CN102939675B - 非水电解液二次电池 - Google Patents

非水电解液二次电池 Download PDF

Info

Publication number
CN102939675B
CN102939675B CN201080067406.1A CN201080067406A CN102939675B CN 102939675 B CN102939675 B CN 102939675B CN 201080067406 A CN201080067406 A CN 201080067406A CN 102939675 B CN102939675 B CN 102939675B
Authority
CN
China
Prior art keywords
porous layer
electrolytic solution
nonaqueous electrolytic
secondary battery
solution secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080067406.1A
Other languages
English (en)
Other versions
CN102939675A (zh
Inventor
上木智善
岛村治成
福本友祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN102939675A publication Critical patent/CN102939675A/zh
Application granted granted Critical
Publication of CN102939675B publication Critical patent/CN102939675B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/673Containers for storing liquids; Delivery conduits therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

通过本发明得到的非水电解液二次电池,是具有电极体的非水电解液二次电池,所述电极体是正极片和负极片(20)介由隔离片(40)重合而成的,在隔离片(40)的至少一侧的表面上形成有多孔层(42),多孔层具有无机填充剂和粘合剂,多孔层(42)的表面形成凹凸,该凹凸面(42a)的最大高低差为0.2μm~1.7μm。

Description

非水电解液二次电池
技术领域
本发明涉及非水电解液二次电池,详细地说,涉及耐高速充放电的耐久性提高了的非水电解液二次电池。
背景技术
近年,锂离子电池、镍氢电池以及其他的非水电解液二次电池,作为车辆搭载用电源或个人电脑以及移动终端的电源重要性不断提高。尤其,轻量、能够得到高能密度的锂离子电池,期待其能够作为车辆搭载用高输出电源使用。在这种锂离子电池的一个典型的结构中,锂离子在正极和负极之间往返,并由此进行充电以及放电。作为与锂离子电池相关的现有技术,例如列举专利文献1。
现有技术文献
专利文献
专利文献1:日本专利申请公开2002-008730号公报
发明内容
因此,在锂离子电池的用途中,假想了一种用途,即在反复进行高速放电(急速放电)的状态下进行使用。作为车辆的动力源而被使用的锂离子电池(例如,搭载在作为动力源而并用锂离子电池和如内燃机等的工作原理不同的其他动力源的混合动力车辆上的锂离子电池),为被想成这样的使用状态的锂离子电池的代表例。但是,已知的是,以往的一般的锂离子电池,对于低速充放电循环,表现出较高的耐久性,但在反复进行高速放电的充放电模式下,容易引起性能劣化(电池电阻的上升等)。
在专利文献1中,记载了一种技术,在隔离片的基材上形成用于保持电解液的20微米以下的薄层,由此,弥补正负极间的电解液不足,并由此改善电池的放电容量。但是,在该技术中,即使能够改善电池的放电容量,也无法提高耐反复高速放电(例如,在车辆动力源用的锂离子电池等中所要求的水平的急速放电)的充放电模式的耐久性。
本发明是鉴于上述问题点作出的发明,其主要目的在于提供一种能够提高耐高速充放电的耐久性的非水电解液二次电池。
本申请的发明者着眼于以下情况:在具有正极和负极介由隔离片重合而成的电极体的非水电解液二次电池中,若连续反复进行在车辆动力源用的非水电解液二次电池中所假定那样的高速放电和充电,则发现电池电阻会显著地上升。因此,发明者详细地解析了该高速充放电的反复对非水电解液二次电池的影响。
其结果为,发现在反复进行高速充放电的非水电解液二次电池中,在电极体的正负极间浸入的非水电解液的电解液量降低的情况,更详细地说,因高速充放电,在电极体的正负极间浸入的非水电解液的一部分被挤到电极的外部,正负极间的电解液量下降到低于必要量(即发生电解液枯竭)。
若这样在正负极间发生电解液枯竭,则由于充放电时正负极内的电解液量不足,所以,作为电池整体的高速充放电性能降低。另外,由于电池反应集中在电解液量相对多的部分(即正负极内的电解液残存部分),因此促进了该部分的劣化。这些情况都成为使非水电解液二次电池耐高速充放电循环的耐久性降低(电池电阻增大)的主要原因。
本发明是基于上述发现,通过消除或缓和上述正负极间的电解液不足的这一途径,来使非水电解液二次电池耐高速充放电循环的耐久性提高的发明。
即,由本发明提供的非水电解液二次电池是具有电极体的非水电解液二次电池,该电极体是正极片和负极片介由隔离片重合而成的。在上述隔离片的至少一侧的表面形成有多孔层,该多孔层具有无机填充剂和粘合剂。上述多孔层的表面形成凹凸,该凹凸面的最大高低差为0.2μm~1.7μm。
根据本发明的构造,在隔离片的至少一侧的表面上形成有多孔层,且该多孔层的表面形成凹凸,所以,能够在该凹凸面保持大量的非水电解液。因此,即使因高速充放电导致在正负极内浸入的非水电解液的一部分被挤到正负极的外部,也能够迅速地将凹凸面所保持的非水电解液向正负极内供给,从而使正负极内的电解液量迅速地恢复。由此,能够消除或缓和高速充放电导致的正负极内的电解液不足,能够使耐充放电循环的耐久性提高。
优选地,上述凹凸面的最大高低差为0.2μm~1.7μm。若凹凸面的最大高低差低于0.2μm,则凹凸面的保液功能降低,存在无法得到上述那样的循环耐久性提高效果的情况。另外,若凹凸面的最大高低差高于1.7μm,则正负极间的电解液量的平衡被打破,电池反应变得不均匀。因此,反而导致循环耐久性降低倾向。
在这里公开的一个优选的方式中,上述多孔层,作为上述无机填充剂具有由无机金属化合物形成的粒子,在上述金属化合物粒子的粒度分布(体积基准)中,累积10%的粒径D10为0.2μm以上。若金属化合物粒子的累积10%的粒径D10过小,则由于通过粒径小的微小的金属化合物粒子的集合形成多孔层,所以,金属化合物粒子间的结合弱,多孔层的耐久性降低。因此,受到伴随高速充放电进行的电极体的膨胀收缩所产生的压力后,凹凸面容易损毁,存在无法得到上述那样的循环耐久性提高效果的情况。
另外,优选地,在上述金属化合物粒子的粒度分布(体积基准)中,累积90%的粒径D90为4μm以下。若通过这样的粒度分布窄的粒径整齐的金属化合物粒子的集合形成多孔层,则金属化合物粒子间的结合力强,多孔层的耐久性进一步提高。因此,即使受到伴随高速充放电进行的电极体的膨胀收缩所产生的压力,凹凸面也难以损毁,能够更可靠地得到上述那样的循环耐久性提高效果。
在这里公开的一个优选的方式中,上述金属化合物粒子为氧化铝或氧化铝水合物。由于这些金属化合物粒子的摩氏硬度高,所以,从利用该粒子形成的多孔层的耐久性提高这点考虑尤其优选。
在这里公开的一个优选的方式中,上述多孔层中的粘合剂含有比例,在将该多孔质层中所包含的固体成分量(典型地是无机填充剂、粘合剂和其他的多孔层形成成分(例如增粘剂)的合计量)作为100质量%时,为1.5质量%~3质量%。由此,能够容易地将凹凸面的最大高低差控制在这里公开的优选的范围内。
在这里公开的一个优选的方式中,上述多孔层形成在上述隔离片的与负极片相对的表面,该多孔层的凹凸面至少形成在与该负极片的包含负极活性物质的负极活性物质层相对的位置上。负极片的包含负极活性物质的负极活性物质层,容易发生因高速充放电导致的电解液不足。因此,将多孔层的凹凸面形成在与负极活性物质层相对的位置上尤其有用。
这里公开的任一种非水电解液二次电池,具有与作为搭载在车辆上的电池相适的性能(例如能够得到高输出),尤其具有耐高速充放电的良好耐久性。因此,根据本发明,能够提供具有这里公开的任一种非水电解液二次电池的车辆。尤其是,能够提供一种车辆(例如汽车),其具有该非水电解液二次电池作为动力源(典型地,混合动力车或电动车的动力源)。
作为这里公开的技术的优选的适用对象例示有,被想成能够在包含50A以上(例如50A~250A)进而100A以上(例如100A~200A)的高速放电的充放电循环下使用的非水电解液二次电池;理论容量为1Ah以上(进而3Ah以上)的大容量型且被想成能够在包含10C以上(例如10C~50C)进而20C以上(例如20C~40C)的高速放电的充放电循环下使用的非水电解液二次电池等。
附图说明
图1是示意地表示本发明的一个实施方式的锂二次电池的侧视图。
图2是图1的II-II线剖视图。
图3是示意地表示本发明的一个实施方式的锂二次电池的电极体的图。
图4是表示本发明的一个实施方式的锂二次电池的主要部分的放大剖视图。
图5是用于说明一个试验例的膜电阻的测定方法的图。
图6是示意地表示具有本发明的一个实施方式的锂二次电池的车辆的侧视图。
具体实施方式
以下,边参照附图,边说明本发明的实施方式。在以下的附图中,对发挥相同作用的部件、部位标注相同的标记进行说明。此外,各图中的尺寸关系(长度、宽度、厚度等)并不反映实际的尺寸关系。另外,对于本说明书中特别提到的事项以外的事项,如果是在实施本发明时所必要的事项(例如,具有正极以及负极的电极体的构造以及制法、隔离片或电解质的构造以及制法、非水电解液二次电池以及其他的电池的构筑所涉及的一般的技术等),则能够基于该领域的现有技术、作为本领域技术人员的设计事项进行把握。
并不意图进行特殊限定,但以下以将卷绕的电极体(卷绕电极体)和非水电解液装入圆筒型的容器中的形态的非水电解液锂二次电池(锂离子电池)为例对本发明进行详细地说明。
将本发明的一个实施方式的锂离子电池的概要构造表示在图1~3中。该锂离子电池100具有以下构造,即长条状的正极片10和长条状的负极片20介由长条状的隔离片40而卷绕的形态的电极体(卷绕电极体)80,与图中未示出的非水电解液一起,被装入能够装纳该卷绕电极体80的形状(圆筒型)的容器50中。
容器50具有:上端开放的有底圆筒状的容器主体52、用于封闭其开口部的盖体54。作为构成容器50的材质,优选使用铝、钢、镀Ni的SUS等的金属材料(本实施方式中为镀Ni的SUS)。或者,还可以为由PPS、聚酰亚胺树脂等的树脂材料成型而成的容器50。在容器50的上表面(即盖体54)上,设有与卷绕电极体80的正极10电连接的正极端子70。在容器50的下表面上,设有与卷绕电极体80的负极20电连接的负极端子72(本实施方式中由容器主体52兼任。)。在容器50的内部,卷绕电极体80和图中未示出的非水电解液一起被装纳。
本实施方式的卷绕电极体80,除后述的隔离片40的构造以外,与通常的锂离子电池的卷绕电极体相同,如图3所示,在对卷绕电极体80进行组装的前阶段,具有长条状(带状)的片结构。
正极片10具有在长条片状的箔状的正极集电体12的两面保持有包含正极活性物质的正极活性物质层14的结构。不过,正极活性物质层14没有附着在沿正极片10的宽度方向的端边延伸的一边缘(图中为下侧的边缘部分)上,而是使正极集电体12以一定的宽度露出、形成正极活性物质层非形成部。
负极片20也与正极片10同样地,具有在长条片状的箔状的负极集电体22的两面保持有包含负极活性物质的负极活性物质层24的结构。不过,负极活性物质层24没有附着在沿负极片20的宽度方向的端边延伸的一边缘(图中为上侧的边缘部分)上,而是使负极集电体22以一定的宽度露出、形成负极活性物质层非形成部。
在制作卷绕电极体80时,如图3所示,正极片10和负极片20介由隔离片40层叠。此时,以使正极片10的正极活性物质层非形成部分和负极片20的负极活性物质层非形成部分分别从隔离片40的宽度方向的两侧伸出的方式,使正极片10和负极片20在宽度方向上稍错开重合。通过对这样重合的层叠体进行卷绕,就能够制作卷绕电极体80。
在卷绕电极体80的卷绕轴方向的中央部分,形成有卷绕芯部分82(即正极片10的正极活性物质层14、负极片20的负极活性物质层24和隔离片40紧密层叠的部分)。另外,在卷绕电极体80的卷绕轴方向的两端部,正极片10以及负极片20的电极活性物质层非形成部分分别从卷绕芯部分82伸向外方。在该正极侧伸出部分(即正极活性物质层14的非形成部分)84以及负极侧伸出部分(即负极活性物质层24的非形成部分)86上,分别附设有正极引线端子74以及负极引线端子76,并分别与上述的正极端子70以及负极端子72(这里由容器主体52兼任。)电连接。
构成该卷绕电极体80的构成要素,除了隔离片40以外,可以与以往的锂离子电池的卷绕电极体同样,没有特别限制。例如,正极片10能够通过向长条状的正极集电体12上赋予以锂离子电池用正极活性物质为主要成分的正极活性物质层14而形成。作为正极集电体12,可以很好地使用铝箔、以及其他适合正极的金属箔。作为正极活性物质,能够使用一直以来锂离子电池所使用的物质中的一种或两种以上,没有特别限定。作为这里公开的技术的优选的使用对象,能够列举以锂镍氧化物(LiMn2O4)、锂钴氧化物(LiCoO2)、锂锰氧化物(LiNiO2)等作为构成金属元素含有锂和过渡金属元素的氧化物(锂过渡金属氧化物)作为主要成分的正极活性物质。
负极片20能够通过向长条状的负极集电体22上赋予以锂离子电池用负极活性物质为主要成分的负极活性物质层24而形成。作为负极集电体22,能够很好地使用铜箔以及其他的适合负极的金属箔。负极活性物质能够使用一直以来锂离子电池所使用的物质中的一种或两种以上,没有特别限定。作为优选例,能够列举石墨碳、无定形碳等的碳系材料、含锂过渡金属氧化物、过渡金属氮化物等。
作为在正负极片10、20间所使用的优选的隔离片40,能够列举由多孔质聚烯烃系树脂构成的。例如,优选使用合成树脂制(例如聚乙烯等的聚烯烃制)多孔质隔离片。在该隔离片40中含浸有非水电解液。
这里,在本实施方式中,如图3所示,在构成卷绕电极体的隔离片40的至少一侧的表面上形成有多孔层42。在本实施方式中,多孔层42形成在隔离片的与负极片20相对的表面上。多孔层42由无机填充剂和粘合剂构成,通过粘合剂使无机填充剂之间以及无机填充剂和隔离片之间结合在一起。
这样在隔离片的与负极片20相对的表面上形成多孔层42,由此,能够抑制内部短路时的发热。即,可以想到在异物混入卷绕电极体内从而发生微小的内部短路时,则该热会导致隔离片40收缩,内部短路扩大(进而电池发热),但通过这样设置多孔层42,能够防止内部短路的扩大从而抑制发热。
构成多孔层42的无机填充剂,优选使用具有耐热性、且在电池的使用范围内电化学性质稳定的材料。作为这样的无机填充剂,能够列举出由无机金属化合物形成的粒子。作为优选例,例示出氧化铝(Al2O3)、氧化铝水合物(例如勃姆石(Al2O3·H2O))、氢氧化镁(Mg(OH)2)、碳酸镁(MgCO3)等。能够使用这些无机金属化合物材料中的一种或两种以上。其中,由于氧化铝或氧化铝水合物的摩氏硬度高,所以,在能够提高多孔层的耐久性方面优选。
上述多孔层42所使用的粘合剂是用于将无机填充剂结合在一起的粘合剂,构成该粘合剂的材料本身没有特别限定,能够大范围地使用各种材料。作为优选例,能够列举丙烯酸系树脂。作为丙烯酸系树脂,优选使用将丙烯酸、甲基丙烯酸、丙烯酰胺、甲基丙烯酰胺、丙烯酸2-羟乙酯、甲基丙烯酸2-羟乙酯、甲基丙烯酸酯、甲基丙烯酸甲酯、丙烯酸乙基己酯、丙烯酸丁酯等单体一种聚合而成的均聚物。另外,丙烯酸系树脂还可以为将两种以上的上述共聚单体聚合而成的共聚物。而且,还可以是将上述均聚物及共聚物的两种以上进行混合后的材料。除了上述的丙烯酸系树脂,还能够使用聚偏氟乙烯、聚四氟乙烯(PTFE)、聚丙烯腈、聚甲基丙烯酸甲酯等。
接下来,同图4一起对本实施方式的卷绕电极体80进行详细说明。图4是放大地表示沿本实施方式的卷绕电极体80的卷绕轴切出的截面的一部分的示意剖视图,示出了隔离片40、形成在该隔离片40的表面上的多孔层42、与该多孔层42相对的负极片20。
如图4所示,负极片20中的负极活性物质层24由负极活性物质粒子26和图中未示出的粘合剂构成,通过粘合剂将负极活性物质粒子26之间以及负极活性物质粒子26和负极集电体22之间结合在一起。在相邻的负极活性物质粒子26之间,在没有被粘合剂粘结的部位形成多个孔隙28,在该孔隙28中保持有非水电解液(即非水电解液渗入负极活性物质层内)。
这里,以往的锂二次电池,若以车辆动力源用的锂二次电池所想象那样的高速连续反复进行短时间(脉冲状)的放电和充电,则存在浸入负极活性物质层24内的非水电解液的一部分被向负极活性物质层24的外部挤出,负极活性物质层24内的电解液量减少到必要量以下(即发生电解液枯竭)的情况。
这样,若在负极活性物质层24内发生电解液枯竭,则由于在充放电时负极活性物质层24内的电解液量不足,作为电池整体的高速充放电性能降低。另外,在电解液量相对较多的部分(即负极活性物质层24内的电解液残存部分)中,由于电池反应集中,促进了该部分的劣化。这些情况都能够成为使锂二次电池耐高速充放电循环的耐久性降低(使电池电阻增大)的要因。
对此,在本实施方式中,在隔离片40的表面形成有具有无机填充剂和粘合剂的多孔层42。多孔层42的表面形成凹凸,该凹凸面42a的最大高低差为0.2μm~1.7μm。在本实施方式中,多孔层42形成在隔离片40的与负极片20相对的表面,该多孔层42的凹凸面42a至少形成在与该负极片20中的包含负极活性物质的负极活性物质层24相对的位置上。
根据该构造,在隔离片40的与负极片20相对的表面上形成有多孔层42,并且,该多孔层42的表面形成凹凸,所以,在该凹凸面42a的凹部44中能够保持大量的非水电解液。因此,即使因高速充放电导致负极活性物质层24内所浸入的非水电解液的一部分被挤到负极活性物质层24的外部,也能够使保持在凹凸面42a的凹部44中的非水电解液迅速供给负极活性物质层24,能够使负极活性物质层内的电解液量迅速恢复。由此,能够消除或缓和因高速充放电引起的负极活性物质层内的电解液不足,能够使耐充放电循环的耐久性提高。
优选地,上述凹凸面的最大高低差δ为0.2μm~1.7μm。凹凸面的最大高低差δ若低于0.2μm,则凹凸面的保液功能降低,存在不能得到上述那样的循环耐久性提高效果的情况。另外,若凹凸面的最大高低差δ高于1.7μm,则正负极间的电解液量的平衡被打破,电池反应变得不均匀。因此,反而存在使循环耐久性降低的倾向。凹凸面的最大高低差δ大致为0.2μm~1.7μm比较适当,优选为0.3μm~1.5μm,尤其优选0.5μm~1.5μm。
此外,优选地,上述多孔层42的厚度(包含凹凸面的最大厚度)d可以大致为2μm~50μm。若多孔层42过厚,则由于多孔层本身作为电阻成分发挥作用,会使循环耐久性有降低倾向。另外,若多孔层42过薄,则存在无法得到前述的内部短路时的发热抑制效果的情况。多孔层的厚度d大致为2μm~50μm是适当的,优选为2μm~10μm,尤其优选为3μm~7μm。
另外,优选地,多孔层42的孔隙率为大致40%~70%。若多孔层42的孔隙率过小,则由于多孔层本身作为电阻成分发挥作用,会导致循环耐久性有降低倾向。另外,若多孔层42的孔隙率过大,则存在无法得到前述的内部短路时的发热抑制效果的情况。此外,上述孔隙率能够通过例如由电子天平测定的多孔层的质量、其表观体积(例如通过SEM观察所测定的多孔层的厚度×面积)以及无机填充剂、粘合剂及其他多孔层构造成分的真密度经计算求出。
上述凹凸面的最大高低差δ能够通过改变该多孔层所使用的金属化合物粒子的粒径尺寸(平均粒径、粒度分布(宽或窄))来调整。一般若粒子尺寸增大,则其充填效率降低,因此存在凹凸面的最大高低差增大的倾向。因此,通过改变金属化合物粒子的粒径尺寸(平均粒径、粒度分布),能够控制凹凸面的最大高低差。即,通过适当选择金属化合物粒子的粒径尺寸(平均粒径、粒度分布),能够形成凹凸面的最大高低差满足0.2μm≤δ≤1.7μm的多孔层。
虽没有特别限定,但金属化合物粒子的基于激光衍射、散射法的平均粒径D50优选为大致0.4μm~2μm。由此,能够容易地将凹凸面的最大高低差δ控制在这里所公开的优选的范围内。
另外,优选地,上述金属氧化物粒子的基于激光衍射、散射法测定的粒度分布(体积基准)中,累积10%的粒径D10为0.2μm以上。金属化合物粒子的累积10%的粒径D10若过小,则由于通过粒径小的微小的金属化合物粒子的集合形成多孔层42,所以,金属化合物粒子间的结合弱,多孔层42的耐久性低。因此,受到伴随高速充放电的卷绕电极体的膨胀收缩所产生的压力时,凹凸面42a容易损毁,存在无法得到上述那样的循环耐久性提高效果的情况。金属化合物粒子的累积10%的粒径D10为大致0.2μm以上是适当的,优选为0.24μm以上,特别优选为0.3μm以上。
另外,优选地,上述金属氧化物粒子的基于激光衍射、散射法测定的粒度分布(体积基准)中,累积90%的粒径D90为4μm以下。若通过这样粒度分布窄的粒径整齐的金属化合物粒子的集合来形成多孔层42,则金属化合物粒子间的结合强,多孔层42的耐久性进一步提高。因此,即使受到伴随高速充放电进行的卷绕电极体的膨胀收缩所产生的压力,凹凸面42a也难以损毁,能够更可靠地得到上述那样的循环耐久性提高效果。金属化合物粒子的累积90%的粒径D90大致为4μm以下是适当的,优选为3.5μm以下,特别优选为2.9μm以下。
作为实现能够满足这里公开的优选的最大高低差δ的值的凹凸面的其他的方法,能够列举适当选择形成多孔层时的形成条件的方法。例如,多孔层通过以下方式得到,即、将使金属氧化物粒子、粘合剂、其他的多孔层形成成分(例如增粘剂)分散在适当的溶剂中,将得到的多孔层形成用涂料涂布在隔离片的单面或两面上后,通过干燥风对该涂布物进行干燥,从而形成。该情况下,通过选择上述干燥温度以及干燥风速等的干燥条件,能够控制凹凸面的最大高低差δ。即,通过适当选择干燥温度以及干燥风速等的干燥条件,能够形成凹凸面的最大高低差δ满足0.2μm≤δ≤1.7μm的多孔层。虽无特别限定,但上述干燥温度可以大致设在40℃以上(例如40℃~80℃)。另外,上述干燥风速可以大致设在17m/s以上(例如17m/s~22m/s)。由此,能够容易地将凹凸面的最大高低差控制在这里所公开的优选的范围内。
此外,作为将凹凸面的最大高低差δ调整在适当的范围内的方法,能够列举改变上述多孔层形成用涂料的固体成分率以及粘合剂量的方法。若多孔层形成用涂料的固体成分率以及粘合剂量增多,则粘度增大,所以,涂布面的平滑性恶化。因此,凹凸面的最大高低差δ有增大倾向。因此,通过改变多孔层形成用涂料的固体成分率以及粘合剂量,能够控制凹凸面的最大高低差δ。即,通过适当选择多孔层形成用涂料的固体成分率以及粘合剂量,能够形成凹凸面的最大高低差δ满足0.2μm≤δ≤1.7μm的多孔层。虽无特别限定,但多孔层形成用涂料的固体成分率优选约为40质量%以上(典型地为40~50质量%)。另外,粘合剂的含有比例,在将多孔层形成用涂料中所包含的固体成分量(典型地是无机填充剂、粘合剂和其他的多孔层形成成分的合计量)作为100质量%时,优选约为1.5质量%以上(典型地为1.5~4.5质量%)。由此,能够容易地将凹凸面的最大高低差控制在这里所公开的优选的范围内。此外,控制上述的凹凸面的最大高低差δ的方法,能够分别单独或组合使用。
此外,作为上述多孔层形成用糊剂所使用的溶剂,能够列举N-甲基吡咯烷酮(NMP)、吡咯烷酮、甲基乙基酮、甲基异丁基酮、环己酮、甲苯、二甲基甲酰胺、二甲基乙酰胺等有机系溶剂或它们中两种以上的组合。或者,还可以为水或以水为主体的混合溶剂。作为构成该混合溶剂的除水以外的溶剂,能够适当地选择使用能够与水均相混合的有机溶剂(低级醇、低级酮等)的一种或两种以上。
另外,上述多孔层形成用涂料,除了无机填充剂和粘合剂以外,能够含有根据需要而能使用的一种或两种以上的材料。作为这样的材料的例子,能够列举发挥多孔层形成用涂料的增粘剂作用的聚合物。作为发挥增粘剂作用的聚合物,例如优选使用羧甲基纤维素(CMC)。该增粘剂的含有比例,在将多孔质层形成用涂料所含有的固体成分量作为100质量%时,优选约为1.5质量%以下,还优选约为1质量%以下(例如约0.5~1质量%)。
将这样的多孔层形成用涂料涂布在隔离片40的表面上,并通过干燥,在隔离片40的表面形成多孔层42。此时,以能够实现上述最大高低差δ的方式设定多孔层形成用涂料中所含有的无机填充剂的粒径(粒度分布)、粘合剂量、固体成分率及/或使多孔层形成用涂料干燥时的干燥条件(例如,干燥温度以及干燥风速的干燥条件),并根据该设定的条件形成多孔层42即可。由此,能够形成凹凸面的最大高低差δ满足0.2μm≤δ≤1.7μm的多孔层。
在这样将多孔层42形成在隔离片40的表面上后,将正极片10和负极片20介由两片隔离片卷绕,制作卷绕电极体80。而且,将卷绕电极体80装入容器主体52中,向该容器主体52内配置(注入)适当的非水电解液。作为在容器主体52内与上述卷绕电极体80一起被装入的非水电解液,能够使用与以往的锂离子电池所使用的非水电解液同样的非水电解液,没有特别限定。该非水电解液,典型地具有在适当的非水溶剂中含有支持电解质的组成。作为上述非水溶剂,例如能够使用碳酸亚乙酯(EC)、碳酸甲乙酯(EMC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸亚丙酯(PC)等。另外,作为上述支持电解质,例如,优选使用LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiClO4等的锂盐。例如,能够优选使用如下非水电解液:使以3:4:3的体积比包含EC和EMC和DMC的混合溶剂中以约1mol/升的浓度含有作为支持电解质的LiPF6
将上述非水电解液与卷绕电极体80一起装入容器主体52中,并通过盖体54将容器主体52的开口部密封,由此,完成本实施方式的锂离子电池100的构建(组装)。此外,容器主体52的密封程序以及电解液的配置(注入)程序能够与以往的锂离子电池的制造中进行的手法同样地进行。之后,进行该电池的调节(初期充放电)。还可以根据需要进行抽气、品质检查等的工序。
以下,说明与本发明相关的试验例,但并不意味着将本发明限定在以下的试验例所示的内容中。
<试验例1:无机填充剂的粒度分布调整>
利用气流粉碎机(ホソカワミクロン公司制)以风压0.2MPa将作为无机填充剂的金属化合物粉末粉碎5分钟,利用气流式粉体分级装置(クマエンジニアリング公司制)分级为4μm以下。通过激光衍射、散射式粒度分布测定装置(日机装公司制)测定得到的金属化合物粉末的粒度分布D10、D90。
另外,本试验中,如表1所示,使用碳酸镁、氢氧化镁、勃姆石、α―氧化铝、二氧化钛这5种金属化合物粉末,以上述顺序制作粒度分布(体积基准)中的累积10%径D10以及累积90%径D90各不相同的金属化合物粉末(试样1~15)。
【表1】
<试验例2:多孔层形成用涂料的调制>
利用上述试验例1制作的各种金属化合物粉末调制多孔层形成用涂料。具体来说,对于试样1,准备作为无机填充剂的碳酸镁粉末、丙烯酸系粘合剂水溶液(固体成分率45质量%)、作为增粘剂的羧甲基纤维素(CMC)粉末,使无机填充剂、粘合剂和增粘剂的质量比为97.8:1.5:0.7,以固体成分率成为约40质量%的方式在水中混合。通过高速搅拌分散机(クレアミツクス:Mテクニツク公司制)对该混合物以15000rpm的速度预混炼5分钟,然后,以20000rpm的速度正式混炼15分钟,由此,调制多孔层形成用涂料。
另外,对于试样2~15,与试样1同样,不过,使多孔层形成用涂料的固体成分率和粘合剂量(粘合剂占多孔层形成用涂料中的总固体成分的含有比例)如表1那样不同,同时按上述顺序调制多孔层形成用糊剂。
<试验例3:多孔层的形成>
利用上述试验例2制作的各种多孔层形成用涂料在长条状的隔离片40(厚度20μm)的单面通过凹版辊进行涂布,并通过干燥而形成多孔层42。作为涂布条件,使隔离片的移动速度A为3m/min,使凹版辊的旋转速度B为3.8m/min,使凹版辊的旋转速度B相对隔离片的移动速度A的比率(速比=A/B)为1.27,以使多孔层形成用涂料的涂布量成为约0.7mg/cm2(固体成分基准)的方式进行调节。另外,上述干燥通过利用干燥风的热风干燥方式进行。具体来说,使干燥风的干燥温度以及干燥风速如表1那样各试样都不同,按上述顺序形成多孔层。作为隔离片,使用聚乙烯(PE)的单层结构或聚丙烯(PE)-聚乙烯(PE)-聚丙烯(PE)的3层结构。
通过电子显微镜(SEM)观察上述得到的试样1~15的多孔层的截面,测定其表面凹凸(凹凸面)的最大高低差δ。具体来说,进行取样,将基准长度3cm内的凹凸面的最高位置和最低位置之间的距离(间隔)作为最大高低差δ。取样,在TD方向(横宽方向,TransverseDirection)上以均等间隔选择三个部位,在其MD方向(机器方向,MachineDirection)上以3cm基准长度的间隔选定三个部位(合计9个部位)。然后,对各基准长度3cm内的凹凸面的最大高低差δ进行测定,求出其平均值。
<试验例4:膜电阻的测定>
利用设有上述试验例3制作的各种多孔层42的隔离片40制作锂二次电池(层合型单电池),测定其膜电阻(Rs)。具体来说,如图5所示,使多孔层42以及隔离片40中含浸非水电解液,并将其夹入面积35mm2、厚度1mm的两块铜板62之间,制作层合型单电池60。作为非水电解液,使用使以3:4:3的体积比含有碳酸亚乙酯(EC)、碳酸二甲酯(DMC)和碳酸甲乙酯(EMC)的混合溶剂以约1mol/升的浓度含有支持电解质LiPF6的非水电解液。然后,从铜板62的上下施加50cN.m的转矩压,并在25℃下测定层合型单电池60的交流阻抗,从得到的Cole-Cole图读取膜电阻(Rs)。关于交流阻抗的测定条件,为交流施加电压5mV、频率范围10000Hz~1Hz。此外,上述单电池,以被两块铜板62夹持的隔离片为1片、2片、3片的方式分别制作。然后,通过交流阻抗法测定电阻值,将得到的单电池的电阻值相对于隔离片的片数作图,通过线性近似求出每一片隔离片的膜电阻(Rs)。
从表1可知,关于凹凸面的最大高低差为0.2≤δ≤1.7的试样1~11,膜电阻为1.6Ω以下,与试样12~15相比,膜电阻大幅度降低。尤其通过使最大高低差为0.5μm≤δ≤1.5μm,能够实现1.2Ω以下极低的膜电阻。
<试验例5:高速耐久性试验>
利用设有上述试验例3制作的各种多孔层42的隔离片40来构建锂二次电池,对其高速耐久性进行评价。锂二次电池以如下的方式制作。
将作为正极活性物质的Li1.15Ni0.33Mn0.33Co0.33O2粉末和作为导电材料的乙炔黑AB和作为粘合剂的聚偏氟乙烯PVdF以这些材料的质量比为88:10:2的方式在N-甲基吡咯烷酮(NMP)中混合,并调制正极活性物质层用糊剂。将该正极活性物质层用糊剂以带状涂布在长条片状的铝箔(正极集电体12)的两面并干燥,由此,制作在正极集电体12的两面设有正极活性物质层14的正极片10。正极活性物质层用糊剂的涂布量以两面合起来约17.2mg/cm2(固体成分基准)的方式进行调节。
另外,使作为负极活性物质的石墨粉末和作为粘合剂的丁苯橡胶SBR和作为增粘剂的羧甲基纤维素CMC以这些材料的质量比为98.6:0.7:0.7的方式在水中分散,从而调制负极活性物质层用糊剂。将该负极活性物质层用糊剂涂布在长条片状的铜箔(负极集电体22)的两面,制作在负极集电体22的两面设有负极活性物质层24的负极片20。负极活性物质层形成用糊剂的涂布量以两面合起来约11.1mg/cm2(固体成分基准)的方式进行调节。
然后,将正极片10及负极片20介由两片隔离片40而卷绕,由此制作卷绕电极体80。此时,以隔离片表面的多孔层42和负极片20相对的方式配置。将这样得到的卷绕电极体80与非水电解液一起装入电池容器50中(这里,使用18650型的圆筒型。),将电池容器50的开口部气密地封口。作为非水电解液,使用在以3:4:3的体积比含有碳酸亚乙酯EC、碳酸甲乙酯EMC和碳酸二甲酯DMC的混合溶剂中以约1mol/升的浓度含有支持电解质LiPF6的非水电解液。这样组装锂二次电池100。然后,通过常用的方法进行初期充放电处理(调节)并得到评价用的锂二次电池。
对由以上方式得到的锂二次电池分别作用反复以20C进行10秒钟的CC放电的充放电模式,进行充放电循环试验。具体来说,在室温(约25℃)环境下,以20C进行10秒钟的CC放电,在停止5秒钟后,连续反复进行以5C进行40秒钟CC充电的充放电循环10000次。
而且,根据上述充放电循环试验前的IV电阻(锂离子电池的初期的电阻)和充放电循环试验后的IV电阻算出电阻增加率。这里,充放电循环前后的IV电阻分别根据以25℃、30C进行脉冲放电时的放电10秒后的电压下降算出。此外,电阻增加率(%)通过[(充放电循环试验后的IV电阻-充放电循环试验前的IV电阻)/充放电循环试验前的IV电阻]×100求出。将其结果表示在表1中。
从表1可知,凹凸面的最大高低差低于0.2的试样12、13,其电阻增加率超过200%。另外,凹凸面的最大高低差超过1.7的试样14、15,其电阻增加率也超过200%。而凹凸面的最大高低差为0.2≤δ≤1.7的试样1~11的电池,即使在反复进行10000次高速充放电循环后,电阻也几乎不上升,电阻增加率显示为15%以下的低值。尤其,通过使最大高低差为0.5μm≤δ≤1.5μm,能够达成6%以下这样极低的电阻增加率。从该结果可以确认,通过使凹凸面的最大高低差为0.2≤δ≤1.7(优选为0.5μm≤δ≤1.5μm),能够提高锂二次电池耐高速充放电的耐久性。
<试验例6:异物内部短路试验>
与上述试验例5同样地制作锂二次电池,实施异物内部短路试验。异物内部短路试验是利用高度0.2mm×宽度0.1mm且各边1mm的L字形的镍制小片,依照JISC8714进行的。而且,对是否存在异常发烟的NG品进行调查。将结果表示在表1中。这里将没有发烟表示为○,将有发烟表示为×。
如表1所示,凹凸面的最大高低差为0.2≤δ≤1.7的试样1~11,完全没有导致异常发烟的电池,能够确认为安全性优良的电池。
以上,通过优选的实施方式对本发明进行了说明,但这样的记载并非限定事项,当然能够进行各种改变。
例如,在上述的实施方式中,示出了多孔层42形成在隔离片40的与负极片20相对的表面上的情况,但不限于此,还可以形成在隔离片的与正极片相对的表面(或隔离片的两面)上。
另外,只要采用如下构造,即具有满足这里公开的优选的最大高低差δ的值的凹凸面的多孔层设在隔离片的表面上的构造即可,对所构建的锂二次电池的形状(外形、尺寸)没有特别限制。外包装可以为由层合膜等构成的薄片型,电池外装盒可以为圆筒形状或长方体形状的电池、或还可以为小型的纽扣形状。
此外,这里公开的任一种锂二次电池100,都具有与作为搭载在车辆上的电池相适的性能(例如能够得到高输出),尤其具有耐高速充放电的良好的耐久性。因此,根据本发明,如图6所示,能够提供具有这里公开的任一种锂二次电池100的车辆1。尤其,能够提供一种车辆1(例如汽车),其具有该锂二次电池100作为动力源(典型地,混合动力车或电动车辆的动力源)。
另外,作为这里公开的技术的优选的使用对象可以列举出,被想成能够在包含50A以上(例如50A~250A)进而100A以上(例如100A~200A)的高速放电的充放电循环下使用的锂二次电池100;理论容量为1Ah以上(进而3Ah以上)的大容量型且被想成能够在包含10C以上(例如10C~50C)进而20C以上(例如20C~40C)的高速放电的充放电循环下使用的锂二次电池等。
工业上的可利用性
根据本发明的构造,能够提供耐高速充放电的耐久性提高了的非水电解液二次电池。

Claims (7)

1.一种非水电解液二次电池,是具有电极体的非水电解液二次电池,所述电极体是正极片和负极片介由隔离片重合而成的,
在所述隔离片的至少一侧的表面上形成有多孔层,所述多孔层具有无机填充剂和粘合剂,
所述多孔层的表面形成凹凸,该凹凸面的最大高低差为0.2μm~1.7μm。
2.根据权利要求1所述的非水电解液二次电池,所述多孔层,作为所述无机填充剂具有由无机金属化合物形成的粒子,
在所述金属化合物粒子的粒度分布中,累积90%的粒径D90为4μm以下。
3.根据权利要求2所述的非水电解液二次电池,在所述金属化合物粒子的粒度分布中,累积10%的粒径D10为0.2μm以上。
4.根据权利要求2或3所述的非水电解液二次电池,所述金属化合物粒子为氧化铝或氧化铝水合物。
5.根据权利要求1~3的任一项所述的非水电解液二次电池,所述多孔层中的粘合剂含有比例,在将该多孔质层中所包含的固体成分量作为100质量%时,为1.5质量%~3质量%。
6.根据权利要求1~3的任一项所述的非水电解液二次电池,所述多孔层在所述隔离片的与负极片相对的表面上形成,该多孔层的凹凸面至少在与该负极片上的包含负极活性物质的负极活性物质层相对的位置上形成。
7.一种车辆,搭载了权利要求1~6的任一项所述的非水电解液二次电池。
CN201080067406.1A 2010-06-15 2010-06-15 非水电解液二次电池 Active CN102939675B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060139 WO2011158335A1 (ja) 2010-06-15 2010-06-15 非水電解液二次電池

Publications (2)

Publication Number Publication Date
CN102939675A CN102939675A (zh) 2013-02-20
CN102939675B true CN102939675B (zh) 2015-11-25

Family

ID=45347760

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080067406.1A Active CN102939675B (zh) 2010-06-15 2010-06-15 非水电解液二次电池

Country Status (5)

Country Link
US (1) US9190668B2 (zh)
JP (1) JP5720965B2 (zh)
KR (1) KR101536063B1 (zh)
CN (1) CN102939675B (zh)
WO (1) WO2011158335A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247090B (zh) * 2012-01-19 2017-10-31 索尼公司 隔膜、非水电解质电池、电池组、电子设备、电动车辆、电力存储装置和电力系统
JP5966522B2 (ja) * 2012-03-30 2016-08-10 Tdk株式会社 多孔質フィルム及びこれを用いたリチウムイオン二次電池
CN114649641A (zh) * 2014-12-29 2022-06-21 赛尔格有限责任公司 聚内酰胺涂覆的微孔电池隔板膜及相关涂覆配方
JP6583711B2 (ja) * 2015-03-17 2019-10-02 株式会社Gsユアサ 蓄電素子
JP2017098201A (ja) 2015-11-27 2017-06-01 住友化学株式会社 非水電解液二次電池用絶縁性多孔質層および非水電解液二次電池用積層セパレータ
JP6659639B2 (ja) * 2017-03-22 2020-03-04 株式会社東芝 複合電解質、二次電池、電池パック及び車両
US20180277909A1 (en) * 2017-03-22 2018-09-27 Kabushiki Kaisha Toshiba Composite electrolyte, secondary battery, battery pack and vehicle
JP2018032646A (ja) * 2017-12-01 2018-03-01 日本碍子株式会社 亜鉛二次電池用セパレータの評価方法、及び亜鉛二次電池用セパレータ
CN110364667B (zh) * 2018-04-11 2022-04-22 宁德新能源科技有限公司 多孔膜和锂离子电池
CN115528379A (zh) * 2018-04-11 2022-12-27 宁德新能源科技有限公司 隔离膜及储能装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101546822A (zh) * 2008-03-27 2009-09-30 三星Sdi株式会社 电极组件及包括该电极组件的二次电池
CN101600571A (zh) * 2007-01-30 2009-12-09 旭化成电子材料株式会社 多层多孔膜及其制造方法
JP2010102868A (ja) * 2008-10-22 2010-05-06 Toyota Motor Corp リチウム二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4557317B2 (ja) * 1997-08-12 2010-10-06 三菱化学株式会社 ポリエチレン樹脂製多孔性フィルム及びその製造方法
JP2002008730A (ja) 2000-06-27 2002-01-11 Fdk Corp リチウム二次電池
KR100775310B1 (ko) * 2004-12-22 2007-11-08 주식회사 엘지화학 유/무기 복합 다공성 분리막 및 이를 이용한 전기 화학소자
JP5448345B2 (ja) * 2007-01-30 2014-03-19 旭化成イーマテリアルズ株式会社 多層多孔膜及びその製造方法
CN101796668B (zh) 2007-10-03 2013-08-14 日立麦克赛尔株式会社 电池用隔膜及非水电解液电池
JP5603543B2 (ja) * 2008-07-07 2014-10-08 日立マクセル株式会社 電池用セパレータおよび非水電解液電池
JP2010092718A (ja) * 2008-10-08 2010-04-22 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101600571A (zh) * 2007-01-30 2009-12-09 旭化成电子材料株式会社 多层多孔膜及其制造方法
CN101546822A (zh) * 2008-03-27 2009-09-30 三星Sdi株式会社 电极组件及包括该电极组件的二次电池
JP2010102868A (ja) * 2008-10-22 2010-05-06 Toyota Motor Corp リチウム二次電池

Also Published As

Publication number Publication date
KR101536063B1 (ko) 2015-07-10
JPWO2011158335A1 (ja) 2013-08-15
US20130084503A1 (en) 2013-04-04
WO2011158335A1 (ja) 2011-12-22
JP5720965B2 (ja) 2015-05-20
US9190668B2 (en) 2015-11-17
CN102939675A (zh) 2013-02-20
KR20130043655A (ko) 2013-04-30

Similar Documents

Publication Publication Date Title
CN102939675B (zh) 非水电解液二次电池
CN103155215B (zh) 非水电解液锂二次电池
KR102529777B1 (ko) 이차 전지 및 이를 포함하는 장치
US10522816B2 (en) Lithium secondary battery
CN103250281B (zh) 锂离子二次电池的制造方法
US10637097B2 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery including the same, and manufacturing method of the electrode-electrolyte assembly
CN103947008A (zh) 非水电解液型二次电池
CN103380519B (zh) 锂离子二次电池及其制造方法
CN102405552B (zh) 锂二次电池及其制造方法
CN103597638B (zh) 锂离子二次电池
KR101721300B1 (ko) 비수 전해질 2차 전지
CN103460443A (zh) 锂离子二次电池
CN103250272A (zh) 非水电解质二次电池
US9172083B2 (en) Lithium ion secondary battery
CN103392249A (zh) 锂离子二次电池及其制造方法
CN103733391A (zh) 锂离子二次电池
US20120295157A1 (en) Lithium secondary battery
CN103168378A (zh) 电池用电极及其利用
CN103875118A (zh) 锂离子二次电池
CN103069620A (zh) 非水电解质二次电池及其制造方法
CN103201878B (zh) 非水电解液二次电池
KR101572405B1 (ko) 리튬 2차 전지
CN105359301A (zh) 非水电解质二次电池用正极以及非水电解质二次电池
CN102195028A (zh) 非水电解质二次电池用正极、使用其的电池及制造方法
CN105493319A (zh) 负极活性物质、使用该负极活性物质的负极、以及锂离子二次电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant