CN102941004B - 一种铝电解及微电子工业产生的碳氟化合物的分解方法 - Google Patents

一种铝电解及微电子工业产生的碳氟化合物的分解方法 Download PDF

Info

Publication number
CN102941004B
CN102941004B CN201210487460.2A CN201210487460A CN102941004B CN 102941004 B CN102941004 B CN 102941004B CN 201210487460 A CN201210487460 A CN 201210487460A CN 102941004 B CN102941004 B CN 102941004B
Authority
CN
China
Prior art keywords
gas
reactor
crucible
predetermined temperature
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210487460.2A
Other languages
English (en)
Other versions
CN102941004A (zh
Inventor
石忠宁
唐卫
王兆文
高炳亮
胡宪伟
徐君莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201210487460.2A priority Critical patent/CN102941004B/zh
Publication of CN102941004A publication Critical patent/CN102941004A/zh
Application granted granted Critical
Publication of CN102941004B publication Critical patent/CN102941004B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

一种铝电解及微电子工业产生的碳氟化合物的分解方法,属废气处理领域。本发明按照以下步骤进行:(1)将固体金属放入一个坩埚内,通过真空系统将反应器内空气抽尽,通入保护气体氩气后进行加热,加热到预定温度;(2)当温度升至预定温度后,通过真空系统抽出保护性气体,并通入待分解的PFCs气体,密闭反应条件下进行反应,反应时间为:30~40分钟;将反应器冷却到室温后,取出反应物,坩埚内反应产物自然分层,得到可回收利用的碳和金属氟化物、氯化物。本发明实现了处理PFCs的零排放,降低了能耗和处理成本。而且整个处理流程短,过程简单,加上反应条件不是很苛刻,对反应器的要求也不是很高,这样也可以降低设备的费用。

Description

一种铝电解及微电子工业产生的碳氟化合物的分解方法
技术领域
本发明属废气处理领域,特别涉及一种铝电解及微电子工业产生的碳氟化合物的分解方法。
背景技术
全氟碳化物PFCs,主要包括CF4 、C2F6和C3H8等,是造成全球温室效应的高潜势气体。其中CF4和C2F6的CO2温室效应等效值分别为 6500和9200,吨铝的CF4和C2F6物排放量相当于1.35吨CO2,超过生产每吨电解铝直接产生的1.22吨CO2。即,铝电解排放烟气中CF4和C2F6对温室效应的影响超过CO2的影响。其中90%的CF4和C2F6来源于铝电解工业,其余的由微电子工业产生。我国不仅是铝生产大国,而且生产大量的微电子产品,排放大量的PFCs。因此,将CF4、C2F6和C3H8分解或转化,减少温室气体的排放,达到国家的减排的目标,是我国急需解决的问题。
目前在微电子工业采用等离子分解法处理废气CF4和C2F6。但该分解方法尽管可以消除PFCs,但在消除分解中产生CO2、CO、COF2或HF,需要后继多工序处理这些气体,而且由于PFCs性质稳定,也要消耗相当多的能量。空气燃烧法会产生有毒的NOx和大量的污染废水。化学分解法还未找到一种能高效而且能大量处理PFCs的催化剂。
发明内容
本发明针对已存在处理方法的缺点,利用金属单质,包括铝、镁、钠、钙等活泼金属,分解PFCs,如CF4、C2F6、C3F8以及氟里昂(CCl2F2),产生的C和金属的氟化物或氯化物,可以回收进行循环利用,也实现了PFCs的零排放,且分解率可达到93%-99%。
本发明一种铝电解及微电子工业产生的碳氟化合物的分解方法,按照以下步骤进行:
(1)将固体金属放入一个坩埚内,通过真空系统将反应器内空气抽尽,通入保护气体氩气后进行加热,加热到预定温度;
(2)当温度升至预定温度后,通过真空系统抽出保护性气体,并通入待分解的PFCs气体,密闭反应条件下进行反应,反应时间为:30~40分钟;将反应器冷却到室温后,取出反应物,坩埚内反应产物自然分层,得到可回收利用的碳和金属氟化物、氯化物。
所述固体金属为铝、镁、钠、钙。
所述预定温度,当固体金属为铝时,预定温度大于660℃,当固体金属为镁时,预定温度大于649℃;当固体金属为钠时,预定温度大于98℃,当固体金属为钙时,预定温度大于842℃。
所述预定温度,当固体金属为铝时,预定温度为700℃-950℃;当固体金属为镁时,预定温度为660℃-900℃;当固体金属为钠时,预定温度为120℃-450℃;当固体金属为钙时,预定温度为860℃-1000℃。
所述PFCs气体为CF4、C2F6、C3F8、CCl2F2或者上述气体中的一种或几种按照任意比混合。
本发明中金属与气体反应后的反应产物均为金属氟化物和碳粉。反应过程金属和气体的相对的加入量按照反应产物为金属氟化物(当分解CCl2F2时产物为氟化物何氯化物)和碳粉的化学计量计算加入。
本发明的优点是:反应所需要的原料较廉价易得,特别对金属铝而言,电解产生的铝液可直接注入反应器,减少了把金属熔化所需要的热量,此反应为放热反应,反应过程中会放出热量,可以弥补由于散热损失的热量,降低外界向反应器提供能量用于维持反应。铝的价电子为3,分解单位体积的的PFCs所消耗的反应物铝也较少。反应后得到的产物由于密度的不同,静置冷却后分层,这样为产物的回收提供了可能。产生的碳送回炭阳极厂生产炭阳极,金属的氟化物可作为电解质或添加剂加入到电解槽中补充消耗的电解质。这样整个反应过程的物质和能量既得到了高效利用,产物也能完全得到回收再利用,实现了处理PFCs的零排放,降低了能耗和处理成本。而且整个处理流程短,过程简单,加上反应条件不是很苛刻,对反应器的要求也不是很高,这样也可以降低设备的费用。 
具体实施方式
下面通过实施例对本发明的内容做进一步详细说明。
实施例1
本发明用铝处理铝电解槽电解产生的烟气PFCs。
将固体铝放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到700℃后,抽出保护性气体并通入CF4气体后在密闭反应条件下进行反应,30分钟后,冷却后产物都分为颜色明显的三层,第一层为AlF3,中间一层为反应产物C,最下面一层为未反应的Al, 700℃下CF4 的反应分解率达到95%。
实施例2
本发明用铝处理铝电解槽电解产生的烟气PFCs。
将固体铝放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到730℃后,抽出保护性气体并通入CF4气体后在密闭反应条件下进行反应,35分钟后,冷却后产物都分为颜色明显的三层,第一层为AlF3,中间一层为反应产物C,最下面一层为未反应的Al, 700℃下CF4 的反应分解率达到97%。
实施例3
本发明用铝处理铝电解槽电解产生的烟气PFCs。
将固体铝放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到830℃后,抽出保护性气体并通入CF4气体后在密闭反应条件下进行反应,35分钟后,冷却后产物都分为颜色明显的三层,第一层为AlF3,中间一层为反应产物C,最下面一层为未反应的Al,830℃下CF4 的反应分解率达到99%。
实施例4
本发明用铝处理铝电解槽电解产生的烟气PFCs。
将固体铝放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到914℃℃后,抽出保护性气体并通入CF4气体后在密闭反应条件下进行反应,40分钟后,冷却后产物都分为颜色明显的三层,第一层为AlF3,中间一层为反应产物C,最下面一层为未反应的Al,830℃下CF4 的反应分解率达到98%。
实施例5
将固体铝放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到700℃后,抽出保护性气体并通入C2F6气体后在密闭反应条件下进行反应,35分钟后,冷却后产物都分为颜色明显的三层,第一层为AlF3,中间一层为反应产物C,最下面一层为未反应的Al, 700℃下C2F6 的反应分解率达到93%。
实施例6
本发明用铝处理铝电解槽电解产生的烟气PFCs。
将固体铝放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到730℃后,抽出保护性气体并通入C2F6气体后在密闭反应条件下进行反应,35分钟后,冷却后产物都分为颜色明显的三层,第一层为AlF3,中间一层为反应产物C,最下面一层为未反应的Al, 730℃下C2F6 的反应分解率达到96%。
实施例7
本发明用铝处理铝电解槽电解产生的烟气PFCs。
将固体铝放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到830℃后,抽出保护性气体并通入C2F6气体后在密闭反应条件下进行反应,35分钟后,冷却后产物都分为颜色明显的三层,第一层为AlF3,中间一层为反应产物C,最下面一层为未反应的Al,830℃下C2F6 的反应分解率达到96%。
实施例8
本发明用铝处理铝电解槽电解产生的烟气PFCs。
将固体铝放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到914℃后,抽出保护性气体并通入C2F6气体后在密闭反应条件下进行反应,35分钟成后,冷却后产物都分为颜色明显的三层,第一层为AlF3,中间一层为反应产物C,最下面一层为未反应的Al,830℃下C2F6 的反应分解率达到97%。
实施例9       
将固体镁放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到660℃后,抽出保护性气体并通入CF4气体后在密闭反应条件下进行反应,30分钟后,反应完成冷却后产物得到MgF2和C,660℃下CF4 的反应分解率达到96%。
 实施例10     
将固体镁放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到750℃后,抽出保护性气体并通入CF4气体后在密闭反应条件下进行反应,30分钟后,反应完成冷却后产物得到MgF2和C,750℃下CF4 的反应分解率达到99%。
实施例11     
将固体镁放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到790℃后,抽出保护性气体并通入CF4气体后在密闭反应条件下进行反应,30分钟后,反应完成冷却后产物得到MgF2和C,790℃下CF4 的反应分解率达到99%。
实施例12
将固体镁放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到690℃后,抽出保护性气体并通入C2F6气体后在密闭反应条件下进行反应,30分钟后,反应完成冷却后产物得到MgF2和C,690℃下CF4 的反应分解率达到98%。
实施例13
将固体镁放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到750℃后,抽出保护性气体并通入C2F6气体后在密闭反应条件下进行反应,30分钟后,反应完成冷却后产物得到MgF2和C,750℃下CF4 的反应分解率达到99%。
实施例14
将固体镁放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到790℃后,抽出保护性气体并通入C2F6气体后在密闭反应条件下进行反应,30分钟后,反应完成冷却后产物得到MgF2和C,790℃下CF4 的反应分解率达到99%。
实施例15
将固体镁放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到790℃后,抽出保护性气体并通入C2F6气体后在密闭反应条件下进行反应,30分钟后,反应完成冷却后产物得到MgF2和C,790℃下CF4 的反应分解率达到99%。
实施例16
将固体钠放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到450℃后,抽出保护性气体并通入CF4气体后在密闭反应条件下进行反应,30分钟后,反应完成冷却后产物得到NaF和C,450℃下CF4 的反应分解率达到98%。
实施例17
将固体钠放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到600℃后,抽出保护性气体并通入CF4气体后在密闭反应条件下进行反应,40分钟后,反应完成冷却后产物得到NaF和C,600℃下CF4 的反应分解率达到98%。
实施例18
将固体钠放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到700℃后,抽出保护性气体并通入CF4气体后在密闭反应条件下进行反应,40分钟后,反应完成冷却后产物得到NaF和C,700℃下CF4 的反应分解率达到98%。
实施例19
将固体钙放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到860℃后,抽出保护性气体并通入CF4气体后在密闭反应条件下进行反应,40分钟后,反应完成冷却后产物得到CaF2和C,900℃下CF4 的反应分解率达到98%。
实施例20
将固体钙放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到950℃后,抽出保护性气体并通入C2F6气体后在密闭反应条件下进行反应,40分钟后,反应完成冷却后产物得到CaF2和C,950℃下C2F6 的反应分解率达到98%。
实施例21
将固体钙放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到1000℃后,抽出保护性气体并通入C3H8气体后在密闭反应条件下进行反应,40分钟后,反应完成冷却后产物得到CaF2和C,1000℃下C3H8 的反应分解率达到98%。
实施例22
将固体铝放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到750℃后,抽出保护性气体并通入CCl2F2气体后在密闭反应条件下进行反应,40分钟后,反应完成冷却后产物得到AlCl3、AlF3和C,750℃下CCl2F2的反应分解率达到96%。
实施例23
将固体镁放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到730℃后,抽出保护性气体并通入CCl2F2气体后在密闭反应条件下进行反应,40分钟后,反应完成冷却后产物得到MgCl2、MgF2和C,750℃下CCl2F2的反应分解率达到96%。
实施例24
将固体钠放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到700℃后,抽出保护性气体并通入CCl2F2气体后在密闭反应条件下进行反应,40分钟后,反应完成冷却后产物得到NaCl、NaF和C,700℃下CCl2F2的反应分解率达到96%。
实施例24
将固体钙放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到950℃后,抽出保护性气体并通入CCl2F2气体后在密闭反应条件下进行反应,40分钟后,反应完成冷却后产物得到CaCl2、CaF2和C,950℃下CCl2F2的反应分解率达到96%。
实施例25
将固体铝放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到950℃后,抽出保护性气体并通入CCl2F2气体后在密闭反应条件下进行反应,40分钟后,反应完成冷却后产物得到AlCl3、AlF3和C,950℃下CCl2F2的反应分解率达到96%。
实施例26
将固体镁放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到900℃后,抽出保护性气体并通入CCl2F2气体后在密闭反应条件下进行反应,40分钟后,反应完成冷却后产物得到MgCl2、MgF2和C,900℃下CCl2F2的反应分解率达到96%。
实施例27
将固体钠放入一个坩埚内,通过真空泵将反应器内空气抽尽,通入保护气体氩气后进行加热。加热到120℃后,抽出保护性气体并通入CF4气体后在密闭反应条件下进行反应,30分钟后,反应完成冷却后产物得到NaF和C,120℃下CF4 的反应分解率达到93%。 

Claims (2)

1.一种铝电解及微电子工业产生的碳氟化合物的分解方法,其特征在于按照以下步骤进行:
(1)将固体金属放入一个坩埚内,通过真空系统将反应器内空气抽尽,通入保护气体氩气后进行加热,加热到预定温度;
(2)当温度升至预定温度后,通过真空系统抽出保护性气体,并通入待分解的PFCs气体,密闭反应条件下进行反应,反应时间为:30~40分钟;将反应器冷却到室温后,取出反应物,坩埚内反应产物自然分层,得到可回收利用的碳和金属氟化物、氯化物;
其中,所述固体金属为铝、镁、钠、钙;
所述预定温度,当固体金属为铝时,预定温度为700℃-950℃;当固体金属为镁时,预定温度为660℃-900℃;当固体金属为钠时,预定温度为120℃-450℃;当固体金属为钙时,预定温度为860℃-1000℃。
2.根据权利要求1所述的一种铝电解及微电子工业产生的碳氟化合物的分解方法,其特征在于所述PFCs气体为CF4、C2F6、C3F8、CCl2F2中的一种或几种按照任意比混合。
CN201210487460.2A 2012-11-27 2012-11-27 一种铝电解及微电子工业产生的碳氟化合物的分解方法 Expired - Fee Related CN102941004B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210487460.2A CN102941004B (zh) 2012-11-27 2012-11-27 一种铝电解及微电子工业产生的碳氟化合物的分解方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210487460.2A CN102941004B (zh) 2012-11-27 2012-11-27 一种铝电解及微电子工业产生的碳氟化合物的分解方法

Publications (2)

Publication Number Publication Date
CN102941004A CN102941004A (zh) 2013-02-27
CN102941004B true CN102941004B (zh) 2014-11-05

Family

ID=47724051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210487460.2A Expired - Fee Related CN102941004B (zh) 2012-11-27 2012-11-27 一种铝电解及微电子工业产生的碳氟化合物的分解方法

Country Status (1)

Country Link
CN (1) CN102941004B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894600B (zh) * 2015-05-25 2017-09-19 东北大学 一种从铝熔盐电解含炭固体废料中分离回收炭和电解质组分的方法
CN113912042B (zh) * 2021-11-22 2023-04-25 郑州大学 一种铝电解产生的全氟化碳制备碳纳米管的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1341478A (zh) * 2000-09-07 2002-03-27 康肯科技股份有限公司 全氟化碳或全氟化物的除害方法及除害装置
CN101496992A (zh) * 2009-01-15 2009-08-05 大连海事大学 去除全氟碳化物气体的系统和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130324A (ja) * 2001-10-29 2003-05-08 Nippon Mining & Metals Co Ltd フロンの処理方法
JP2004082013A (ja) * 2002-08-28 2004-03-18 Hitachi Ltd パーフルオロコンパウンド分解方法,分解触媒及び処理装置
JP5284773B2 (ja) * 2008-12-26 2013-09-11 株式会社荏原製作所 処理温度を上昇させる排ガス処理方法、排ガス処理装置の運転方法、および排ガス処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1341478A (zh) * 2000-09-07 2002-03-27 康肯科技股份有限公司 全氟化碳或全氟化物的除害方法及除害装置
CN101496992A (zh) * 2009-01-15 2009-08-05 大连海事大学 去除全氟碳化物气体的系统和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JP特开2003-130324A 2003.05.08 *
JP特开2010-149084A 2010.07.08 *

Also Published As

Publication number Publication date
CN102941004A (zh) 2013-02-27

Similar Documents

Publication Publication Date Title
CN201390683Y (zh) 一种用于处理含氰废水的多级电解装置
CA2698025C (en) Method for preparing metallic titanium by electrolyzing molten salt with titanium circulation
CN104004119B (zh) 一种聚氯乙烯清洁闭环生产设备及其方法
CN114031056B (zh) 一种聚合磷酸盐制备五氟化磷的方法
EP1425437A1 (en) Method and system for generating hypochlorite
CN110981848A (zh) 一种碳酸亚乙烯酯的生产工艺
CN100361891C (zh) 一种氯化副产物盐酸中游离氯的去除和回收利用的方法
US20130213819A1 (en) Process for manufacturing lower chlorides of titanium
CN102941004B (zh) 一种铝电解及微电子工业产生的碳氟化合物的分解方法
CN102583421A (zh) 以钠基钛硼氟盐混合物为中间原料生产硼化钛并同步产出钠冰晶石的循环制备方法
CN103060567B (zh) 一种处理废旧锂离子电池正极片提取有价金属的方法
US20120061253A1 (en) Means and method of chemical production
CN110041299A (zh) 一种固定床连续气相催化氟化制备氟代碳酸乙烯酯的方法
CN102286746A (zh) 酸性蚀刻液循环再生与铜回收装置
CN203855538U (zh) 一种聚氯乙烯清洁闭环生产系统
CN109516437B (zh) 一种电化学还原-热化学循环分解水制氢的方法
CN103590064B (zh) 一种电解二氧化碳制备氧气的方法
CN104030321B (zh) 一种以氯化钾、天然气为原料实现资源综合利用的生产系统及其方法
CN103626206B (zh) 一种基于氯化铵化学链循环的纯碱—氯乙烯联产工艺
CN102602977B (zh) 一种溶解铜制备氧化铜的方法
CN108085480A (zh) 钾基复合添加剂及使用其焙烧锂矿石的方法
CN105386082B (zh) 一种金属镁的制备方法
CN203976418U (zh) 一种以氯化钾、天然气为原料实现资源综合利用的生产系统
CN110697679B (zh) 一种从铝电解槽废阴极炭块中脱氟与回收炭的装置及其方法
CN114804426A (zh) 一种含铁废盐酸处理工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141105

Termination date: 20151127