CN102908361A - 治疗哺乳动物疾病的组合物及使用方法 - Google Patents

治疗哺乳动物疾病的组合物及使用方法 Download PDF

Info

Publication number
CN102908361A
CN102908361A CN2012103974590A CN201210397459A CN102908361A CN 102908361 A CN102908361 A CN 102908361A CN 2012103974590 A CN2012103974590 A CN 2012103974590A CN 201210397459 A CN201210397459 A CN 201210397459A CN 102908361 A CN102908361 A CN 102908361A
Authority
CN
China
Prior art keywords
compositions
cell
virus
chemical compound
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012103974590A
Other languages
English (en)
Inventor
罗伯特·萨宾
A.森格豪尔
G.斯坎丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/888,576 external-priority patent/US7449196B2/en
Application filed by Individual filed Critical Individual
Publication of CN102908361A publication Critical patent/CN102908361A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/34Copper; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0038Radiosensitizing, i.e. administration of pharmaceutical agents that enhance the effect of radiotherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • A61P33/06Antimalarials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

本公开涉及具有可用于哺乳动物疾病的医学特性的组合物和在哺乳动物中的使用方法,所述医学特性例如抗癌特性、抗病毒特性、抗原生动物特性以及抗细菌特性。用作药物的化学组合物包含生物可接受的铜化合物,还可包括其它成分如铁,在药物可接受载体中传送到受害细胞。

Description

治疗哺乳动物疾病的组合物及使用方法
本申请是以下申请的分案申请:申请日:2005年7月8日;申请号:200580029686.6(PCT/US2005/024272);发明名称:“治疗哺乳动物疾病的组合物及使用方法”
技术领域
本公开内容涉及药物组合物、其使用方法和制造方法。这些组合物可用于治疗哺乳动物中的多种疾病和感染,包括癌症、病毒感染如肝炎或HIV、传染性病毒疾病如埃博拉病(Ebola)、微生物传播疾病、疟疾和天花以及由传染性微生物(包括细菌)引起的其它疾病。
背景技术
所有本文提到的专利、科学文章和其它文献通过引用结合到本文中,如同在下文中全文复写。癌症是新细胞在体内快速、不受控制的增殖,是动物(包括人类)死亡的主要原因。这种增殖远远超出细胞凋亡的正常水平,而凋亡是多细胞生物正常发育和稳态的必需生理过程。(Stellar,Science 267:1445-1449(1995))。
化学疗法是当今采用的标准癌症治疗法,通常与放射治疗法和外科手术联合使用。化学疗法通常被理解为意指破坏癌细胞的药剂或药物。目前有上百种药物以各种组合方式用于治疗癌症。(The AmericanCancer Society,Consumers Guide to Cancer Drugs,Jones and BartlettPublishers,(2000))。“所有这些药物都具有一个共同特征,即它们能起作用是因为它们是毒药”。(Moss,Questioning Chemotherapy,EquinoxPress,pg.77,(2000))。化疗药物毒性高,治疗指数通常较窄。这些药物对恶性细胞几乎没有特异性,不能有效区分正常细胞和恶性细胞。因此,所有的细胞和组织,特别是快速增殖细胞如骨髓细胞、精原细胞和胃肠隐窝上皮细胞,都非常易受攻击。(Baquiran,Cancer Chemotherapy Handbook,Lippincott,pg.85(2001))。此外,化学疗法的副作用可能会十分可怕的,这是本领域技术人员和很不幸被施以化学疗法的人公知的。(The American Cancer Society,Consumers Guide to Cancer Drugs,Jones and Bartlett Publishers,(2000))。另参见(Baquiran,Cancer Chemotherapy Handbook,Lippincott,p 85(2001));(Chu & Devita,Physicians’Cancer Chemotherapy Drug Manual,2003,Jones and BartlettPublishers,(2003));(Lance Armstrong,It’s Not About the Bike,BerkleyPublishing,(2000));(King,King and Pearlroth,Cancer Combat,BantamBooks,(1998));(Rich,The Red Devil,Three Rivers Press,(1999))和(Marchione,Hopes in cancer drug dashed,Milwaukee Journal Sentinel,May 22,(2002))。目前的癌症治疗法(包括化学疗法)通常对实体瘤作用不佳。(Moss,Questioning Chemotherapy,Updated Edition,Equinox Press,2000:18)和(Masters and Koberle,in Curing Metastatic Cancer:Lessons from Testicular Germ-Cell Tumours,Nature Reviews,3(7)(July 2003))。
可能会发生对化疗药物的抗性,使得药物对一些类型的癌症有效,对其它的却无效,或者药物根本不起作用。已证实存在对曾经开发出的每一种化疗药物的抗性。这种抗性可能是先天抗性、获得抗性或自然发生抗性(emergent resistance)。(Chu & Devita;Physicians’Cancer Chemotherapy Drug Manual,2003,Jones and Bartlett Pub.(2003))。另外,一般认为,联合应用各化疗药物会获得应答率较高的治疗方案。但是有研究证实,就测出的存活率和生活质量而言,各化疗药物无论是依次还是联合用于治疗转移性乳腺癌,其结果相当。(Sledge,et al.,Phase III,Trial of Doxorubicin,paclitaxel,and the combination of doxorubicin and paclitaxel as front-line chemotherapy for metastatic breast cancer:an intergroup trial,J.of Clin.Oncology,21(4):588-592(Feb,2003))。
另外,一项采用四种较新的化疗方案和药物的研究得出的结果为,两年存活率11%,毒性相当大。在用不同的方案治疗晚期非小细胞肺癌的四个组当中,应答率和存活率没有显著的差异。(Schiller,et al.,Comparison of Four Chemotherapy Regimens for Advanced Non-Small- Cell Lung Cancer,The N.Eng.J.of Med.,346(2):92-98(Jan.,2002))。
众所周知,癌细胞具有较高的葡萄糖摄取和代谢率,所造成的糖酵解增强可作为恶性转化的标志。(Mehvar,Dextrans for targeted and sustained delivery of therapeutic and imaging agents,J.of ControlledRelease,69:1-25(2000);(Essner,et al.,Advances in FDG PET Probes in Surgical Oncology,Cancer Jour.8:100-108(2002))。癌细胞能高速利用和代谢葡萄糖(甚至在存在高氧浓度时),主要形成乳酸。(Warburg,O.,On The Origin of Cancer Cells,Science 123(3191):309-314(Feb,1956))。因此在癌细胞中检测出的乳酸水平比在相应的正常组织中高得多。(Rivenzon-Segal,et.al.,Glycolysis as a metabolic marker in orthotopic breast cancer,monitored by in vivo 13C MRS,Amer.J.Phys.Endocrinology Metabolism,283:E623-E630(2002);另参见(Lee andPedersen,Glucose Metabolism in Cancer,J.of Biol.Chem.278(42):41047-41058(Oct,2003));(Gatenby and Gawlinski,The glycolysis phenotype in carcinogenesis and tumor invasion:insights through mathematical models,Cancer Res.,63(14):3847-54(Jul,2003));(Degani,The American Society of Clinical Oncology,Intn’l J.of Cancer,107:177-182(Nov,2003));(Warburg,O.The Prime Cause and Prevention of Cancer,Konrad Triltsch,p 6.(1969))。葡萄糖通常是依靠葡萄糖转运蛋白家族的成员之一通过促进扩散进入大多数细胞的。(Katzung,Basic & ClinicalPharmacology,McGraw Hill Co.Inc.,pg.715(2001))。与这些转运蛋白不相容的葡萄糖形式可由吞噬系统的细胞或组织关联细胞通过吞噬作用(也称内吞作用)摄取。吞噬系统也称网状内皮系统(“RES”)或单核吞噬细胞系统(“MPS”),是一种广为分布的系统,包括组织、肝脏、脾脏、淋巴结和骨髓的固定巨噬细胞,连同造血组织的成纤维网织细胞。
葡萄糖能引发、促进、驱动和扩大肿瘤细胞的生长和转移。肿瘤细胞所偏好的无氧酵解是一种非常低效和原始的ATP产生过程,需要数量巨大的葡萄糖。因此,科学界目前正在研究使肿瘤细胞丧失葡萄糖的方法。(Van Dang et al,The Proc.of the Nat’l Acad.of Sci.95:1511-1516(1998))。(Pedersen,Inhibiting glycolysis and oxidativephosphorylation,3-BrPA abolishes cell ATP production,Reuters News,(July 18,2002))。一项在鼠体内进行的人骨肉瘤和非小细胞肺癌异种移植模型的研究发现,糖酵解抑制剂2-脱氧-D-葡萄糖与阿霉素或紫杉醇联用,导致肿瘤生长明显减慢。(Maschek,et al.,2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo,Cancer Res.,64(1):31-34(2004))。另外,已发现用抑制糖原异生(neoglucogenesis)的抗恶病质药物硫酸肼出现阳性临床结果。(Moss,Cancer Therapy,Equinox Press,p316(1992))。许多旨在使癌细胞丧失葡萄糖的膳食改造方案也已得到研究。(Quillin,Beating Cancer with Nutrition,Nutrition Times Press,p225(1998));(Quillin,Cancer’s Sweet Tooth,Nutrition Science News,(April 2000))和(Hauser & Hauser,Cancer-Treating Cancer with Insulin Potentiation Therapy,Beulah Land Press,(2001))。
铜(Cu)是一种必需痕量元素,对于从细菌到哺乳动物的生物的生命是必不可少的。铜是血管发生的必需辅因子,能促进血管发生,而血管发生是癌症尤其是实体瘤的生长的必要条件。(Brewer,Handbook of Copper Pharmacology and Toxicology,Humana Press,Chap.27,(2002));(Brem,Angiogenesis and Cancer Control:From Concept to Therapeutic Trial,Cancer Control Jour.,6(5):436-458(1999)。由于血管发生通常不为成体所需,已探究了通过铜去除、铜减少疗法或铜限制来抑制血管发生,作为抑制进一步的肿瘤生长可能机制。(Brewer,出处同上);另参见Brewer等的美国专利第6,703,050号。许多类型的肿瘤对铜和螯合铜有很大的需求,因为铜是血管发生和增殖的必需辅因子。(Brewer.Copper Control as an Antiangiogenic Anticancer TherapyLessons from Treating Wilson’s Disease,Exp.Bio.and Med.,226(7):665-673(2001))。由于对铜的这一需求以及铜促进肿瘤引发、生长和转移的作用,科学界继续在开发限制肿瘤细胞获得铜的方法和药物。(Brem,出处同上);(Brewer,出处同上);(Brewer,et al.,Treatment of Metastatic Cancer with Tetrathiomolybdate,an Anticopper,Antiangiogenesis Agent: Phase I Stuy,Clin.Cancer Res.,6:1-10(2000));(Redman,Phase II Trial of Tetrathiomolybdate in Patients with Advanced Kidney Cancer,Clin.Cancer Res.,9:1666-1672(2003));(Pan,et al.,Copper Deficiency Induced by Tetrathiomolybdate Suppresses Tumor Growth and Angiogenesis,Cancer Res.,62:4854-4859(2002));(Teknos,et al.,Inhibition of the Growth of Squamous Cell Carcinoma by Tetrathiomolybdate-Induced Copper Suppression in a Murine Model,Arch.of Otolaryngology:HeadAnd Neck Surgery,Oncolink Cancer News,Reuters,129:781-785(2003));(Yoshiji,et al.,The Copper Chelating Agent,trientine,suppresses tumor development and angiogenesis in the murine heptatocellular carcinoma cells,Int’lJ.of Cancer,94:768-773(Dec.,2001);(Yoshiji,et al.,The copper chelating agent,Trientine attentuates liver enzymes-altered preneoplastic lesions in rats by angiogenesis suppression,Oncology Rep.,10(5):1369-73(2003));(Brem,et al.,Penicillamine and Reduction of Copper for Angiosuppressive Therapy of Adults with Newly Diagnosed Glioblastoma,H.Lee Moffitt Cancer Center & Research Inst.,(1999));(Sagripanti and Kraemer,Site-specific Oxidative DNA Damage at Polyguanosines Produced by Copper Plus Hydrogen Peroxide,J.of Biol.Chem.,264(3):1729-1734(1989))。
铜还可以通过如损害DNA的方式促进癌症生长。(Sagripanti,出处同上(1999))。铜在细胞中的破坏性活性包括与DNA结合、在还原剂和过氧化氢存在下切割DNA、非特异性破坏细胞功能和通过Haber-Weiss反应产生游离的羟基自由基。(Theophanides,et al.,Copper and Carcinogenesis,Critical Reviews In Oncology/Hematology,42:57-64(2002))。铜还在活性氧簇(“ROS”)的形成中发挥作用。(Sagripanti,DNA Damage Mediated by Metal Ions with Special Reference to Copper and Iron,Met.Ions Biol.Syst.36:179-209(1999))。
许多美国专利中也公开了铜治疗癌症的用途:美国专利第4,952,607号公开了在哺乳动物细胞中显示出超氧化物歧化酶样活性的铜络合物;美国专利第5,124,351号公开了氨三乙酸的铜螯合物或双缩氨基硫脲的铜螯合物的用途;美国专利第5,632,982号公开了铜螯合物联合表面膜蛋白受体内化剂(internalizing agent)特别是TNF用于抵抗靶细胞的用途;美国专利第6,706,759号公开了二硫代氨基甲酸盐衍生物和铜的用途。
还已知癌细胞和正常细胞在铁需求方面存在数量差异,因为铁获取的提高可引发、促进和扩大肿瘤细胞的生长和转移。铁是从氧传递到DNA合成和电子传递的众多生物过程的必需过渡金属。铁还参与致癌机制,包括DNA损伤活性氧簇的产生和对宿主细胞防御的抑制。(Desoize,B.,Editor,Cancer in Metals and Metal Compounds:Part I- Carcinogenesis,Critical Reviews In Oncology/Hematology,42:1-3(2002));(Galaris,et al.,The Role of Oxidative Stress in Mechanisms of Metal-induced Carcinogenesis,Critical Reviews In Oncology/Hematology,42:93-103(2002));(Weinberg,Cancer and Iron:a Dangerous Mix,IronDisorders Insight,2(2):11(1999));(Weinberg,The Development of Awareness of the Carcinogenic Hazard of Inhaled Iron,Oncology Res.11:109-113(1999));(Weinberg,Iron Therapy and Cancer,Kidney Int’l,55(60):S131-134(1999));(Weinberg,The Role of Iron in Cancer,Euro.J.Cancer Prevention,5:19-36,(1996));(Weinberg,Iron in Neoplastic Disease,Nutrition Cancer,4(3):223-33(1993));(Stevens,et al.,Body Iron Stores and the Risk of Cancer,N.Eng.J.of Med.,319(16):1047-1052(1988))。
已开发出多种用不同方法控制和限制铁向肿瘤细胞的供应的药物,所述方法包括用胞内铁螯合剂将金属收回,用镓盐干扰铁摄取和利用肿瘤上转铁蛋白受体的单克隆抗体阻断铁的摄取。例如,美国专利第6,589,96号(整体结合到本文中)教导了铁螯合剂作为抗癌化疗药物使癌细胞丧失铁的用途。另参见(Kwok,et al.,The Iron Metabolism of Neoplastic Cells:alterations that facilitate proliferation?,Crit.Rev.InOncology/Hematology,42:65-78(2002),这个文献公开肿瘤细胞高水平地表达转铁蛋白受体1(TFR1)并以惊人的速度从转铁蛋白(TF)将铁(Fe)内化。);(Desoize,B.Editor,Cancer and Metals and Metal Compounds, Part II-Cancer Treatment,Crit.Rev.In Oncology/Hematology,42:213-215(2002));(Collery,et al.,Gallium in Cancer Treatment,Crit.Rev.InOncology/Hematology,42:283-296(2002));(Weinberg,Development of Clinical Methods of Iron Deprivation for Suppression of Neoplastic and Infectious Diseases,Cancer Investigation,17(7):507-513(1999));(Weinberg,Human Lactoferrin:a Novel Therapeutic with Board Spectrum Potential,Pharmacy & Pharmacology,53(Oct 2001));(Richardson,IronChelators as therapeutic agents for the Treatment of Cancer,Crit.Rev.InOncology/Hematology,42:267-281(2002))。
当将铁-右旋糖酐络合物给予血液系统时,铁的细胞毒性被其剂量高于或低于RES系统清除率的右旋糖酐鞘(sheath)或壳(shell)所阻断。(Lawrence,Development and Comparison of Iron Dextran Products,J.ofPharm.Sci.& Tech.,52(5):190-197(1998));(Cox,Structure of铁-dextrancomplex,J.of Pharma & Pharmac,24:513-517(1972));(Henderson &Hillman,Characteristics of Iron Dextran Utilization in Man,Blood,34(3):357-375(1969));美国专利第5,624,668号)。铁-右旋糖酐可保留在血浆中,无自动力地在全身通行数周,同时被吞噬系统和癌细胞从血浆中除去。
铜和铁因为它们在基础代谢过程中作为催化氧化还原反应的酶类的辅因子的功能,是所有生物的必需微量营养物。(Massaro,editor,Handbook of Copper Pharmacology and Toxicity,Humana Press,2002,Chapter 30,p481)。研究显示铁和铜之间存在协同相互作用,与只含铁的化合物所见的利用情况相比,该协同相互作用导致铁的利用显著提高。(Massaro,Chap.30,出处同上)。为使铁与血浆蛋白质转铁蛋白结合,需要从Fe2+氧化到Fe3+。该氧化可由多铜亚铁氧化酶hephaestin(一种多铜氧化酶)或血浆铜蓝蛋白介导。Hephaestin可与肠细胞表面的Ferroportinl(膜铁转运蛋白)一起作用,将Fe2+氧化成Fe3+,后者然后再输出到血浆中供加载在转铁蛋白上。血浆铜蓝蛋白另外的重要作用是从合成血浆铜蓝蛋白的组织(如肝脏)中动员铁。血浆铜蓝蛋白由肝脏分泌,可含有六个铜原子,能携带至少95%的总血清铜,以便传递到组织中。另外,血浆铜蓝蛋白能通过其亚铁氧化酶活性介导铁从肝脏的释放,同样以便传递到组织中。因此,铜和铁都能支持造血系统,尤其是红细胞形成。两者对红细胞的形成都是必不可少的。
美国癌症学会(American Cancer Society)报告Cancer Facts and Figures 2003公开,“癌症是以异常细胞的不受控制的生长和扩散为特征的一组疾病,预期2003年美国将诊断出1,334,100例癌症新病例,其中有556,500人预期2003年死于癌症”。本发明包括但不限于Cancer Facts and Figures 2003第4页(出处同上)中公开的癌症的治疗,如口腔和咽喉、消化系统、呼吸系统、骨头和关节、软组织、皮肤、乳腺、生殖系统、泌尿系统、眼和眼眶、大脑和其它神经系统、内分泌系统的癌症,淋巴瘤,多发性骨髓瘤,白血病和其它未指明原发部位的癌症。用本发明进行的治疗还包括基底细胞和鳞状细胞皮肤癌及原位癌、过度增殖性疾病、脊髓发育不良疾病和浆细胞病(其特征是骨髓或罕见情况下其它组织中浆细胞增加)。有关这些临床异常的描述由Markman医学博士在Basic Cancer Medicine,W.B.Saunders Co.,第103页,(1997)中公开。
有利的是,开发出采用生物相容性材料(即能进入身体每一个细胞中的材料)的优选化疗药物,以实现细胞死亡最少,防止癌细胞复制和避免传统的众多致命化疗副作用。这种治疗药物能避免许多药物所造成的组织抗性和特异性缺乏的问题,从而摧毁或阻止许多先前难以控制的癌症,而不使病人虚弱或夺去病人生命。
对于病毒疾病,最好的实例是肝炎。肝炎通常由病毒感染引起,可包括多个不同的种类。丙型肝炎是最普通的毒株,是最为通过血液传播的感染,是美国慢性肝病的最重要原因之一。丙型肝炎病毒(“HCV”)是一种造成肝脏发炎的病毒。HCV是单链RNA病毒,属于黄病毒科(Flaviviridae)科丙型肝炎病毒属(hepacivirus),具有至少6个主要基因型和超过50个HCV亚型。丙型肝炎是美国肝脏移植的主要原因,也是造成15%的急性病毒性肝炎、60-70%的慢性肝炎和高达50%的肝硬化、晚期肝病和肝病毒性癌症(包括肝细胞癌)的原因。美国疾病控制和预防中心(U.S.Center for Disease Control and Prevention)报告说,大约有1.8%的美国人口或者说390万美国人感染HCV,这些病例当中大多数未确诊。从全球来说,世界卫生组织估计有1.7亿人(即相当于世界人口的大约3%)慢性感染HCV,另外每年有300-400万人新感染HCV。
丙型肝炎感染的进程可因与HIV感染有关的免疫缺陷而加速,从而增加肝硬化的发生率。也已将与乙型肝炎病毒(“HBV”)的共感染与慢性丙型肝炎的严重性增加和向肝硬化发展的进程加速联系起来。另外,HBV共感染似乎增加肝细胞癌发展的风险。(有关共感染的信息参见例如eMedicine.Com,Inc)。
甲型肝炎由甲型肝炎病毒(“HAV”)引起,该病毒是小核糖核酸病毒科(Picornavirus)肝病毒属(hepatovirus)的无包膜正链RNA病毒。HAV在肝细胞中复制时会干扰肝脏的功能,肝脏由于病理损害而发炎。已发现HAV是传染性肝炎的主要原因。
乙型肝炎由乙型肝炎病毒(“HBV”)引起,该病毒是有包膜病毒,含有42nm部分双链环状DNA基因组,归入嗜肝DNA病毒科(Hepadnavirus)。乙型肝炎是严重和常见的肝脏传染性疾病,侵害着全世界无数人。HBV被认为是血清性肝炎的主要原因。已证实丁型肝炎病毒(“HDV”)依赖HBV进行传播,因为它使用乙型肝炎表面抗原(HBsAg)作为其自己的毒粒外壳。该抗原在亚细胞定位方面类似于乙型肝炎核心抗原(“HbcAg”)。它的存在总是伴随着HBV感染,但它极少与HBcAg共存。HDV感染可作为与HBV的共感染而获得,或者作为慢性HBV感染者的超感染而获得。HBV-HDV共感染者与只感染HBV者相比,可能会患上更为严重的急性疾病,发生暴发性肝炎的风险更高(2%-20%)。但是,慢性HBV感染在HBV-HDV共感染者身上发生频率似乎较低。获得HDV超感染的慢性HBV携带者通常会出现慢性HDV感染。在对有HDV超感染的慢性HBV携带者的长期研究中发现,他们当中有70%-80%显出慢性肝病伴肝硬化的迹象,与此相比,仅有慢性HBV感染的患者中只有15%-30%显出这一迹象。
戊型肝炎由戊型肝炎病毒(“HEV”)引起,该病毒是无包膜球形正链RNA病毒。已分离出几种不同的病毒株并进行部分表征和分子克隆(1990-92)。虽然它们原先被归入杯状病毒科(Calicivirus),但现在却没有分类。HEV在15-40岁成年人中引起自限性急性病毒性肝炎。症状性HEV感染在儿童中罕见;尽管HEV感染常发生于儿童,但大部分无症状无黄疸。
有能保护免受甲型肝炎和乙型肝炎侵害的疫苗存在。丁型肝炎由缺陷病毒引起,在没有HBV时无害。甲型肝炎和戊型肝炎都是自限性的,在大多数情况下过一段时间后就会终止。而丙型肝炎既不是缺陷性的也不是自限性的,目前尚未存在预防丙型肝炎感染的疫苗。
一些有急性病毒性肝炎的典型征兆和症状的患者并不具有任何这些类型病毒性肝炎的血清学标志,可能会被列为患上非甲-非戊型。目前,已在非甲-非戊型患者中发现了新的病毒。
慢性肝炎特别是丙型肝炎病人目前的治疗选择通常是改变生活方式和严格执行用药方案相结合。由于肝脏在代谢中的角色,饮食最有可能在影响疾病进展速度方面起到重要的作用。丙型肝炎感染者的患病肝脏可能特别会受到过量的某些产物,包括钠、脂肪尤其是酒精的影响,这会降低药物治疗的有效性。由于许多常规治疗方法的失败和与用药方案有关的副作用的严重性,一些丙型肝炎感染者转向替代疗法,这种疗法可包括采用草药和植物制剂、放松和精神治疗。
干扰素是丙型肝炎常规药物治疗的支柱。干扰素是细胞响应病毒感染而分泌的天然糖蛋白。干扰素能结合细胞表面上的特异性受体,通过蛋白质-蛋白质相互作用的复杂级联引发胞内信号转导,导致基因表达被快速激活。受干扰素刺激的基因能调节多种生物作用,包括受感染细胞中病毒复制的抑制、细胞增殖的抑制和免疫调节。各种重组形式的α干扰素、α-2b干扰素和重组非天然I型干扰素已被批准用于治疗慢性病毒性丙型肝炎。但是,干扰素已知会造成身体上和精神上的副作用,如激怒、抑郁、焦虑和自杀行为;白血病和血小板数量减少;心脏问题、身体器官问题,可导致自身免疫病,包括系统性红斑狼疮。流感样副作用也常见。通常通过连接赖氨酸的稳定酰胺键,将聚乙二醇(“PEG”)连接到干扰素分子上,使干扰素进行聚乙二醇化,以保护其免受免疫系统的破坏,使其在身体中的停留时间更长。利巴韦林往往与干扰素联合用于治疗肝炎,其被认为在防止病毒繁殖方面具有一定作用。
传染性疾病每年致使1000多万人死亡,其中90%的人生活在发展中国家。全世界大约有十亿人传染疟疾和其它媒介传播疾病。现在预期这些数字还会提高,因为各种因素造成疟疾正在卷土重来,这些因素例如寄生虫抗药株的发生、携带寄生虫的杀虫剂抗性蚊子的出现、环境的变化和人口的增长。
大多数抗传染性疟疾药物是对原生动物的与人宿主相差甚大的代谢各方面进行干扰。疟疾寄生虫的疟原虫种(Plasmodium species)能感染人类。恶性疟原虫(P.falciparum)是最常见的一种,能在人类中引起最致命形式的疟疾。其它的种,包括间日疟原虫(P.vivax)、卵形疟原虫(P.ovale)和三日疟原虫(P.malariae)可引起毒性较低类型的疾病。蚊子会将寄生虫(也称子孢子)注入哺乳动物皮下组织中,或者偶尔会直接注入到血流中。然后寄生性子孢子会移动到肝脏,据认为在那里子孢子入侵前会先穿过几个肝细胞。然后开始了寄生虫发育过程。子孢子上的共同受体能介导入侵。血小板反应蛋白这种共同受体通过某些结构域特异性结合与肝窦内皮和枯否氏细胞同位的区域中肝细胞上的硫酸肝素蛋白多糖。每个子孢子在肝细胞中一次能发育成成千上万个裂殖性孢子,后者从肝脏中释放出来后各自都可入侵红细胞(或者说红血球“RBC”)。疟原虫在其生活周期的会产生疟疾症状的阶段中感染宿主红细胞。这种寄生虫有一个入侵、生长和从受感染红细胞释放的48小时循环。寄生虫在这个循环过程中能引起宿主红血球细胞膜的渗透性极大提高,以让它能从宿主血流获得营养物并排出废物。疟疾寄生虫可降解宿主细胞中最多达80%的血红蛋白。这一降解作用发生在溶酶体食物泡中,至少涉及天冬氨酸蛋白酶(Plasmepsin)、半胱氨酸蛋白酶falcipain 2和许多另外的肽酶,包括金属肽酶。其结果包括释放出大量的Fe(II)血红素,后者被快速氧化成Fe(III)高铁血红素并作为惰性色素而隐藏,该色素称为疟原虫色素,包含聚集的血红素二聚体的结构化晶格(structured lattice)。
寄生虫在其宿主中的存活需要一些代谢适应,这使得它易受化疗攻击,且可将一些药物靶标靶向独特细胞器结构的功能。喹啉、芳基醇抗疟疾药物和青蒿素及其它抗疟疾过氧化物集中在食物泡中,它们据认为通过与血红素相互作用发挥其活性。喹啉据认为通过籍其平面芳香结构的交替堆积与血红素结合来破坏或防止疟原虫色素的有效形成,所述结合导致血红素介导的对寄生虫的毒性,且可能涉及诱导脂质过氧化。青蒿素可在食物泡中进行其过氧化物键的氧化还原切割,这极为可能通过与Fe(II)血红素相互作用来进行。这些相互作用据认为对寄生虫产生自由基诱导的致命损害。但是,确切的产生机制和寄生虫死亡机制仍未知。
然而,对许多常销药物特别是不甚昂贵类型的药物的抗性正在发展之中。另外,在实践中,用大多数抗疟疾感染药物治疗疟疾病人的成本对于各国大多数公众或家庭来说可能负担不起,而这些国家可能已经普遍存在对平常得到的廉价药物的抗性。
有利的是,开发出这样的有效药物,其采用生物相容性材料,以得到能同时杀灭原生动物,支持红血球、白血球和血小板的生产,解决普遍存在的缺铁和贫血问题及供应碳水化合物的抗疟疾治疗方法,其由身体的天然生物材料组成,能滋养每一个正常细胞。
埃博拉出血热(常称为“埃博拉病”)病毒是感染人类和非人灵长类动物的最致命病毒之一。埃博拉病毒引起的传染性疾病——埃博拉病,因其在1976年首先在非洲国家扎伊尔的埃博拉河被发现而得名。自从这种病毒被发现以来,已有不同的病毒株造成流行疫情,死亡率达50-90%。
埃博拉病毒是负链RNA病毒家族——线状病毒科(Filoviridae)成员,与Marburg病毒类似,Marburg病是相关的但致命性较弱的出血疾病。埃博拉病毒颗粒是多形的,但其基本结构是长丝状,基本为杆状,该病毒通常呈“U”形。病毒颗粒最长可达14,000nm,平均直径80nm。埃博拉病毒由嵌插有糖蛋白的外部脂膜和包围病毒RNA的内部病毒衣壳组成。病毒基因组由单条负链RNA组成,该RNA本身无传染性,非聚腺苷酸化,各基因呈线性排列。整个毒粒即由被蛋白质壳包围的RNA组成的完整病毒颗粒构成了传染形式的病毒。参见例如美国疾病控制和预防中心(“CDC”)的网站。
该病毒通过未知机制进入细胞,并在受感染细胞的细胞质中转录其RNA和进行复制。随着感染的发展,受感染细胞的细胞质产生含有病毒核衣壳的“明显的内含体”,该内含体可变得高度结构化。病毒然后进行装配,从宿主细胞出芽并从受感染细胞的外膜获得其脂蛋白外壳。
已知存在四种不同的埃博拉病毒株,其中三种会使人类发病。根据它们的暴发地点命名,它们是埃博拉-扎伊尔(90%致死率)、埃博拉-苏丹(50%致死率)和埃博拉-象牙海岸(报告一例病例;患者存活)。第四种即埃博拉-雷斯顿使非人灵长类动物发病,但没有使人类发病。埃博拉出血热的确证病例在几个非洲国家和英国有报告,在英国是一名实验室工作人员因意外针刺伤而得病。埃博拉-雷斯顿病毒造成引入到美国和意大利研究机构中的猴子严重发病和死亡;在这些暴发事件中有数名研究工作人员感染该病毒,但没有发病。埃博拉病通常以零星暴发形式出现,往往因注射针消毒不充分而在医疗卫生机构当中传播。有可能还出现零星的分散病例(如埃博拉-象牙海岸),但未被确认和报告。埃博拉病毒的天然储存宿主未知。
对线状病毒的发病机理知之甚少。但知道埃博拉会攻击对淋巴组织功能重要的细胞。该病毒可出现在皮肤下疏松结缔组织当中的成纤维网织细胞(“FRC”)和淋巴结中的FRC导管中。这使得埃博拉病毒能快速进入血液中,导致高内皮细胞小静脉处的淋巴细胞归巢受到破坏。参见斯坦福大学网站有关线状病毒的内容。由于出血热的特性,对有关宿主对感染的免疫反应知之甚少。产生出的抗体主要攻击病毒的表面糖蛋白。已知道死亡患者在死亡时还没有产生对病毒的有效免疫反应。参见例如美国疾病控制和预防中心的网站。在家养豚鼠中已发现抗埃博拉抗体,但没有迹象表明该抗体能传输给人类。参见加拿大实验室安全办公室(Canadian Office of Laboratory Safety)网站。
要在才感染几天的个体中诊断埃博拉病是有困难的,因为该病的早期症状如红眼和皮疹对该病毒而言是非特异性的,在患有更为频发的疾病的其它患者中也可见到。可用抗原捕获酶联免疫吸附测定(ELISA)、IgM ELISA、聚合酶链反应(PCR)和病毒分离法来在症状发作数天内诊断埃博拉HF。在疾病过程后期或痊愈后进行检验的人,可检测其IgM和IgG抗体。还可以用病毒分离法、免疫组织化学试验或PCR,在死亡患者中对该病进行追溯性诊断。
迄今为止已知没有埃博拉病治疗法获得成功。目前的治疗方法旨在保持肾功能和电解质平衡和防止出血和休克;输注恢复期血清也可能有益。标准的抗病毒疗法,包括刺激免疫系统的干扰素和利巴韦林(ribavarin)这种抗病毒药物,未能证实对埃博拉病毒有效。参见加拿大实验室安全办公室网站。患者能活着的时间越长,痊愈的机会越大,因为可赢得更多的时间来产生天然免疫反应。至今为止尚没有被批准用于人类的埃博拉疫苗。
美国疫苗研究中心(Vaccine Research Center,VRC)的研究人员与美国军队传染病医学研究所(US Army Medical Research Institute forInfectious Diseases,USAMRIID)和美国疾病控制和预防中心(CDC)联合,已开发出针对非人灵长类动物埃博拉病毒感染的潜在有效的疫苗策略。2003年,VRC启动了设计用以预防埃博拉感染的DNA疫苗的首次人类试验。如果这种含有三个来自埃博拉病毒的基因的DNA疫苗在人类中证明安全,将来就能获得疫苗,作为长期预防措施的一部分,来保护医护人员、军事人员和可能生物恐怖攻击的初期响应者(primaryresponder)。
天花病据说同时代表了“人类成就的最高点和最低点”。曾经造成无数人死亡和毁容的天花病,是通过超越政治和意识形态界限的协同和广泛努力而成功根除的唯一疾病。得益于这些努力,自1977年10月26日起,这种曾经是高死亡率的感染疾病没有自然发生病例的出现记录。(最后一个自然发生病例是索马里的一个未进行预防接种的医院厨师)。世界卫生组织(WHO)1980年正式宣布天花病被根除。尽管如此,或者也许正因为如此,在天花病根除二十多年后,它再度成为一个实实在在的威胁。
法定上,天花病只为研究目的存在于两个地点:美国疾病控制和预防中心(美国佐治亚州Atlanta)和俄罗斯国家病毒和生物技术研究中心(俄罗斯联邦新西伯利亚地区Koltsovo)。在世界其它地方秘密保藏的程度仍未知。但是担忧恐怖分子或流氓国家可能会放出天花病毒,作为一直设想的最具破坏性的潜在生物武器。天花作为生物武器可以以气溶胶形式传播,因此天花是通过受感染者咳嗽的呼吸道分泌物(空气传播液滴)或者通过与受感染皮肤伤口的直接接触在人之间传播的。
以砖形为特征的痘病毒是最大的动物病毒,在光学显微镜下可见,比某些细菌还要大。天花病由天花病毒引起,这种病毒是痘病毒科(Poxviridae)痘病毒脊索亚科(Chordopoxvirinae)正痘病毒属(Orthopoxvirus)成员。该属的其它成员包括牛痘病毒、骆驼痘病毒和猴痘病毒。天花毒粒含有DNA依赖性RNA聚合酶;病毒之所以需要这种酶是因为它在细胞质中复制,不能利用到位于细胞核中的细胞RNA聚合酶。痘病毒是已知不需要细胞核就能够在细胞质中复制的唯一病毒。
存在两种主要形式的天花病:大天花(variola major)和小天花(variola minor)。两种天花病表现出的损害虽然相似,但较不常见的小天花进程缓和得多,病例致死率约为百分之一。与此相比,大天花在所有病例中致死率大约为百分之三十。还有两种罕见形式的天花病:出血性天花和恶性天花。前一形式总是致死形式,皮疹伴有黏膜和皮肤出血。恶性天花的特征是伤口不会发展到脓包阶段,仍保持柔软平坦。它也几乎总是致死性的。
病毒侵入通常是通过呼吸道和局部淋巴结实现的,然后是病毒进入血液(原发性病毒血症)。病毒侵入细胞并脱壳后,毒粒DNA依赖性RNA聚合酶合成早期mRNA,后者被翻译成早期非结构蛋白质——主要是随后的病毒复制各步骤所需的酶类。病毒DNA按典型的半保留方式进行复制,之后合成出晚期结构蛋白质,以形成子代毒粒。毒粒进行装配,并在它们从细胞释放时通过从细胞膜出芽获得它们的包膜。这样内部器官被感染;然后病毒再次进入血液(继发性病毒血症)并蔓延到皮肤。这些事件发生在潜伏期,此时患者看起来仍健康。天花病的潜伏期可达7-17天,最常见的是12-14天。在这个时期,没有病毒脱落迹象;人看起来和感觉起来都很健康,不会感染别人。
现有的疫苗已证实有功效,但不利副作用的发生率也很高;这种风险十分高,因此如果没有或极少有真正的暴露风险,则没有理由要接种该疫苗。据估计,每一百万接过种的人中会有一人死于副作用,包括牛痘性湿疹、进行性牛痘、一般性牛痘和接种性脑炎。预防是对付天花病的唯一有效方法,因为目前对天花病毒感染者尚没有已知的抗病毒治疗法。
天花病在根除前在未接过种的人中造成30%的死亡率。研究人员估计接过种的个人能保持免疫性大约十年之久,尽管这一持续时间从未得到充分估算。美国在1980年后停止对大众进行接种。
发明概述
本公开内容涉及具有可用于哺乳动物疾病的医学特性的组合物和在哺乳动物中的使用方法,所述医学特性例如抗癌特性、抗病毒特性、抗原生动物特性以及抗细菌特性。用作药物的化学组合物包含生物可接受的铜化合物,还可包括其它成分如铁,在药物可接受载体中传送到受害细胞。例如,所述化合物可至少由生物可接受铜化合物的芯(core)形成,芯可由鞘(sheath)包封,鞘包围(surround)或包覆(coat)铜化合物芯以防止芯与周围环境直接化学相互作用。所述组合物与药物可接受载体组合以便于给予患者,可单独使用或与常规治疗法联合使用。
本发明还公开通过给予患者所述具有生物可接受铜化合物芯和包封(encapsulate)铜化合物芯的鞘的组合物以及药物载体来治疗疾病的方法。定期监测患者,以确定疾病的水平和/或存在。所述组合物可按医师根据监测结果确定在医学上有必要的间隔时间再次给予。
非限制性地,本领域技术人员阅悉以下公开实施方案的详细描述以及附图和权利要求书后,本发明的这些和其它目标、特征和优点对他们将变得显而易见。
附图简述
图1是单独右旋糖酐铁、单独组合物和它们的组合24小时预温育后所致HT29人结肠腺癌细胞ROS(活性氧簇)释放的图。
图2A是单独组合物浓度对NCI-H23肺细胞平均抑制百分比所作的图。
图2B是NCI-H23肺细胞剂量反应与对照、单独组合物、单独基料化合物和单独多柔比星的图表。
图2C是NCI-H23肺细胞与单独组合物的图表,给出IC50值。
图2D是组合物加上基料化合物的浓度对NCI-H23肺细胞平均抑制百分比所作的图。
图2E是NCI-H23肺细胞与对照、组合物加上基料化合物、单独基料化合物和单独多柔比星的图表。
图2F是NCI-H23肺细胞与组合物加上基料化合物的图表,给出IC50值。
图3A是单独组合物的浓度对NCI-H460肺细胞平均抑制百分比所作的图。
图3B是NCI-H460肺细胞与对照、单独组合物、单独基料化合物和单独多柔比星的图表。
图3C是NCI-H460肺细胞与单独组合物的图表,给出IC50值。
图3D是组合物加上基料化合物的浓度对NCI-H460肺细胞平均抑制百分比所作的图。
图3E是NCI-H460肺细胞剂量反应与对照、组合物加上基料化合物、单独基料化合物和单独多柔比星的图表。
图3F是NCI-H460肺细胞与组合物加上基料化合物的图表,给出IC50值.
图4A是单独组合物的浓度对MCF7乳腺细胞平均抑制百分比所作的图。
图4B是MCF7乳腺细胞剂量反应与对照、单独组合物、单独基料化合物和单独多柔比星的图表。
图4C是MCF7乳腺细胞与单独组合物的图表,给出IC50值。
图4D是组合物加上基料化合物的浓度对MCF7乳腺细胞平均抑制百分比所作的图。
图4E是MCF7乳腺细胞与对照、组合物加上基料化合物、单独基料化合物和单独多柔比星的图表。
图4F是MCF7乳腺细胞与组合物加上基料化合物的图表,给出IC50值。
图5A是单独组合物的浓度对ZR-75-1乳腺细胞平均抑制百分比所作的图。
图5B是ZR-75-1乳腺细胞剂量反应与对照、单独组合物、单独基料化合物和单独多柔比星的图表。
图5C是ZR-75-1乳腺细胞与单独组合物的图表,给出IC50值。
图5D是组合物加上基料化合物的浓度对ZR-75-1乳腺细胞平均抑制百分比所作的图。
图5E是单独ZR-75-1乳腺细胞与对照、组合物加上基料化合物、单独基料化合物和单独多柔比星的图表。
图5F是ZR-75-1乳腺细胞与组合物加上基料化合物的图表,给出IC50值。
图6A是单独组合物的浓度对PC-3前列腺细胞平均抑制百分比所作的图。
图6B是PC-3前列腺细胞剂量反应与对照、单独组合物、单独基料化合物和单独多柔比星的图表。
图6C是PC-3前列腺细胞与单独组合物的图表,给出IC50值。
图6D是组合物加上基料化合物的浓度对PC-3前列腺细胞平均抑制百分比所作的图。
图6E是PC-3前列腺细胞与对照、组合物加上基料化合物、单独基料化合物和单独多柔比星的图表。
图6F是PC-3前列腺细胞与组合物加上基料化合物的图表,给出IC50值。
图7A是单独组合物的浓度对DLD-1结肠细胞平均抑制百分比所作的图。
图7B是DLD-1结肠细胞剂量反应与对照、单独组合物、单独基料化合物和单独多柔比星的图表。
图7C是DLD-1结肠细胞与单独组合物的图表,给出IC50值。
图7D是组合物加上基料化合物的浓度对DLD-1结肠细胞平均抑制百分比所作的图。
图7E是DLD-1结肠细胞与对照、组合物加上基料化合物、单独基料化合物和单独多柔比星的图表。
图7F是DLD-1结肠细胞与组合物加上基料化合物的图表,给出IC50值。
图8A是单独组合物的浓度对OVCAR-3卵巢细胞平均抑制百分比所作的图。
图8B是OVCAR-3卵巢细胞剂量反应与对照、单独组合物、单独基料化合物和单独多柔比星的图表。
图8C是OVCAR-3卵巢细胞与单独组合物的图表,给出IC50值。
图8D是组合物加上基料化合物的浓度对OVCAR-3卵巢细胞平均抑制百分比所作的图。
图8E是OVCAR-3卵巢细胞与对照、组合物加上基料化合物、单独基料化合物和单独多柔比星的图表。
图8F是OVCAR-3卵巢细胞与组合物加上基料化合物的图表,给出IC50值。
图9A是单独组合物的浓度对CAKI-1肾细胞平均抑制百分比所作的图。
图9B是CAKI-1肾细胞剂量反应与对照、单独组合物、单独基料化合物和单独多柔比星的图表。
图9C是CAKI-1肾细胞与单独组合物的图表,给出IC50值。
图9D是组合物加上基料化合物的浓度对CAKI-1肾细胞平均抑制百分比所作的图。
图9E是CAKI-1肾细胞与对照、组合物加上基料化合物、单独基料化合物和单独多柔比星的图表。
图9F是CAKI-1肾细胞与组合物加上基料化合物的图表,给出IC50值。
图10A是单独组合物的浓度对LOX IMVI黑素瘤细胞平均抑制百分比所作的图。
图10B是LOX IMVI黑素瘤细胞剂量反应与对照、单独组合物、单独基料化合物和单独多柔比星的图表。
图10C是LOX IMVI黑素瘤细胞与单独组合物的图表,给出IC50值。
图10D是组合物加上基料化合物的浓度对LOX IMVI黑素瘤细胞平均抑制百分比所作的图。
图10E是LOX IMVI黑素瘤细胞与对照、组合物加上基料化合物、单独基料化合物和单独多柔比星的图表。
图10F是LOX IMVI黑素瘤细胞与组合物加上基料化合物的图表,给出IC50值。
图11A是单独组合物的浓度对SBN-75 CNS细胞平均抑制百分比所作的图。
图11B是SBN-75CSN细胞剂量反应与对照、单独组合物、单独基料化合物和单独多柔比星的图表。
图11C是SBN-75CNS细胞与单独组合物的图表,给出IC50值。
图11D是组合物加上基料化合物的浓度对SBN-75CNS细胞平均抑制百分比所作的图。
图11E是SBN-75CNS细胞与对照、组合物加上基料化合物、单独基料化合物和单独多柔比星的图表。
图11F是SBN-75CNS细胞与组合物加上基料化合物的图表,给出IC50值。
图12A是单独组合物的浓度对CEM-SS白血病细胞平均抑制百分比所作的图。
图12B是对CEM-SS白血病细胞所测出的毒性值数据的图表。
图12C提供CEM-SS白血病细胞的IC50数据。
图13A是单独组合物的浓度对CEM-SS白血病细胞平均抑制百分比所作的图。
图13B显示对CEM-SS白血病细胞所测出的毒性值数据。
图13C提供CEM-SS白血病细胞的IC50数据。
图14是本公开文件所用的细胞系及结果的表格。
图15A、B和C分别是在猴血浆中随时间测出的元素铁(衍生自右旋糖酐铁)当量浓度的表格之一部分。
图16是在猴血浆中随时间测出的元素铁(衍生自右旋糖酐铁)的单剂量给予的表格。
图17是用于标准化5-2细胞系抗病毒评估的96孔板形式的表格。
图18是用于抗病毒评估的标准化5-2细胞系抗病毒评估96孔板形式的表格。
图19显示用基于荧光素酶的评估对HCV所作的组合物4体外抗病毒筛选的结果。
图20显示用基于荧光素酶的评估对HCV RNA复制子所作的组合物HP体外抗病毒筛选的结果。
图21显示用基于荧光素酶的评估对HCV所作的人干扰素α2b体外抗病毒筛选的结果。
图22显示用基于荧光素酶的评估对HCV所作的利巴韦林体外抗病毒筛选的结果。
图23显示组合物4和基料化合物的效力的3-D图示。
图24显示组合物4和基料化合物的效力的3-D图示。
图25显示组合物4和基料化合物的效力的3-D图示。
图26显示组合物4和基料化合物的效力的3-D图示。
图27显示组合物4和基料化合物的效力的3-D图示。
图28显示组合物4和基料化合物的效力的3-D图示。
图29显示组合物4和基料化合物的效力的3-D图示。
图30显示组合物4和基料化合物的效力的3-D图示。
图31显示组合物4和基料化合物的效力的3-D图示。
图32显示组合物4和基料化合物的效力的3-D图示。
图33显示组合物4和基料化合物的效力的3-D图示。
图34显示组合物4和基料化合物的效力的3-D图示。
图35显示组合物4和基料化合物的效力的3-D图示。
图36显示组合物4和基料化合物的效力的3-D图示。
图37是用于抗病毒HBV评估的标准化5-2细胞系抗病毒评估96孔板形式的表格。
图38是用于抗病毒BVDV评估的标准化5-2细胞系抗病毒评估96孔板形式的表格。
图39显示对HepG2.15细胞中的病毒产生所作的组合物体外抗病毒筛选的结果。
图40显示对HepG2.15细胞中的病毒产生所作的3TC体外抗病毒筛选的结果。
图41显示对HepG2.15细胞中的病毒产生所作的基料化合物体外抗病毒筛选的结果。
图42显示对HepG2.15细胞中的病毒产生所作的组合物和基料化合物体外抗病毒筛选的结果。
图43显示对HepG2.15细胞中的病毒产生所作的组合物和基料化合物体外抗病毒筛选的结果。
图44显示对HepG2.15细胞中的病毒产生所作的组合物和基科化合物体外抗病毒筛选的结果。
图45显示对HepG2.15细胞中的病毒产生所作的组合物和基料化合物体外抗病毒筛选的结果。
图46显示对HepG2.15细胞中的病毒产生所作的组合物体外抗病毒筛选的结果。
图47显示对HepG2.15细胞中的病毒产生所作的3TC体外抗病毒筛选的结果。
图48显示对HepG2.15细胞中的病毒产生所作的3TC体外抗病毒筛选的结果。
图49显示对HepG2.15细胞中的病毒产生所作的组合物HP和基料化合物体外抗病毒筛选的结果。
图50显示对HepG2.15细胞中的病毒产生所作的3TC体外抗病毒筛选的结果。
图51显示对HepG2.15细胞中的病毒产生所作的组合物4体外抗病毒筛选的结果。
图52显示对HepG2.15细胞中的病毒产生所作的3TC体外抗病毒筛选的结果。
图53显示对HepG2.15细胞中的病毒产生所作的3TC体外抗病毒筛选的结果。
图54显示对HepG2.15细胞中的病毒产生所作的组合物体外抗病毒筛选和XTT试验的结果。
图55显示对HepG2.15细胞中的病毒产生所作的干扰素α2b体外抗病毒筛选和XTT试验的结果。
图56显示对HepG2.15细胞中的病毒产生所作的组合物4体外抗病毒筛选和XTT试验的结果。
图57显示对HepG2.15细胞中的病毒产生所作的干扰素α2b体外抗病毒筛选和XTT试验的结果。
图58显示食蟹猴(cynmolgous monkey)初级肝细胞细胞毒性评估实验的抗病毒筛选结果。
图59和图59a显示组合物对结核分支杆菌(mycobacteriumtubercolosis)的体外活性实验结果的表格,其中10μg/ml的组合物杀灭90%的杆菌。
图60显示结核分支杆菌相对于组合物浓度的抑制百分比。
图61显示的是关于与基料化合物组合使用的组合物浓度的表格。
图62和62A显示基于HCV RNA复制子荧光素酶的抗病毒评估。
图63显示基于HCV RNA复制子荧光素酶的抗病毒评估的参数表格。
图64显示基于HCV RNA复制子荧光素酶的抗病毒评估的抗病毒试验值。
图65显示图62、62A、63和64所示数据的图。
图66和66A显示第二张板所作的基于HCV RNA复制子荧光素酶的抗病毒评估。
图67显示针对图66和66A的数据,基于HCV RNA复制子荧光素酶的抗病毒评估的参数表格。
图68显示第二张板所作的基于HCV RNA复制子荧光素酶的抗病毒评估的抗病毒试验值。
图69显示图66、66A、67和68所示数据的图。
图70和70A显示第三张板所作的基于HCV RNA复制子荧光素酶的抗病毒评估。
图71显示针对图70和70A的数据,基于HCV RNA复制子荧光素酶的抗病毒评估的参数表格。
图72显示第二张板所作的基于HCV RNA复制子荧光素酶的抗病毒评估的抗病毒试验值。
图73显示图70、70A、71和72所示数据的图。
图74和74A显示第四张板所作的基于HCV RNA复制子荧光素酶的抗病毒评估。
图75显示针对图74和74A的数据,基于HCV RNA复制子荧光素酶的抗病毒评估的参数表格。
图76显示第二张板所作的基于HCV RNA复制子荧光素酶的抗病毒评估的抗病毒试验值。
图77显示图74、74A、75和76所示数据的图。
图78显示用4ug/ml#25和0.8ug/ml#4增强(spike)的化合物#236对新鲜人PBMC中的HIV-1临床分离物的活性。
图79是病毒对照在有和没有#25and#4增强下的比较。
图80和80A显示化合物#236与4ug/ml化合物#25和0.8ug/ml化合物#4对PBMC中HIV-1ROJO复制的抑制作用。
图81显示对图80和80A中的数据的评估结果。
图82是化合物#236与4ug/ml化合物#25和0.8ug/ml化合物#4对PBMC中HIV-1ROJO复制的抑制作用的图表。
图83和83A是AZT对照对PBMC中HIV-1ROJO复制的抑制作用的数据。
图84显示对图83和83A中的数据的评估结果。
图85是AZT对照对PBMC中HIV-1ROJO复制的抑制作用的图。
图86和86A是化合物#236与4ug/ml化合物#25和0.8ug/ml化合物#4对PBMC中HIV-1ROJO复制的抑制作用。
图87显示对图86和86A中的数据的评估结果。
图88是化合物#236与4ug/ml化合物#25和0.8ug/ml化合物#4对PBMC中HIV-1ROJO复制的抑制作用的图。
图89和89A是显示硫酸葡聚糖对照对PBMC中HIV-1mdr复制的抑制作用的数据。
图90显示对图89和89A中的数据的评估结果。
图91是硫酸葡聚糖对照对PBMC中HIV-1ROJO复制的抑制作用的图。
图92和92A是化合物#236与4ug/ml化合物#25和0.8ug/ml化合物#4对PBMC中HIV-1g910.6.2.3复制的抑制作用的图表。
图93显示对图92和92A中的数据的评估结果。
图94是化合物#236与4ug/ml化合物#25和0.8ug/ml化合物#4对PBMC中HIV-1g910.6.2.3复制的抑制作用的图。
图95和95A是硫酸葡聚糖对照对PBMC中HIV-1g910.6.2.3复制的抑制作用的数据。
图96显示对图95和95A中的数据的评估结果。
图97是硫酸葡聚糖对照对PBMC中HIV-1g910.6.2.3复制的抑制作用的图。
图98和98A显示化合物#236与4ug/ml化合物#25和0.8ug/ml化合物#4对PBMC中HIV-152-52复制的抑制作用。
图99显示对图98和98A中的数据的评估结果。
图100是化合物#236与4ug/ml化合物#25和0.8ug/ml化合物#4对PBMC中HIV-152-52复制的抑制作用的图。
图101和101A是硫酸葡聚糖对照对PBMC中HIV-152-52复制的抑制作用。
图102显示对图101和101A中的数据的评估结果。
图103是硫酸葡聚糖对照对PBMC中HIV-1 52-52复制的抑制作用的图。
图104和104A是化合物#236与4ug/ml化合物#25和0.8ug/ml化合物#4对PBMC中HIV-152-52复制的抑制作用。
图105显示对图104和104A中的数据的评估结果。
图106是化合物#236与4ug/ml化合物#25和0.8ug/ml化合物#4对PBMC中HIV-152-52复制的抑制作用图。
图107和107A是AZT对照对PBMC中HIV-1 52-52复制的抑制作用。
图108显示对图107和107A中的数据的评估结果。
图109是AZT对照对PBMC中HIV-1 52-52复制的抑制作用的图。
图110和110A是关于化合物#236与4ug/ml化合物#25和0.8ug/ml化合物#4对PBMC中HIV-1 teki复制的抑制作用的数据。
图111显示对图110和110A中的数据的评估结果。
图112是化合物#236与4ug/ml化合物#25和0.8ug/ml化合物#4对PBMC中HIV-1 br/92/026复制的抑制作用的图。
图113和113A是关于AZT对照对PBMC中HIV-1 teki复制的抑制作用的数据。
图114显示对图113和113A中的数据的评估结果。
图115显示AZT对照对PBMC中HIV-1 teki复制的抑制作用。
图116和116A是关于化合物#236与4ug/ml化合物#25和0.8ug/ml化合物#4对PBMC中HIV-1 br/92/026复制的抑制作用的数据。
图117显示对图116和116A中的数据的评估结果。
图118是化合物#236与4ug/ml化合物#25和0.8ug/ml化合物#4对PBMC中HIV-1 br/92/026复制的抑制作用的图。
图119和119A是关于AZT对照对PBMC中HIV-1 br/92/026复制的抑制作用的数据。
图120显示对图119和119A中的数据的评估结果。
图121是AZT对照对PBMC中HIV-1 br/92/026复制的抑制作用的图。
发明详述
本公开涉及可用于治疗多种哺乳动物疾病的组合物。例如,所述组合物能选择性地利用正常细胞和癌细胞之间的化学差异和需求,以抑制和/或防止癌细胞在哺乳动物中的增殖。大多数传统癌症治疗法不专一,由于缺乏特异性,与治疗接触的癌细胞和健康细胞均受到不利影响。本发明公开的组合物利用这些化学差异和需求并靶向癌细胞的能力,能将治疗药物聚集于所需的细胞,限制对哺乳动物健康细胞的影响。因此,所公开化学组合物提供了毒性较低、副作用较少的化疗药物。本公开内容涉及将葡萄糖、铜和铁化合物加入到癌细胞、细胞增殖性疾病(如前癌细胞、牛皮癣等)、过度增殖性疾病、脊髓发育不良疾病、浆细胞病、实体瘤、液体肿瘤和转移性疾病,以通过杀灭肿瘤细胞和/或阻止它们的生长来使肿瘤缩小。本发明组合物采用了在下文实施例中证实是有效抗癌药物的药物,不过研究主题总是涉及抑制、约束、限制和调节目的,旨在阻断肿瘤的开始、促进和生长以及癌细胞的转移。
公开组合物也可用作抗病毒药物,用以减少或消灭存在于哺乳动物中的病毒。这些病毒尤其可包括肝炎病毒株,例如丙型肝炎、甲型肝炎、乙型肝炎、丁型肝炎和戊型肝炎,以及其它传染性病毒,病毒感染细胞和病毒疾病,如天花病、其毒株和相关疾病如猴痘、牛痘和骆驼痘;以及其它传染性病毒、病毒感染细胞和病毒疾病,如HIV/AIDS、肝炎和埃博拉。这些病毒尤其可包括各埃博拉病毒株,包括埃博拉-扎伊尔、埃博拉-苏丹和埃博拉-象牙海岸,及埃博拉-雷斯顿和Marburg病毒,以及其它传染性病毒、病毒感染细胞和病毒疾病,如天花病、肝炎和HIV。公开组合物可有效作为强力杀病毒剂,尽管不拘泥于具体的理论或机制,但还是认为杀病毒作用是如上所述发挥功能以破坏病毒DNA和破裂病毒包膜。公开组合物还可有效用作药物治疗胞内病原体,如细菌或原生动物、任何具有细胞结构或细胞壁的病原体、和/或任何具有部分胞内生活周期的病原体,如哺乳动物中的结核菌。
本公开内容还涉及可抑制和/或防止哺乳动物中的媒介传播疾病和微生物传播疾病,且通常可给予哺乳动物的组合物。公开组合物能降低或消除感染媒介传播疾病和微生物传播疾病的哺乳动物的寄生虫负荷,所述疾病可包括例如由微生物引起的疾病,所述微生物包括好氧和厌氧微生物,如原生动物、蠕虫(寄生虫)、细菌(包括革兰氏阳性菌和革兰氏阴性菌如螺旋菌)、真菌(包括引起全身性感染的真菌)和病毒。这些微生物往往传播威胁生命的疾病,在世界许多地方尤其是发展中国家不断夺去大量的生命。许多微生物的生活周期涉及昆虫媒介和脊椎动物宿主。其它类型的微生物如蓝氏贾第虫(giardia lambia)可能通过恶劣或受污染的水源接触到。缺乏适于饮用的淡水和携带疾病的媒介的持续存在,在发展中国家尤成问题。公开组合物能通过破裂原生动物和感染原生动物的细胞,有效降低和/或消除原生动物如疟原虫、毛滴虫(Trichomonas)、内阿米巴(Entamoeba)、利什曼原虫(Leishmania)等的存在。通过破坏微生物的外层和破裂宿主细胞,也可消除细菌细胞(如葡萄球菌或厌氧支原体)、真菌细胞、病毒和其它微生物和/或有效限制和减少它们的数量。公开组合物能作为疟疾和由微生物引起的其它疾病的治疗药品,以药物可接受的、生理上有益的和有成本效益的方式给予。许多药物的成本在发展中国家中往往是治疗的决定因素,有效且有成本效益的药物如公开组合物,可在这些国家中提供治疗和减轻疾病的好处。
本发明组合物至少由固定铜化合物芯或固定铜-铁化合物芯或两者组合的纳米颗粒组成。这些芯可用同样起到靶向癌细胞的作用的保护性鞘或套(jacket)进行包封、包覆、吸附、络合等处理。这种鞘或套可以是任何材料组合如葡萄糖或脂质体,且任选地,所得的葡萄糖包封芯可用脂质体进行包覆。在另一个实施方案中,芯可以只用葡聚糖包封,或用任何葡萄糖或糖基物质的组合进行包封。或者,脂质体包封的芯然后可用葡聚糖外鞘进行包覆。
作为过渡金属,铜和铁都能产生活性氧簇,包括羟基自由基。公认的是,过渡金属,包括Cu+、Fe2+、Sn3+、Co2+和Ni2+已证实能造成生物系统中的自由基反应的催化。因此,可通过铜或铁的氧化作用和/或催化的自由基化学反应,通过消化和断裂实现癌细胞的破坏。Cu2+能与DNA的鸟嘌呤-胞嘧啶碱基对结合,对DNA造成局部自由基损害,这种损害是羟基离子攻击的特征。铜是脂质、蛋白质尤其是DNA及其碱基的自由基损害的促进剂。(Aruoma,Copper ion-dependent damage to the base pairs in DNA in the presence of hydrogen peroxide,Biochem.Jour.,273:601-4(1991))。铜和铁这两种过渡金属除产生活性氧簇外,还能限制供给哺乳动物中癌细胞的生长和复制的营养物,这在许多体外哺乳动物研究中得到证实。
用作芯的合适铜化合物是任何生物可接受的铜化合物,包括但不限于任何固定铜,包括氢氧化铜、氧化铜、碱式氯化铜、碱式碳酸铜、硫酸铜、碱式硫酸铜、氧化亚铜、氢氧化铜-氢氧化铁、氧化铜-铁、柠檬酸铜、甘氨酸铜、葡糖酸铜、磷酸铜、福美铜氯、水杨酸铜(cupricsalicylite)铜蓝、硫酸正亚铜(cupro-cupric sulfate)、硫酸亚铜、半水合硫酸亚铜(cuprous sulfate hemihydrite),任何天然含铜矿物如碱式硫酸铜、水胆矾、蓝铜矾、孔雀石、蓝铜矿、cheesylite、蓝磷铜矿、dihydyrite、磷铜矿、phosphorochalcite、假磷铜矿、假孔雀石、纤磷铜矿、块铜矾、铜蓝(covellite)、碘铜矿、赤铜矿、辉铜矿、Rogojski盐、水胆矾、铜靛石、蓝矾等,或者任何自然界出现的铜矿物如氯化亚铜矿或褐铜矿等。有关铜化合物的实例另参见Merck’s Manual 13th ed.,Merck & Co.2001和Hawley’s Condensed Chemical Dictionary 14th ed.,John Wiley &Sons,Inc.2001。氢氧化铜这种固定铜是用以形成芯的优选化合物。在另一个实施方案中,芯还可由氢氧化铜-氢氧化铁组成以提供协同作用,其增强铜和铁两者的细胞毒性。在一个实施方案中,能造成生物系统中的自由基反应催化的任何生物相容性形式的铜化合物,都可用作公开组合物的芯金属。本文定义的生物可接受铜化合物是以下铜化合物,其可用于生物系统,但极少有或没有有害作用,也就是说,它不会以任何不利方式对它所引入到的生物系统造成相当的改变或影响。
在又一个实施方案中,可用氧化铜、氢氧化铜-氢氧化铁或另一固定铜和铁的组合作为芯,以提供该组合的协同作用。任何生物相容性铁化合物均可与铜芯联合使用,包括但不限于例如Fe3+及其盐、氢氧化铁、羟基氧化铁、氧化铁、葡萄糖铁、柠檬酸铁、铁蛋白、富马酸亚铁、硫酸亚铁等,以对生物环境包括铁饱和的人全转铁蛋白进行铁负荷(iron load)。
在食蟹猴(种名Macaca fascicularis)身上进行的代谢清除率实验证实,大剂量使用衍生自右旋糖酐铁的元素铁是安全的。(所有实验均遵守美国动物福利法(Animal Welfare Act and Regulations)来进行)。剂量为每公斤体重400mg和500mg的衍生自右旋糖酐铁的元素铁,通过静脉输注安全地给予了食蟹猴。右旋糖酐铁显示出血浆停留时间延长,它起到引诱物的作用,以让吞噬系统将公开组合物重新分布到血浆中,而负面副作用很少。所给予的右旋糖酐铁在猴血浆中保持至少120小时,达毫克水平。还将单剂量的右旋糖酐铁分别给予食蟹猴,负面副作用(即腹涨)也很少。(参见美国专利申请No.10/888,576,整体结合到本文中)。与人类相比,猴模型将右旋糖酐铁清除出系统要快得多,因为其代谢率更高。因此,预期在人类中血浆停留时间更长,这在研究(例如Henderson & Hillman,(1969))中得到证实。
公开组合物的纳米颗粒优选可包封、包围、络合或吸附于或结合到至少一个鞘或包衣(coat),所述鞘或包衣优选由糖物质组成,如葡萄糖、糖化物(saccharide)、多糖例如淀粉、纤维素、葡聚糖(dextrans)、海藻糖(alginide)、壳聚糖、果胶、透明质酸、普鲁兰多糖(一种细菌多糖)、葡聚糖(dextran)、羧基烷基葡聚糖、羧基烷基纤维素等。这些葡聚糖可包括例如Mehvar,出处同上(2000)和Recent Trends in the Use of Polysaccharides for Improve Delivery of Therapeutic Agents: Pharmacokinetic and Pharmacodynamic Perspectives,Curr.Pharm.Biotech.4:283-302(2003)中公开的葡聚糖,以及Moghimi,et al.,Long-Circulating and Target-Specific Nanoparticles:Theory to Practice,Pharm.Rev.,53(2):283-318(2001))所公开包覆葡聚糖的脂质体(两篇文献整体结合到本文中)。鞘包覆(encoat)或包封着公开组合物的芯,防止芯与周围环境发生化学相互作用,从而阻止芯发生降解,和阻止铜和/或铁从铜化合物和/或铜-铁化合物从芯中散发出来。鞘的厚度如有需要可由本领域技术人员加以改变。由于组成鞘的主要物质未必被身体识别为外来物,身体不大可能产生对本发明组合物的抗性。在一个实施方案中,鞘可由葡聚糖组成,也称macrose,是一种高分子量多糖。葡聚糖是用作鞘的理想候选物,因为它往往作为血浆代用品或增容剂给予哺乳动物,通常不被哺乳动物系统所排斥,可长时间保留在血浆中。供形成高分子壳、鞘或套的其它生物相容性材料包括蛋白质、多肽、寡肽、多核苷酸、多糖、脂质等。另外的鞘材料包括例如美国专利第6,096,331号和美国专利第6,506,405号(两个专利整体结合到本文中)的鞘材料。或者,可用两种或更多种上述材料的组合来形成鞘。
在另一个实施方案中,公开组合物可用脂质体包衣进行覆盖(sheath)或包封。这种脂质体包衣可以是唯一包封芯的鞘,或者可以是一种或多种上述材料组合上的另一包衣。Alza Corporation,Delivery Times,Issues and Opportunities,Vol 2(1)的研究(整体结合到本文中)证实,PEG脂质体聚合物包衣(coating)能减少吞噬系统摄取和提供长停留时间。在血浆中的停留时间可延长至静脉注射后至少数天到数周的时间,而不释放出所包封的药物,这样可降低给药频率。参见例如美国专利第6,465,008号、美国专利出版物US2002/017271181;美国专利出版物US2001/005118381;各专利整体结合到本文中。
或者,可以使用能靶向癌细胞、细胞增殖性疾病(如前癌细胞、牛皮癣等)、实体瘤、液体肿瘤和转移性疾病的靶向剂或标记,将芯传送到细胞特异性位点。能在生物系统中进行医学利用的任何靶向剂或标记,均可应用于将芯主动传送到癌细胞的特异性位点(参见例如R.C.Juliano,Targeted Drug Delivery,Handbook of Experimental Pharmacology,Vol.100,Ed.Born,G.V.R.et al.,Springer Verlag)。例如,与癌细胞表面位点或表面受体结合的结合分子、表面活性剂、配体、抗体、蛋白质、肽、酶、特异性化学化合物等,可用作靶向癌细胞的靶向剂或标记。这些靶向剂或标记可取代或联合至少一种包封芯的鞘来使用。
对于一个实例,与肝细胞表面位点或表面受体结合的结合分子、表面活性剂、配体、抗体、蛋白质、肽、酶、特异性化学化合物等,可用作靶向受感染细胞的靶向剂或标记。这些靶向剂或标记可取代或联合至少一种包封芯的鞘来使用。
在与埃博拉病有关的另一个实例中,靶向剂特异性针对保守部位如EBOV糖蛋白(这是唯一已知在埃博拉毒粒表面上的蛋白质)和保守解旋酶、蛋白酶、聚合酶和病毒RNA的未翻译区域。所有这些部位都参与病毒复制的关键阶段,因此可成为靶向剂的合理部位。埃博拉包膜糖蛋白已进行了作图,保守部位可用作靶标。这些病毒包膜糖蛋白的毒性在人类疾病中起到重要的作用,因为全长包膜糖蛋白能通过影响血管诱导体内毒性作用。
在又一个实例中,靶向剂特异性针对保守部位如丙型肝炎包膜蛋白E2(其包括在肝细胞和B淋巴细胞上表达的受体(CD-81)的结合位点)和高度保守的丙型肝炎病毒特异性解旋酶、蛋白酶、聚合酶和病毒RNA两个末端上的未翻译区域(5′-UTR和3′-UTR)。所有这些部位都参与病毒复制的关键阶段,因此可成为靶向剂的合理部位。还发现细胞表面硫酸乙酰肝素蛋白聚糖(“HSPG”)在介导HCV包膜-靶标细胞相互作用中起到重要的作用,这种相互作用可用肝素和肝脏衍生的高度硫酸化硫酸乙酰肝素以剂量依赖性方式加以抑制。E2向细胞HSPG的停靠(docking)是HCV和细胞表面之间的相互作用中的起始步骤,导致受体介导的进入和感染的起始。(Barth,H.et al.,Cellular Binding of Hepatitis C Virus Envelope Glycoprotein E2 Requires Cell Surface Heparan Sulfate,J.Biol.Chem.,278:42,41003-41012(2003))。因此,特异于这个位点的靶向剂可阻断细胞表面受体和防止细胞感染。同样,已确定E2的CD81结合位点位于大胞外环结构域中,这种相互作用所必需的氨基酸残基已得到鉴定,可作为特异性靶向剂的理想部位。(Roccasecca,R.,et al.Binding of the epatitis C Virus E2 Glycoprotein to CD81 is Strain Specific and is Modulated by a Complex Interplay between Hypervariable Regions 1 and 2,Jour.of Virology,77:3,1856-1867(2003))。
例如,与红细胞表面位点或表面受体结合的结合分子、表面活性剂、配体、抗体、蛋白质、肽、酶、特异性化学化合物等,可用作靶向受疟疾感染细胞的靶向剂或标记。这些靶向剂或标记可取代或联合至少一种包封芯的鞘来使用。
在相应的天花病实例中,靶向剂特异性针对保守部位如包膜糖蛋白和保守解旋酶、蛋白酶、聚合酶和病毒RNA的未翻译区域。所有这些部位都参与病毒复制的关键阶段,因此可成为靶向剂的合理部位。
整个公开组合物的纳米颗粒大小可为大约1nm至大约10,000nm。在一个更优选的实施方案中,颗粒大小可为大约15nm至大约500nm。颗粒大小的一个最优选的实施方案为大约20nm至大约200nm。
无药物的空脂质体可与组合物本身共给予患者,或者在给予组合物本身之前、过程中或之后给予患者,以针对吞噬系统充当引诱物、安慰剂载体或再分配剂,让组合物长时间保持在血浆中。空脂质体引诱物或安慰剂载体能占据吞噬系统,并能再分配公开组合物以防止其被肝脏和脾脏的细胞清除,从而使公开组合物长时间集中在血浆中。用于聚合物壳的生物相容性材料也可单独或与脂质体组合用作引诱物。
右旋糖酐铁也是生物相容性铁化合物的代表性实例,其中的铁通过至少两个不同的途径来负荷组织,且它以公开组合物作为再分配剂能有利地起作用。第一个途径是籍在人血浆中停留时间长而由癌细胞进行的吞噬作用。第二个途径是通过吞噬系统对右旋糖酐铁的处理提高转铁蛋白饱和度。肿瘤细胞当中进行的右旋糖酐铁胞内代谢会提高环境的酸度,这又会进一步促进公开组合物的分解。对于本专利申请的目的,吞噬作用和内吞作用定义为通过形成膜小泡将材料(包括颗粒状材料)摄取到细胞中,在本文中作为等同术语使用。
在一个实施方案中,公开组合物加上右旋糖酐铁加上空脂质体可加入到癌症患者的全胃肠外营养(“TPN”)中。公开组合物包括必需痕量元素铜,还可包括铁以及葡萄糖和/或脂质体(为脂肪),以满足患者身体的需求。因此,组合物还对患者的全胃肠外营养作出重要的贡献。
在还又一个实施方案中,组合物可与胰岛素增强疗法(“IPT”)一起加上或不加上右旋糖酐铁来使用,以促进本发明的这些药物摄取到肿瘤细胞中。(Hauser & Hauser,Cancer-Treating Cancer with Insulin Potentiation Therapy,Beulah Land Press,p 267(2001))。另外,还可加入其它胰岛素增效剂,以增强组合物激活潜在感染的静息记忆淋巴细胞和其它潜在感染的细胞(包括庇护部位(sanctuary site)中的细胞)的作用。
尽管不局限于、约束于或拘泥于任何具体理论或作用机制,但还是认为组合物、再分配剂即右旋糖酐铁加上或不加上空脂质体,进入血液系统中,作为惰性实体(inert entity)通行于全身,被吞噬系统和/或癌细胞从血浆中清除。组合物充当的是前体药物,它在血浆中为惰性,在癌细胞当中具有胞内活性。组合物当与再分配剂或安慰载体一起使用时,可在哺乳动物血浆中保持许多天的时间,具体取决于剂量水平。(已知右旋糖酐铁能在血浆中保持数周,尤其是当所给予的剂量高于吞噬系统的清除率时。吞噬系统对右旋糖酐铁的处理速度受限于日最大量,余留下来的右旋糖酐铁可供日后使用。)鞘不会被吞噬系统立即识别为外来物,因为它是糖基物质,不被哺乳动物系统排斥,使得组合物在哺乳动物体内循环中保持的时间比大多数治疗药物更长,从而使组合物更有可能与靶细胞发生接触,用比传统化疗药物更少的剂量即能提供更大的功效。组合物通过任何生物途径在全身循环,可接触到任何细胞类型。主要是吞噬系统摄取组合物,同时具有高度亲合性以吞噬增殖所需分子如糖的癌细胞也会摄取组合物。正常的健康细胞通常极少与组合物发生相互作用。被吞噬系统所摄取的组合物在很大程度上通过肝脏在肝细胞中进行处理,肝细胞能储藏葡萄糖、铁和铜,以后葡萄糖、铁和铜通过它们的适当蛋白质载体释放出来,以供给和营养身体细胞。由于糖类、铜和铁是身体必需品,为吞噬系统所熟悉,吞噬系统能够处理、传送、储藏或消除它们,毒性副作用很低,而组合物就能杀灭癌细胞,同时供给和营养身体细胞。
当组合物被癌细胞吞噬或通过其它方式进入细胞时,组合物暴露在细胞的酸性环境(包括乳酸)中,这种酸性环境是由癌细胞常见的厌氧糖酵解过程产生的。细胞中可能存在的任何右旋糖酐铁化合物在其分解过程中也会促进环境的酸性。糖鞘代谢后,公开组合物的芯在酸性条件下分解,产生至少自由离子、自由基和活性氧簇(“ROS”)。自由基与过渡金属自由离子一起对细胞具有细胞毒性作用,能产生DNA损害性自由基和ROS。所述自由基和ROS会防止细胞复制,最终造成细胞死亡。与此对比,正常的健康细胞通常以有氧方式处理葡萄糖,不会产生乳酸。因此,鞘如果被正常细胞吞噬,它不会容易被分解,金属芯仍安全包封在鞘中,鞘如此缓冲了芯的细胞毒性。
理想地,组合物适用于治疗疟疾和类似的微生物传播疾病,因为组合物由肝脏进行处理,而疟原虫在宿主哺乳动物中的生活周期部分是在肝脏中。哺乳动物一旦被疟原虫感染,疟原虫的子孢子阶段会感染哺乳动物的肝脏,它们在那里进行无性繁殖。子孢子在肝脏中成熟为裂殖体,裂殖体随后裂开释放出裂殖性孢子。因此,组合物会接触到并降低和/或消除肝脏中的寄生虫负荷,因为组合物和子孢子都必须通过宿主哺乳动物的肝脏来处理。寄生虫在肝脏中进行了这一起始复制之后,会在红细胞中进行无性繁殖。这一繁殖会产生感染红细胞的裂殖性孢子。环状体期营养体成熟为裂殖体,裂殖体裂开后将裂殖性孢子释放到宿主的血流中。(有一些寄生虫会分化进入有性红细胞内期。)“血内期”寄生虫是引起疾病的临床表现的原因。
疟原虫在血液中即在血内期过程中,会将葡萄糖作为主要能源积极地进行发酵。糖酵解的代谢过程是将葡萄糖转化成乳酸,疟原虫采用的糖酵解过程和其它生物中所见的基本一样。疟原虫和其它寄生虫显示出很高的糖酵解速度,对葡萄糖的利用比未受感染的红细胞最多高出75倍。被疟原虫所利用的葡萄糖中大约有85%被转化成乳酸。高的乳酸脱氢酶(“LDH”)活性据认为在NAD+从NADH的再生中起到作用,NADH是更早前在糖酵解途径中由甘油醛-3-磷酸脱氢酶产生的。糖酵解的最终结果是产生ATP。因此,受感染的细胞对组合物的糖鞘有天然的亲合力,并会快速摄入组合物,以继续其糖酵解过程。
一些糖酵解中间产物可用于合成目的。有氧代谢也涉及丙酮酸(这是在乳酸前面的糖酵解中间产物),其通过三羧酸循环分解代谢成二氧化碳和氢原子。氢原子被NAD+向NADH的还原反应所捕获。来自被捕获的氢的电子被输入到电子载体链中,最终被转移到分子氧而形成水。ATP在通过氧化磷酸化作用进行的电子传递过程中由捕获的能量产生。疟原虫在血液中时不显示完全三羧酸循环,除非在葡萄糖不足的宿主环境中。因此,组合物会与压倒性数量的疟疾感染细胞(它们对葡萄糖都有亲合力)接触并发生相互作用。
疟原虫的一些种已知能长时间持留在肝脏中,会在数周或甚至数年后侵入血流中而使旧病复发。因此,组合物的预防性给予对于处在高风险地区的无症状性哺乳动物也是有用的。
当组合物被疟疾感染细胞吞噬时,或通过其它方式进入细胞时,组合物暴露在细胞的酸性环境(包括乳酸)中,这种酸性环境由疟疾感染细胞常见的厌氧糖酵解过程产生。细胞中可能存在的任何右旋糖酐铁化合物在其分解过程中也会促进环境的酸性。糖鞘代谢后,公开组合物的芯在酸性条件下分解,产生至少自由离子、自由基和活性氧簇(“ROS”),包括过氧化氢化合物。自由基与过渡金属自由离子一起对细胞具有细胞毒性作用,能产生DNA损害性自由基和ROS。所述自由基和ROS会防止细胞复制,最终造成细胞死亡。与此对比,正常的健康细胞通常以有氧方式处理葡萄糖,不会产生乳酸。因此,鞘如果被正常细胞吞噬,它不会容易被分解,金属芯仍安全包封在鞘中,鞘如此缓冲了芯的细胞毒性。
铜作为强力杀病毒剂对本领域技术人员是公知的。体外试验证实,铜加上过氧化氢能杀灭几乎每一种影响哺乳动物的微生物的替代模型。(参见Sagripanti,et al.,Virus Inactivation by Copper or Iron Ions alone and in the Presence of Peroxide,Applied and Environ.Microbio,59:12,4374-4376(1993);Sagripanti,Metal-based Formulations with High Microbicidal Activity,Applied and Environ.Microbio,58:9,3157-3162(1992))。公开组合物也证实可有效作为强力杀病毒剂,尽管不拘泥于具体的理论或机制,但还是认为杀病毒作用是如上所述发挥功能以破坏病毒DNA和破裂病毒包膜。公开组合物可用于摧毁已知会造成癌症的病毒,例如对于肝细胞癌为HBV和HCV,对于宫颈癌为HPV,对于Burkitt淋巴瘤为EBV(Epstein-Barr病毒),对于一种形式的白血病为HTLV 1。因此,公开组合物添加或不添加右旋糖酐铁基料(base),在细胞被完全转化前的癌前阶段能起积极作用。公开组合物可方便地通行于全身,包括中枢神经系统和大脑。
铁组合物和/或右旋糖酐铁组合物的给予可与公开组合物结合,以提供铜和铁之间的协同反应,增强细胞毒性。铜和铁之间的协同作用是本领域公知的,在文献中已有描述,参见例如专利第5,202,353号(整体结合到本文中),该专利公开了铜组合物和铁组合物用作杀真菌剂和杀细菌剂的协同作用的用途。还可给予铁组合物和/或右旋糖酐铁组合物来使公开组合物再分配,让组合物在患者血浆中的停留时间更长。为使细胞毒性更强和延长血浆停留时间,可采用剂量比元素铁盐高得多的右旋糖酐铁。铁水平越高,组合物的协同细胞毒性越强。由于本领域公知吞噬系统会首先将较小的颗粒清除出血浆循环,组合物结合直径小于它的右旋糖酐铁能使其血浆停留时间延长。可改变右旋糖酐铁和公开组合物的芯的直径,以按需操纵这些颗粒的血浆停留时间。在一个实施方案中,可给予高于吞噬系统的清除水平的右旋糖酐铁,其可充当引诱物、安慰剂载体或再分配剂,让组合物长时间保持在血浆中。(参见Henderson & Hillman,Characteristics of Iron Dextran Utilization in Man,Blood,34(3):357-375(1969))。这种右旋糖酐铁以高于吞噬系统清除率的剂量使用,以让公开组合物长时间保持在血浆中的用法,是本领域公知的再分配方法(离开肝脏和脾脏进入血浆中)。一般地,较小剂量的右旋糖酐铁(50-500mg)在大约3天内被清除,但是较大剂量的右旋糖酐铁(>500mg)则以10-20mg/小时的恒定速度被清除,且通常伴随右旋糖酐铁在血浆中的浓度增高持续达3周。其它可充当吞噬系统的引诱物以使公开组合物再分配到血浆中的物质,包括但不限于普鲁兰多糖、硫酸葡聚糖、空脂质体和美国专利第6,506,405号和美国专利第6,096,331号(两个专利整体结合到本文中)所教导的物质。
在食蟹猴(种名Macaca fascicularis)身上进行的代谢清除率实验证实,大剂量使用衍生自右旋糖酐铁的元素铁是安全的。(所有实验均遵守美国动物福利法来进行)。剂量为每公斤体重400mg和500mg的衍生自右旋糖酐铁的元素铁,通过静脉输注安全地给予了食蟹猴。右旋糖酐铁显示出血浆停留时间延长,它起到引诱物的作用,以让吞噬系统将公开组合物重新分布到血浆中,而负面副作用很少。如图15A、B和C所示,所给予的右旋糖酐铁在猴血浆中保持至少120小时,达毫克水平。如图16所示,还将单剂量的右旋糖酐铁分别给予食蟹猴,负面副作用(即腹涨)也很少。(参见美国专利申请No.10/888,576,整体结合到本文中)。与人类相比,猴模型将右旋糖酐铁清除出系统要快得多,因为其代谢率更高。因此,预期在人类中血浆停留时间更长,这在研究(例如Henderson & Hillman,(1969))中得到证实。
组合物添加或不添加右旋糖酐铁化合物,其副作用远远少于通常给予的化疗的公知副作用,尽管公开组合物可与另外的治疗药物联合使用。公开组合物和右旋糖酐铁具有铜和铁的分解副产物,这些副产物能支持红细胞、白细胞和血小板的生物生产。因为组合物能支持造血系统,其使用可限制或消除公知的破坏性疲劳、感染风险和细胞毒性化疗对骨髓(及其它快速生长细胞)的不利作用,这种不利作用通常是由常用的化疗药物引起的。另外,辅助药物如集落刺激因子(用以加速骨髓恢复)和促红细胞生成素(红细胞的集落刺激生长因子,用以防止发生严重骨髓抑制)的使用和它们的严重副作用都可以得到限制。由于可限制这些药物的使用需求,可改善患者的生活质量。
对于诊断目的,组合物可用磁性靶向载体进行标记,以便使癌细胞显像,提供相关信息以确定进一步的医学治疗,包括用外部磁铁来靶向肿瘤。(Johnson,An Innovative Drug Delivery Technology,MagneticsBusiness & Technology Magazine,(2002))。可以采用多种标记,如放射性核素、荧光体、酶、酶底物、酶辅因子、酶抑制剂、配体(特别是半抗体)等,这些标记是本领域公知的。
由于公开组合物、右旋糖酐铁和空脂质体都由生物相容性材料形成,它们与其它化疗药物相比都可以长期给予。根据本领域技术人员关于癌症的具体类型、给药方案、患者体重、细胞生长的侵略性和患者已受先前化疗负面影响的程度等方面的评估,可改变有效剂量或有效量。一般来说,治疗有效量是减少或者至少防止原发性或转移性肿瘤的进一步生长的量。
公开组合物可与药物载体组合作为药物组合物给予患者。药物载体可以是任何适合于将组合物传递给患者的医学上可接受的相容性无毒物质。无菌水、醇、脂肪、蜡和惰性固体都可包括在载体中。也可将药物可接受的佐剂(缓冲剂、分散剂)掺入到药物化合物中。在一个实施方案中,组合物可与无菌水或去离子水和游离葡聚糖、无药物葡聚糖组合,形成无菌胶体悬浮体。
公开组合物可以以多种方式给予患者,如口服、静脉内、皮下、腹膜内、鞘内、肌肉内、颅内、吸入、局部、透皮、栓剂(直肠)、阴道栓剂(阴道)或者公开组合物饱和的可植入聚合物的储库剂(depot)或糯米纸囊剂(wafer),例如Giladel
Figure BDA00002274363000411
优选地,药物化合物可胃肠外给予,例如皮下、肌肉内或静脉内给予。因此,公开组合物可包括其溶于合适载体(优选含水载体)中的溶液剂,以供胃肠外给予。可使用多种含水载体,例如水、缓冲水、0.4%盐水、0.3%甘氨酸等。这些溶液剂是无菌的,通常不含颗粒状物质。这些化合物可通过常规公知的灭菌技术进行灭菌。组合物可含有模拟生理条件所需的药物可接受的辅助物质,如pH调节剂和缓冲剂,如果敏感患者有需要,还可含有毒性调节剂等,例如乙酸钠、氯化钠、氯化钾、氯化钙、乳酸钠等。公开组合物在这些制剂中的浓度可大不相同,例如每毫升载体所含源自组合物的元素铜的当量从低于约0.1mg至约5mg直至10mg或15mg或更大。公开组合物的优选浓度是每毫升载体大约5mg当量的源自组合物的元素铜,可主要根据液体体积、粘度等,按照所选择的具体给药方式选定。使用公开组合物的优选pH范围在大约7至大约8.5之间,更优选的pH范围在大约7.5至大约8.0之间。
制备可胃肠外给予的化合物的现行方法和为给予患者特别是哺乳动物所需作出的调整,对本领域技术人员来说是公知的或显而易见的,在例如以下文献中有更详细的描述:Remington′s Pharmaceutical Science:The Science and Practice of Pharmacy,20th Ed.,Lippincott,Williams & Wilkins;(2000),该文献通过引用结合到本文中。
应认识到,公开组合物可解决特异性靶向癌症治疗这一非常紧迫的问题,同时可极大地限制或消除化疗的可怕副作用。此外,公开组合物,尤其是当与右旋糖酐铁一起使用时,能克服药物抗性的难题。公开组合物可以与或不与葡聚糖负荷一起加以利用,以实现对实体瘤、液体肿瘤(血液)以及转移性癌症的高效治疗,同时可提供具有成本效益性的药物,因为低剂量即可产生高度的活性和显著的结果。公开组合物可设计成单独作为化疗药物、与右旋糖酐铁一起和/或与常规的癌症疗法联合给予。最重要的是,组合物的高度靶向和高效细胞杀灭率能以具有成本效益性的速度挽救无数生命,这种速度任何医疗机构都可以做到。例如,公开组合物加以或不加以铁负荷,十分适合于治疗肝细胞癌。肝细胞癌(“HCC”)是最常见的肝脏原发性癌症,全球每年造成超过550,000人死亡。目前为止还不存在明显有效的HCC治疗方法。(Nakakura & Choti,Management of Hepatocellular CarcinomaOncology,14(7)(2000))。但是,可将公开组合物引入到血流中,并通过肝动脉,使正常肝细胞和患癌肝细胞都暴露于组合物。肝细胞可将葡聚糖分解,以利用葡萄糖或将葡萄糖储藏为肝糖,还可储藏源自组合物的铜和铁。因此,HCC细胞遭到公开组合物引起的细胞毒性。任何不被储藏的过量铜可通过胆系或其它身体系统排泄掉。来自肝细胞的铜和铁与各自的蛋白载体结合,包括转铁蛋白和血浆铜蓝蛋白,以供应给患者身体的细胞。
还应认识到,公开组合物可解决疟疾疗法这一非常紧迫的问题,这种疗法可提供有效率和安全的治疗,同时对于媒介传播疾病和微生物传播疾病的发生率通常最高的发展中国家,从成本上来说仍是可以使用的。公开组合物可以与或不与葡聚糖负荷一起加以利用,以实现对疟疾和原生动物、细菌、真菌或病毒起源的其它寄生性疾病的高效治疗。公开组合物可设计成单独作为抗疟疾药物、与右旋糖酐铁一起和/或与常规的疗法联合给予。最重要的是,组合物对感染细胞具有高度有效性和高度靶向性,这样能以具有成本效益性的速度挽救无数生命,这种速度世界任何医疗机构都可以做到。由于致疟疾的原生动物的生活周期在宿主肝脏中48小时内重复一次,而组合物必需通过肝脏来处理,组合物可在感染能进展到更远的阶段之前就限制和/或消除微生物。任何不被储藏的过量铜可通过胆系或其它身体系统排泄。来自肝脏肝细胞的铜和铁与各自的蛋白载体结合,包括转铁蛋白和血浆铜蓝蛋白,以供应给患者身体的细胞。
以下实施例旨在说明而不是限制本发明。虽然这些实施例代表着可以使用的方法,但另外还可使用本领域技术人员公知的其它方法。
实施例
实施例1
采用体外人肿瘤筛选来评估公开组合物和该组合物与右旋糖酐铁基料化合物的组合的抗增殖作用。选定了代表着发生率最高的癌症、发生率增长最大的癌症、死亡率最高的癌症或高度抵抗治疗的癌症的模型的人肿瘤细胞系。试验采用本领域公知的标准组织培养技术和分析用的3H-胸腺嘧啶核苷测定来进行。
实验设计
设计本实验来评估单独公开组合物或其与基料化合物的组合,以及作为阳性对照的多柔比星的抗增殖作用和细胞毒性作用,多柔比星商品名为Adriamycin(阿霉素),是许多癌症治疗的支柱,与针对人肿瘤细胞系CAK-1肾、DLD-1结肠、LOX IMVI黑素瘤、MCF7乳腺、NCI-H23肺、NCI-H460肺、OVCAR-3卵巢、PC-3前列腺、SNB-75CNS、ZR-75-1乳腺和CEM-SS白血病的细胞的各种化疗组合使用(参见Chuand Devita,Cancer Chemotherapy Drug Manual 2003,Jones and BartlettPublishers,pg 138-139.(2003))。参见图14。对于所有的实验,收获细胞,离心除去培养基,然后悬浮于新鲜的完全培养基中。取样测定细胞密度。所有的细胞计数均用Coulter Model Z1细胞计数器(BeckmanCoulter,Inc.,Fullerton,CA)测定,细胞存活力通过用碘化丙锭染色,接着在Coulter EPICS XL流式细胞仪(Beckman Coulter,Inc.,Fullerton,CA)上分析来测量。所有的细胞系各自以每孔5x 103个细胞的密度接种在完全培养基中。第二天,各细胞投加8个稀释度的单独组合物和组合物与右旋糖酐铁基料化合物(60μg/mL,为源自右旋糖酐铁的元素铁的当量)的组合。所有的右旋糖酐铁数量均测量为源自右旋糖酐铁的元素铁的近似当量。右旋糖酐铁基料化合物还作为对照单独试验。各板在处理开始后第4天进行分析。
如下形成组合物:将无机铜盐即4.854g硝酸铜(99.999%)溶于20ml去离子水(Sigma-Aldrich的分子生物学级试剂)中,或者也可使用蒸馏水。将此溶液回流大约两小时。使铜盐溶液在低温下与2g氧化葡聚糖或2g氢化葡聚糖反应。(平均分子量为64,000-78,000的临床级葡聚糖D4751购自Sigma-Aldrich。)将此溶液回流1小时,然后将0.2ml0.5MNaOH加入到溶液中。该溶液再回流两小时后,分成两半。将一半溶液与2g氧化葡聚糖合并,加入40ml水,再进行两小时回流步骤。将另一步溶液与氢化葡聚糖合并,加入40ml水,再进行两小时回流步骤。然后将两份溶液各自与0.1ml0.5NaOH合并,再继续回流两小时。让溶液冷却至室温。所得的Cu(OH)2-葡聚糖纳米颗粒溶液以控制方式进行沉淀,其中通过将120cc 0.25M NaOH加入到最终溶液中使每个Cu(OH)2纳米颗粒都被葡聚糖分子覆盖。真空蒸发溶液的水分含量,以提高溶液中的铜浓度。将大颗粒沉淀离心,制备出Cu(OH)2-葡聚糖纳米颗粒水溶液。溶液中的最终铜浓度通常为大约5mg/ml,最终pH在大约7.5至大约8.5的范围,通过原子吸收光谱法和/或电感耦合等离子体光谱法进行测定。Cu(OH)2-葡聚糖纳米颗粒的颗粒大小通过激光散射法进行测定。氧化葡聚糖的颗粒大小在大约150nm至大约200nm的范围,氢化葡聚糖则在大约20nm至大约50nm的范围。测定了颗粒大小后,用铜电极检测溶液的自由铜离子。铜特异性电极用四个已知铜浓度的溶液进行校准。这些浓度如下:0.1摩尔/升、0.01摩尔/升、0.001摩尔/升和0.0002摩尔/升(~1ppm)。四个标准Cu2+溶液的毫伏特读数分别为:
Cu2+浓度 mV
0.1M 239
0.01M 206
0.001M 175
0.0002M(1ppm) 163
这些铜溶液的mV读数通常低于130mV,这表明溶液中的自由Cu2+浓度低于1ppm,往往低于检测水平。(作为参考,美国环境保护局(Environmental Protection Agency)允许饮用水中含1.3ppm铜,参见例如美国环境保护局网站有关安全水及包括铜在内的饮用水可能污染物方面的内容)。在所有的样品中,公开组合物的胶体悬浮体检测出的自由铜极少,通常大约在1ppm的检测水平以下。用氧化葡聚糖制备的氢氧化铜溶液其pH为8.5。用氢化葡聚糖形成的溶液不显示自由铜离子,通常在1ppm的检测水平以下。
氢氧化铜-氢氧化铁纳米颗粒的制备
(a)样品1的制备
将铜盐即2.428g硝酸铜(99.999%纯,Alfa Aesar,目录号10699)与0.2g FeCl3,6H2O(纯度97-102%,Alfa Aesar,目录号12497)和4.0g氢化葡聚糖合并。将这些成分溶于70ml去离子水(Sigma-Aldrich的分子生物学级试剂)中。然后将此溶液回流大约3小时。让溶液冷却,然后将92.8cc 0.25M NaOH (Fisher ACS,目录号S318-3)加入到溶液中。溶液的最终pH为8.5。6天后,pH降至6.85,加入1.7cc 0.25M NaOH溶液调节pH至8.5。溶液中的铜和铁浓度用原子吸收光谱法(“AA”)和/或电感耦合等离子体光谱法(“ICP”)进行分析。将溶液用注射器过滤,所得的深绿色溶液保存在无菌小瓶中。在整个样品和任何样品中,也可以采用羟基氧化铁作为氢氧化铁的替代品。
(b)样品2的制备
将铜盐即2.428g硝酸铜(99.999%纯,Alfa Aesar,目录号10699)与0.4g FeCl3,6H2O(纯度97-102%,Alfa Aesar,目录号12497)和4.2g氢化葡聚糖合并。将这些成分溶于75ml去离子水(Sigma-Aldrich的分子生物学级试剂)中。将此溶液回流大约3小时。让溶液冷却,然后将102.2cc 0.25M NaOH(Fisher ACS,目录号S318-3)加入到溶液中。溶液的最终pH为8.5。6天后,pH降至7.4,加入1.6cc 0.25M NaOH溶液调节pH至8.5。溶液中的铜和铁浓度用AA和/或ICP进行分析。将溶液离心,所得的稍有混浊的深绿色溶液保存在无菌小瓶中。
(c)样品3的制备
将铜盐即2.428g硝酸铜(99.999%纯,Alfa Aesar,目录号10699)与0.2g FeCl3,6H2O(纯度97-102%,Alfa Aesar,目录号12497)、1.2g氢化葡聚糖和2.8g葡聚糖(MW=15,000)合并。将这些成分溶于70ml去离子水(Sigma-Aldrich的分子生物学级试剂)中。将此溶液回流大约3小时。让溶液冷却,然后将83.2cc 0.25M NaOH(Fisher ACS,目录号S318-3)加入到溶液中。溶液的最终pH为8.5。6天后,pH降至7.64,加入0.6cc 0.25M NaOH溶液调节pH至8.5。溶液中的铜和铁浓度用AA和/或ICP进行分析。将溶液离心,所得的深绿色溶液保存在无菌小瓶中。
实验设计I
细胞系和标准品
将细胞系用标准的组织培养方法繁殖,在投药前接种于微量滴定板中。对照组包括只用基料化合物(60μg/mL)的处理、完全培养基对照和阳性对照(多柔比星,1μM)。对于组合物的每个浓度水平,处理每个细胞系的八个重复。
细胞培养
以下各实施例所用的细胞系在下表1中列出。针对所列出的实体瘤和液体肿瘤测试组合物,但其可有效用于任何类型的癌症。将各细胞系在无菌条件下繁殖,在5%CO2和95%湿度的HEPA过滤CO2组织培养箱中37℃下温育。将每个细胞系每周一次或两次或更频繁地进行传代培养,供实验之用。
3 H(氚化)-胸苷测定
3H-胸苷DNA掺入测定来评估化合物对肿瘤系的抗细胞作用。氚化胸苷购买时为1mCi原液,用培养基1∶25稀释。细胞收获前一天,将25μL(1μCi)稀释的3H-胸苷加入到每个孔中,将各板温育过夜。第二天早上,用Skatron细胞收获器(Molecular Devices Corporation,Sunnyvale CA)收获细胞到玻璃纤维过滤器上。然后将过滤器放在闪烁计数瓶(scintillation Vial)中,加入闪烁计数混合物(BeckmanCoulter,Inc.,Fullerton,CA)。然后在Beckman LS6000IC液体闪烁计数器(Beckman Coulter,Inc.,Fullerton,CA)上对计数瓶进行读数,数据报告为每分钟计数(CPM)。将数据传递入Lotus 123中进行处理。
对于所有的细胞系,收获细胞,离心除去培养基,然后悬浮于新鲜的完全培养基中。取样测定细胞密度。细胞计数用Coulter Model Z1细胞计数器(Beckman Coulter,Inc.,Fullerton,CA)测定,细胞存活力用碘化丙锭染色来测量。然后在Coulter EPICS XL流式细胞仪(BeckmanCoulter,Inc.,Fullerton,CA)上进行分析。将细胞系各自以每孔5x 103个细胞的密度接种在完全培养基中。第二天,将细胞用8个稀释度的单独公开组合物或其与右旋糖酐铁基料化合物(60μg/mL)的组合进行洗涤。只用基料化合物洗涤细胞,作为对照运行。在初次处理后第4天,对各板进行分析。结果总结如下:
表1
Figure BDA00002274363000481
表1显示以下描述的在肿瘤细胞系上进行的实验及其结果,HT29人结肠腺癌细胞除外。组合物加上60μg/ml基料化合物导致100%细胞杀灭,但CAKI-1肾细胞系除外,其发生99%细胞杀灭。此外,如有必要,向组合物追加基料化合物可提高细胞毒性。在对单独组合物(最高达10μg/ml)具有抗性的三个细胞系即NCI-H23肺、ZR-75-1乳腺和PC-3前列腺中,基料化合物(60μg/ml)加入到组合物中导致100%细胞杀灭,抗性被完全克服。对于所有暴露于基料化合物的细胞系,IC50被基料化合物与公开组合物的组合的协同细胞毒性作用显著降低,显示出添加基料化合物能提高细胞杀灭力。对于所有暴露于基料化合物的细胞系,组合物加上基料化合物等于或超过多柔比星的细胞杀灭,而多柔比星是治疗乳腺癌和其它癌症的支柱化疗药物,公知具有许多严重副作用。
实施例2
图1HT29人结肠腺癌细胞系24小时温育后的ROS(活性氧簇)释放情况。
数据是在HT29细胞与10μg/mL公开组合物、60μg/mL组合物加上基料化合物和单独60μg/mL右旋糖酐铁基料化合物一起24小时温育后获得的。试验依靠加入到细胞生长的各孔中的非荧光底物。在存在ROS的情况下,底物被分解形成荧光产物。图1的数据显示组合物产生的ROS水平高于新鲜培养基对照和基料化合物的水平。数据还显示公开组合物与基料化合物的组合产生的ROS水平提高,高于单独公开组合物或单独基料化合物的水平。公开组合物与基料化合物的组合如同癌症患者的放射治疗法一样可产生大量的ROS,ROS一般被认为通过产生DNA损害性自由基施加其细胞毒性作用。公开组合物与基料化合物的组合与放射治疗联用,可增加放射所产生的杀癌自由基的量,能施加比单独放射更高的细胞杀灭力。这在本领域公知为放射增敏剂,即能放大和加强放射的细胞毒性作用的化合物。
实施例3
图2A揭示公开组合物对NCI-H23肺细胞的平均抑制浓度的图。抑制浓度50(“IC50”)定义为对50%或更多的用于实验程序中的细胞具有抑制性或有效性的所用组合物或化合物的浓度。公开组合物当施加给NCI-H23肺细胞时具有大约10μg/ml的高效IC50水平。图2B提供了用于NCI-H23肺细胞的公开组合物、基料化合物、多柔比星和对照在培养基和MTS试剂(Promega,Madison WI,U.S.)中的吸光度值。MTS试剂是四唑盐,当将其施加给活细胞时会被转化称有色化合物甲在大约490nm下发射光线。公开组合物在10μg/mL剂量下能抑制40%的培养NCI-H23肺细胞。虽然多柔比星显示出很高的抑制作用,但也公知当其在体内使用时具有许多公开组合物不会引起的有害副作用。还给出了吸光度值单位,并认为有一些背景吸光度出现,在4小时温育后通常在0.2-0.4单位的范围。图2C揭示不同IC水平的公开组合物的预期理论吸光度水平。
如图2D所示,NCI-H23肺细胞对3μg/mL和10μg/mL剂量的组合物加上基料化合物极少显示或不显示抗性。组合物加上基料化合物的这一组合导致体外细胞99-100%以上的抑制率,这等于多柔比星的抑制率。组合物与基料化合物一起的浓度为60μg/mL。图2E显示组合物加上基料化合物的组合的吸光度值和抑制百分比,表明在10μg/mL的低剂量下NCI-H23肺细胞被100%抑制。图2F显示各实验的回归输出的统计结果。
实施例4
图3A显示公开组合物在10μg/mL浓度下活性和细胞毒性高,对NCI-H460肺细胞抑制超过90%。公开组合物在3μg/mL浓度下也高度有效,达90%抑制率,仅在1μg/mL浓度下对细胞的抑制率几乎达50%。公开组合物在非常低的剂量下也显示出相当高的抑制百分率。图3B提供了所示不同剂量所得的吸光度值单位以及不同剂量的抑制百分比,这些百分比都非常高。图3C揭示组合物IC50为1.183μg/mL的低剂量,还揭示回归输出的统计分析结果。
本实施例研究了组合物加上基料化合物对NCI-H460肺细胞的毒性作用。这些试验的结果在图3D、3E和3F中显示。图3D显示与只有组合物本身的结果相比,基料化合物加入到公开组合物中导致对NCI-H460肺细胞的细胞杀灭力增强。如图3A所示,施加10μg/ml的组合物,所得细胞杀灭率达100%。如图3D所示,在基料化合物加入到组合物中的情况下,1μg/ml组合物加上基料化合物导致100%细胞杀灭。组合物加上基料化合物的浓度在0.131μg/ml即有效导致IC50抑制,与之对比,单独组合物的浓度在1.183μg/ml才导致实验细胞的IC50抑制。图3E揭示所示不同剂量所得的吸光度值单位以及不同剂量的抑制百分比,这些百分比都非常高。组合物与基料化合物的组合显示出其对NCI-H460肺细胞的毒性活性高度有效。
实施例5
本实施例研究单独组合物对MCF7乳腺细胞的毒性作用。图4A显示公开组合物对MCF7乳腺细胞的活性非常高。组合物显示出在10μg/mL下细胞抑制率超过90%,在3μg/mL下超过60%。图4B提供了公开组合物加上培养基和MTS的吸光度值。图4C提供了IC50计算值为2.213μg/mL,还提供3.000和1.000浓度的回归输出结果。
图4D、4E和4F研究了组合物与基料化合物的组合对MCF7乳腺细胞的毒性作用。如图4A、4B和4C所示,这些试验显示出与只有公开组合物相比,加入基料化合物导致对该细胞系的细胞杀灭力增强。图4A显示90%细胞杀灭需要10μg/ml。当组合物与基料化合物组合试验时,只需3μg/ml的组合物就达到100%细胞杀灭,这对于相同细胞系将IC50下降至0.972μg/ml。
实施例6
图5A图示了公开组合物对ZR-75-1乳腺细胞的毒性作用。这些试验显示组合物在10μg/mL下对ZR-75-1乳腺细胞抑制率大约为35%。该细胞系显示出对浓度最高达大约10μg/ml的组合物具有抗性。吸光度值和抑制百分比在图5B和5C中显示。
图5D揭示公开组合物和基料化合物的组合对ZR-75-1乳腺细胞的活性非常高。发现这一组合的IC50是不寻常的浓度,计算结果大约为2.031μg/mL。将基料化合物加入到组合物中基本消除了ZR-75-1乳腺细胞的抗性。10μg/ml的组合物加上基料化合物导致该细胞系大约100%的细胞杀灭,这是十分有效的治疗药物,副作用或消极方面极少。图5E提供了本实验的吸光度值和抑制百分比,显示出在3μg/ml和10μg/ml剂量下抑制作用显著。图5F揭示IC50计算值为大约的2.031μg/ml低浓度,还揭示本实验的回归输出结果。
实施例7
图6A显示组合物对PC-3前列腺细胞的毒性试验的结果。PC-3前列腺细胞显示出对浓度最高达大约10μg/mL的组合物具有抗性,在0.01μg/mL下细胞受到一定的抑制。10μg/mL的剂量导致前列腺细胞的17%抑制。图6B和6C提供了组合物对前列腺细胞的实验的吸光度值和统计结果。
图6D显示组合物加上基料化合物对PC-3前列腺细胞的毒性作用。加入基料化合物基本消除了PC-3前列腺细胞的抗性。与图6A的单独组合物相比,这些试验中基料化合物的加入导致对该细胞系的细胞杀灭增强。10μg/ml浓度的组合物与基料化合物的组合导致100%细胞杀灭,IC50极低,为1.869μg/ml的浓度。低至3μg/ml的浓度导致该细胞系的大约90%抑制。图6E和6F提供了本实验的吸光度值和统计结果。
图6A和6D中在0.01μg/ml浓度水平下发现的异常实验结果,其原因没有确定。
实施例8
图7A显示组合物对DLD-1结肠细胞的高毒性作用。组合物在所有的浓度下,包括在非常低的浓度下,都显示出相当高的细胞杀灭率。如所示图7B,所得的抑制百分比非常高,10μg/mL的组合物即导致DLD-1结肠细胞的95%抑制。图7C提供了对实验结果的统计分析。
图7D提供了组合物与基料化合物的组合对DLD-1结肠细胞的毒性实验的结果。这些实验显示与单独组合物相比,加入基料化合物导致细胞杀灭增强。如图7D和7E所示,组合物加上基料化合物只需3μg/ml的极低浓度就达到100%细胞杀灭,与此相比,如图7A和7B所示,单独组合物需10μg/ml才达到95%细胞杀灭。对于相同的细胞系,单独组合物时IC50为1.430μg/ml,加入基料化合物时IC50降低至0.196μg/ml。
实施例9
图8A揭示组合物对OVCAR-3卵巢细胞具有高度毒性作用,在1μg/mL、3μg/mL和10μg/mL的非常低浓度下,抑制超过90%。这些实验的吸光度值和统计结果在图8B和8C中给出。
组合物与基料化合物的组合对OVCAR-3卵巢细胞的毒性作用在图8D中显示。这些实验显示与单独组合物相比,加入基料化合物导致细胞杀灭增强。组合物与基料化合物的组合在3μg/ml的浓度下导致100%细胞杀灭,而施加单独组合物需要10μg/ml才导致95%细胞杀灭。组合物和基料化合物的组合的IC50降低至0.299μg/mL的非常低浓度。
实施例10
组合物对CAKI-1肾细胞的毒性作用在图9A中显示。组合物对该细胞系显示出非常高的活性,即使在低剂量下也是如此。抑制百分比数据表明组合物在低浓度下活性就相当高,在0.01μg/mL的浓度下对该细胞系有20.3%抑制,在10μg/ml的浓度下有83.6%抑制。参见图9B和9C。
如图9D所示,组合物加基料化合物的组合显示对CAKI-1肾细胞的活性非常高。这些实验显示与图9A所示使用单独组合物相比,加入基料化合物导致细胞杀灭增强。组合物10μg/ml的浓度导致99%细胞杀灭。对于该细胞系,与单独组合物1.44μg/mL的IC50相比,加入基料化合物使IC50降低至1.138μg/mL。在对CAKI-1肾细胞的实验中,组合物及组合物加上基料化合物均显示相当高的活性,IC50值低。
实施例11
图10A显示组合物对LOX IMVI黑素瘤细胞的毒性作用。本实验显示组合物活性高,在10μg/mL的浓度下导致该细胞系的大约82%抑制。图10B显示实验的吸光度值和抑制百分比,在3μg/mL下有一定的抑制作用。图10C提供了对结果的统计分析,包括IC50计算值为6.718μg/mL。
图10D显示组合物加上基料化合物对LOX IMVI黑素瘤细胞的活性高。组合物与基料化合物的组合对该细胞系具有高度的毒性作用,包括在非常低的剂量下也是如此。这些试验显示与图10A所示使用单独组合物相比,向该细胞系加入基料化合物导致细胞杀灭增强。组合物3μg/ml的浓度即导致100%细胞杀灭,而如图10A所示单独组合物需要10μg/ml才达到82%细胞杀灭。对于相同的细胞系,单独组合物的IC50为6.718μg/mL,加入基料化合物IC50降低至0.513μg/mL。
实施例12
试验了组合物对SBN-75CNS细胞的毒性。结果在图11A中显示,表明组合物的活性非常高。10μg/mL的浓度导致SBN-75CNS细胞的100%抑制,仅3μg/mL的浓度就导致该细胞系的大约85%抑制。图11B和11C提供了吸光度值和对结果的统计分析。
图11D揭示组合物加上基料化合物对SBN-75CNS细胞的毒性作用高。组合物和基料化合物的组合在1μg/mL、3μg/mL和10μg/mL的剂量下非常成功地获得100%的抑制。这些试验显示与使用单独组合物相比,向该细胞系加入基料化合物导致细胞杀灭增强。组合物加上基料化合物1μg/ml的浓度导致100%细胞杀灭,与此对比,单独组合物需要10μg/ml的浓度才导致100%细胞杀灭。对于相同的细胞系,加入基料化合物IC50降低至0.095μg/ml。
实施例13
CEM-SS细胞获自AIDS Research and References ReagentRepository(Bethesda,MD)。将这些细胞在T-75烧瓶中于组织培养基中传代,所述组织培养基包括RPMI 1640培养基(无酚红)及10%胎牛血清(热失活)、2mM L-谷氨酰胺、100U/mL青霉素、100μg/ml链霉素和10μg/ml庆大霉素。在进行氚化胸苷试验前一天,将细胞1∶2分裂,确保它们在细胞毒性试验时处在对数生长期。在进行试验的那天,离心收集细胞,用上述组织培养基洗涤两次,以5x 104个细胞/mL的密度重悬于新鲜的组织培养基中。用血细胞计数器进行总细胞计数和存活率计数。试验前的细胞存活率通过台盼蓝染料排斥试验进行测定,应当超过95%。将培养物在37℃、5%CO2下温育6天。
图12A、12B、12C显示单独组合物对CEM-SS白血病细胞具有高度的毒性作用。这些图显示IC50为5.87μg/mL,在10μg/mL的剂量下具有大约98%的高效细胞杀灭率。
实施例14
图13A、13B、13C显示单独组合物对CEM-SS白血病细胞的活性高。这些图显示IC50为4.975μg/mL,在10μg/mL的剂量下具有大约100%的高效细胞杀灭率。
实验设计II
设计本实验以在体外用HCV RNA复制子,评估单独公开组合物和组合物与右旋糖酐铁基料化合物的组合的抗病毒作用和细胞毒性作用。所有的右旋糖酐铁数量均测量为源自右旋糖酐铁的元素铁的近似当量。右旋糖酐铁基料化合物还作为对照单独试验。本方案还可按需应用于其它病毒、细菌和原生动物实验,以确定哺乳动物治疗的有效浓度。
实施例2
材料和方法
以下实验用组合物“HP”变体和组合物“4”变体进行,组合物“HP”变体是无菌胶体溶液中的4.527mg/ml组合物,pH 7.8;组合物“4”变体是无菌胶体溶液中的4.939mg/ml组合物。组合物-HP和组合物-4在使用前都用氢氧化钠调至pH 7.8-8.0。基料化合物是50mg/ml的无菌胶体溶液。
HCV RNA复制子
使用细胞系ET(luc-ubi-neo/ET)。ET是一种新的HCV RNA复制子,含有稳定的荧光素酶(“LUC”)报道基因,这一独特结构尚未在科学文献中得到描述。这种细胞系与细胞系5-2(1)相似,但含有另外的修饰,使其更为粗壮,为抗病毒筛选提供稳定的LUC表达。以下概略说明该复制子的结构。
细胞系ET的HCV RNA复制子的结构含有HCV(5′)的5′非翻译区(“NTR”)(“IRES”),该非翻译区驱动萤火虫荧光素酶(“Luc”)、遍在蛋白(“Ubiq”)和新霉素磷酸转移酶(“Neo”)融合蛋白的产生。遍在蛋白切割释放出LUC基因和Neo基因。EMCV IRES元件(E-I)控制HCV结构蛋白NS3-NS5的翻译。NS3蛋白切割HCV多蛋白,释放出HCV复制所需的成熟NS3、NS4A、NS4B、NS5A和NS5B蛋白。该复制子的3′末端是HCV的真实3′NTR。(未按比例绘制)。
LUC报道基因用作HCV复制的间接度量。LUC报道基因的活性与HCV RNA水平成正比,阳性对照抗病毒化合物在使用LUC终点或RNA终点时表现情况相当。LUC终点的使用比HCV RNA更为经济,可用于高通量应用以筛选化合物库。
HCV RNA复制子抗病毒评估实验研究化合物在五个半对数浓度的每一浓度下的作用。板布局在下文图17和18中显示。每次运行中包括人α-2b干扰素作为阳性对照化合物。将ET细胞系的分会合培养物接种到用于细胞数目(细胞毒性)或抗病毒活性分析的96孔板中,第二天将两种组合物变体和基料化合物加入到相应的孔中。72小时后将细胞处理,此时细胞仍处于分会合状态。用steady-glo试剂(Promega)从HCV RNA复制子衍生的LUC活性推导出化合物IC50和IC90值。用CytoTox-1细胞增殖试验(Promega)(细胞数目和细胞毒性的比色指示法)计算化合物TC50和TC90值。化合物TI50和TI90值由电子制表软件计算得出。
结果
HCV RNA    复制子抗病毒评估
组合物“HP”变体不添加基料化合物对HCV RNA复制子具有弱至中等的抗病毒活性。结果发现IC(抑制浓度)~0=0.77~μg/ml;TC(毒性浓度)~0=6.23μg/ml;TI(治疗指数,TI=TC50/IC50)=8.1。参见图20。组合物4变体不添加基料化合物对HCV RNA复制子显示弱至中等的抗病毒活性,IC~0=0.84μg/ml;TC~0=6.52~μg/ml;TI=7.7。参见图19。人α-2b干扰素阳性对照结果在图21中显示。另参见图22。组合物4和基料化合物实验的最优浓度
将组合物4与基料化合物组合,以确定对HCV RNA复制子的抗病毒活性和细胞毒性。在平板上设立0.195-50~μg/ml组合物4对1.563-50μg/ml基料化合物的药物(组合物4和基料化合物)稀释矩阵。本实验的结果在图23至图37中显示。在总效力曲线(-100-100%效力作图)中,在6.25μg/ml及以上的剂量下,抗病毒作用明显。
组合物4显示对HCV RNA复制子荧光素酶(“LUC”)有50-75%的抑制作用。随着组合物的剂量提高到12.5~μg/ml以上,抑制75-100%的复制子LUC活性。
当对组合物与基料化合物的组合的活性范围进行分析时(50-100%效力作图),清楚显示随着组合物的浓度提高到6.25μg/ml以上,活性出现剂量依赖性增加,且随着基料化合物的浓度从约12.5~μg/ml向上提高(3D曲线中的峰,等值线图中的左上方四个格),活性显示出升高的趋向。参见图22、24、26、28和32。
在对化合物毒性的总体评估(0-150%存活率/毒性曲线)中,组合物似乎在12.5~μg/ml以上具有毒性,存活率随着浓度进一步增高从50%变到0%。
分析曲线的细胞毒性部分(0-50%存活率),以确定不论基料化合物浓度如何,随着组合物剂量提高到6.25~μg/ml以上,毒性是否存在明显的组合物剂量依赖性增加。组合物浓度在12.5%以上时,大部分细胞死亡。
更接近地分析存活/毒性曲线的存活部分(50-100%存活率),确定出随着组合物浓度从12.5~μg/ml减少至6.25~μg/ml存活率递增,随着组合物药物浓度的进一步减少存活率的增加更为显著。
组合物4和基料化合物实验的最优浓度
对我们感兴趣的一系列剂量浓度进行试验。设立了组合物4和基料化合物的组合的矩阵,组合物4为5.5-13~μg/ml,基料化合物为50-1050~μg/ml。参见图33至36。HCV RNA复制子荧光素酶活性的抑制百分率在组合物4浓度从8.5~μg/ml到5.5~μg/ml时稳步提高,当结合了550~μg/ml的基料化合物时受到积极影响。
随着基料化合物的浓度增高至超过50~μg/ml,细胞存活率快速下降,尤其是在组合物4浓度较高时。
结论
组合物HP(TI=8.1)和组合物4(TI=7.7)在体外对HCV RNA复制子具有弱至中等的活性。采用了组合物4和基料化合物的不同浓度矩阵来确定这些药物的组合是否会导致它们的活性增加。这些实验的结果发现组合物4和基料化合物的最优混合物大概是6-7μg/ml组合物4和50μg/ml基料化合物。
实施例3
材料和方法
以下实验用组合物“HP”变体和组合物“4”变体进行,组合物“HP”变体是无菌胶体溶液中的4.527mg/ml组合物,pH 7.8;组合物“4”变体是无菌胶体溶液中的4.939mg/ml组合物。组合物-HP和组合物-4在使用前都用氢氧化钠调至pH 7.8-8.0。基料化合物是50mg/ml的无菌胶体溶液。
四唑染料还原试验
细胞存活率通过用含四唑的染料混合物Cell Titer
Figure BDA00002274363000581
(Promega,Madison,WI)进行染色来测量。该混合物被代谢活跃细胞的线粒体酶类代谢成可溶性甲
Figure BDA00002274363000582
产物,使得可以对细胞数量进行快速定量分析。将平板中的培养基除去,用100μL新鲜培养基和10μL Cell Titer
Figure BDA00002274363000583
置换。将平板在37℃下再温育4小时,然后用Molecular Devices Vmax读板器在490nm和650nm下进行分光光度读数。用公司内的计算机程序计算组合物处理孔对比不加组合物的对照孔的细胞存活百分率。
HBV抗病毒评估试验
将产生HBV(乙型肝炎病毒)aywl株的HepG22.2.15细胞,以2.5x104/孔的密度用补加2%胎牛血清的DMEM培养基接种到胶原包覆的96孔微量滴定板。细胞接种一天后,将各孔洗涤,培养基用含有试验化合物(在培养基中做系列半对数稀释)的完全培养基置换(代表性板布局参见图37)。培养基在初次加入组合物三天后用含有刚稀释的化合物的新鲜培养基置换一次。3TC(拉米夫定)用作阳性对照化合物。
初次给予试验化合物6天后,收集细胞培养物上清液。然后用衍生自HBV aywl株的引物对组织培养物上清液中存在的毒粒相关HBVDNA进行PCR扩增。接着在实时TaqMan定量PCR测定中,通过监测荧光探针分子与扩增的HBV DNA杂交后由已猝灭探针的核酸外切降解产生的荧光信号增加,来检测PCR扩增的HBV DNA。用HBV ayw质粒DNA制作标准曲线。各样品作PCR双重分析,用落在标准曲线范围当中的样品平均值来获得HBV DNA拷贝数。
用公司内计算机程序,分析从细胞存活率结果获得的OD(光密度)值和用实时PCR获得的毒粒DNA拷贝数,该程序可计算出DNA拷贝数的百分比,并可用来计算各样品抗病毒活性IC50。细胞存活率数据用来计算TC50。治疗指数(TI)从TC/IC计算。将这些结果绘图显示,参见图39-40。另外用电子制表软件从这些数据确定IC50、TC90和TI90值。
BVDV抗病毒评估试验
将Madin-Darby牛肾(“MDBK”)细胞在T-75烧瓶中传代。在试验前一天,将细胞用胰蛋白酶消化,沉淀,计数,以1x104/孔的密度重悬于96孔平底组织培养板中的组织培养基中,每孔体积100μl。细胞接种一天后,将各孔洗涤,培养基用含有不同浓度的试验化合物(在培养基中做系列半对数稀释)的完全培养基(2%血清)置换(代表性板布局参见图22)。每次实验刚要进行前,从冷冻机(-80℃)取出牛病毒性腹泻病毒(BVDV)的预滴定等分试样。将病毒稀释到组织培养基中,使得每孔加入的病毒量在感染后6-7天能完全杀灭细胞。
细胞存活率在加入药物后的第6-7天通过用含四唑的染料混合物Cell Titer
Figure BDA00002274363000591
(Promega,Madison,WI)染色来测量。该混合物被代谢活跃细胞的线粒体酶类代谢成可溶性甲
Figure BDA00002274363000592
产物,使得可以对细胞数量进行快速定量分析。除去培养基,用100μL新鲜培养基和10μL Cell Titer
Figure BDA00002274363000601
置换。将平板在37℃下再温育4小时,然后用Molecular DevicesVmax读板器在490nm和650nm下进行分光光度读数。用公司内计算机程序计算化合物处理孔对比无化合物的对照孔的细胞存活百分率,该程序绘制出每一药物浓度下相对于对照值的病毒细胞病变作用和细胞数目减少百分数。该程序内推出减少BVDV细胞病变作用达50%的药物抑制浓度(IC50)和杀灭50%细胞的毒性浓度(TC50)。
组合物对食蟹猴初级肝细胞培养物的细胞毒性
高存活力和代谢活性的食蟹猴初级肝细胞的24孔板由CedraCorporation制备。实验开始时细胞达-85%铺满。药物在无血清培养基(SFM)中做六个浓度的系列半对数稀释,用以评估组合物的细胞毒性,其中100μg/ml用作高试验浓度。四个未处理对照孔只含SFM。在加入药物后的第2天和第5天,更换组合物和培养基。在加入药物后的第7天,除去组合物和培养基,各孔用培养基清洗。将Cell Titer 96(Promega)加入的各孔中的新鲜培养基中,如上测量吸光度。将各孔在每一组合物浓度下的平均吸光度相对未处理的细胞对照进行作图,并从这些曲线外推出TC50值。参见图58。
结果
HBV抗病毒评估
组合物HP在HepG22.2.15试验中显示对HBV有一定的抗病毒活性,IC50=11μg/ml,TC50=64μg/ml,TI=5.8。HBV抗病毒评估实验的原始数据在图39-41中显示。
基料化合物与组合物HP的组合的作用在图42至50中显示。基料化合物使用的浓度分别为5μg/ml、15μg/ml、30μg/ml和60μg/ml,组合物HP使用1μg/ml、3.16μg/ml和10μg/ml三种浓度。还试验了单独基料化合物和单独组合物HP。显示出极少的抗病毒活性或细胞毒性。
由于在以上实验中期望出现抗HBV抗病毒活性,改变基料化合物的浓度。试验了200μg/ml基料化合物对组合物HP抗HBV抗病毒活性的作用,显示出极少的抗病毒活性。观察到组合物HP加上200μg/ml基料化合物TC50=26μg/ml。这个实验的原始数据在图49-50中显示。还研究了组合物4的抗HBV抗病毒活性。该化合物在试验中有少量活性,参见41-43图。
BVDV抗病毒评估
组合物HP对MDBK细胞有毒性,TC50=0.97pg/ml。组合物4对BVDV显示适度的抗病毒活性(参见图40-41),TC50=17.3,IC50=2.6,TI=6.7。组合物HP对BVDV显示低抗病毒活性,没有得到IC50
参见图54-55。
对食蟹猴初级肝细胞的细胞毒性
组合物HP在食蟹猴初级肝细胞培养物显示20μg/m的中等TC50。初级肝细胞实验的原始数据在图58中显示。
图59-85公开了更多的实验数据,以展示各种浓度的组合物加上或不加基料化合物的效力。
例如,图59-61显示显示组合物对结核分支杆菌(mycobacteriumtuberculosis)的体外活性的实验结果。
此外,图62-77显示抗病毒评估结果,例如对乙型肝炎病毒。
此外,图78-120显示对人免疫缺陷病毒(HIV)的抗病毒活性。
讨论
组合物HP和组合物4显示弱至中等的体外抗HBV抗病毒活性。将基料化合物加入到组合物中很少增强后者的抗病毒活性。组合物HP在体外对BVDV显示极少的抗病毒活性,而组合物4对BVDV显示适度的抗病毒活性。用食蟹猴初级肝细胞培养物,组合物HP显示TC50=20μg/ml。
实施例4
在标准的基于PBMC的细胞病毒试验系统或基于CEMSS的抗HIV-1细胞病毒试验系统中,评估存在或不存在各种浓度的基料化合物下组合物抗人免疫缺陷病毒1型(HIV-1)的活性。在HIV-1RF感染的CEM-SS细胞中评估组合物、基料化合物和组合物加基料化合物的组合的抗病毒活性。在我们的标准慢性HIV-1感染(CEMSK1或CEMRF)试验中评估组合物加上或不加基料化合物的抗病毒活性,以及长期处理细胞(CEMSK1)时的活性。还评估了对TNFα诱导前用化合物预处理的HIV-1新近感染U1细胞的活性。
材料和方法
化合物在新鲜人外周血细胞中的抗HIV活性的评估
PBMC分离和转化(Blasting)
外周血单核细胞(PBMC)从正常的肝炎和HIV-1阴性供血者通过Ficoll Hypaque梯度分离获得。简单的说,将抗凝固血用不含Ca++和Mg++的Dulbecco磷酸缓冲盐水(PBS)1∶1稀释,并叠加在50ml离心管中的14mL淋巴细胞分离介质上。然后将离心管在600X g下离心30分钟。将带状PBL轻轻地从所得的界面吸出,接着用PBS低速离心洗涤2X。将单核细胞计数,存活率通过台盼蓝染料排斥进行测定,然后以1X 106个细胞/mL的密度重悬在补加15%FBS(热失活)、2mM L-谷氨酰胺、100U/mL青霉素、100μg/ml链霉素和10μg/ml庆大霉素及2μg/mL植物凝集素(PHA)的RPMI 1640培养基中。将细胞在37℃、5CO2下培养48-72小时。温育结束后,离心收集细胞,洗涤和重悬在补加15%FBS(热失活)、2mM L-谷氨酰胺、100U/mL青霉素、100μg/ml链霉素和10μg/ml庆大霉素及20U/mL重组IL-2(R & D Systems,Minneapolis,MN)的RPMI 1640中。将IL-2包含在培养基中以维持PHA促有丝分裂刺激所引发的细胞分裂。然后每三天将培养物用含IL-2的新鲜培养基更换一半的培养物体积,维持直到使用。
PBMC试验
计数获自至少两个供血者的已用PHA和IL-2转化的人外周血单核细胞,存活率通过台盼蓝染料排斥进行测定,并等比例混合。将供血者样品集中,使用汇集的多个供血者,以使单个供血者之间观察到的变异性减至最低,所述变异性由初级淋巴细胞群在HIV感染及对PHA和IL-2的总体反应方面的定量和定性差异所致。将细胞以1x 106个细胞/mL的密度重悬在补加15%胎牛血清(热失活)、2mM L-谷氨酰胺、100U/mL青霉素、100μg/ml链霉素、10μg/ml庆大霉素和IL-2(20U/mL,R&D Systems,Minneapolis,MN)的RPMI 1640(不含酚红)中。然后将50毫升细胞分配到美国南部研究所传染病研究部(Infectious DiseaseResearch department of Southern Research Institute)开发的标准形式96孔圆底微量滴定培养板里的60个孔中。每个板包括细胞对照孔(只有细胞)、病毒对照孔(细胞加病毒)和实验孔(药物加细胞加病毒)。将系列稀释的化合物加入到微量滴定板中,然后加入适当预滴定的HIV-1株。本文介绍的研究使用了HIV的RoJo株。RoJo是在美国南部研究所的实验室专门分离和培育的HIV低传代小儿科临床分离株。所有的样品均重复试验三次,不加病毒的平行测定平板用以测定化合物毒性。每孔的最终体积为200μL。将试验板在37℃、5%CO2的加湿环境中温育6天,然后收集上清液以分析RT活性,姐妹板通过MTS染料还原进行细胞存活率分析。还对各孔进行显微镜检并记录任何异常现象。
化合物在确立细胞系中的抗HIV活性的评估
改进的HIV细胞保护试验
将CEM-SS细胞(5×104个细胞/ml)在T-25烧瓶中在化合物存在下用HIV-1RF病毒感染,感染复数在0.005-0.01之间。对浓度为1、2.5、5、10、20、32μg/ml的组合物,0.75μg/ml基料化合物1和组合物加上基料化合物1进行评估。在感染后第6天,在无细胞上清液中通过RT的定性分析评估病毒复制情况。然后洗涤细胞并在存在或不存在化合物下重悬。洗涤后第6天和第12天,在无细胞上清液中通过RT和胞外p24的定性分析评估病毒复制情况。
化合物在慢性感染细胞中的抗HIV活性的评估
标准慢性试验
将两万五千(2.5x 103)个慢性感染的CEMRF细胞接种在96孔微量滴定板中的每孔100μl组织培养基中。不存在和存在0.1、1和10μg/ml基料化合物1下评估新旧(Old and New)组合物。在5%CO2培养箱中37℃下温育6天后,在无细胞上清液中通过RT的定量分析评估病毒复制情况,通过氚化胸苷掺入法评估细胞存活率。
改进的慢性试验
将慢性感染的CEMSK1细胞与1、2.5、5、10、20和32μg/ml组合物,0.75μg/ml基料化合物1和组合物加上基料化合物1一起培养7、14、21或28天。预处理后,在无细胞上清液中通过RT和胞外p24的定量分析评估病毒复制情况,通过氚化胸苷掺入法评估细胞存活率。在该相同时间点收集细胞,洗涤除去化合物,在不存在药物下再培养14天。在洗涤后的第7天,通过氚化胸苷掺入法评估病毒复制情况。在洗涤后的第14天,在无细胞上清液中通过RT和胞外p24的定量分析评估病毒复制情况,通过氚化胸苷掺入法评估细胞存活率。
化合物在潜在感染细胞中的抗HIV活性的评估
U1细胞获自美国国立卫生研究院AIDS Research and ReferenceReagent Program并维持在标准的培养条件下。试验前24小时,将细胞1∶2分裂于不含酚红的RPMI 1640培养基中,所述培养基补加有10%胎牛血清(热激活)、2mM L-谷氨酰胺、100U/mL青霉素和100μg/mL链霉素。将U1细胞在T25烧瓶中在1、2.5、5、10、20和32μg/ml组合物,0.75μg/ml基料化合物1,组合物加上基料化合物1存在下培养1、3、6、9和12天。在试验时,将2.5x 104个细胞/mL放入96孔中含10ng/ml TNFα的培养基中。将培养物温育5天,收获无细胞上清液。通过氚化胸苷掺入法测定化合物毒性。在无细胞上清液中通过RT、胞内p24和胞外p24的定量分析评估病毒复制情况。
化合物对氚化胸苷捕获的作用的评估
视情况适当而定,在进行37℃温育过夜之前或者在温育后收获用于胸苷掺入定量之前,将慢性CEMSK1细胞(105个)接种在96孔微量滴定板中。评估组合物(32μg/ml)、基料化合物1(1μg/ml)和组合物加上基料化合物1。评估的各种条件在下表中总结。
条件 目的
培养基+3H过夜;收获 阴性对照
细胞+3H过夜;收获 阳性对照
细胞+药物过夜;收获 基线药物对照
细胞+药物+3H过夜;收获 药物对照
药物+3H过夜;收获 药物捕获3H?
药物+3H过夜;加入细胞然后收获 存在细胞时药物捕获3H?
培养基+3H过夜;加入药物后收获 基线对照
培养基+3H过夜;加入药物和细胞后收获 基线对照
3 H胸苷掺入
在具体的实验中,通过将[3H]胸苷掺入到细胞DNA中测量细胞存活率。在试验终止前24小时,每孔加入0.1μCi(5mCi/ml)[3H]胸苷。然后用H2O将细胞裂解并用Skatron收获器捕获到玻璃纤维过滤器上,之后在Wallac Microbeta计数器上测定掺入情况。
MTS染色用于细胞存活率
对于各具体的试验,在试验终止时,用基于可溶性四唑的染料MTS(
Figure BDA00002274363000651
Reagent Promega,Madison,WI)对各板染色,以测定细胞存活率和定量化合物毒性。MTS被代谢活跃细胞的线粒体酶类代谢成可溶性甲
Figure BDA00002274363000652
产物,使得可以对细胞存活率和化合物细胞毒性进行快速定量分析。这种试剂是单一稳定溶液,不需要在使用前制备。试验终止时,每孔加入20μL MTS试剂。对于HIV细胞保护试验,将各孔37℃下温育过夜,对于单核细胞/巨噬细胞和PBMC,将各孔37℃下温育4小时。温育时间间隔根据经验确定的每种细胞类型的最优染料还原时间来选择。用封板胶纸(adhesive plate sealer)取代盖子,将封住的平板倒置数次以混合可溶性甲
Figure BDA00002274363000653
产物,然后用Molecular DevicesVmax读板器在490nm下分光光度法读板。
反转录酶试验
在无细胞上清液中测量反转录酶活性。将氚化三磷酸胸苷(NEN)(TTP)以5Ci/mL重悬在蒸馏H2O中。制备Poly rA和oligo dT储备溶液,-20℃下保存。RT反应缓冲液每天新鲜制备,由125μL 1.0 MEGTA、125μL dII20、110μl 10%SDS、50μL 1.0M Tris(pH 7.4)、50μL1.0M DTT和40μL 1.0M MgCl2组成。将这三种溶液按2份TTP、1份poly rA:oligo dT和1份反应缓冲液的比例混合在一起。将十毫升的反应混合物放入圆底微量滴定板中,加入15μL含病毒的上清液并混合。将板在37℃水浴中温育60分钟,水浴中放有固体支持物以防止板沉没。反应后,将反应物点样在几张DE81纸上,在5%磷酸钠缓冲液中洗涤5次,每次5分钟,在蒸馏水中洗涤2次,每次1分钟,在70%乙醇中洗涤2次,每次1分钟,然后干燥。向每个样品加入Opti-Fluor O,用Wallac 1450Microbetaplus液体闪烁计数器定量所掺入的放射性。
P24抗原ELISA
ELISA试剂盒购自Coulter Electronics。本试验按照厂商说明书进行。各试验中都产生对照曲线,以准确定量各样品中的p24抗原量。数据用Molecular Devices Vmax读板器在450nm下分光光度分析获得。最终浓度用Molecular Devices Soft Max软件包从光密度值计算得到。
数据分析
使用公司内的计算机程序,获得IC50(病毒复制的50%抑制)、TC50(细胞存活力的50%减少)和治疗指数(TI,IC50/TC50)。抗病毒活性和毒性的原始数据及数据图示由打印输出获得,该打印输出总结了各化合物毒性。对于各试验,我们提供AZT作为相关阳性对照。
结果
初步试验
对CEM-SS培养物的细胞毒性
评估了单独组合物和组合物与基料化合物或氢化基料化合物的组合对CEM-SS细胞的毒性。采用两种方法来测量细胞毒性:加入MTS染料后测量光密度变化和[3H]胸苷掺入法。各化合物的细胞毒性在下表1中给出。这些试验中获得的原始数据在附录1中给出。
表1:不存在或存在基料化合物下组合物的细胞毒性
Figure BDA00002274363000671
对PBMC培养物的效力
评估组合物、基料化合物1、基料化合物2、基料化合物3和组合物加上各基料化合物(1000、300、200、100、60、30、20、10、5、1μg/ml)对感染野生型病毒的PBMC的活性。AZT在各试验中用作阳性抗病毒对照化合物,显示预期的抗HIV活性(1-10nM)。通过定量在无细胞上清液中减少病毒相关反转录酶的表达的能力,评估各化合物的抗病毒效力。对ROJO临床HIV-1分离物,组合物抑制HIV复制,EC50在0.07-1.4μg/ml之间。基料化合物1-3当作为单一疗法来评估时,显示出一系列的抗病毒活性,治疗指数分别为14870、1和8260。
在以上描述中,使用了某些术语来说明优选的实施方案。但是,不能由所用的术语推论出不必要的限制,因为这些术语只是示例性的,并不意在限制本发明的范围。
还应知道,可对本发明作出其它修改而不偏离后附权利要求书所指明的本发明范围。

Claims (34)

1.一种用作药物的化学组合物,所述药物用于治疗哺乳动物中的癌症、病毒疾病、细菌疾病和原生动物病,所述组合物包含
由至少生物可接受的铜化合物形成的芯,其中所述铜化合物是固定铜化合物,其中所述生物可接受的固定铜化合物为氢氧化铜,所述芯被包封、包覆、包围、吸附、络合或结合到鞘、包衣、套或其组合的至少之一中,其中所述鞘、包衣、套或其组合由葡聚糖形成;和
药物可接受的载体。
2.一种化学组合物,所述组合物用于治疗哺乳动物中的癌症、病毒疾病、细菌疾病和原生动物病,所述组合物包含:
由固定铜-铁化合物形成的芯,其中所述固定铜-铁化合物选自氢氧化铜-氢氧化铁、氢氧化铜-氧化铁或氢氧化铜-羟基氧化铁,所述芯被包封、包覆、包围、吸附、络合或结合到鞘、包衣、套或其组合的至少之一中,其中所述鞘、包衣、套或其组合由葡聚糖形成;和
药物可接受的载体。
3.一种药物化学组合物,所述组合物靶向哺乳动物中的癌症、病毒疾病、细菌疾病和原生动物病,所述组合物包含:
由至少生物可接受的铜化合物形成的芯;其中所述铜化合物为固定铜化合物,其中所述生物可接受的固定铜化合物为氢氧化铜,所述芯被包封、包覆、包围、吸附、络合或结合到鞘、包衣、套或其组合的至少之一中,其中所述鞘、包衣、套或其组合由葡聚糖形成;和
药物可接受载体。
4.一种药物化学组合物,所述组合物用于治疗哺乳动物中的癌症、病毒疾病、细菌疾病和原生动物病,所述组合物包含:
固定铜和铁协同成分的化合物以形成芯颗粒,其中所述固定铜为氢氧化铜,所述铁协同成分选自氧化铁、氢氧化铁或羟基氧化铁,所述芯被包封、包覆、包围、吸附、络合或结合到鞘、包衣、套或其组合的至少之一中,其中所述鞘、包衣、套或其组合由葡聚糖形成;和
药物可接受的载体。
5.权利要求1、2、3或4的组合物,其中脂质体包衣包封着所述鞘、包衣、套或其组合。
6.权利要求1、2、3或4的组合物,其中多糖鞘、包衣、套或其组合包封着所述组合物。
7.权利要求1、2、3或4的组合物,其中所述药物可接受载体为无菌含水载体。
8.权利要求1、2、3或4的组合物,所述组合物另外包含靶向剂。
9.权利要求8的组合物,其中所述靶向剂是靶向所述组合物的芯的标记。
10.权利要求8的组合物,其中所述靶向剂包含磁性颗粒。
11.权利要求1、2、3或4的组合物,所述组合物还包含在哺乳动物循环中保持的药物可接受材料。
12.权利要求1、2、3或4的组合物,其中包封、包覆、包围、吸附、络合和/或结合所述芯的鞘、包衣、套或其组合进一步吸附到芯的表面上,或者与芯络合。
13.权利要求1、2、3或4的组合物,其中所述细菌疾病为厌氧支原体病。
14.权利要求2或4的组合物,其中哺乳动物中的病毒疾病包括甲型肝炎病毒、乙型肝炎病毒、丙型肝炎病毒、丁型肝炎病毒、戊型肝炎病毒、Marburg病毒和埃博拉病毒。
15.一种形成用以治疗哺乳动物的药物的方法,所述方法包括以下步骤:
a)将铜盐和铁化合物溶于无菌含水载体中,所述铜盐为氢氧化铜,所述铁化合物选自氧化铁、氢氧化铁或羟基氧化铁;
b)形成铜盐、铁化合物和载体的溶液;
c)将溶液与成鞘物质组合;其中所述成鞘物质是鞘、包衣、套或其组合,且所述成鞘物质为葡聚糖;和
d)将溶液回流。
16.权利要求15的形成用于治疗哺乳动物的药物的方法,所述方法还包括冷却溶液的步骤。
17.权利要求16的形成用于治疗哺乳动物的药物的方法,所述方法还包括将溶液与选自氢氧化物化合物和引发自由基的化合物的物质组合的步骤。
18.权利要求17的形成用于治疗哺乳动物的药物的方法,其中所述氢氧化物化合物为氢氧化钠。
19.权利要求17的形成用于治疗哺乳动物的药物的方法,所述方法还包括回流溶液的步骤。
20.权利要求1或3中任一项的组合物用于制备药物的用途,所述药物用于治疗哺乳动物中的癌症、病毒疾病、细菌疾病和原生动物病。
21.权利要求2或4中任一项的组合物用于制备药物的用途,所述药物用于治疗哺乳动物中的癌症、病毒疾病、细菌疾病和原生动物病。
22.权利要求20或21的用途,其中所述细菌疾病为厌氧支原体病。
23.权利要求21的用途,其中所述病毒选自HIV、甲型肝炎病毒、乙型肝炎病毒、丙型肝炎病毒、丁型肝炎病毒、戊型肝炎病毒、Marburg病毒和埃博拉病毒。
24.权利要求20或21的用途,其中所述原生动物病选自疟疾、毛滴虫导致的疾病、内阿米巴虫导致的疾病或利什曼病。
25.权利要求20或21的用途,其中所述药物为组合物的胶体溶液的形式。
26.权利要求20或21的用途,其中所述药物适合作为哺乳动物的总胃肠外营养,在哺乳动物中与胰岛素增强疗法一起使用、在哺乳动物中用于放射增敏疗法或者用于细胞的磁性显像。
27.一种药物可接受的产品,所述产品包含权利要求1、2、3或4中任一项定义的组合物和再分配剂。
28.权利要求27的产品,其中所述再分配剂包括右旋糖酐铁或葡萄糖铁。
29.一种药盒,所述药盒用于单独、依次或同时使用权利要求1、2、3或4中任一项定义的组合物以及药物活性剂。
30.权利要求29的药盒,其中所述活性剂为再分配剂。
31.权利要求30的药盒,其中所述活性剂包括右旋糖酐铁或葡萄糖铁。
32.权利要求1、2、3或4中任一项定义的组合物,所述组合物为适用于胃肠外或口服给予患者的形式。
33.权利要求1、2、3或4中任一项定义的组合物,所述组合物为适用于透皮或吸入给予患者的形式。
34.一种可植入聚合物储库,所述储库包含权利要求1、2、3或4中任一项定义的组合物。
CN2012103974590A 2004-07-09 2005-07-08 治疗哺乳动物疾病的组合物及使用方法 Pending CN102908361A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US10/888,576 2004-07-09
US10/888,576 US7449196B2 (en) 2004-07-09 2004-07-09 Anti tumor compositions and methods of use
US59817904P 2004-08-02 2004-08-02
US60/598,179 2004-08-02
US66613505P 2005-03-29 2005-03-29
US60/666,135 2005-03-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2005800296866A Division CN101010088B (zh) 2004-07-09 2005-07-08 治疗哺乳动物疾病的组合物及使用方法

Publications (1)

Publication Number Publication Date
CN102908361A true CN102908361A (zh) 2013-02-06

Family

ID=34982402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012103974590A Pending CN102908361A (zh) 2004-07-09 2005-07-08 治疗哺乳动物疾病的组合物及使用方法

Country Status (11)

Country Link
US (2) US10328030B2 (zh)
EP (2) EP3153159A1 (zh)
JP (2) JP5685357B2 (zh)
CN (1) CN102908361A (zh)
AU (1) AU2005271897B2 (zh)
CA (1) CA2572865C (zh)
HK (1) HK1109062A1 (zh)
IL (1) IL180600A (zh)
MX (1) MX2007000359A (zh)
NZ (2) NZ552451A (zh)
WO (1) WO2006017179A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108721618A (zh) * 2018-05-29 2018-11-02 南京师范大学 Fe3O4@CuO@OxyHb@ZnPc@m-HA五元复合体系及其制备方法和应用
CN111615385A (zh) * 2018-01-11 2020-09-01 肺气肿解决方案私人有限公司 用于治疗肺气肿和其他形式的copd的组合物和方法
WO2021227572A1 (zh) * 2020-05-09 2021-11-18 上海交通大学 微纳米MgH2化合物颗粒在抑制利什曼原虫感染及治疗利什曼病中的应用

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9274101B2 (en) * 2001-04-20 2016-03-01 Biolog, Inc. Methods and kits for obtaining a metabolic profile of living animal cells
US20080081051A1 (en) * 2006-09-28 2008-04-03 Robert Sabin Method of manufacturing anti-tumor and anti-viral compositions
CA2664406A1 (en) * 2006-09-28 2008-04-03 Bayer Consumer Care Ag Mixture of iron and copper salts masking metallic taste
DE102007005817A1 (de) * 2007-02-06 2008-08-14 Laser Zentrum Hannover E.V. Biologisch wirksame Vorrichtung und Verfahren zu ihrer Herstellung
PT2124973E (pt) * 2007-03-23 2015-09-01 Novartis Ag Composição compreendendo ácidos gordos ómega 3 e um sal de cobre camuflado ou revestido
BRPI0819434A2 (pt) * 2007-11-08 2019-09-24 Univ Utah Res Found método de tratamento ou prevenção de doenças hepáticas e uso de antagonistas á angiogênese em condições de proliferação venosa anormal
KR101090505B1 (ko) * 2008-12-30 2011-12-06 최은아 난담반을 포함하는 암 예방 및 치료용 조성물
US9393198B2 (en) * 2010-03-22 2016-07-19 Signpath Pharma Inc. Intravenous curcumin and derivatives for treatment of neurodegenerative and stress disorders
WO2012138379A2 (en) * 2010-10-19 2012-10-11 Board Of Regents, The University Of Texas System Multifunctional chelator-free radioactive nanoparticles for imaging and therapy
WO2012104204A1 (en) 2011-01-31 2012-08-09 Vifor (International) Ag Iron-carbohydrate complex compounds for the intravenous therapy of malaria
US10238602B2 (en) 2011-06-03 2019-03-26 Signpath Pharma, Inc. Protective effect of DMPC, DMPG, DMPC/DMPG, LysoPG and LysoPC against drugs that cause channelopathies
US10349884B2 (en) 2011-06-03 2019-07-16 Sighpath Pharma Inc. Liposomal mitigation of drug-induced inhibition of the cardiac ikr channel
US10449193B2 (en) 2011-06-03 2019-10-22 Signpath Pharma Inc. Protective effect of DMPC, DMPG, DMPC/DMPG, lysoPG and lysoPC against drugs that cause channelopathies
US10117881B2 (en) 2011-06-03 2018-11-06 Signpath Pharma, Inc. Protective effect of DMPC, DMPG, DMPC/DMPG, LYSOPG and LYSOPC against drugs that cause channelopathies
GB2507884B (en) 2011-06-03 2019-10-23 Signpath Pharma Inc Liposomal mitigation of drug-induced long QT syndrome and potassium delayed-rectifier current
WO2014009849A2 (en) * 2012-07-09 2014-01-16 University Of Calcutta Stabilized laccase enzyme and methods of making and using the same
ES2442450B1 (es) * 2012-08-09 2014-12-12 Enoc Solutions, S.L. Liposomas vacíos como adyuvante de diferentes principios activos, administrados independientemente y en su forma galénica convencional
GB2505401A (en) * 2012-08-31 2014-03-05 Uni Heidelberg Transferring nanoparticles into eukaryotic cells
US9138411B2 (en) 2012-08-31 2015-09-22 University Of North Texas Health Science Center At Fort Worth Curcumin-ER, a liposomal-PLGA sustained release nanocurcumin for minimizing QT prolongation for cancer therapy
US9790529B2 (en) 2013-08-09 2017-10-17 University Of Calcutta Psychrophilic enzymes compositions and methods for making and using same
CA2933204C (en) 2013-12-18 2020-04-28 Signpath Pharma, Inc. Liposomal mitigation of drug-induced inhibition of the cardiac ikr channel
KR102181659B1 (ko) 2016-04-27 2020-11-24 사인패스 파마 인코포레이티드 약물 유발된 방실 차단의 방지
US11471497B1 (en) 2019-03-13 2022-10-18 David Gordon Bermudes Copper chelation therapeutics
CN114053309A (zh) * 2021-10-28 2022-02-18 闽江学院 一种具有抗肿瘤活性的海洋原生动物平腹虫提取物浸膏

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197458A (en) * 1962-08-15 1965-07-27 Chemicals Inc Cupric hydrogenated dextran and method for preparing the same
JPS5829957B2 (ja) 1977-09-12 1983-06-25 喜徳 喜谷 新規な白金錯体
PL134562B1 (en) 1982-02-15 1985-08-31 Inst Przemyslu Farmaceutic Method of obtaining new non-ionic bond of copper with dextrane 3-merkapto-2-hydroxypropyl ether
US4952607A (en) 1982-05-27 1990-08-28 International Copper Research Association, Inc. Copper complex for treating cancer
SE8702254D0 (sv) * 1987-05-29 1987-05-29 Kabivitrum Ab Novel heparin derivatives
US4871538A (en) 1987-07-13 1989-10-03 Schering Corporation Insoluble copper-alpha interferon complex
US5124351A (en) 1989-02-27 1992-06-23 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Pharmaceutical compositions for the treatment of cancers susceptible to treatment with the copper complex of S-(methylthio)-DL-homocysteine or the L-enantimorph thereof
US20010051183A1 (en) 1989-10-20 2001-12-13 Alza Corporation Liposomes with enhanced circulation time and method of treatment
US6471976B1 (en) * 1990-10-01 2002-10-29 Evelyn J. Taylor Copper complex bactericide/fungicide and method of making same
WO1992022575A1 (en) 1991-06-19 1992-12-23 Sri International M-protein peptides of influenza virus as antiviral agents
US6096331A (en) 1993-02-22 2000-08-01 Vivorx Pharmaceuticals, Inc. Methods and compositions useful for administration of chemotherapeutic agents
JPH07138155A (ja) 1993-11-12 1995-05-30 Otsuka Pharmaceut Co Ltd 抗微生物剤
DK0758900T3 (da) 1994-05-09 2002-07-29 William J Binder Botulinumtoksin til reduktion af migræne-hovedpinesmerter
US5632982A (en) 1994-06-07 1997-05-27 The Board Of Trustees Of The Leland Stanford Junior University Cytotoxic enhancement of TNF with copper
WO1996017855A1 (en) 1994-12-09 1996-06-13 Griffith University Anti-tumour agents
US5668127A (en) 1995-06-26 1997-09-16 Pathogenesis Corporation Nitroimidazole antibacterial compounds and methods of use thereof
US5624668A (en) 1995-09-29 1997-04-29 Luitpold Pharmaceuticals, Inc. Iron dextran formulations
US6056973A (en) 1996-10-11 2000-05-02 Sequus Pharmaceuticals, Inc. Therapeutic liposome composition and method of preparation
FR2764508B1 (fr) * 1997-06-11 2000-10-20 Lipogel Sarl Nouveaux vecteurs liposomaux de principes actifs
US6375634B1 (en) * 1997-11-19 2002-04-23 Oncology Innovations, Inc. Apparatus and method to encapsulate, kill and remove malignancies, including selectively increasing absorption of x-rays and increasing free-radical damage to residual tumors targeted by ionizing and non-ionizing radiation therapy
US6589966B1 (en) 1998-03-18 2003-07-08 Wake Forest University Health Sciences Cytotoxic metal chelators and methods for making and using same
US7942958B1 (en) 1998-07-22 2011-05-17 Arch Chemicals, Inc. Composite biocidal particles
US6703050B1 (en) 1998-09-04 2004-03-09 The Regents Of The University Of Michigan Methods and compositions for the prevention or treatment of cancer
US6706759B1 (en) 1998-09-08 2004-03-16 Charlotte-Mecklenburg Hospital Authority Method of treating cancer using dithiocarbamate derivatives
BR9914601A (pt) 1998-09-16 2001-10-23 Alza Corp Inibidor de topoisomerase capturado por lipossoma
US6581606B2 (en) 1999-07-06 2003-06-24 The Rx Files Corporation Method, apparatus and system for use in treating patient with a drug having an antineoplastic effect to optimize therapy and prevent an adverse drug response
IL135487A (en) * 2000-04-05 2005-07-25 Cupron Corp Antimicrobial and antiviral polymeric materials and a process for preparing the same
US6306403B1 (en) 2000-06-14 2001-10-23 Allergan Sales, Inc. Method for treating parkinson's disease with a botulinum toxin
SI20721A (sl) 2000-11-16 2002-06-30 Franc Žemva Sredstvo za zatiranje glivic na človeškem telesu in v obuvalih
WO2002059413A2 (en) * 2001-01-25 2002-08-01 Nano-Tex, Llc Method of producing protein sheaths around fibers of textiles and textiles produced thereby
NZ509877A (en) 2001-04-09 2003-08-29 Bomac Lab Ltd Composition and administration of copper dextran for treating copper deficiency in animals
EP1435932A4 (en) 2001-09-21 2006-12-06 Message Pharmaceuticals Inc INHIBITORS OF RNASE P PROTEINS AS ANTIBACTERIAL COMPOUNDS
TWI235066B (en) * 2001-10-03 2005-07-01 Celator Technologies Inc Liposome loading with metal ions
US7365060B2 (en) 2001-11-09 2008-04-29 University Of Maryland Dinuclear copper-based compound and ligand for nucleic acid scission and anticancer treatment
US20030104043A1 (en) * 2001-12-03 2003-06-05 Brown Beverly Ann Topical cream for alleviating spider veins
EP2272340B1 (en) 2002-08-19 2018-03-14 Ira Sanders Botulinum toxin
US6927206B2 (en) * 2003-06-06 2005-08-09 Procyte Corporation Compositions and methods for treatment of rosacea
US8617572B2 (en) 2003-10-29 2013-12-31 Allergan, Inc. Botulinum toxin treatments of depression
US7449196B2 (en) 2004-07-09 2008-11-11 Robert Sabin Anti tumor compositions and methods of use
WO2011041483A2 (en) 2009-09-30 2011-04-07 Toxcure, Inc. Use of botulinum neurotoxin to treat substance addictions
ES2444438T3 (es) 2010-12-27 2014-02-25 Institut Pasteur Compuestos de diadenosina antibacterianos
EP2994413A4 (en) 2013-05-06 2017-05-03 Bar-Ilan University Doped metal oxide nanoparticles of and uses thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111615385A (zh) * 2018-01-11 2020-09-01 肺气肿解决方案私人有限公司 用于治疗肺气肿和其他形式的copd的组合物和方法
CN108721618A (zh) * 2018-05-29 2018-11-02 南京师范大学 Fe3O4@CuO@OxyHb@ZnPc@m-HA五元复合体系及其制备方法和应用
CN108721618B (zh) * 2018-05-29 2021-03-19 南京师范大学 Fe3O4@CuO@OxyHb@ZnPc@m-HA五元复合体系及其制备方法和应用
WO2021227572A1 (zh) * 2020-05-09 2021-11-18 上海交通大学 微纳米MgH2化合物颗粒在抑制利什曼原虫感染及治疗利什曼病中的应用

Also Published As

Publication number Publication date
EP3153159A1 (en) 2017-04-12
EP1614414A3 (en) 2008-07-09
AU2005271897A1 (en) 2006-02-16
JP5685357B2 (ja) 2015-03-18
US20190388358A1 (en) 2019-12-26
JP2008505922A (ja) 2008-02-28
JP2015044861A (ja) 2015-03-12
IL180600A (en) 2016-04-21
NZ580938A (en) 2011-04-29
US10328030B2 (en) 2019-06-25
CA2572865A1 (en) 2006-02-16
NZ552451A (en) 2010-07-30
IL180600A0 (en) 2008-03-20
HK1109062A1 (en) 2008-05-30
CA2572865C (en) 2017-07-25
EP1614414A2 (en) 2006-01-11
AU2005271897B2 (en) 2008-06-19
MX2007000359A (es) 2008-03-07
WO2006017179A1 (en) 2006-02-16
US20060147512A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
CN101010088B (zh) 治疗哺乳动物疾病的组合物及使用方法
CN102908361A (zh) 治疗哺乳动物疾病的组合物及使用方法
Mayer et al. Silymarin treatment of viral hepatitis: a systematic review
US20100056643A1 (en) Chemically induced intracellular hyperthermia
CN105903021A (zh) 一种预防和/或治疗再生障碍性贫血的富勒烯纳米材料及其应用
WO2009058857A1 (en) Mitigation of animal and plant diseases using bioavailable minerals
CN101926779A (zh) 一种吉西他滨固体脂质纳米粒及其制备方法与用途
CN1819825A (zh) 氨基酸碘组合物及其制备方法和应用
CN105380956B (zh) 一种治疗白血病的含艾德拉尼的药物组合物及应用
Bonnem alpha Interferon: the potential drug of adjuvant therapy: past achievements and future challenges
CN103582646A (zh) 一种抗病毒药剂
CN106176700A (zh) 氯硝柳胺在制备抗致瘤疱疹病毒药物中的应用
RU2391397C2 (ru) Способ лечения экспериментального туберкулеза у животных
Ketabi et al. Comparison of PEG interferon loaded and non-loaded iron oxide nanoparticles on hepatitis C virus replication in cell culture system
Emokpae et al. Tropical Journal of Natural Product Research
CN106668061B (zh) 一种含有顺铂的抗癌药物组合物
Billah A review on the use of minerals in the treatment of COVID-19
Florescu et al. Treatments of hepatitis C virus liver cirrhosis with pegylat interferon-ribavirin and interferon free–Comparative study
CN118021778A (zh) 牛磺酸在制备治疗镉暴露导致的肠道损伤的药物中应用
Poljak-Blaži et al. The mechanism of recurrence of mouse myeloid leukaemia after total body irradiation and bone marrow transplantation
Blumberg Complexity and the hepatitis viruses.
Harper et al. Modifying Our Microbial Environment: From the Advent of Agriculture to the Age of Antibiotic Resistance
KR20080058410A (ko) 포유동물 또는 인간에게 투여하기 위한 조성물
March et al. For coolhandluke74 or others interested in cancer help
Hong Lethal Effects of Radiation and Platinum Analogues on Multicellular Spheroids of HeLa Cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1180973

Country of ref document: HK

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20130206

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1180973

Country of ref document: HK