CN102874767A - 油相“一锅法”可控制备小尺寸过渡金属硫化物纳米粒子的方法 - Google Patents

油相“一锅法”可控制备小尺寸过渡金属硫化物纳米粒子的方法 Download PDF

Info

Publication number
CN102874767A
CN102874767A CN2012103901284A CN201210390128A CN102874767A CN 102874767 A CN102874767 A CN 102874767A CN 2012103901284 A CN2012103901284 A CN 2012103901284A CN 201210390128 A CN201210390128 A CN 201210390128A CN 102874767 A CN102874767 A CN 102874767A
Authority
CN
China
Prior art keywords
source
metal sulfide
transient metal
oil phase
nano particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103901284A
Other languages
English (en)
Other versions
CN102874767B (zh
Inventor
张皓
骆欣涛
李雪霏
杨柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201210390128.4A priority Critical patent/CN102874767B/zh
Publication of CN102874767A publication Critical patent/CN102874767A/zh
Application granted granted Critical
Publication of CN102874767B publication Critical patent/CN102874767B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明属于半导体纳米粒子制备技术领域,特别涉及一种油相前驱体热解的方法,通过调节配体间的比例,制备出具有不同粒径、可溶性的过渡金属硫化物纳米粒子。其是采用向体系中一次性加入反应物、加热使前驱体热分解的“一锅法”,制备出粒径可控且均一、溶解性好、电容性质高的过渡金属硫化物纳米粒子。整个操作过程简单安全,有利于过渡金属硫化物纳米粒子的工业化生产。且所值备粒子粒径较小、粒子比表面积大,能显著提高其电容性质,该材料在锂电池等方面的应用,可推动电池工艺的进一步发展。

Description

油相“一锅法”可控制备小尺寸过渡金属硫化物纳米粒子的方法
技术领域
本发明属于半导体纳米粒子制备技术领域,特别涉及一种油相前驱体热解的方法,通过调节配体间的比例,制备出具有不同粒径、可溶性的过渡金属硫化物纳米粒子。
背景技术
随着现代电池技术的发展,制备高效、便捷的能量储存器件已成为该领域的又一挑战。超级电容器因其具有较高的能量密度、功率密度以及良好的循环使用寿命,逐步成为人们关注的热点。近期的研究发现,过渡金属的硫化物不仅具有杰出的赝电容性质,而且兼备成本低廉以及对环境友善等优势,有望成为取代传统氧化钌材料的新型电容器材料。
随着人们的进一步研究,铁、钴、镍等金属的硫化物已经被广泛的应用于锂离子电池技术领域。然而在传统的制备工艺当中,主要是采用水热、溶剂热的方法制备得到微米级的硫化钴、硫化铁或硫化镍粒子,其有限的比表面积是限制该材料电容性质的关键所在,很大程度上限制了这种电容材料的工业化应用。为了进一步提高粒子的电容性质,人们通过调节所用溶剂的成分以及引入模板剂等方法,控制所制备粒子的表面形态和结构,从而有效地提高粒子的比表面积,增大所得材料的电容性质。现阶段已成功制备出片状、八面体、空心球、以及分层管状等结构形态的硫化钴粒子,最优的电容性质已可达到500F/g。
发明内容
本发明的目的是利用油相方法制备不同粒径的、可溶性的过渡金属硫化物纳米粒子,即通过一次性加料、引入非配体溶剂、改变配体间的比例,合成粒径可控的、油溶性过渡金属硫化物纳米粒子,同时使得粒子的电容性质得到很大提升。这种方法合成过程简单,粒径控制精确,粒子可溶性好,电容性质提升显著,可以进一步促进电容材料的发展。
本发明选用油酸和油胺作为共同配体,获得了平均粒径为3.6纳米~12.8纳米的过渡金属硫化物纳米粒子。通过调节两配体之间的比例,有效控制了所制备粒子的平均粒径。这种方法对于粒子粒径的控制准确而且简单,适用于制备多种过渡金属硫化物半导体纳米粒子。
本发明采用的是“一锅法”合成油溶性过渡金属硫化物纳米粒子,整个制备过程中只涉及到一次性投料,无需二次注射,操作简单,危险性小,有利于过渡金属硫化物纳米粒子的工业化生产。
本发明所得到的过渡金属硫化物纳米粒子,具有很好的溶解性,可均匀分散在氯仿、环己烷等非极性溶剂中。将这种可溶性的过渡金属硫化物纳米粒子应用于电容材料,可以制备层状薄膜电容器,对于新型电容器的发展将有很大的推动作用。
本发明所得到的过渡金属硫化物纳米粒子,由于其粒径较小,因而具有相对高的比表面积,使得其电容性质有了很大的提高。将这种硫钴化合物纳米粒子应用于锂电池,可使电池工艺得到进一步的发展。
具体来说,本发明的步骤如下:
1、将硫源、金属源及脂肪族醇同时加入到非配体溶剂中,再加入体积比为1:10~10:1(优选为9:1~1:4)的油酸和油胺作为共同配体,搅拌使其溶解,制得前驱体溶液;
2、将上述前驱体溶液抽真空,以除去溶解在体系中的氧气;随后在真空状态下加热至50~80℃,并持续20~40分钟,除去体系中的水分;最后在氮气保护的条件下,升温到150~200℃,反应10~60分钟即可得到过渡金属硫化物纳米粒子的粗产物溶液;
3、向所制得的过渡金属硫化物纳米粒子的粗产物溶液中加入乙醇,进行反沉淀,并离心;再将所得到的金属硫化物纳米粒子溶解于氯仿或环己烷等非极性溶剂中,然后重复上述反沉淀、离心、溶解过程1~3次,以除去反应体系中多余的配体及副产物,最后再次反沉淀、离心后得到具有良好溶解性的过渡金属硫化物纳米粒子。
取10毫克本发明制备的过渡金属硫化物纳米粒子,与4毫克炭黑均匀混合,向其中滴加10微升、体积浓度为10%的聚四氟乙烯粘合剂,然后将此混合物均匀涂抹于泡沫镍基底上,加压制得工作电极。将制备好的工作电极置于6摩尔每升的氢氧化钾溶液中,以饱和氯化银电极为参比电极、铂丝电极为对电极组成三电极体系,进行循环伏安特性以及恒电流充电放电测试。
本发明所述方法可用于制备CoS、NiS、FeS等多种可溶解的过渡金属硫族半导体纳米粒子。
上述方法所使用的硫源可以是升华硫粉、硫脲、硫代硫酸钠等;金属源为铁源、钴源或镍源,其中钴源可以是Co(Ac)2、Co(acac)2、Co(CO)6等;铁源可以是Fe(Ac)2、Fe(CO)5、Fe(acac)2等;镍源可以是Ni(Ac)2、Ni(acac)2等;脂肪族醇还原剂可以是1,2-十二烷二醇、1,2-十六烷二醇等;非配体溶剂可以是二苄醚、十八烯等。
在上述合成方法中,非配体溶剂中硫源的浓度为50~80毫摩每升;油酸和油胺共同配体的体积浓度为3%~30%;硫源与金属源的摩尔比为1:1;脂肪族醇还原剂与硫源的摩尔比为3~5:1。
附图说明
图1(a):实施例2制备的粒径为3.6纳米的硫化钴纳米粒子的透射电子显微镜照片;由图可见,所得粒子尺寸均一,分散性好,具有良好的溶解性。
图1(b):实施例1制备的粒径为7.2纳米的硫化钴纳米粒子的透射电子显微镜照片,由图可见,所得粒子尺寸均一,分散性好;插图给出了所合成硫化钴溶解于氯仿后的光学照片,表明硫化钴纳米粒子具有良好的溶解性;
图1(c):实施例3制备的粒径为9.7纳米的硫化钴纳米粒子的透射电子显微镜照片;由图可见,所得粒子尺寸均一,分散性好,具有良好的溶解性;
图1(d):实施例4制备的粒径为12.8纳米的硫化钴纳米粒子的透射电子显微镜照片;由图可见,所得粒子尺寸均一,分散性好,具有良好的溶解性;
图2(a):实施例1制备的粒径为7.2纳米的硫化钴纳米粒子,在不同扫速下的循环伏安特性曲线,两组较明显的氧化还原峰很好的体现出了所制备材料的赝电容性质;
图2(b):实施例1制备的粒径为7.2纳米的硫化钴纳米粒子,在不同电流密度下的恒电流充电放电曲线,随着电流密度的降低,材料电容性质有所增加,且当电流密度为5mA/cm2时电容达到最大,为790F/g;
图3:实施例1、2、3、4所制备的不同粒径的硫化钴纳米粒子,在电流密度为5mA/cm2时的恒电流充放电曲线,结果表明,当纳米粒子的粒径为7.2纳米时,材料的电容性质最佳。
具体实施方式
下面结合实施例对本发明做进一步的阐述,而不是要以此对本发明进行限制。
实施例1
将0.023克硫脲、0.078克乙酰丙酮合钴Co(acac)2以及0.256克1,2-十六烷二醇同时加入到5毫升的二苄醚溶剂中,再向其中加入1.0毫升油胺,0.5毫升油酸,控制其体积比为2:1,搅拌得到前驱体溶液。将上述溶液体系抽真空以除去溶解在体系中的氧气。而后保持真空条件,将反应溶液加热到60℃,持续30分钟,以除去体系中的水分。最后在氮气保护的条件下,升温至170℃,保持温度恒定,反应20分钟。向产物溶液中加入乙醇进行反沉淀,离心后将粒子重新溶解在氯仿中洗涤,重复此过程2次,最后再次反沉淀、离心后得到可溶解的硫化钴纳米粒子10毫克,如图1(b)所示,粒径为7.2纳米。
按照发明内容中所述的步骤制作成工作电极后,进行循环伏安特性以及恒电流充电放电测试。
实施例2
将0.023克硫脲、0.078克乙酰丙酮合钴以及0.256克1,2-十六烷二醇同时加入到5毫升的二苄醚溶剂中,再向其中加入1.35毫升油胺,0.15毫升油酸,控制其体积比为9:1,搅拌得到前驱体溶液。将上述溶液体系抽真空以除去溶解在体系中的氧气。而后保持真空条件,将反应溶液加热到60℃,持续30分钟,以除去体系中的水分。最后在氮气保护的条件下,升温至170℃,保持温度恒定,反应20分钟。向产物溶液中加入乙醇进行反沉淀,离心后将粒子重新溶解在氯仿中洗涤,重复此过程2次,最后得到可溶解的硫化钴纳米粒子10毫克,如图1(a)所示,粒径为3.6纳米。
按照发明内容中所述的步骤制作成工作电极后,进行循环伏安特性以及恒电流充电放电测试。
实施例3
将0.023克硫脲、0.078克乙酰丙酮合钴以及0.256克1,2-十六烷二醇同时加入到5毫升的二苄醚溶剂中,再向其中加入0.75毫升油胺,0.75毫升油酸,控制其体积比为1:1,搅拌得到前驱体溶液。将上述溶液体系抽真空以除去溶解在体系中的氧气。而后保持真空条件,将反应溶液加热到60℃,持续30分钟,以除去体系中的水分。最后在氮气保护的条件下,升温至170℃,保持温度恒定,反应20分钟。向产物溶液中加入乙醇进行反沉淀,离心后将粒子重新溶解在氯仿中洗涤,重复此过程2次,最后得到可溶解的硫化钴纳米粒子10毫克,如图1(c)所示,粒径为9.7纳米。
按照发明内容中所述的步骤制作成工作电极后,进行循环伏安特性以及恒电流充电放电测试。
实施例4
将0.023克硫脲、0.078克乙酰丙酮合钴以及0.256克1,2-十六烷二醇同时加入到5毫升的二苄醚溶剂中,再向其中加入0.3毫升油胺,1.2毫升油酸,控制其体积比为1:4,搅拌得到前驱体溶液。将上述溶液体系抽真空以除去溶解在体系中的氧气。而后保持真空条件,将反应溶液加热到60℃,持续30分钟,以除去体系中的水分。最后在氮气保护的条件下,升温至170℃,保持温度恒定,反应20分钟。向产物溶液中加入乙醇进行反沉淀,离心后将粒子重新溶解在氯仿中洗涤,重复此过程2次,最后得到可溶解的硫化钴纳米粒子10毫克,如图1(d)所示,粒径为12.8纳米。
按照发明内容中所述的步骤制作成工作电极后,进行循环伏安特性以及恒电流充电放电测试。
实施例5
将0.023克硫脲、0.076克乙酰丙酮合铁以及0.256克1,2-十六烷二醇同时加入到5毫升的二苄醚溶剂中,再向其中加入1.0毫升油胺,0.5毫升油酸,控制其体积比为2:1,搅拌得到前驱体溶液。将上述溶液体系抽真空以除去溶解在体系中的氧气。而后保持真空条件,将反应溶液加热到60℃,持续30分钟,以除去体系中的水分。最后在氮气保护的条件下,升温至170℃,保持温度恒定,反应20分钟。向产物溶液中加入乙醇进行反沉淀,离心后将粒子重新溶解在氯仿中洗涤,重复此过程2次,最后得到可溶解的硫化铁纳米粒子10毫克。
所得硫化铁纳米粒子粒径较小、溶解性好,按照发明内容中所述的步骤制作成工作电极后,经电化学测试证明,具有较高的电容性质。
实施例6
将0.023克硫脲、0.077克乙酰丙酮合镍以及0.256克1,2-十六烷二醇同时加入到5毫升的二苄醚溶剂中,再向其中加入1.0毫升油胺,0.5毫升油酸,控制其体积比为2:1,搅拌得到前驱体溶液。将上述溶液体系抽真空以除去溶解在体系中的氧气。而后保持真空条件,将反应溶液加热到60℃,持续30分钟,以除去体系中的水分。最后在氮气保护的条件下,升温至170℃,保持温度恒定,反应20分钟。向产物溶液中加入乙醇进行反沉淀,离心后将粒子重新溶解在氯仿中洗涤,重复此过程2次,最后得到可溶解的硫化镍纳米粒子10毫克。
所得硫化镍纳米粒子粒径较小、溶解性好,按照发明内容中所述的步骤制作成工作电极后,经电化学测试证明,其电容性质较传统材料有显著的增强。
实施例7
将0.023克硫脲、0.075克醋酸钴以及0.256克1,2-十六烷二醇同时加入到5毫升的十八烯溶剂中,再向其中加入1.0毫升油胺,0.5毫升油酸,控制其体积比为2:1,搅拌得到前驱体溶液。将上述溶液体系抽真空以除去溶解在体系中的氧气。而后保持真空条件,将反应溶液加热到50℃,持续40分钟,以除去体系中的水分。最后在氮气保护的条件下,升温至150℃,保持温度恒定,反应60分钟。向产物溶液中加入乙醇进行反沉淀,离心后将粒子重新溶解在氯仿中洗涤,重复此过程2次,最后得到可溶解的硫化钴纳米粒子10毫克。
所得硫化钴纳米粒子粒径较小、溶解性好,按照发明内容中所述的步骤制作成工作电极后,经电化学测试证明,其电容性质较传统材料有显著的增强。
实施例8
将0.023克硫脲、0.068克六羰基合钴以及0.201克1,2-十二烷二醇同时加入到5毫升的二苄醚溶剂中,再向其中加入1.0毫升油胺,0.5毫升油酸,控制其体积比为2:1,搅拌得到前驱体溶液。将上述溶液体系抽真空以除去溶解在体系中的氧气。而后保持真空条件,将反应溶液加热到80℃,持续20分钟,以除去体系中的水分。最后在氮气保护的条件下,升温至200℃,保持温度恒定,反应10分钟。向产物溶液中加入乙醇进行反沉淀,离心后将粒子重新溶解在氯仿中洗涤,重复此过程2次,最后得到可溶解的硫化钴纳米粒子10毫克。
所得硫化钴纳米粒子粒径较小、溶解性好,按照发明内容中所述的步骤制作成工作电极后,经电化学测试证明,其电容性质较传统材料有显著的增强。
实施例9
将0.010克升华硫粉、0.078克乙酰丙酮合钴以及0.256克1,2-十六烷二醇同时加入到5毫升的二苄醚溶剂中,再向其中加入1.0毫升油胺,0.5毫升油酸,控制其体积比为2:1,搅拌得到前驱体溶液。将上述溶液体系抽真空以除去溶解在体系中的氧气。而后保持真空条件,将反应溶液加热到60℃,持续30分钟,以除去体系中的水分。最后在氮气保护的条件下,升温至150℃,保持温度恒定,反应40分钟。向产物溶液中加入乙醇进行反沉淀,离心后将粒子重新溶解在氯仿中洗涤,重复此过程2次,最后得到可溶解的硫化钴纳米粒子10毫克。
所得硫化钴纳米粒子粒径较小、溶解性好,按照发明内容中所述的步骤制作成工作电极后,经电化学测试证明,其电容性质较传统材料有显著的增强。

Claims (4)

1.油相“一锅法”可控制备小尺寸过渡金属硫化物纳米粒子的方法,其步骤如下:
1)将硫源、金属源及脂肪族醇同时加入到非配体溶剂中,再加入体积比为1:10~10:1的油酸和油胺作为共同配体,搅拌使其溶解,制得前驱体溶液;
2)将上述前驱体溶液抽真空,以除去溶解在体系中的氧气;随后在真空状态下加热至50~80℃,并持续20~40分钟,除去体系中的水分;最后在氮气保护的条件下,升温到150~200℃,反应10~60分钟即可得到过渡金属硫化物纳米粒子的粗产物溶液;
3)向所制得的过渡金属硫化物纳米粒子的粗产物溶液中加入乙醇,进行反沉淀,并离心;再将所得到的金属硫化物纳米粒子溶解于氯仿或环己烷等非极性溶剂中,然后重复上述反沉淀、离心、溶解过程1~3次,以除去反应体系中多余的配体及副产物,最后再次反沉淀、离心后得到具有良好溶解性的过渡金属硫化物纳米粒子。
2.如权利要求1所述的油相“一锅法”可控制备小尺寸过渡金属硫化物纳米粒子的方法,其特征在于:硫源是升华硫粉、硫脲或硫代硫酸钠;金属源为铁源、钴源或镍源,脂肪族醇是1,2-十二烷二醇或1,2-十六烷二醇;非配体溶剂是二苄醚或十八烯。
3.如权利要求2所述的油相“一锅法”可控制备小尺寸过渡金属硫化物纳米粒子的方法,其特征在于:钴源是Co(Ac)2、Co(acac)2或Co(CO)6;铁源是Fe(Ac)2、Fe(CO)5或Fe(acac)2;镍源是Ni(Ac)2或Ni(acac)2
4.如权利要求1所述的油相“一锅法”可控制备小尺寸过渡金属硫化物纳米粒子的方法,其特征在于:非配体溶剂中硫源的浓度为50~80毫摩每升;油酸和油胺共同配体的体积浓度为3%~30%;硫源与金属源的摩尔比为1:1;脂肪族醇还原剂与硫源的摩尔比为3~5:1。
CN201210390128.4A 2012-10-15 2012-10-15 油相“一锅法”可控制备小尺寸过渡金属硫化物纳米粒子的方法 Expired - Fee Related CN102874767B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210390128.4A CN102874767B (zh) 2012-10-15 2012-10-15 油相“一锅法”可控制备小尺寸过渡金属硫化物纳米粒子的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210390128.4A CN102874767B (zh) 2012-10-15 2012-10-15 油相“一锅法”可控制备小尺寸过渡金属硫化物纳米粒子的方法

Publications (2)

Publication Number Publication Date
CN102874767A true CN102874767A (zh) 2013-01-16
CN102874767B CN102874767B (zh) 2014-05-07

Family

ID=47476332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210390128.4A Expired - Fee Related CN102874767B (zh) 2012-10-15 2012-10-15 油相“一锅法”可控制备小尺寸过渡金属硫化物纳米粒子的方法

Country Status (1)

Country Link
CN (1) CN102874767B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150129463A1 (en) * 2013-11-09 2015-05-14 Research Institute Of Petroleum Industry (Ripi) Nanocatalyst for heavy crude oil upgrading and method for synthesizing same
CN105655136A (zh) * 2015-12-28 2016-06-08 华侨大学 一种量子点敏化太阳能电池对电极的制备方法
CN108190845A (zh) * 2018-01-31 2018-06-22 湖南省正源储能材料与器件研究所 一种制备硫化锂的方法
CN110143620A (zh) * 2019-07-01 2019-08-20 中国科学技术大学 一种镍钴硫纳米材料的制备方法及镍钴硫复合材料
US10519038B2 (en) * 2015-09-22 2019-12-31 Suzhou Xingshuo Nanotech Co., Ltd. Nanocrystal preparation method, nanocrystals, and apparatus for preparing and storing dissolved gas
CN110627132A (zh) * 2019-09-26 2019-12-31 黑龙江工程学院 一种小尺寸二硫化铁纳米空心球的制备方法
CN111525128A (zh) * 2020-04-20 2020-08-11 电子科技大学 一种钌掺杂含硫空位的过渡金属硫化物电极及制备方法
CN112108645A (zh) * 2020-09-04 2020-12-22 吉林师范大学 一种超顺磁小尺寸合金纳米粒子及其制备方法
CN112279315A (zh) * 2019-07-23 2021-01-29 湖北大学 一种环境友好型的硫化镍阵列材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830445A (zh) * 2009-12-15 2010-09-15 河南大学 一种以乙酰丙酮盐为原料合成无机纳米晶的新方法
CN101857265A (zh) * 2010-06-17 2010-10-13 清华大学 金属硫化物纳米晶的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830445A (zh) * 2009-12-15 2010-09-15 河南大学 一种以乙酰丙酮盐为原料合成无机纳米晶的新方法
CN101857265A (zh) * 2010-06-17 2010-10-13 清华大学 金属硫化物纳米晶的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BINXIA YUAN ET AL.: "One-step synthesis of cubic FeS2 and flower-like FeSe2 particles by a solvothermal reduction process", 《DALTON TRANSACTIONS》 *
SHOUHENG SUN ET AL.: "Monodisperse MFe2O4 (M=Fe,Co,Mn) Nanoparticles", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150129463A1 (en) * 2013-11-09 2015-05-14 Research Institute Of Petroleum Industry (Ripi) Nanocatalyst for heavy crude oil upgrading and method for synthesizing same
US9878319B2 (en) * 2013-11-09 2018-01-30 Research Institute Of Petroleum Industry (Ripi) Nanocatalyst for heavy crude oil upgrading and method for synthesizing same
US10519038B2 (en) * 2015-09-22 2019-12-31 Suzhou Xingshuo Nanotech Co., Ltd. Nanocrystal preparation method, nanocrystals, and apparatus for preparing and storing dissolved gas
CN105655136B (zh) * 2015-12-28 2018-03-09 华侨大学 一种量子点敏化太阳能电池对电极的制备方法
CN105655136A (zh) * 2015-12-28 2016-06-08 华侨大学 一种量子点敏化太阳能电池对电极的制备方法
CN108190845A (zh) * 2018-01-31 2018-06-22 湖南省正源储能材料与器件研究所 一种制备硫化锂的方法
CN110143620A (zh) * 2019-07-01 2019-08-20 中国科学技术大学 一种镍钴硫纳米材料的制备方法及镍钴硫复合材料
CN112279315A (zh) * 2019-07-23 2021-01-29 湖北大学 一种环境友好型的硫化镍阵列材料及其制备方法
CN110627132A (zh) * 2019-09-26 2019-12-31 黑龙江工程学院 一种小尺寸二硫化铁纳米空心球的制备方法
CN110627132B (zh) * 2019-09-26 2022-02-22 黑龙江工程学院 一种小尺寸二硫化铁纳米空心球的制备方法
CN111525128A (zh) * 2020-04-20 2020-08-11 电子科技大学 一种钌掺杂含硫空位的过渡金属硫化物电极及制备方法
CN111525128B (zh) * 2020-04-20 2022-11-04 电子科技大学 一种钌掺杂含硫空位的过渡金属硫化物电极及制备方法
CN112108645A (zh) * 2020-09-04 2020-12-22 吉林师范大学 一种超顺磁小尺寸合金纳米粒子及其制备方法

Also Published As

Publication number Publication date
CN102874767B (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
CN102874767B (zh) 油相“一锅法”可控制备小尺寸过渡金属硫化物纳米粒子的方法
CN102891016B (zh) 一种钴酸镍石墨烯复合材料及其用途和制备方法
Cao et al. Metal-organic framework derived carbon-coated spherical bimetallic nickel-cobalt sulfide nanoparticles for hybrid supercapacitors
Liu et al. High-performance supercapacitor based on highly active P-doped one-dimension/two-dimension hierarchical NiCo2O4/NiMoO4 for efficient energy storage
Zhang et al. Polyvinylpyrrolidone (PVP) assisted in-situ construction of vertical metal-organic frameworks nanoplate arrays with enhanced electrochemical performance for hybrid supercapacitors
KR101347139B1 (ko) 마이크로펄스웨이브를 이용한 그래핀/전이금속산화물 나노복합체의 제조방법
CN103613755A (zh) 一种石墨烯/聚苯胺纳米复合材料、制备方法及应用
CN103325579B (zh) 一种还原碳量子点/RuO2复合材料及其制备和应用方法
Liu et al. Spear-shaped Mn/Ni bimetallic hydroxide derived from metal-organic frameworks as electrode materials for aqueous and all-solid-state hybrid supercapacitors
CN105719850A (zh) 石墨烯聚吡咯/双金属氢氧化物纳米线三元复合材料及其制备方法和应用
CN103979612A (zh) 一种制备四氧化三铁纳米粒子的方法
CN105957728A (zh) 一种镍-钴双氢氧化物/NiCo2S4复合纳米材料、其制备方法及作为超级电容器电极材料的应用
Rajesh et al. 2D layered nickel-cobalt double hydroxide nano sheets@ 1D silver nanowire-graphitic carbon nitrides for high performance super capacitors
CN105523540A (zh) 一种孔径大小可控的介孔碳球材料的制备方法
Chai et al. In-situ growth of NiAl layered double hydroxides on Ni-based metal-organic framework derived hierarchical carbon as high performance material for Zn-ion batteries
Zhu et al. Preparation of Co2Al layered double hydroxide nanosheet/Co2Mn bimetallic hydroxide nanoneedle nanocomposites on nickel foam for supercapacitors
Wang et al. Surface sulfidation of NiCo-layered double-hydroxide nanosheets for flexible all-solid-state fiber-shaped asymmetric supercapacitors
Zhang et al. Controllable and fast growth of ultrathin α-Ni (OH) 2 nanosheets on polydopamine based N-doped carbon spheres for supercapacitors application
Zheng et al. Synergy of PVP and ethanol to synthesize Ni 3 S 4 quantum dots for high-performance asymmetric supercapacitors
Abuali et al. On the effect of polypyrrole on electrochemical performance of micro-sized hollow spheres of NiCo2S4 and CuCo2S4 nanoparticles
Liu et al. Construction of CoB/Mn0. 5Cd0. 5S photocatalyst with Schottky junction: Effective charge separation and highly efficient H2 evolution performance
Yang et al. Enhanced interfacial charge transfer via in-situ construction of integrated NiO/NiCo2O4 heterojunction coupled with carbon layer for high-performance supercapacitor and photocatalysis
Guo et al. Trimesic acid-modified 2D NiCo-MOF for high-capacity supercapacitors
Yu et al. Highly efficient visible-light photocatalytic hydrogen production using ZIF-derived Co9S8/N, S-CNTs-ZnIn2S4 composite
CN103848988B (zh) 氮掺杂石墨烯/铁酸镍/聚苯胺纳米复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140507

Termination date: 20181015

CF01 Termination of patent right due to non-payment of annual fee