020-12-02 株式会社デンソー 電圧検出装置
KR101855337B1 (ko) 2017-04-21 2018-05-04 정병로 배터리 충전장치 및 충전방법
KR102150147B1 (ko) * 2017-05-24 2020-09-01 주식회사 엘지화학 배터리 모듈 균등화 장치 및 방법
WO2019123907A1 (ja) * 2017-12-22 2019-06-27 三洋電機株式会社 管理装置、及び電源システム
JP2021177672A (ja) * 2018-07-30 2021-11-11 三洋電機株式会社 管理装置、及び電源システム
US11289766B2 (en) * 2018-11-13 2022-03-29 Rivian Ip Holdings, Llc Distribution system for unswitched high voltage power
US11070068B2 (en) * 2019-02-06 2021-07-20 International Business Machines Corporation Battery pack and method for discharging the same after a fault event
US11145917B2 (en) * 2019-02-11 2021-10-12 International Business Machines Corporation Cell balancing network to heat battery pack
JP7253958B2 (ja) * 2019-03-29 2023-04-07 株式会社デンソーテン バッテリ制御装置およびバッテリ制御方法
US10992147B2 (en) * 2019-09-25 2021-04-27 GM Global Technology Operations LLC Diagnostic method for electric propulsion system with reconfigurable battery system
JP7062628B2 (ja) * 2019-12-18 2022-05-06 本田技研工業株式会社 車両用蓄電システム
CN113296003B (zh) * 2021-05-14 2023-09-12 奇瑞商用车(安徽)有限公司 一种动力电池压差预警方法和系统
CN113809416B (zh) * 2021-08-26 2023-04-07 福建星云电子股份有限公司 一种电池快速修复方法及系统
CN115021365B (zh) * 2022-06-27 2024-07-23 国网湖北省电力有限公司电力科学研究院 基于储能系统的电池均衡方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282159A (ja) * 2002-03-26 2003-10-03 Shin Kobe Electric Mach Co Ltd 電池制御システム
CN1744374A (zh) * 2004-09-02 2006-03-08 日产自动车株式会社 组电池容量控制系统和方法
JP2007244058A (ja) * 2006-03-07 2007-09-20 Nissan Motor Co Ltd 組電池の容量調整装置
CN101320916A (zh) * 2007-03-28 2008-12-10 株式会社东芝 组电池的保护装置和电池组装置
US20080309288A1 (en) * 2005-12-02 2008-12-18 Southwest Electronic Energy Corporation Method for balancing lithium secondary cells and modules

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060864A (en) * 1994-08-08 2000-05-09 Kabushiki Kaisha Toshiba Battery set structure and charge/discharge control apparatus for lithium-ion battery
JPH08123587A (ja) * 1994-10-27 1996-05-17 Canon Inc 携帯型情報処理装置
US5920179A (en) * 1997-05-05 1999-07-06 Aer Energy Resources, Inc. System and method for balancing charge cycles for batteries or multiple-cell battery packs
US6025695A (en) * 1997-07-09 2000-02-15 Friel; Daniel D. Battery operating system
WO1999065131A1 (en) * 1998-06-09 1999-12-16 Farnow Technologies Pty Ltd Energy storage system
JP3670522B2 (ja) * 1999-07-30 2005-07-13 富士通株式会社 バッテリパック
JP3431867B2 (ja) * 1999-09-21 2003-07-28 松下電器産業株式会社 電池電源装置及びこれを用いた電動機器
JP4308408B2 (ja) * 2000-04-28 2009-08-05 パナソニック株式会社 二次電池の入出力制御装置
JP2004524793A (ja) * 2001-03-30 2004-08-12 デザインライン・リミテッド バッテリー管理ユニット、システム、および方法
JP3991620B2 (ja) 2001-05-24 2007-10-17 新神戸電機株式会社 制御回路
JP4605952B2 (ja) * 2001-08-29 2011-01-05 株式会社日立製作所 蓄電装置及びその制御方法
US6549014B1 (en) * 2002-02-15 2003-04-15 Power Designers, Llc Battery monitoring method and apparatus
JP3620517B2 (ja) * 2002-06-12 2005-02-16 日産自動車株式会社 組電池の電圧制御装置
JP3879635B2 (ja) * 2002-09-06 2007-02-14 日産自動車株式会社 移動体用燃料電池パワープラントシステム
JP4213624B2 (ja) 2004-05-13 2009-01-21 新神戸電機株式会社 電池制御システム
US20060022646A1 (en) * 2004-07-28 2006-02-02 Moore Stephen W Method for battery cold-temperature warm-up mechanism using cell equilization hardware
US7525285B2 (en) * 2004-11-11 2009-04-28 Lg Chem, Ltd. Method and system for cell equalization using state of charge
JP5050325B2 (ja) * 2005-07-12 2012-10-17 日産自動車株式会社 組電池用制御装置
JP4448111B2 (ja) * 2006-07-31 2010-04-07 日立ビークルエナジー株式会社 電源システム
WO2008055505A1 (en) * 2006-11-10 2008-05-15 Lithium Balance A/S A battery management system
CN101663592B (zh) * 2007-03-02 2013-07-17 美国亚德诺半导体公司 用于电池监视的方法和装置
JP4722067B2 (ja) * 2007-03-06 2011-07-13 日立ビークルエナジー株式会社 蓄電装置,蓄電池管理制御装置及びモータ駆動装置
JP5254568B2 (ja) * 2007-05-16 2013-08-07 日立ビークルエナジー株式会社 セルコントローラ、電池モジュールおよび電源システム
JP4785797B2 (ja) * 2007-07-03 2011-10-05 三洋電機株式会社 車両用の電源装置
US8274261B2 (en) * 2007-07-13 2012-09-25 Black & Decker Inc. Cell monitoring and balancing
JP5060857B2 (ja) * 2007-07-19 2012-10-31 日立ビークルエナジー株式会社 セルコントローラ
CN101119036B (zh) * 2007-07-23 2011-01-19 柏禄帕迅能源科技有限公司 用于电动汽车的电池管理系统
JP5127383B2 (ja) * 2007-09-28 2013-01-23 株式会社日立製作所 電池用集積回路および該電池用集積回路を使用した車両用電源システム
JP5459946B2 (ja) * 2007-09-28 2014-04-02 株式会社日立製作所 車両用直流電源装置
JP5386075B2 (ja) * 2007-09-28 2014-01-15 株式会社日立製作所 多直列電池制御システム
JP5469813B2 (ja) * 2008-01-29 2014-04-16 株式会社日立製作所 車両用電池システム
US7880434B2 (en) * 2008-05-21 2011-02-01 Southwest Electronic Energy Corporation System for balancing a plurality of battery pack system modules connected in series
JP5486780B2 (ja) * 2008-07-01 2014-05-07 株式会社日立製作所 電池システム
US8093862B2 (en) * 2008-09-03 2012-01-10 Modalis Engineering, Inc. Systems, apparatus and methods for battery charge management
JP5602353B2 (ja) * 2008-09-24 2014-10-08 三洋電機株式会社 車両用の電源装置
EP2365350B1 (en) * 2008-11-10 2020-03-04 LG Chem, Ltd. Apparatus and method for measuring current and voltage of secondary battery pack in synchronization manner
US8350528B2 (en) * 2009-02-04 2013-01-08 Samsung Sdi Co., Ltd. Battery pack and balancing method of battery cells
JP5486822B2 (ja) * 2009-02-17 2014-05-07 株式会社日立製作所 電池システム
JP5221468B2 (ja) * 2009-02-27 2013-06-26 株式会社日立製作所 電池監視装置
JP5133926B2 (ja) * 2009-03-26 2013-01-30 株式会社日立製作所 車両用電池システム
US8884585B2 (en) * 2009-04-16 2014-11-11 Valence Technology, Inc. Batteries, battery systems, battery submodules, battery operational methods, battery system operational methods, battery charging methods, and battery system charging methods
JP5469909B2 (ja) * 2009-04-20 2014-04-16 株式会社日立製作所 車両用電池制御システム
JP5533175B2 (ja) * 2009-05-20 2014-06-25 日産自動車株式会社 組電池監視装置
US8207740B2 (en) * 2009-06-23 2012-06-26 GM Global Technology Operations LLC Method for use with a vehicle battery pack having a number of individual battery cells
JP5385719B2 (ja) * 2009-07-29 2014-01-08 プライムアースEvエナジー株式会社 組電池の管理装置
JP5427521B2 (ja) * 2009-09-04 2014-02-26 株式会社マキタ 電池パック
JP5584927B2 (ja) * 2010-06-04 2014-09-10 日立オートモティブシステムズ株式会社 電池制御装置および蓄電装置
JP5453184B2 (ja) * 2010-06-28 2014-03-26 日立ビークルエナジー株式会社 電池制御回路
US10044074B2 (en) * 2011-03-18 2018-08-07 Johnson Controls Technology Company Battery power source control and current detection systems and methods
CN102457078A (zh) * 2011-03-30 2012-05-16 凹凸电子(武汉)有限公司 电池均衡电路、电池均衡系统及方法
US9381825B2 (en) * 2014-02-20 2016-07-05 Ford Global Technologies, Llc State of charge quality based cell balancing control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282159A (ja) * 2002-03-26 2003-10-03 Shin Kobe Electric Mach Co Ltd 電池制御システム
CN1744374A (zh) * 2004-09-02 2006-03-08 日产自动车株式会社 组电池容量控制系统和方法
US20080309288A1 (en) * 2005-12-02 2008-12-18 Southwest Electronic Energy Corporation Method for balancing lithium secondary cells and modules
JP2007244058A (ja) * 2006-03-07 2007-09-20 Nissan Motor Co Ltd 組電池の容量調整装置
CN101320916A (zh) * 2007-03-28 2008-12-10 株式会社东芝 组电池的保护装置和电池组装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011368A (zh) * 2013-04-25 2019-07-12 株式会社杰士汤浅国际 蓄电元件保护装置、蓄电装置及蓄电元件保护方法
CN110011368B (zh) * 2013-04-25 2023-10-13 株式会社杰士汤浅国际 蓄电元件保护装置、蓄电装置及蓄电元件保护方法
CN104619564B (zh) * 2013-07-23 2017-02-22 株式会社小松制作所 混合动力工程机械及混合动力工程机械的信息通知控制方法
CN104619564A (zh) * 2013-07-23 2015-05-13 株式会社小松制作所 混合动力工程机械及混合动力工程机械的信息通知控制方法
CN106662902A (zh) * 2014-07-03 2017-05-10 高通股份有限公司 用于降低集成电路功率的多域异构工艺‑电压‑温度跟踪
CN107005070A (zh) * 2014-12-08 2017-08-01 株式会社Lg 化学 用于控制电池架继电器的设备和方法
CN107113206A (zh) * 2015-01-05 2017-08-29 株式会社自动网络技术研究所 车载中继装置
CN106877482B (zh) * 2015-09-24 2021-06-08 三星Sdi株式会社 不间断电源
CN106877482A (zh) * 2015-09-24 2017-06-20 三星Sdi株式会社 不间断电源
CN112470326A (zh) * 2018-07-25 2021-03-09 松下知识产权经营株式会社 管理装置以及电源系统
CN112470326B (zh) * 2018-07-25 2024-04-26 松下知识产权经营株式会社 管理装置以及电源系统
CN114641446A (zh) * 2019-11-12 2022-06-17 瑞尔科技有限公司 智能高处安装设备升降装置及其控制方法
CN114641446B (zh) * 2019-11-12 2023-12-26 瑞尔科技有限公司 智能高处安装设备升降装置及其控制方法
CN111152668B (zh) * 2020-01-08 2023-01-13 青岛昌轮变速器有限公司 适用于马达驱动设备的双重混合电池组
CN111152668A (zh) * 2020-01-08 2020-05-15 青岛昌轮变速器有限公司 适用于马达驱动设备的双重混合电池组
CN114407715A (zh) * 2022-01-20 2022-04-29 株洲中车特种装备科技有限公司 一种轨道车辆储能系统充电方法
CN114407715B (zh) * 2022-01-20 2023-06-30 株洲中车特种装备科技有限公司 一种轨道车辆储能系统充电方法

Also Published As

Publication number Publication date
US20130106356A1 (en) 2013-05-02
WO2012002002A1 (ja) 2012-01-05
CN102959827B (zh) 2016-05-11
EP2587621B1 (en) 2018-04-11
EP2587621A4 (en) 2014-03-19
EP2587621A1 (en) 2013-05-01
JP2012010563A (ja) 2012-01-12
US9362759B2 (en) 2016-06-07
JP5546370B2 (ja) 2014-07-09

Similar Documents

Publication Publication Date Title
CN102959827A (zh) 蓄电器控制电路和蓄电装置
CN103548233B (zh) 蓄电器控制电路
US6984961B2 (en) Battery assembly system and electric-motor vehicle system using the same
US9077181B2 (en) Battery section balancing methods and systems
CN102386457B (zh) 电池控制装置及搭载了该电池控制装置的车辆系统
US9774193B2 (en) Battery cell charge balancing
US8532854B2 (en) Method and apparatus for managing multiple battery packs in a hybrid or electric vehicle
CN108292854A (zh) 电池控制装置
WO2012140776A1 (ja) 充電制御装置
EP2315301A1 (en) Power supply device and method for controlling charging/discharging operation of power supply device
CN105612081A (zh) 用于车辆的蓄电系统
CN101244697A (zh) 放电系统和电动车辆
CN104364116A (zh) 蓄电系统和均衡方法
EP1925494A2 (en) Energy management for hybrid energy railway vehicle
EP3274210B1 (en) Auxiliary battery charging apparatus and method
KR101610927B1 (ko) 배터리 셀 밸런싱 장치 및 방법
CN114194041A (zh) 估计电池的充满电时间的方法、动力系控制器和电动车辆
CN112384405A (zh) 控制车辆中的电池系统的方法
JP2020156119A (ja) 管理装置、及び電源システム
US11603011B2 (en) Lithium plating detection and mitigation in electric vehicle batteries
US11787306B2 (en) Electrified vehicle control to reduce battery sensor heat generation
US10991991B2 (en) Traction battery with cell zone monitoring
CN116749839A (zh) 一种对多电池并联充电的控制方法、交通工具和存储介质

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: HITACHI AUTOMOTIVE SYSTEMS LTD.

Free format text: FORMER OWNER: HITACHI VEHICLE ENERGY LTD.

Effective date: 20140715

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20140715

Address after: Ibaraki

Applicant after: Hitachi Automotive Systems Ltd.

Address before: Ibaraki

Applicant before: Hitachi Vehicle Energy Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Ibaraki

Patentee after: Hitachi astemo Co.,Ltd.

Address before: Ibaraki

Patentee before: HITACHI AUTOMOTIVE SYSTEMS, Ltd.

CP01 Change in the name or title of a patent holder