CN102812043A - 用于制备t细胞受体样单克隆抗体的方法及其用途 - Google Patents

用于制备t细胞受体样单克隆抗体的方法及其用途 Download PDF

Info

Publication number
CN102812043A
CN102812043A CN2010800618339A CN201080061833A CN102812043A CN 102812043 A CN102812043 A CN 102812043A CN 2010800618339 A CN2010800618339 A CN 2010800618339A CN 201080061833 A CN201080061833 A CN 201080061833A CN 102812043 A CN102812043 A CN 102812043A
Authority
CN
China
Prior art keywords
antibody
cell
peptide
mhc
hla
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800618339A
Other languages
English (en)
Inventor
P·A·马卡里
陈苏虾
B·J·汉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Singapore
DSO National Laboratories
Original Assignee
National University of Singapore
DSO National Laboratories
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Singapore, DSO National Laboratories filed Critical National University of Singapore
Publication of CN102812043A publication Critical patent/CN102812043A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • G01N33/56994Herpetoviridae, e.g. cytomegalovirus, Epstein-Barr virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/081Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from DNA viruses
    • C07K16/085Herpetoviridae, e.g. pseudorabies virus, Epstein-Barr virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2833Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/32Immunoglobulins specific features characterized by aspects of specificity or valency specific for a neo-epitope on a complex, e.g. antibody-antigen or ligand-receptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16211Lymphocryptovirus, e.g. human herpesvirus 4, Epstein-Barr Virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/01DNA viruses
    • G01N2333/03Herpetoviridae, e.g. pseudorabies virus
    • G01N2333/05Epstein-Barr virus

Abstract

本发明提供了用于制备T细胞受体(TCR)样抗体的方法,其识别呈现于HLA分子内的肽。由本文提供的方法制备的抗体具有TCR的特异性并且可被用作为治疗、诊断和研究试剂。还提供了识别呈现于HLA分子之内的Epstein-Barr病毒(EBV)肽的TCR样抗体,并且其可用于对EBV和EBV关联疾病的检测和治疗。

Description

用于制备T细胞受体样单克隆抗体的方法及其用途
发明领域
本发明总体上涉及免疫学领域,并且特别涉及制备识别呈现于HLA分子环境中的肽的T细胞受体样抗体的方法。
发明背景
哺乳动物的免疫系统通过源自病毒基因产物的小标识肽(signature peptide)在被感染细胞的表面上的呈递与HLA-分子结合而识别被病毒感染的细胞和肿瘤。在人中称为I类HLA的I类主要组织相容性复合体(MHC)分子结合并呈现细胞表面上的肽抗原配体。所述肽抗原配体源自正常内源蛋白质(“自身”)或被引入所述细胞中的外源蛋白质(“非自身”)。非自身蛋白质可以是恶性转化或细胞内病原体如病毒的产物。以这种方式,I类MHC分子将关于细胞内部环境的信息传递给免疫效应细胞,其包括但不限于CD8+细胞毒性T淋巴细胞(CTL),其在与“非自身”肽的相互作用时被激活,由此将呈递这些“非自身”肽的细胞裂解或杀死。
在人中称为II类HLA的II类MHC分子也结合并呈现细胞表面上的肽抗原配体。与几乎在实际上所有有核细胞上表达的I类MHC分子不同,II类MHC分子正常情况下限于特化细胞,诸如B淋巴细胞、巨噬细胞、树突状细胞和其它抗原呈递细胞,所述抗原呈递细胞通过胞吞途径从细胞外液中摄取外源抗原。它们所结合和呈递的肽源自细胞外外源抗原,如细菌毒素。以这种方式,II类分子将关于呈现所述II类MHC分子邻近的细胞外空间的适合度(fitness)信息传递给免疫效应器细胞,其包括但不限于CD4+辅助T细胞,由此辅助消除这些病原体。通过辅助B细胞制造针对微生物以及由这些微生物所产生的毒素的抗体和通过激活巨噬细胞以破坏被吞入的微生物而实现了这些病原体的消除。
I类MHC分子使针对宿主细胞内的失调的免疫应答进行警报。源自所述细胞内的病毒和肿瘤特异性蛋白质的肽在该细胞的内质网中被加载于所述I类分子的抗原结合槽内并且随后被携带至细胞表面。一旦所述I类MHC分子及其加载的肽配体处于所述细胞表面上,该I类分子及其肽配体可为细胞毒性T淋巴细胞(CTL)接近。CTL监测该I类分子所呈递的肽并且破坏带有源自于该细胞内的感染或肿瘤剂的配体的细胞。
细胞所产生的主要的蛋白质存留于细胞内区室内,因此防止了抗体分子对它们的直接识别。可受到蛋白酶体依赖性的和非依赖性的机制的降解的细胞内蛋白质的丰度为在所述I类MHC系统环境中的表面呈递产生了巨大的肽来源(Rock等,(2004))。特异地识别病毒感染的或肿瘤细胞表面上的HLA限制的肽靶(表位)的新抗体类型将显著地扩展治疗手段。
可视化或靶向病毒感染的细胞或肿瘤的最广泛使用的方法涉及抗原特异性T淋巴细胞系的体外产生,该淋巴细胞系表达对于病毒肽/HLA复合体特异性的T细胞受体。但是,这些抗原特异性人细胞系的产生需要高的技术熟练水平,并且这些细胞系在体外极度不稳定。开发抗原特异性T淋巴细胞系的一个替代方法是制备与T淋巴细胞具有类似或重叠特异性的TCR样单克隆抗体。这需要对与HLA-分子结合的人细胞表面上呈递的小抗原性肽具有精细特异性的抗体。这还是一个巨大的技术挑战,因为整体来说,人源的HLA分子当在小鼠体内被用作免疫原时极具抗原性。因此,TCR样小鼠单克隆潜在地代表了由于人HLA复合体加目标抗原性肽的免疫而在小鼠体内被诱导的可能抗体库的一小部分。
已经使用标准的杂交瘤方法或通过使用噬菌体抗体文库产生了TCR样单克隆抗体。但是,该类型的抗体仍然极度稀少并且当通过噬菌体展示制备时可预见它们的亲和力很低。识别MHC-肽复合体的抗体的应用先前已被描述(参见,例如Reiter于2003年3月26日提交的美国专利申请公开号第2004/0191260A1号;Andersen等于2001年9月19日提交的美国专利申请公开号第2002/0150914A1号;Hoogenboom等于2003年2月20日提交的美国专利申请公开号第2003/0223994号以及Reiter等于2003年2月11日提交的PCT申请公开号第WO 03/068201号)。但是,所述公开的技术使用了噬菌体展示文库,其并不产生完整的即用的抗体产物。此外,这些抗体的大多数以Fab片段的形式分离自细菌噬菌体文库(Cohen等,J MolRecognit,16:324-332(2003);Held等,(2004);Chames等,J Immunol,169:1110-1118(2002)),其未经抗病毒或抗肿瘤活性检验,这是因为它们并不激活固有免疫机制(例如,补体依赖的细胞毒性(CDC)或抗体依赖细胞的细胞毒性(ADCC))。
迄今为止,尚不存在获证实的能够以强力方式对肿瘤或病毒感染细胞进行染色的抗体的制备,这暗示了先前制备的抗体具有低亲和性和/或特异性。先前方法中使用的免疫原包含已然对于特定的肽“富集”的MHC。所述免疫原由此包含了MHC-肽复合体库,并且并非单独由目标肽加载。此外,这些方法中未进行协同的努力以维持所述HLA-肽复合体所形成的三维表位的结构,这对于适当的抗体反应的产生至关重要。
因此,具有真正MHC限制性的T细胞特异性的抗体极为罕有。这些抗体被证实难于通过常规杂交瘤技术所产生,这是因为B细胞未驯育为自体MHC限制性的(Porgador等,Immunity,6:715-726(1997);Dadaglio等,Immunity,6:727-738(1997);Aharoni等,Nature,351:147-150(1991);Krogsgaard等,J Exp Med,191:1395-1412(2000))。先前描述的TCR样抗体一般对其所对应的MHC-肽复合体具有相对较低的结合亲和力,这是降低的抗体选择性的指征。实际上,该受限的抗体结合亲和力因此而使其非常不实用于通过常规方法分离目标B细胞(美国专利申请公开号第2009/0226474号)。因此,本领域对于制备HLA限制性的并且具有高结合亲和力的TCR样单克隆抗体的方法具有需求。
Epstein-Barr病毒(EBV)是普遍存在的人疱疹病毒,发现其为所有人类居住区域主要的无临床症状的感染。EBV已与多样组织来源的大量人类肿瘤关联。EBV阳性肿瘤特征在于恒见于NPC活组织检查和其它EBV恶性肿瘤中的病毒基因产物的活跃表达,所述基因产物包括EBNA-1、LMP-1和LMP-2A的元件。
尽管EBV已被充分研究和探索,但是本该领域中仍无抗体具有对与EBV感染细胞表面上的人HLA结合而表达的至少一种源自EBV的肽的特异性。
特别地,虽然现存的四聚体技术可被用于研究由于天然感染而导致的EBV特异性T淋巴细胞,但是当前无方法可以实现对表达于EBV感染的细胞和肿瘤表面上的TCR配体的可视化、定量和分析。这些限制严重地阻碍了直接了解候选免疫侵袭机制对于EBV抗原在被感染细胞和APC中的加工和呈递的影响的能力。这些限制还限制了肿瘤细胞基于其与EBV关联的原位靶定。
因此,本领域还需要对EBV和/或源自EBV的肽具有结合特异性的抗体。
发明内容
本发明通过提供用于制备高亲和性T细胞受体-(TCR)样抗体的新型、高效并且实用的方法而解决了免疫学领域中长期以来的需求。此外,本发明提供了对EBV和/或EBV感染的细胞特异性的TCR样抗体。
根据一方面,本发明提供了用于制备T细胞受体样抗体的方法,所述方法包括以下步骤:形成包含单体MHC-肽复合体的免疫原;将有效量的所述免疫原施用于宿主以引起针对所述MHC-肽复合体中的肽的免疫应答;选择对MHC-肽复合体中的肽特异性的B细胞;通过将所述B细胞与永生化细胞融合而形成杂交瘤;以及分离由所述杂交瘤所产生的抗体。
根据进一步的方面,本发明提供了T细胞受体样抗体,其根据包括以下步骤的方法而制备:形成包含单体MHC-肽复合体的免疫原;将有效量的所述免疫原施用于宿主以引起针对所述MHC-肽复合体中的肽的免疫应答;选择对所述MHC-肽复合体中的肽特异性的B细胞;通过将所述B细胞与永生化细胞融合而形成杂交瘤;以及分离由所述杂交瘤所产生的抗体。
根据进一步的方面,本发明提供了用于制备杂交瘤的方法,所述方法包括以下步骤:形成包含单体MHC-肽复合体的免疫原;将有效量的所述免疫原施用于宿主以引起针对所述MHC-肽复合体中的肽的免疫应答;选择对所述MHC-肽复合体中的肽特异性的B细胞;通过将所述B细胞与永生化细胞融合而形成杂交瘤;以及分离所述杂交瘤。
根据另一方面,本发明提供了ATCC保藏号PTA-10351的分离的杂交瘤细胞系。
根据进一步的方面,本发明提供了用于在受试者体内检测至少一种EBV感染细胞的存在的方法,所述方法包括:将TCR样抗体或其片段接触以获自受试者的样品;以及检测所述抗体与所述EBV感染细胞的结合。
根据进一步的方面,本发明提供了分离的核酸分子,其编码:根据权利要求5所述的抗体或其片段的至少一条重链,其中所述重链包含选自于SEQ ID NO:4至6,其变体、突变体或片段的氨基酸序列;和/或TCR样抗体或其片段的至少一条轻链,其中所述轻链包含选自于SEQ ID NO:1至3,其变体、突变体或片段的氨基酸序列。
根据进一步的方面,本发明提供了检测EBV存在的方法,治疗至少一种EBV关联疾病的方法以及本发明的抗体或片段,其用作为药物和用于试剂盒中。
附图简述
图1示出了用于产生至少一种TCR样单克隆抗体的实验性程序的图示说明。人I类主要组织相容性复合体(MHC)重链(HC)和轻链(LC)作为重组蛋白质表达并且在来自EBV的LMP-1的抗原性肽YLLEMLWRL(SEQ ID NO:7)存在的情况下被重折叠为HLA单体。随后通过快速蛋白质液相色谱(FPLC)纯化所述单体并将其作为免疫原用于Balb/C小鼠中。在进行聚乙二醇(PEG)介导的与骨髓瘤细胞系NS1的融合之前,使用免疫-磁性珠纯化具有所需抗原特异性的脾B淋巴细胞。通过流式细胞仪使用肽冲击(peptide pulsed)的表达HLA-A201的人细胞系筛选所产生的杂交瘤克隆。
图2示出了HLA重链和轻链的表达和纯化,其形成单体。图2(A)示出了SDS-PAGE的结果,其中分析了重链(HC)和轻链(LC)包涵体的蛋白质含量。重组HLA-A201重链和轻链在大肠杆菌BL21中表达。所述重链和轻链作为包涵体被分离并且溶解于8M脲中。图2(B)示出了(i)FPLC谱和(ii)对所述纯化的折叠单体的SDS-PAGE分析的结果。重链、轻链和所述LMP-1肽(YLLEMLWRL;SEQ ID NO:7)在体外被重折叠成为完整的HLA-A2/LMP-1表位复合体。使用阴离子交换色谱纯化所述单体。处于19分钟处的峰A仅包含轻链(β2m),而处于36-37分钟处的峰B同时包含重链(35kD)和轻链(12kD)。图2(C)示出了非变性原始凝胶的结果,其中从峰B收集的级分1和2被汇合并进行分析。使用抗HLA构象特异性单克隆抗体W6.32对所述凝胶进行免疫印迹。这些结果证实了纯化的单体被正确地折叠。图2(D)示出了HLA-A2/LMP-1表位复合体的分析,其经四聚化并且测试它们结合LMP-1特异性CD8+T细胞的能力。结合于来自EBV阳性供体(左图)的CD8+T细胞的四聚体相对于对照四聚体(右图)显示。这些结果证实,HLA-A2/LMP-1表位复合体在其被用作为免疫原前已经正确地进行了折叠。
图3示出了涉及使用免疫磁性选择对来自免疫小鼠的B细胞的预选的程序的图示说明。总之,生物素化HLA单体/免疫原结合于特异性B细胞受体,其见于对所述单体特异性的B细胞的表面上。在骨髓瘤融合之前,抗生物素包被的Miltenyi磁性激活细胞分选(MAC)珠(即,Miltenyi-Biotec,Singapore)用于在磁性柱上分离结合的B细胞。
图4示出了针对具有HLA-A201/LMP-1特异性的TCR样单克隆抗体而筛选B细胞杂交瘤的结果。通过流式细胞术将杂交瘤克隆LMP1#226的上清液中的抗体与经LMP-1肽冲击的C1R.A2细胞的结合(灰色柱状图)与抗体对用HLA-A201限制性的甲型流感肽GILGFVFTL(SEQ ID NO:8;黑色柱状图)冲击的C1R.A2细胞的结合进行了比较。该灰色柱状图示出了杂交瘤克隆LMP1#226的染色模式。
图5示出了饼状图,其显示针对所需特异性的B细胞预选与未经选择的B细胞相比显著地提高了HLA-A201/LMP-1特异性杂交瘤的百分比。未经选择的B细胞同在与骨髓瘤细胞融合前根据其与HLA-A201/LMP-1单体的结合而选择的B细胞进行了比较。与针对其结合HLA-A201/LMP-1单体的能力进行选择的B细胞相比,未经选择的B细胞产生极低数量的HLA-A201/LMP-1特异性杂交瘤。经选择的细胞还被发现具有稳定的表型,与来自未经选择的杂交瘤库的阳性克隆相比具有更优良的整体特异性。
图6示出了针对抗HLA-A201/LMP-1单克隆抗体的免疫球蛋白同种型测试的结果。所示出的杂交瘤克隆LMP1#226的同种型谱与见于具有类似特异性的24个其它杂交瘤克隆的同种型谱相同。HC=重链,LC=轻链。
图7示出了来自(i)LMP1#226(抗HLA-A201/LMP-1)和(ii)BB7.2(抗HLA-A2)的TCR样单克隆抗体在增加的抗原浓度下的实验剂量反应曲线。抗原浓度介于7.5-100ng/ml之间。使用四参数逻辑(four-parameter logistics)拟合数据点。对于所有表达的数据点,离差平方和(summed square deviations)不高于0.393。
图8示出了抗HLA-A201/LMP-1单克隆抗体可被用于检测EBV感染的细胞。特别地,使用EBV对2E、RAJI(均为HLA-A2阴性B细胞系)、CF986(HLA-A201B细胞系)和CM960(HLA-A203B细胞系)进行了24小时的超感染。随后使用多克隆抗I类HLA抗体和来自于克隆LMP1#226的抗体标记所述细胞系并使用共聚焦显微镜对其进行分析。HLA-A201B细胞系(即,CF986)的EBV感染导致了来自于克隆LMP1#226的抗体的结合并且所产生的染色模式与所述多克隆抗HLA抗体共定位。类似条件下处理的RAJI或HLA-A203阳性B细胞系中未检测到显著的结合。
图9示出了抗HLA-A201/LMP-1识别呈现于HLA-A201、HLA-A206和HLA-A207上的LMP-1表位。使用流式细胞术分析与用LMP-1肽冲击的六种B细胞系的结合。细胞系CF801和CM803(HLA-A201)与细胞系CM304和CF1007(分别为HLA-A206和HLA-A207)一同示出了显著的结合。细胞系CM392和CM960(HLA-A203)未表现出任何结合。该结果表明这些HLA-A2多态性导致了不同的表位特异性。
图10(A)示出了潜伏EBV感染的人B细胞中LMP-1的检测。使用市售的抗LMP-1抗体(Acc Chem & Sci Co,USA)针对LMP-1的存在筛选1×106个EBV转化的B细胞(顶图)。在50%的人EBV B细胞系中检测到了LMP-1。对于人HLA(HLA-HC)特异性的单克隆抗体被用作为上样对照。图10(B)示出了对潜伏EBV感染的B细胞系上的表面HLA-A201/LMP-1复合体的基于流式细胞术的检测的结果。使用0.5μg的抗HLA-A201/LMP-1在40℃下对EBV永生化人B细胞染色20分钟。在与0.5μg山羊抗小鼠IgG-Alexa-Fluor 488(Jackson Labs,USA)在4℃下孵育20分钟之前,细胞在冰冷的磷酸盐缓冲盐水中洗涤两次。被染色的细胞在冰冷的磷酸盐缓冲盐水中洗涤两次,使用500μl的1%的多聚甲醛进行固定并且在Becton-Dickinson FACs Calibur流式细胞仪上进行分析。结果显示,在潜在感染的人B细胞中检测到了LMP-1表达。
图11示出了抗HLA-A201/LMP-1单克隆抗体阻断由表达对于相同的肽/HLA复合体(HLA-A201/LMP-1)特异性的T细胞受体的T细胞所介导的细胞毒性杀伤作用。图11(A)示出了LMP-1肽特异性CD8+T细胞系(本地制备)的四聚体染色结果,其中超过30%的细胞表达对于HLA-A201/LMP-1特异性的T细胞受体。图11(B)示出了Cr51释放分析的结果,其用于测试LMP-1肽特异性CD8+T细胞系与来自克隆LMP1#226的抗体的特异性的重叠。使用肽冲击靶与来自克隆LMP1#226的抗体的预孵育诱导了CD8+T细胞系的杀伤活性的显著降低。这些结果表明所述细胞和所述抗体共有在对HLA-A201/LMP-1复合体的结合特异性上的重叠。
图12示出了相对于对照抗HLA-A201/LMP-1单克隆抗体诱导针对使用LMP-1肽冲击的CIR.A2靶的抗体依赖的细胞介导的细胞毒性(ADCC)活性。对于本分析,以Cr51标记的CIR.A2细胞作为靶使用脾NK细胞效应子。源自LMP-1的肽被滴定至所述CIR.A2靶细胞上,未经冲击的细胞被用作为阴性对照。将结果表示为LMP-1肽冲击靶相对于对照的百分特异性裂解(三组重复孔的平均值+/-SEM)。
发明详细说明
本发明总体上涉及具有T细胞受体特异性和远高于具有类似特异性的已知抗体的亲和性的抗体。本发明总体上还涉及能够产生这些抗体的杂交瘤以及与可鉴别的和/或治疗性的部分如免疫毒素和免疫标记物的T细胞受体样抗体偶联物。本发明进一步的方面提供了制备这些抗体、杂交瘤和偶联物的方法以及编码这些抗体和偶联物的多核苷酸,和将这些偶联物用于检测和治疗EBV关联的失调的方法。
本发明的各个方面的描述出于说明的目的而被提供,并且并非意在是穷尽的或者用于将所要求保护的方法限定于所公开的形式。相关领域的技术人员可以认识到,根据所述方面的教导多种修饰和改变是可能的。
应当注意,本文所使用的语言主要出于可读性和指导性目的而选择,其并未被选择用于阐明或限定本发明的主题。因此,本公开意在对所要求的方法范围进行说明而非限定。
本说明书和所附权利要求书中使用的单数形式的“一(个/种)”和“该”包括了复数形式的指代,除非所述内容清楚地表示了其它情况。因此,例如“一抗体”的引述包含了两种或更多种抗体等等。
本文未直接定义的任何术语应被理解为具有本发明所属领域内所理解的与之通常相关的涵义。本文讨论了特定的术语以在对本发明的组合物、装置、方法和类似方面,以及如何制备或使用它们的描述中为实施人员提供额外的指导。应当了解,可以多种方式表述相同的事物。因此,本文所讨论的任何一个或多个术语可使用替代性的语言和同义词。本文是否详尽描述或讨论了某术语无关宏旨。提供了一些同义词或可替代的方法、材料等等。除非明确地申明,一种或几种同义词或等同物的引述并不排除其它同义词或等同物的使用。实例(包括术语实例)的使用仅仅是出于说明的目的并且并不限制本文中本发明的方面的范围和涵义。
当提及可测量数值如量、时间期间等时,本文所使用的“约”意在包含对所指定值的±20%或±10%的变异,较优选地为±5%,更优选地为±1%,并且愈加优选地为±0.1%的变异,只要这些变异适于实施所公开的方法。
本文所使用的术语“治疗(treating)”指的是在对疾病、病状或失调的治疗或改善或预防中任意的成功指征,其包括任何客观或主观的参数,诸如症状的减轻、缓解、消退或使所述疾病病状对于该患者较为可以忍受,减缓退化或衰退速率,或使退化终点的虚弱程度较轻。症状的治疗或改善可基于客观或主观的参数,包括医师检查的结果。因此,所述术语“治疗”包括根据本文所述的施用本发明的化合物或药剂以防止或延迟、减缓或者中断或抑制与疾病、病状或失调关联的症状或病状的发展。术语“疗效”指的是在受试者体内所述疾病、疾病的病状或疾病的副作用的降低、消除或预防。使用本发明的方法的“治疗”或“疗法”包括在受试者中防止症状的发作,所述受试者对于本文所述的疾病或与疾病相关的失调、病状或障碍具有提高的风险,但是还未发生或表现出症状,从而抑制疾病或失调的症状(减缓或中断其发生),提供对疾病的症状或副作用的缓解(包括姑息治疗),以及缓解疾病的症状(导致消退)。治疗可以是预防性的(用于防止或延迟疾病的发作,或用于防止其临床或亚临床症状的表现)或在所述疾病或病状表现之后治疗性抑制或减缓症状。
本文所使用的术语“患者”、“受试者”或“哺乳动物”可互换地使用并且指的是哺乳动物如人类患者或非人灵长类,以及实验动物,诸如兔、大鼠和小鼠,以及其它动物。动物包括所有脊椎动物,例如哺乳动物和非哺乳动物,诸如绵羊、犬、牛、鸡、两栖动物和爬行动物。
本文所使用的术语“治疗有效量”或“有效地减低或消除病毒感染的量”指的是TCR样抗体足以防止病毒感染或减缓(例如,减慢、减少或降低)与病毒感染相关的至少一种症状的量。只要施用化合物的益处超过了损害,并非必需化合物的施用消除病毒感染症状。
本文所使用的术语“药学可接受的载体”指的是有用于制备药物组合物的载体,其通常是安全、无毒和需要的,并且包括对于兽医用途及人的药学用途可接受的载体。这些载体可以是固体、液体、半固体或在气溶胶组合物情况下是气体。
本文所使用的术语“足够量”指的是足以产生所需效果的量,例如足以在受试者体内降低EBV感染发生率或EBV诱导的肿瘤发生的TCR样抗体的量。
本文所使用的术语“分离的”指的是生物成分,诸如核酸、肽或蛋白质,其已经与所述成分天然存在的生物体的细胞中的其它生物成分(即其它染色体的和染色体外的DNA和RNA以及蛋白质)实质上分离、与其分离而制备或从其中纯化。因此,已被分离的核酸、肽和蛋白质包括通过标准纯化方法而纯化的核酸和蛋白质。该术语还包括通过在宿主细胞中的重组表达而制备的核酸、肽和蛋白质,以及化学合成的核酸。
本文所使用的术语“样品”以其最为广泛的含义使用。怀疑包含编码至少一种源自EBV的肽或其片段的核酸或包含至少一种源自EBV的肽本身的生物样品可包括体液,细胞提取物,分离自细胞的染色体、细胞器或膜,细胞,基因组DNA,RNA或cDNA(处于溶液中或结合于固体支持物上),组织,组织印迹(tissue print)等等。
本文所使用的术语“TCR样单克隆抗体”指的是表现类似于T细胞受体(TCR)抗体的抗体。特别地,所述术语“TCR样单克隆抗体”指的是选择性地识别MHC结合肽的抗体。
本领域的技术人员应了解,根据本文给出的方法可在无不过度实验的情况下实施本发明。方法、技术和化学品为如给出的参考文献中所描述的或来自标准生物技术和分子生物学教材中的方案。
主要组织相容性复合体(MHC):
本文所使用的术语“MHC”应被理解为指主要组织相容性复合体,其被定义为一组指定主要组织相容性抗原的基因座。本文所使用的术语“HLA”应被理解为指人白细胞抗原,其被定义为见于人类中的组织相容性抗原。本文所使用的“HLA”是“MHC”的人类形式。
主要组织相容性复合体(MHC)是由连锁基因座群所编码的抗原的复合体,其在小鼠中统称为H-2并在人中统称为HLA。MHC抗原的两个主要类型,I类和II类,各自包含一组细胞表面糖蛋白,其在决定组织类型和移植相容性中起作用。在移植反应中,细胞毒性T细胞(CTL)主要对外源的I类糖蛋白作出反应,而辅助T细胞主要对外源的II类糖蛋白作出反应。
I类MHC分子表达于几乎所有细胞的表面上。这些分子发挥了通过与T细胞受体的相互作用将主要源自内源合成的蛋白质的肽呈递给CD8+T细胞的功能。所述I类MHC分子是异二聚体,其由非共价结合于12-kDa轻链β2微球蛋白的46-kDa重链构成。在人体中,存在几种MHC单体型,例如,HLA-A、HLA-B、HLA-C、HLA-DPA1、HLA-DPB1、HLA-DQA1、HLA-DQB1、HLA-DRA和HLA-DRB1。
可溶并且可大量制备的重组I类MHC和II类MHC复合体被描述于,例如Denkberg等,Eur J Immunol,30:3522-3523(2000);Denkberg等,JImmunol,167:270-6(2001);Garboczi等,Proc Natl Acad Sci USA,89:3429(1992);Uger等,J Immunol,160:1598(1998)中并且进一步描述于美国专利申请第09/534,966号和PCT申请第PCT/IL01/00260号(以PCT申请公开号第WO 01/72768号被公开),以上全部以引用的方式并入本文。可溶性I类MHC分子是可获得的或可按照,例如,PCT/IL01/00260的教导对于任意MHC单体型制备,例如HLA-A、HLA-B、HLA-C、HLA-DPA1、HLA-DPB1、HLA-DQA1、HLA-DQB1、HLA-DRA和HLA-DRB1,因为它们的序列是已知的并且可见于位于immuno.bme.nwu.edu/的kabat数据库中,所述站点的内容以引用的方式并入本文。
MHC结合肽
I类MHC限制性肽(本文中还可互换地称为HLA限制性抗原、HLA限制性肽、MHC-限制性抗原)一般长8至10个氨基酸并且通过与MHC分子中对应结合口袋相互作用的两个或三个锚定残基结合于MHC的重链沟(heavy chain groove)。β2微球蛋白链在I类MHC的细胞内转运、肽结合和构象稳定性中发挥重要作用。对于大多数I类分子,由I类MHC重链、肽(自体或抗原性的)和β2微球蛋白组成的异二聚体的形成是生物合成成熟和细胞表面表达所需要的。
本文所使用的术语“肽”指的是天然肽(降解产物或合成方式合成的肽)并且还指肽模拟物,诸如为肽类似物的类肽(peptoids)和半类肽(semipeptoids),其可具有例如使肽在体内更为稳定或更具免疫原性的修饰。这些修饰包括但不限于,环化、N-末端修饰、C-末端修饰、肽键修饰、骨架修饰和残基修饰。用于制备肽模拟物化合物的方法在本领域为人所熟知,并且明确描述于Quantitative Drug Design,C.A.RamsdenGd.,第17.2章,F.Choplin Pergamon Press(1992),其以引用的方式并入本文,正如在本文中进行了完全描述。
本文所使用的术语“氨基酸”应被理解为包括20种天然存在的氨基酸;通常在体内受到翻译后修饰的氨基酸,包括,例如羟脯氨酸、磷酸丝氨酸和磷酸苏氨酸;以及其它不常见的氨基酸,包括但不限于,2-氨基己二酸、羟赖氨酸、异锁链赖氨素(isodesmosine)、正缬氨酸、正亮氨酸和鸟氨酸。进一步,术语“氨基酸”包括D-和L-氨基酸。根据本发明可用的可能氨基酸的进一步详述在本公开全文中提供。
本文所使用的术语“保守氨基酸置换”指的是其中氨基酸残基被具有类似侧链的氨基酸残基替换的氨基酸置换。本领域内已经定义了具有类似侧链的氨基酸残基家族。这些家族包括,具有碱性侧链的氨基酸(如赖氨酸、精氨酸、组氨酸)、具有酸性侧链的氨基酸(如天冬氨酸、谷氨酸)、具有不带电极性侧链的氨基酸(例如甘氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸、酪氨酸、半胱氨酸)、具有非极性侧链的氨基酸(如丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、苯丙氨酸、甲硫氨酸、色氨酸)、具有β分支侧链的氨基酸(如苏氨酸、缬氨酸、异亮氨酸)和具有芳香侧链的氨基酸(如,酪氨酸、苯丙氨酸、色氨酸、组氨酸)。因此,蛋白质中预测的非关键氨基酸优选被来自相同侧链家族的另一种氨基酸残基替换。或者,在另一个方面,可沿全部或部分编码序列随机引入突变,例如通过饱和诱变,并且可针对生物活性筛选所产生的突变体以鉴定保持活性的突变体。在蛋白质序列诱变后,编码的蛋白质可被重组表达并且可测定蛋白质的活性。
目标肽可能与感染或疾病状态、肿瘤发生状态相关,或者目标肽可对于特定的器官或组织为特异性的。所述肽在MHC分子环境中的呈递对于病毒感染的细胞或肿瘤细胞可以是全新的。
本文所使用的术语“衍生物”指的是至少一种源自EBV的肽的化学修饰,或是编码至少一种源自EBV的肽的多核苷酸序列或是互补于编码至少一种源自EBV的肽的多核苷酸序列的多核苷酸序列的化学修饰。多核苷酸序列的化学修饰可包括,例如,烷基、酰基或氨基基团对氢的替换。衍生的多核苷酸编码保持所述天然分子的至少一种生物学或免疫学功能的多肽。衍生的多肽是通过糖基化、聚乙二醇化或任意类似加工而修饰的多肽,其保持了其所源自的多肽的至少一种生物学或免疫学功能。
本文所使用的至少一种源自EBV的肽的“变体”指的是一个或多个氨基酸被改变的氨基酸序列。所述变体可具有“保守的”变化,其中置换的氨基酸具有类似的结构或化学特性(例如,以异亮氨酸替换亮氨酸)。更少的情况下,变体可具有“非保守的”变化(例如,以色氨酸替换甘氨酸)。类似的细微变异还可包括氨基酸缺失或插入,或两者。可使用本领域所熟知的计算机程序,例如DNASTAR软件,获得用以确定在不破坏生物学或免疫学活性的情况下哪些氨基酸残基可被置换、插入或删除的指导。
本文所使用的短语“源自EBV的肽”指的是可源自EBV的任意肽。特别地,所述源自EBV的肽可包括但不限于,Epstein-Barr核抗原(EBNA)-1、EBNA-2、EBNA-3A、EBNA-3B、EBNA-3C、EBNA-前导蛋白(EBNA-LP)、潜伏膜蛋白LMP-1、LMP-2A和LMP-2B、EBV-EA、EBV-MA、EBV-VCA等等。
本文所使用的术语“片段”指的是至少一种源自EBV的肽的全序列的不完整或分离的部分,其包含使该序列具有所述肽的特征和功能的活性位点。特别地,其可短上至少一个核酸或氨基酸并且可以是免疫原性片段。例如,LMP-1的片段包含使所述LMP-1抗体或其片段能够识别LMP-1的活性位点。
产生MHC-肽复合体的方法
在人体中,至少一种表位的MHC限制可依赖于至少一种特定的人白细胞抗原(HLA),其由呈递所述抗原的至少一种细胞表达。不同的HLA类型包括HLA-A、HLA-B、HLA-C、HLA-DPA1、HLA-DPB1、HLA-DQA1、HLA-DQB1、HLA-DRA和HLA-DRB1。
特别地,本发明的抗体能够识别为HLA-A2限制性的表位。约50%的普通人群表达I类MHC分子HLA-A2,其为一种HLA-A血清型。特别地,该亚型可识别多种HLA-A *02等位基因的基因产物,包括HLA-A*0201、*0202、*0203、*0206和*0207基因产物。在高加索人群和亚洲人群之间的亚型中可能存在明显差异。其中超过95%的HLA-A2阳性高加索人群是HLA-A0201的HLA-A2阳性,中国人群可分为23%的HLA-A0201;45%的HLA-A0207;8%的HLA-A0206;23%的HLA-A0203。
本文所使用的术语“单体”指的是抗原、重链和/或轻MHC链。例如,在本公开中,下文所述各实施例中使用的单体包含LMP-1以及至少一条HLA重链和轻链。特别地,所述单体可包含SEQ ID NO:7或其片段、重链和轻链。所述术语“单体”可在本发明中与术语“HLA-A2/LMP-1表位复合体”、“HLA-LMP-1肽单体”、“HLA-肽单体”或“HLA单体”互换使用。
本文所使用的术语“多聚体”应被理解为包含直接或间接地共价或非共价地连接在一起的MHC-肽复合体的两个或更多个拷贝。可通过本领域中已知的任意方法产生所述复合体的MHC分子。MHC产生的实例包括但不限于,内源产生和纯化,或者在宿主细胞内的重组产生和表达。在一个方面,MHC重链和β2m分子在大肠杆菌中表达并且与合成肽一起折叠。在另一个方面,所述MHC-肽复合体可如上所述被作为遗传工程改造的单链三聚体(或单链二聚体加MHC重链)产生。
相比于使用单体MHC-肽复合体进行的免疫化,使用多聚体MHC-肽复合体进行免疫具有多种缺点。首先,形成多聚体的过程费力、费时并且昂贵。然而,主要的缺点是由于引入大量额外抗原(如,链霉亲和素等)所导致的抗体选择性的降低。多聚MHC-肽复合体稳定性所产生的任何优点被这些不良效果所超过。
免疫系统受到特异地识别肽-MHC复合体的T细胞受体(TCR)的控制和调节。近年来,已经分离出许多病毒和癌症相关的MHC限制性肽,并且由于其高度限制性的精准特异性,它们是免疫治疗和免疫诊断中新型方法的理想靶标。与T细胞抗原受体具有相同特异性的能够识别病毒或癌症相关的MHC-肽复合体的抗体将是用于研究病毒感染细胞和肿瘤细胞的抗原呈递、可视化这些细胞上的MHC-肽复合体以及最终用于开发病毒感染和癌症免疫治疗和免疫诊断的新靶向剂的有价值的试剂。
仅有少量出版物报道了通过常规手段如杂交瘤技术产生自身MHC限制性抗体(Porgador等,Immunity,6:715-726(1997);Dadaglio等,Immunity,6:727-738(1997);Aharoni等,Nature,351:147-150(1991);Krogsgaard等,J Exp Med,191:1395-1412(2000))。先前这些困难的主要原因可见于MHC-肽复合体的分子特性和被解析的结构中。更具体而言,所述肽被深埋于MHC-结合沟中并且因此它们以与MHC残基混杂的肽残基延伸镶嵌物的形式呈递。
本发明进一步涉及可用于T细胞受体样抗体产生的免疫原。所述免疫原包含MHC-肽复合体的单体,其中所述MHC-肽复合体能够将其三维形式维持足以在宿主中引发免疫应答的时间,从而产生了识别该肽在所述MHC分子的结合沟内的三维呈递的抗体。如此产生的抗体能够将MHC-肽复合体与单独的MHC分子、单独的肽和MHC与无关肽的复合体区分开。特定的MHC-肽复合体的肽可能与感染状态、肿瘤发生状态和/或疾病状态相关,或者特定的MHC-肽复合体的肽对于特定的器官或组织可以是特异性的。或者,特定的MHC-肽复合体的肽在MHC分子环境中的呈递可以对于EBV感染的细胞或EBV相关肿瘤细胞是新的。特定的MHC-肽复合体的肽可包含源自EBV的肽、其变体、突变体或片段。特别地,所述源自EBV的肽可以是LMP-1、其变体、突变体或片段。更为特别地,所述LMP-1包含SEQ ID NO:7、其变体、突变体或片段的氨基酸序列。
本发明还涉及用于产生识别呈现于HLA分子环境中的肽的TCR样抗体的方法,其中所述肽与感染或疾病状态相关或是肿瘤发生性的。这些抗体具有T细胞受体(TCR)的特异性,从而使所述分子可被用作为治疗、诊断和研究试剂。在特定的方面,本发明的TCR样抗体具有比T细胞受体更高的结合亲和性。
本文还描述了用于产生免疫原的方法。所述免疫原包含MHC-肽复合体,其中所述肽在结合沟内的三维呈递是被抗体以高特异性识别的表位。所述免疫原可以是任意形式的稳定的MHC-肽复合体,其可被用于对能够产生针对所述免疫原的抗体的宿主进行免疫,并且所述免疫原可通过本领域的技术人员所知的任意方法制备。所述免疫原被用于构建激活临床相关的细胞免疫应答的药剂,所述免疫应答针对呈现特定MHC-肽复合体的肿瘤细胞。免疫原可通过使其稳定的方式被制备,或者可通过多种手段对其修饰以使其更稳定。
在一个方面,所述免疫原通过基于细胞的方法通过遗传工程和重组表达而制备,从而显著地增加所述复合体的半衰期。所述基因工程和重组表达的MHC-肽复合体可被化学交联以辅助所述复合体的稳定化。替代地或者在化学交联之外,MHC-肽复合体还可经遗传工程改造从而所述复合体以单链三聚体的形式产生。在这种方法中,所述MHC重链、β2微球蛋白和肽全部以被连接在一起的单链三聚体的形式产生。产生单链三聚体的方法在本领域中是已知的并且特别地公开于Yu等,Immunol,168:3145-3149(2002)中。其它方法涉及形成单链二聚体,其中所述肽-β2m分子被连接在一起,并且在单链二聚体中,该β2m可以是或不是膜结合的。在另一个方面,形成本发明的免疫原的步骤包括在大肠杆菌中独立地重组表达MHC重链和MHC轻链,并且随后在体外将所述MHC重链和轻链与肽重新折叠。
可进一步修饰本文提供的免疫原以提供促进所述免疫原的稳定性的更佳性能。可根据本发明使用的修饰的实例包括但不限于,修饰所述MHC-肽复合体中的锚定和/或尾部、修饰所述MHC-肽复合体中的一个或多个氨基酸、聚乙二醇化、化学交联、根据所述MHC-肽复合体的特定肽的pH或盐变化、添加使特定MHC-肽复合体稳定的一种或多种伴侣蛋白、添加增强免疫原性的一种或多种佐剂(例如但不限于,T细胞表位在多聚体上的添加),或它们的组合等等。
MHC-肽复合体筛选
可根据实施例1的描述通过形成HLA-肽复合体四聚体并且测试其结合HLA-肽特异性CD8+T细胞的能力而确定HLA-肽复合体的适当折叠。
载有特定肽抗原并且荧光标记的主要组织相容性复合体(MHC)蛋白质的可溶四聚体(即,“MHC四聚体”)已证明可用于抗原特异性T淋巴细胞的检测、计数、鉴定和纯化。I类MHC四聚体的应用近来已被综述于Doherty等,Annu Rev Immunol,18:561-592(2000);Ogg等,Immunol Lett,66(1-3):77-80(1999);Maini等,Immunol Today,20(6):262-266(1999);以及Doherty,Curr Opin Microbiol,1(4):419-422(1998)之中。II类MHC四聚体的应用被讨论于Reichstetter等,J Immunol,165(12):6994-6998(2000);Kwok等,J Immunol,164(8):4244-4249(2000);Liu等,Proc Natl Acad Sci USA,97(26):14596-14601(2000);Novak等,JClin Invest,104(12):R63-67(1999);Crawford等,Immunity,8:675-682(1998);以及Kozono等,Nature,369:151-154(1994)之中。据显示MHC四聚体以抗原和MHC特异性的方式结合于T淋巴细胞的T细胞受体(“TCR”)(参见,例如,Altman等,Science,274:94(1996)和美国专利第5,635,363号)。
为多聚化两个或更多个拷贝的MHC-肽复合体,可通过本领域中已知的一些方式修饰各MHC-肽复合体以使得所述MHC-肽复合体能够互相结合,或者所述多聚体可,所述MHC-肽复合体的各个拷贝所连接于的底物周围形成。尾部可连接于两个或更多个MHC-肽复合体以辅助多聚化,其中所述尾部可选自包括但不限于生物素化信号肽尾部、免疫球蛋白重链尾部、TNF尾部、IgM尾部、Fos/Jun尾部及其组合。所述多聚体可包含任意所需数目的MHC-肽复合体,并且因此而形成任意所需的多聚体,例如但不限于,二聚体、三聚体、四聚体、五聚体、六聚体等等。链霉亲和素具有四个生物素结合位点,因此BSP(生物素化信号肽)尾部可在MHC分子产生过程中与其连接,并且所需MHC-肽复合体的四聚体可通过将所述MHC-肽复合体与所述具有体外酶促添加的生物素的BSP尾部结合而形成。免疫球蛋白重链尾部可被用作用于形成二聚体的底物,而TNF尾部可被用作用于形成三聚体的底物。IgM尾部可被用作用于形成各种组合的底物,诸如四聚体、六聚体和五聚体。此外,可通过脂质体封装(encapsulation)或人工抗原呈递细胞技术(参见Hildebrand等于2002年1月16日提交的美国专利申请第10/050,231号,其全文特此明确地以引用的方式并入本文)多聚化所述MHC-肽复合体。此外,MHC-肽复合体可通过使用聚合化链霉亲和素多聚化并且产生称为“链霉聚物(streptamer)”的物质。
通过与荧光团的直接和间接偶联使得所述MHC四聚体可被检测。一般情况下,通过使用事先偶联于荧光团的链霉亲和素或抗生物素蛋白分子使MHC-肽分子多聚化而实现直接偶联。这些抗生物素蛋白和链霉亲和素蛋白质可购自多个经销商(例如,Becton DickinsonImmunocytometry Systems,San Jose,Calif.,USA;Biomeda,Foster City,Calif.,USA;Ancell Corp.,Bayport,Minn.USA;Southern BiotechnologyAssocs.,Inc.,Birmingham,Ala.,USA)。可使用具有对于抗生物素蛋白/链霉亲和素部分或多聚化MHC链的非多态性决定基(nonpolymorphicdeterminant)的荧光团偶联的抗体进行间接标记。
宿主免疫化和抗体产生
一旦免疫原被产生和稳定化,其被递送至宿主以引发免疫应答。所述宿主可以是本领域中已知可用于生物技术筛选分析并且能够在施用免疫原时产生可回收的抗体的任意动物,例如但不限于,兔、小鼠、大鼠、仓鼠、猴、狒狒和人。在一个方面,所述宿主是小鼠,诸如Balb/C小鼠或转基因小鼠。在另一个方面,所述小鼠是对于所述免疫原的特定MHC分子转基因的以最小化免疫原的抗原性,由此确保位于所述MHC分子的结合口袋中的肽的三维结构域是所产生的抗体的焦点,并且因此以高特异性被优先识别。在又一个方面,所述小鼠是转基因的并且产生人抗体,由此极大地方便用于建立人类疗法而进行的开发工作。
本文所使用的术语“抗体”指的是结合特定表位的任意免疫球蛋白或完整分子以及其片段。这些抗体包括但不限于,多克隆抗体、单克隆抗体、嵌合抗体、人源化抗体、完整抗体的单链、Fab、Fab′、F(ab)′片段和/或F(v)部分。例如,在本文中可与“抗HLA-A201/LMP-1”和“抗HLA-A201/LMP-1单克隆”互换使用的抗体“抗-LMP-1单克隆”能够特异地结合于本发明的至少一种源自EBV的肽(包括但不限于LMP-1(SEQID NO:7)或其变体或片段),并且包括单克隆抗体、多克隆抗体、单链抗体及其维持了亲本抗体的抗原结合功能的片段。
完整“抗体”包含通过二硫键相互连接的至少两条重(H)链和两条轻(L)链。各个重链由重链可变区(本文简称为HCVR或VH)和重链恒定区组成。所述重链恒定区由三个结构域,CH1、CH2和CH3组成。各个轻链由轻链可变区(本文简称为LCVR或VL)和轻链恒定区组成。所述轻链恒定区包含一个结构域CL组成。所述VH和VL区可被进一步细分为称做互补决定区(CDR)的高变区域,其间隔以称作框架区(FR)的较为保守的区域。各个VH和VL由三个CDR和四个FR所构成,其从氨基末端至羧基末端以如下顺序排列:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4。重链和轻链的可变区包含与抗原相互作用的结合结构域。抗体的恒定区可介导免疫球蛋白对宿主组织或因子的结合,包括免疫系统的各种细胞(如,效应器细胞)以及经典补体系统的第一成分(C1q)。该术语抗体包括完整抗体的抗原结合部分,其保持了结合的能力。结合的实例包括(i)Fab片段,其为由VL、VH、CL和CH1结构域组成的单价片段;(ii)F(ab′)2片段,其为包含通过铰链区的二硫键连接的两个Fab片段的二价片段;(iii)由VH和CH1结构域组成的Fd片段;(iv)由抗体单臂的VL和VH结构域组成的Fv片段;(v)dAb片段(Ward等,Nature,341:544-546(1989));以及(vi)分离的互补决定区(CDR)。
本文所使用的术语“单链抗体”或“单链Fv(scFv)”指的是Fv片段的两个结构域(VL和VH)的抗体融合分子。尽管Fv片段的两个结构域VL和VH由独立的基因编码,但是它们可使用重组方法通过使它们能够被制备成为单一蛋白质链的合成连接物接合,其中VL和VH区域配对以形成单价分子(称作单链Fv(Fscv);参见,例如,Bird等,Science,242:423-426(1988);和Huston等,Proc Natl Acad Sci USA,85:5879-5883(1988))。对术语“抗体”片段的引用包括这些单链抗体,其可通过重组技术或者对完整抗体的酶学或化学切割而制备。
本文所使用的术语“人序列抗体”包括具有源自人种系免疫球蛋白序列的可变和恒定区(如果存在的情况下)的抗体。本发明的人序列抗体可包含非由人种系免疫球蛋白序列所编码的氨基酸残基(例如,通过体外随机或点特异性诱变或体内体细胞突变而引入的突变)。这些抗体可在非人转基因动物中产生,例如,根据PCT申请公开第WO 01/14424号和第WO 00/37504号中的描述。但是,本文所使用的术语“人序列抗体”并非意在包括将源自另一种哺乳动物物种如小鼠的种系的CDR序列嫁接到人框架序列上的抗体(例如,人源化抗体)。
此外还可制备重组的免疫球蛋白。参见,Cabilly的美国专利第4,816,567号,其全文出于全部目的以引用的方式并入本文;以及Queen等,Proc Natl Acad Sci USA,86:10029-10033(1989)。
本文所使用的术语“单克隆抗体”指的是单分子组成的抗体分子的制备物。单克隆抗体组合物对于特定的表位表现出单一的结合特异性和亲和性。因此,所述术语“人单克隆抗体”指的是表现出单一结合特异性的抗体,其具有源自人种系免疫球蛋白序列的可变和恒定区(如果存在的情况下)。在一个方面,所述人单克隆抗体通过杂交瘤产生,所述杂交瘤包含与永生化细胞融合的获自转基因非人动物(如转基因小鼠)(其具有包含人重链转基因和轻链转基因的基因组)的B细胞。
本文所使用的术语“免疫细胞应答”指的是免疫系统细胞对外部或内部刺激(例如,抗原、细胞表面受体、细胞因子、趋化因子和其它细胞)的应答,从而在所述免疫细胞中产生导致免疫细胞迁移、靶细胞的杀伤、吞噬作用、抗体产生、免疫应答的其它可溶性效应器等等的生化变化。
本文所使用的术语“抗体片段”指的是抗体的全序列的不完整或分离的部分,其保持了亲本抗体的抗原结合功能。抗体片段的实例包括Fab、Fab’、F(ab′)2和Fv片段;双价小抗体(diabody);线型抗体;单链抗体分子;以及由抗体片段形成的多特异性抗体。本发明涵盖LMP-1抗体的片段,只要其保持全长抗体的所需亲和性。特别地,其可短出至少一个氨基酸。例如,LMP-1抗体的片段包含抗原结合功能,该功能使其能够结合于LMP-1(SEQ ID NO:7)或其变体或片段。
本文所使用的术语“抗原”指的是促进抗体产生并可导致免疫应答的物质。在本发明中其可与术语“免疫原”互换使用。严格意义上,免疫原是从所述免疫系统引发应答的那些物质,而抗原被定义为结合特定抗体的物质。抗原或其片段可以是与特定抗体形成接触的分子(即,表位)。当蛋白质或蛋白质片段被用于免疫化宿主动物时,所述蛋白质的多个区域可诱导抗体的产生(即,引发所述免疫应答),所述抗体特异地结合于所述抗原(所述蛋白质上的给定区域或三维结构)。抗原可包括但不限于LMP-1或其片段。
本文所使用的术语“人源化抗体”指的是至少一种抗体分子,其中处于非抗原结合区中的氨基酸序列已被改造从而使抗体更为接近地模拟人抗体,且仍然维持其原始结合能力。
实施例2-5中给出了用于本发明的单克隆抗体制备的方法的实例。这些实施例提供了用于利用Balb/C小鼠制备对于源自肿瘤病毒抗原EBV的潜伏膜蛋白1(LMP-1)的SEQ ID NO:7肽具有特异性的单克隆抗体。
此外,可使用被开发用于制备“嵌合抗体”的技术(Morrison等,ProcNatl Acad Sci,81:6851-6855(1984),其全文以引用的方式并入本文),其通过将来自具有适当抗原特异性的小鼠抗体分子的基因与来自具有适当生物学活性的人抗体分子的基因一起进行剪接而制备。例如,来自对于自诱导物(autoinducer)特异性的小鼠抗体分子的基因可与来自具有适当生物学活性的人抗体分子的基因一起进行剪接。嵌合抗体是其不同部分源自于不同动物物种的分子,诸如具有源自小鼠mAb的可变区和人免疫球蛋白恒定区的分子。
此外,已经开发了用于制备人源化抗体的技术(参见,例如,美国专利第5,585,089号和美国专利第5,225,539号,其全文以引用的方式并入本文)。免疫球蛋白轻链和重链可变区被三个高变区间隔的“框架”区组成,所述高变区称为互补决定区(CDR)。简而言之,人源化抗体是具有一个或多个来自非人物种的CDR和来自人免疫球蛋白分子的框架区的非人物种的抗体分子。
或者,被描述用于制备单链抗体的技术可适应于制备针对本发明的免疫原性偶联物的单链抗体。可通过经由氨基酸桥连接Fv区的重链和轻链片段而产生单链多肽从而形成单链抗体。可以使用为人所熟知的方法分别通过木瓜酶和胃蛋白酶对基本完整的抗体分子的蛋白酶解反应制备抗体分子的Fab和F(ab′)2部分。参见,例如,美国专利第4,342,566号。Fab′抗体分子部分也是众所周知的,并且从F(ab′)2部分制备并继之以使用巯基乙醇还原连接所述两重链部分的二硫键,并且随后使用诸如碘代乙酰胺这样的试剂对所产生的蛋白质硫醇进行烷基化。
特别地,抗体或其片段能够特异地结合于至少一种源自EBV的肽。新的单克隆抗体能够与人I类MHC(特别是称为人白细胞抗原HLA-A201的形式)结合基于源自EBV的肽的在EBV相关肿瘤细胞表面上的表达靶向EBV相关肿瘤细胞。
本发明的抗体可结合于EBV感染细胞表面上的HLA-LMP-1肽单体并且使成为免疫介导的裂解的靶标。该类型的单克隆抗体对HLA-LMP-1肽单体具有高特异性,可识别EBV感染的人B淋巴细胞,可结合于EBV感染的人肿瘤细胞系,并且可使EBV感染的肿瘤细胞成为自然杀伤细胞的抗体依赖细胞的细胞毒性作用(ADCC)的靶标。
根据特定的方面,本发明提供了根据包含以下步骤的方法而制备的T细胞受体样抗体:形成包含单体MHC-肽复合体的免疫原;将有效量的免疫原施用于宿主以引起针对所述MHC-肽复合体中的肽的免疫应答;选择对于所述MHC-肽复合体中的肽特异性的B细胞;通过将所述B细胞与永生化细胞融合而形成杂交瘤;以及分离所述杂交瘤产生的抗体。
根据进一步的方面,本发明提供了TCR样抗体,其中所述抗体选自下组:ATCC保藏号PTA-10351的杂交瘤细胞系所产生的抗体;具有ATCC保藏号PTA-10351的杂交瘤细胞系所产生的抗体的结合特性的抗体;与能够结合由ATCC保藏号PTA-10351的杂交瘤细胞系所产生的抗体的表位结合的抗体;与包含SEQ ID NO:7的氨基酸序列、其变体、突变体或片段的表位结合的抗体;以及包含至少一个轻链和至少一个重链的抗体,其中所述轻链包含选自SEQ ID NO:1至3、其变体、突变体或片段的氨基酸序列,并且所述重链包含选自SEQ ID NO:4至6、其变体、突变体或片段的氨基酸序列。
根据特定方面,本发明提供了用于制备T细胞受体样抗体的方法,所述方法包括以下步骤:形成包含单体MHC-肽复合体的免疫原;将有效量的所述免疫原施用于宿主以引起针对所述MHC-肽复合体中的肽的免疫应答;选择对于所述MHC-肽复合体中的肽特异性的B细胞;通过将所述B细胞与永生化细胞融合而形成杂交瘤;以及分离所述杂交瘤所产生的抗体。
根据进一步的方面,本发明提供了选择B细胞的方法,所述方法包括以下步骤:将对于处于MHC-肽复合体中的肽特异性的B细胞与生物素化的MHC-肽复合体一起孵育,其中所述MHC-肽复合体能够结合所述B细胞;并且使用抗生物素偶联珠结合所述生物素化的MHC-肽复合体。
根据进一步的方面,本发明提供了制备T细胞受体样抗体的方法,其中所述抗体由ATCC保藏号PTA-10351的杂交瘤细胞系产生。
可以使用至少一种放射性核素标记抗体以在体内至少一种诊断和/或治疗性能上改善对EBV感染的肿瘤细胞的靶定。例如,通过正电子发射计算机断层扫描(PET)在肿瘤转移之后在不同淋巴结中检测EBV感染的鼻咽癌细胞。使用放射性核素标记的抗体使耳鼻喉科医师能够更好地靶定病变淋巴结以进行手术和/或放疗。可使用至少一种毒素和/或化疗试剂标记所述抗体。特别地,被标记的抗体可被用作为免疫毒素,其更好地将这些毒性剂靶定于肿瘤细胞。
通过本方法制备的TCR样抗体优于先前描述的TCR样抗体。实际上,本发明的方法更为稳定、再现性更好,并且产生了质量上改善的具有更高选择性的抗体。
应当了解,一旦抗体的CDR被确认,可使用常规的基因工程技术以设计编码任意本文所述抗体形式或片段的可表达多核苷酸。
在宿主进行免疫并且使其引发针对免疫原的免疫应答之后,可进行筛选分析以测定是否产生了所需抗体。在特定的方面中,根据与以下部分的结合测定抗体特异性:(A)包含无关肽的正确折叠的HLA三聚体复合体(HLA重链、β2m和肽);(B)包含目标肽的正确折叠的HLA单体;以及(C)识别小鼠IgG和IgA恒定区并且共价连接指示剂的至少一种抗体,所述指示剂例如但不限于过氧化物酶或碱性磷酸酶。
B细胞选择
与标准的杂交瘤方法相比,使用连接于免疫磁性珠的生物素化形式的单体对来自免疫小鼠的在骨髓瘤融合前的抗原特异性B细胞进行预纯化很大程度上提高了具有正确特异性的杂交瘤的百分比。
在另一个方面,在杂交瘤形成前使用细胞分选分离所需的B细胞,诸如B记忆细胞。可根据本发明而使用的一种分选方法是利用磁性珠的分选,如由可使用Dynal或Miltenyi生产的磁性珠。另一种可使用的B细胞选择方法是荧光激活细胞分选(FACS)。由于B记忆细胞在其表面上具有免疫球蛋白,因此可利用这一特异性识别和捕获这些细胞。任选地,可使用肽/HLA复合体包被珠粒并且将其与柱连接。可通过FACS以及通过与复合体的结合鉴别在其表面具有免疫球蛋白的B细胞。
在特定的方面,通过首先将结合于特定B细胞受体的HLA单体/免疫原生物素化而选择B细胞,所述特异性B细胞受体见于对于所述单体特异性的B细胞的表面上。随后可使用抗生物素包被的磁性激活细胞分选(MACS)珠分离将结合在磁性柱上的B细胞。
在另一个方面,被分选的B细胞可进一步分化并且扩展成为分泌抗体的浆细胞,针对特异性进行筛选并且随后被用于产生杂交瘤或将其抗体基因克隆以用于重组形式的表达。
制备杂交瘤的方法
根据另一方面,提供了用于制备杂交瘤的方法,所述方法包括以下步骤:形成包含单体MHC-肽复合体的免疫原;将有效量的所述免疫原施用于宿主以引起针对所述MHC-肽复合体中的肽的免疫应答;选择对于所述MHC-肽复合体中的肽特异性的B细胞;通过将所述B细胞与永生化细胞融合而形成杂交瘤;以及分离所述杂交瘤。
根据进一步的方面,本发明提供了分离的杂交瘤细胞系,其在2009年9月17日以ATCC保藏号PTA-10351保藏于ATCC(10801 UniversityBlvd.,Manassas,VA 20110)。
本文所使用的术语“杂交瘤”指的是经工程化以产生大量所需抗体的细胞。例如,为制备至少一种杂交瘤,从已受相关抗原激发的动物的脾脏移取B细胞并且将其与至少一种永生化细胞融合。通过使所述细胞膜更具渗透性而进行该融合。所述融合的杂交细胞(称为杂交瘤)将迅速并且无限地增殖,并且将产生至少一种抗体。根据本发明的方法制备的杂交瘤细胞系的实例包括但不限于LMP1#226,其产生抗LMP-1单克隆抗体。
本文所使用的术语“永生化细胞”亦称为转化细胞,即其生长特性已被改变的细胞。这并不一定意味着这些细胞是“癌”或“肿瘤”细胞,即,在被引入实验动物体内的情况下能够形成肿瘤,尽管在某些情况下它们可以形成肿瘤。永生化细胞系包括但不限于NS1、Jurkat、HeLa、T2和通过EBV感染而在体外被永生化的多种B淋巴细胞系,包括RAJI、C1R.A2、CM304、CM392、CM800、CF801、CM803、CM936、CM960、BCL986、CF1007和CM1081等等。
本文所提供的制备杂交瘤的新方法允许TCR样抗HLA-肽特异性单克隆抗体的开发,其具有比先前可能的更高程度的可靠性。
根据本发明的方法并不包括制备由杂交瘤PTA-10167产生的HBV-抗体的方法。
特别地,杂交瘤可以是产生单克隆抗体的杂交瘤细胞。任选地,可以培养所述杂交瘤细胞并且可实施进一步的步骤,包括:分离特异地结合于目的抗原的单克隆抗体,其中所述抗原被用于免疫所述非人动物。
为制备至少一种本发明的单克隆抗体,可使用提供用于通过培养中的连续细胞系产生抗体分子的任意技术,只要在与永生化细胞融合前进行了对所述抗原特异性的B细胞的选择步骤。例如,可根据实施例4中的描述使用聚乙二醇(PEG)将B细胞与永生细胞(例如,骨髓瘤细胞)融合。
抗体分析
本发明的方法进一步包括分析目标抗体以证实其特异性并且测定这些抗体是否与其它MHC分子交叉反应的步骤。
本文所使用的术语“特异的结合”或“特异性结合”指的是所述MHC-肽复合体与其相应的抗体之间的相互作用。所述相互作用依赖于结合分子识别的蛋白质的特定结构(即,抗原或表位)的存在。为使结合具有特异性,其应仅在MHC-肽复合体而非单独肽、单独MHC或另一种MHC-肽复合体的情况下涉及所述肽的抗体结合。
一旦抗体被分选,则对其进行分析以确认它们对于一种MHC-肽复合体为特异性的并且测定它们是否对其它HLA分子表现出交叉反应性。进行这些分析的一种方法是血清筛选分析,如根据美国专利申请公开号第2004/0126829号描述的,其内容特此明确地以引用的方式并入本文。然而,用于进行质量控制的分析的其它方法属于本领域的普通技术人员的能力范围并且因此也在本发明的范围内。
本发明的抗体或抗原结合片段,变体或衍生物也可就其对MHC-肽复合体的结合亲和性进行描述或详细说明。可使用任意适合的方法通过实验测定抗体对于MHC-肽复合体的亲和性(参见,例如,Berzofsky等,“Antibody-Antigen Interactions,”In Fundamental Immunology,Paul,W.E.编著,Raven Press:New York,N.Y.(1984);Kuby,Janis Immunology,W.H.Freeman and Company:New York,N.Y.(1992);以及本文所述的方法)。在不同条件下(例如,盐浓度、pH)测量时,所测得的特定抗体-MHC-肽复合体相互作用的亲和性有所不同。因此,优选地使用抗体和MHC-肽复合体的标准化溶液及标准化缓冲液进行亲和性和其它抗原结合参数(如KD、Ka、Kd)的测量。
在一些方面,作为结合常数测量的结合亲和性介于1×108与1×1015升/摩尔之间。在进一步的方面,结合亲和性介于1×109与1×1015升/摩尔之间。在进一步的方面,结合亲和性介于1×1010与1×1015升/摩尔之间。在进一步的方面,结合亲和性介于1×1011与1×1015升/摩尔之间。在特定方面,结合亲和性高于1×108。在进一步的方面,结合亲和性高于1×109升/摩尔。在特定的优选方面,结合亲和性高于1×1010升/摩尔。在进一步的方面,结合亲和性高于1×1011升/摩尔。
功能性部分
在一个方面,所述TCR样抗体可具有与之结合的至少一个功能性部分,例如但不限于,可检测部分或治疗性部分。例如但非限制,所述可检测部分可选自荧光团、酶、放射性同位素及其组合,而所述治疗性部分可选自细胞毒性部分、毒性部分、细胞因子部分、双特异性抗体部分及其组合。
本领域中已知多种方法用于偶联或者融合(接合)不同类型的分子,包括肽。可根据本发明使用这些方法以将抗体接合于另一种部分,如治疗習部分或可识别部分,由此提供了免疫毒素或免疫标记物。
可使用本领域的技术人员所知的任意偶联方法偶联或融合两个独立的肽。可以使用3-(2-吡啶基二硫基)丙酸N-羟基琥珀酰亚胺酯(亦称为N-琥珀酰亚胺3-(2-吡啶基二硫)丙酸酯)(“SDPD”)、戊二醛偶联方法或碳二亚胺偶联方法将肽偶联于目标抗体。
可使用本领域的技术人员所知的任意SPDP偶联方法。例如,在一个说明性方面,可使用Cumber等,Methods of Enzymology,112:207-224(1985)的偶联方法,其全文以引用的方式并入本文。
可通过本领域的技术人员所知的方法使用戊二醛完成肽(例如,可识别或治疗性部分)与抗体的偶联。例如,在一个说明性方面,可使用G.T.Hermanson,“Antibody Modification and Conjugation,in BioconjugateTechniques”,Academic Press,San Diego(1996)的偶联方法,其全文以引用的方式并入本文。
可通过本领域的技术人员所知的方法使用脱水剂如碳二亚胺完成肽与抗体的偶联。最为优选的情况下,碳二亚胺在4-二甲氨基吡啶存在的情况下使用。正如本领域的技术人员所熟知的,碳二亚胺偶联可被用于在肽的羧基基团与抗体的羟基基团之间形成共价键(导致酯键的形成),或与抗体的氨基基团之间形成共价键(导致酰胺键的形成),或与抗体的巯基基团之间形成共价键(导致硫酯键的形成)。
类似地,碳二亚胺偶联可被用于在抗体的碳基团和肽的羟基、氨基或巯基基团之间形成类似的共价键。一般地参见J.March,AdvancedOrganic Chemistry:Reaction’s,Mechanism,and Structure,第3版:349-50 &372-74(1985)。根据说明而非限制的方式,使用碳二亚胺如二环己基碳二亚胺通过共价键将肽与抗体偶联。一般地参见B.Neises等,AngewChem,Int Ed Engl,17:522(1978);A.Hassner等,Tetrahedron Lett,4475(1978);E.P.Boden等,J Org Chem,50:2394(1986)和L.J.Mathias,Synthesis,561(1979)的偶联方法。这些参考文献全文以引用的方式并入本文。
使用TCR样抗体的方法
根据特定的方面,本发明提供了在受试者体内检测EBV和/或至少一种EBV感染细胞的存在的方法,所述方法包含:将根据本发明的任意方面的至少一种抗体与获自至少一位受试者的至少一个样品接触;以及检测所述抗体与EBV和/或EBV感染细胞的结合。
特别地,所述TCR样抗体的结合确认细胞可能被EBV感染,所述样品包含至少一种EBV感染的细胞,和/或所述受试者可能为EBV阳性的。更为特别地,所述方法可以是体外检测方法。
根据进一步的方面,本发明提供了治疗至少一种EBV关联疾病的方法,所述方法包含将至少一种TCR样抗体或其片段施用于需要的受试者。
所述EBV关联疾病可以是淋巴增生性疾病、感染性单核细胞增多症、鼻咽癌、伯基特氏淋巴瘤、B细胞非霍奇金淋巴瘤、霍奇金氏病、胃腺癌、结外NK/T细胞型淋巴瘤、平滑肌肉瘤、乳腺癌,以及/或者其它。
所述TCR样抗体可被用于多种免疫学相关应用中。在一个方面,所述TCR样抗体可被用作为直接治疗剂,作为抗体或双特异性分子。在另一个方面,本发明的TCR样抗体可被用于病毒谱研究(viral profiling),从而为EBV检测和治疗提供个性化方法。本文所使用的术语“病毒谱研究”指的是使用具有各种不同特异性的TCR样抗体对细胞的筛选,以定义病毒感染细胞上的MHC-肽复合体集合。在另一个方面,本发明的TCR样抗体可被用于疫苗验证,其作为有用的工具用以确定所需的T细胞表位是否呈现于细胞上,诸如但不限于,肿瘤细胞、病毒感染细胞、寄生虫感染细胞等等。本发明的TCR样抗体也可作为研究试剂被用于了解体内和体外的抗原加工与呈递的归宿,并且这些过程可在暴露于疫苗等之后评估,等等。本发明的TCR样抗体还可作为药物转运的媒介被用于将毒性物质的有效载荷转运至病毒感染细胞或肿瘤细胞。此外,本发明的TCR样抗体可被用于代谢分型(metabolic typing),例如但不限于,用于鉴定疾病诱导的对抗原加工和呈递的修饰,以及HLA-肽呈递和对药物的敏感度。
在进一步的方面,本发明提供了介导在其表面表达至少一种特定的MHC-肽复合体的细胞裂解的方法。所述方法包括提供本文所述的TCR样抗体(其中所述TCR样抗体对于特定的MHC-肽复合体具有反应性),以及将在其表面表达至少一种特定的MHC-肽复合体的细胞与所述TCR样抗体接触,从而使所述TCR样抗体介导在其表面表达至少一种特定的MHC-肽复合体的细胞的裂解。
治疗组合物
根据本发明的进一步方面,提供了包含治疗有效量的TCR样抗体的药物组合物,所述抗体进一步包含与抗体相偶联的治疗部分。在优选的情况下,所述治疗组合物进一步包含药学可接受的载体。所述治疗部分可以是,例如,细胞毒性部分、毒性部分、细胞因子部分和双特异性抗体部分。
可以通过常规方式使用一种或多种生理可接受的载体配制用于本发明的用途的组合物,所述载体包括赋形剂和辅料,其可辅助将治疗组合物加工成为药学上可用的制剂。这些治疗组合物可以使用本身为人所知的方式进行制备,如,通过常规混合、溶解、粒化、糖衣丸制备、研粉、乳化、包封、包埋或冻干工艺的方式。适当的制剂取决于所选择的施用途径。
所述治疗组合物一般被配制成为无菌的、基本上等渗的并且完全符合美国食品药品监督管理局(U.S.Food and Drug Administration)的所有良好生产规范(Good Manufacturing Practice)(GMP)规定。通过上文描述,本领域的技术人员应想到在所述组合物和方法中的多种修改和变化。属于附属权利要求书范围内的全部这些修改均意在包括于本文内。各个提及的范围包含所有的范围组合和亚组合以及其所包含的具体数字。
当通过例如皮内、经皮肤或皮下注射以施用治疗有效量的本方法的组合物时,所述组合物优选地为无热原的肠胃外可接受的水溶液的形式。对pH、等渗性、稳定性等等进行了应尽的考虑后的这些肠胃外可接受的蛋白质或多核苷酸溶液的制备属于本领域的技术范围之内。除本发明的蛋白质或其它活性成分之外,优选的组合物还应包含等渗媒介物,如氯化钠注射液、林格氏注射液、葡萄糖注射液、葡萄糖和氯化钠注射液、乳酸盐林格氏注射液,或本领域中已知的其它媒介物。本发明的组合物还可包含稳定剂、防腐剂、缓冲剂、抗氧化剂或本领域的技术人员所知的其它添加剂。本发明的药剂可被在水溶液中配制,优选地配制于生理相容缓冲液中,如汉克氏液、林格氏液或生理盐水缓冲液。对于透粘膜施用,制剂中使用了适于待穿透屏障的渗透剂。这些渗透剂在本领域中为人所熟知。
对于口腔施用,可通过将活性化合物与本领域中所熟知的药学可接受的载体组合而容易地配制所述组合物。这些载体使本发明的化合物能够被配制成为片剂、药丸、糖衣丸、粉末、胶囊、液体、溶液、凝胶、糖浆、糊剂、悬液等等以由等治疗患者口服摄取。
用于肠胃外施用的治疗组合物包括水溶性形式的组合物的水溶液。任选地,悬浮液还可包含适当的稳定剂或提高所述组合物的溶解度以实现高度浓缩溶液的制备的试剂。或者,活性成分可为粉末形式以在使用前用适当媒介物如无菌无热原水构建。
用于多肽的治疗递送的肠用剂型一般效率较低,这是由于为使此类制剂有效,必须针对胃肠道的酶学环境而保护所述肽。此外,所述多肽必须经配制以使其易于为所述上皮细胞屏障以足以发挥治理效果的浓度吸收。可使用摄取或吸收增强剂配制本方法的多肽以提高其效力。这些增强剂包括,例如,水杨酸盐、甘胆酸盐/亚油酸盐、乙醇酸盐、抑酶肽、杆菌肽、SDS癸酸酯等等。用于治疗性递送的肽类口服制剂的另外详细讨论见于Fix,J Pharm Sci;85(12):1282-1285(1996)和Oliyai等,AnnRev Pharmacol Toxicol;32:521-544(1993),这两项参考文献的该方面以引用的方式并入本文。
在进一步的组合物中,本方法的蛋白质或其它活性成分可与其它抗病毒剂或抗肿瘤剂组合。对包含根据本发明的TCR样抗体和任意第二药剂的治疗组合物进行优化属于本领域的技术范围。本领域的技术人员应能够修改或调整这些治疗组合物以单独使用TCR样抗体或与第二疗法进行组合从而在受试者中治疗EBV相关疾病。
根据特定的方面,本发明提供了作为药物使用的本发明的TCR样抗体或其片段。
根据进一步的方面,本发明提供了TCR样抗体用于治疗至少一种EBV关联疾病的药物的制备的至少一种用途。
EBV关联疾病可以是淋巴增生疾病、感染性单核细胞增多症、鼻咽癌、伯基特氏淋巴瘤、B细胞非霍奇金淋巴瘤、霍奇金氏病、胃腺癌、结外NK/T细胞淋巴瘤、平滑肌肉瘤、乳腺癌和/或其它。
所述药物可以是包含至少一种药学可接受的赋形剂、稀释剂、载体和/或佐剂的药物组合物。考虑到EBV感染已与几种重要形式的人癌症的发生关联,包括鼻咽癌(NPC)、伯基特氏淋巴瘤(BL)、霍奇金氏淋巴瘤(HL)、胃癌、T细胞淋巴瘤、平滑肌肉瘤和乳腺癌,本发明的抗体可作为靶向递送系统被用于化疗药物、细胞因子、促炎介质(pro-inflammatory mediator)和毒素,其将根据EBV对肿瘤的感染而靶向于肿瘤。
本发明的抗体可以与结合于不同HLA类型靶向不同EBV肽的其它类似的抗体组合施用。大多数人在其感染细胞上表达来自EBV蛋白质的最多25种不同的肽/HLA组合。因此,本发明的至少1、2、5、20或25种不同抗体可同时施用,所有这些抗体均可为EBV肿瘤特异性的。因此肿瘤细胞和病毒可能没有机会适应该治疗形式。
试剂盒
本发明提供了试剂盒,其包含本发明的组合物,例如,核酸、表达盒、载体、细胞和/或抗体(如,TCR样抗体)。根据本文所述,所述试剂盒可包含教导了本发明的方法学和用途的说明性材料。
根据特定的方面,本发明提供了用于试剂盒中的TCR样抗体或其片段。
根据进一步的方面,本发明提供了用于诊断至少一种EBV相关疾病的试剂盒,所述试剂盒包含TCR样抗体。
特别地,TCR样抗体的结合证实了细胞可被EBV感染,样品包含至少一种EBV感染的细胞,和/或受试者可为EBV阳性的。更特别地,所述方法可以是体外检测方法。
核酸
根据另一方面,本发明提供了分离的核酸分子,其编码:TCR样抗体或其片段的至少一条重链,其中所述重链包含选自于SEQ ID NO:4至6,其变体、突变体或片段的氨基酸序列;和/或TCR样抗体或片段的至少一条轻链,其中所述轻链包含选自于SEQ ID NO:1至3,其变体、突变体或片段的氨基酸序列。
根据进一步的方面,本发明提供了包含编码TCR样抗体的核酸的表达载体和包含所述表达载体的宿主细胞。特别地,所述载体可包含但不限于,慢病毒载体、逆转录病毒载体、腺病毒载体、腺相关病毒(adeno-associated virus)载体和单纯疱疹病毒载体。更特别地,逆转录病毒载体可被用于构建体的体外、活体外(ex vivo)或体内递送。
重组核酸技术
被用于实施本发明的核酸,无论是RNA、siRNA、反义核酸、cDNA、基因组DNA、载体、病毒或其杂合体,均可被分离自多种来源、经遗传工程改造、扩增和/或重组表达/产生。由这些核酸产生的重组多肽可以单独地分离或克隆,并且对所需活性进行测试。可使用任意重组表达系统,包括细菌、哺乳动物、酵母、昆虫或植物细胞表达系统。
或者,可通过为人所熟知的化学合成技术体外合成这些核酸,例如在Adams,J Am Chem Soc,105:661(1983);Belousov,Nucleic AcidsRes,25:3440-3444(1997);Frenkel,Free Radic Biol Med,19:373-380(1995);Blommers,Biochemistry,33:7886-7896(1994);Narang,MethEnzymol,68:90(1979);Brown,Meth Enzymol,68:109(1979);Beaucage,Tetra Lett,22:1859(1981);美国专利第4,458,066号中描述的。
本发明提供了包含本发明序列的寡核苷酸,例如本发明的示例性序列的子序列。寡核苷酸可包含,例如,单链多聚脱氧核糖核苷酸或两条互补的多聚脱氧核糖核苷酸链,其可以通过化学方法合成。
用于核酸操作的技术,诸如,亚克隆、标记探针(例如,使用克列诺聚合酶、缺口翻译、扩增进行的随机引物标记)、测序、杂交等等,已被完善描述于科技和专利文献中,参见,例如,Sambrook和Russell编著,MOLECULAR CLONING:A LABORATORY MANUAL(第3版),第1-3卷,Cold Spring Harbor Laboratory(2001);CURRENTPROTOCOLS IN MOLECULAR BIOLOGY;Ausubel编著,John Wiley& Sons,Inc.,New York(1997);LABORATORY TECHNIQUES INBIOCHEMISTRY AND MOLECULAR BIOLOGY:HYBRIDIZATIONWITH NUCLEIC ACID PROBES,Part I.Theory and Nucleic AcidPreparation,Tijssen编著,Elsevier,N.Y.(1993)。
可通过本领域的技术人员所熟知的大量常规手段中的任一手段分析并且定量核酸、载体、衣壳、多肽等等。这些包括,例如,分析生化方法诸如NMR、分光光谱法、放射显影法、电泳、毛细管电泳、高效液相色谱(HPLC)、薄层层析(TLC)和超扩散色谱(hyperdiffusionchromatography),各种免疫学方法,例如,流体或凝胶沉淀素反应、免疫扩散、免疫电泳、放射免疫分析(RIA)、酶联免疫吸附分析(ELISA)、免疫荧光分析、Southern分析、Northern分析、点印迹分析、凝胶电泳(如,SDS-PAGE)、核酸或靶或信号扩增方法、放射标记、闪烁计数以及亲和色谱。
可通过从基因组样品进行克隆并且在需要情况下筛选和重克隆分离或扩增自,例如,基因组克隆或cDNA克隆的插入物而进行用于实施本发明的方法的核酸的获取和操作。本发明的方法中使用的核酸的来源包括基因组或cDNA文库,其包含于,例如,哺乳动物人工染色体(MAC)中,参见,例如,美国专利第5,721,118号;第6,025,155号;人类人工染色体,参见,例如,Rosenfeld,Nat Genet,15:333-335(1997);酵母人工染色体(YAC);细菌人工染色体(BAC);P1人工染色体,参见,例如,Woon,Genomics,50:306-316(1998);源于P1的载体(PAC),参见,例如,Kern,Biotechniques,23:120-124(1997);粘粒、重组病毒、噬菌体或质粒。
本发明提供了融合蛋白质和编码TCR样抗体的核酸。TCR样抗体可与赋予所需的特性(如提高的稳定性或简化的纯化)的异源肽或多肽融合,诸如N-末端辨识肽。本发明的肽和多肽还可被合成和表达成为具有一种或多种与其连接的其它结构域的融合蛋白,其用于例如产生更具免疫原性的肽、更加方便地分离重组合成的肽、鉴定和分离抗体和表达抗体的B细胞,等等。帮助检测和纯化的结构域包括,例如,使纯化得以在固定化的金属上进行的金属螯合肽,诸如多聚组氨酸链和组氨酸-色氨酸模块,使纯化得以在固定化的免疫球蛋白上进行的蛋白A结构域,以及用于FLAGS扩展/亲和纯化系统(AmgenCorp,Seattle Washington)中的结构域。在纯化结构域和包含基序的肽或多肽之间包含可切割连接物序列如因子Xa或肠激酶(Invitrogen,San Diego Calif.)以促进纯化。例如,表达载体可包含连接于六个组氨酸的表位编码核酸序列,之后是硫氧还蛋白和肠激酶切割位点(参见,例如,Williams,Biochemistry,34:1787-1797(1995);Dobeli,ProteinExpr Purif,12:404-414(1998))。所述组氨酸残基有助于检测和纯化,而所述肠激酶切割位点提供了用于从所述融合蛋白的其余部分中纯化所述表位的手段。在一个方面,编码多肽的核酸在适当的阶段与能够引导被翻译的多肽或其片段的分泌的引导序列进行组装。编码融合蛋白质的载体和融合蛋白质的应用的相关技术被完善描述于科技和专利文献,参见,例如,Kroll,DNA Cell Biol,12:441-53(1993)。
转录控制元件
作为本发明的方面,核酸可操作性地连接于启动子。启动子可以是引导核酸转录的核酸控制序列的基序或阵列。启动子可在转录起始位点附近包含必要的核酸序列,例如,在聚合酶II型启动子情况下的TATA元件。启动子还任选地包含远端增强子或抑制子元件,其可位于距离转录起始位点远达几千个碱基对。“组成型”启动子是在大多数环境和发育条件下具有活性的启动子。“诱导型”启动子是受到环境和发育调控的启动子。“组织特异性”启动子是在生物体的特定组织类型中具有活性但在同样生物体的其它组织类型中无活性的启动子。所述术语“操作性地连接”指的是核酸表达控制序列(诸如启动子或转录因子结合位点的阵列)和第二核酸序列的功能性连接,其中所述表达控制引导对应于第二序列的核酸的转录。
表达载体和克隆媒介
本发明的方面提供了包含本发明的核酸,例如编码本发明的蛋白质的序列,表达载体和克隆媒介。表达载体和克隆媒介可包含病毒颗粒、杆状病毒、噬菌体、质粒、嗜粒、粘粒、福斯质粒(fosmid)、细菌人工染色体、病毒DNA(例如,痘病毒、腺病毒、家禽痘病毒、伪狂犬病病毒和SV40衍生物)、基于P1的人工染色体、酵母质粒、酵母人工染色体,以及对于特定目标宿主(芽孢杆菌、曲霉和酵母)特异性的任意其它载体。载体可包含染色体、非染色体和合成DNA序列。大量适当的载体为本领域的技术人员所知并且可市售获得。
如果需要,可使用常规分子生物学方法将本发明的核酸克隆进入多种载体中的任意载体中;用于体外克隆被扩增的核酸的方法被描述于,例如,美国专利第5,426,039号。为有利于被扩增序列的克隆,可将限制性酶位点“构建入”PCR引物对中。
本发明提供了编码本发明的多肽和肽的表达载体的文库。这些核酸可被引入基因组或引入细胞的细胞质或细胞核中,并且通过多种常规技术表达,所述技术被完善地描述于科技和专利文献之中。参见,例如,Roberts,Nature,328:731(1987);Schneider,Protein Expr Purif,6435:10(1995);Sambrook,Tijssen或Ausubel。所述载体可分离自天然来源,获自诸如ATCC或GenBank文库这样的来源,或者通过合成或重组方法而制备。例如,本发明的核酸可在于细胞(例如,附加体表达系统)中稳定地或瞬时地表达的表达盒、载体或病毒中表达。可将选择标记引入表达盒和载体中以将可选择表型赋予转化细胞和序列。例如,选择标记可编码附加体维持和复制,从而无需整合进入宿主基因组中。
在一个方面,本发明的核酸被体内施用以原位表达本发明的肽和多肽。核酸可以作为“裸DNA”的方式施用(参见,例如,美国专利第5,580,859号)或以表达载体的形式施用,例如,以重组病毒的形式。核酸可以通过任意路径被施用,包括肿瘤外围或肿瘤内,如下文所描述的。体内施用的载体可源自病毒基因组,包括重组修饰的具套膜或无套膜的DNA和RNA病毒,其优选地选自杆状病毒科、细小病毒科、微小核糖核酸病毒科(picornoviridiae)、疱疹病毒科、痘病毒科、腺病毒科或小RNA病毒科(picornnaviridiae)。也可使用嵌合载体,其利用了其各个亲本载体性质的有利特点(参见,例如,Feng,NatureBiotechnology,15:866-870(1997))。这些病毒基因组可通过重组DNA技术修饰以包含本发明的核酸;并且可以进一步工程改造以成为复制缺陷的、条件复制的或具备复制能力的。在替代的方面,载体可源自腺病毒(例如,源自人腺病毒基因组的复制失能载体,参见,例如,美国专利第6,096,718号;第6,110,458号;第6,113,913号;第5,631,236号);腺相关病毒和逆转录病毒基因组。逆转录病毒载体可包括基于小鼠白血病病毒(MuLV)、长臂猿白血病病毒(GaLV)、猿免疫缺陷病毒(SIV)、人免疫缺陷病毒(HIV)及其组合的载体;参见,例如美国专利第6,117,681号;第6,107,478号;第5,658,775号;第5,449,614号;Buchscher,J Virol,66:2731-2739(1992);Johann,J Virol,66:1635-1640(1992)。基于腺相关病毒(AAV)的载体可被用于具有靶核酸的adioimmun细胞,例如,在核酸和肽的体外制备,以及体内和离体基因治疗程序中;参见,例如美国专利第6,110,456号;第5,474,935号;Okada,Gene Ther,3:957-964(1996)。
本文所使用的术语“表达盒”指的是能够在与序列相容的宿主内影响结构基因(即,蛋白质编码序列,例如本发明的多肽)表达的核酸序列。表达盒包含可操作地与多肽编码序列连接的至少一个启动子;并且任选地连接于其它序列,例如转录终止信号。还可使用在影响表达中必需或有用的其它因子,例如增强子。
核酸当被置于与另一核酸序列的功能性关系中时是“可操作地连接”。例如,启动子或增强子在其影响编码序列转录的情况下是被可操作地连接于所述序列的。关于转录调控序列,可操作地连接意味着被连接的DNA序列是邻近的,并且在有必要接合两个蛋白质编码区域的情况下是连续的并且处于阅读框中。对于转换序列(switchsequence),可操控地连接表明所述序列能够影响转换重组(switchrecombination)。因此,表达盒还包括质粒、表达载体、重组病毒、任意形式的重组“裸DNA”载体等等。
本文所使用的术语“载体”意指能够转运其所连接的另一种核酸的核酸分子。一种类型的载体是“质粒”,其指的是其它的DNA片段可连接进入其中的环状双链DNA环。另一种类型的载体是病毒载体,其中另外的DNA部件可被连接进入病毒基因组中。特定的载体能够在其所被引入的宿主细胞中自主复制(例如,具有细菌复制起点的细菌载体和附加体哺乳动物载体)。其它载体(例如,非附加体哺乳动物载体)可在引入宿主细胞时被整合进入宿主细胞的基因组中,并且由此与所述宿主基因组一起被复制。此外,特定的载体能够引导与其可操作地连接的基因的表达。这些载体在本文称为“重组表达载体”(或简称为“表达载体”)。一般情况下,用于重组DNA技术中的表达载体通常是质粒形式。在本说明书中,“质粒”和“载体”可被互换使用,因为质粒是载体的最为常用的形式。但是,本发明意在包括发挥等同功能的表达载体的其它形式,诸如病毒载体(例如,复制缺陷型逆转录病毒、腺病毒和腺相关病毒)。
宿主细胞和转化细胞
本发明还提供了包含本发明的核酸序列(如编码本发明的多肽的序列)或本发明的载体的转化细胞。所述宿主细胞可以是本领域的技术人员所熟悉的任意宿主细胞,包括原核细胞、真核细胞,诸如细菌细胞、真菌细胞、酵母细胞、哺乳动物细胞、昆虫细胞或植物细胞。示例性的细菌细胞包括大肠杆菌、链霉菌、枯草杆菌、鼠伤寒沙门氏菌和属于假单胞菌属、链霉菌属以及葡萄球菌属中的各个菌种。示例性的昆虫细胞包括果蝇S2和夜蛾Sf9。示例性的动物细胞包括CHO、COS或Bowes黑色素瘤或任意小鼠或人细胞系。适当宿主的选择属于本领域的技术人员的能力范围。
所述载体可通过使用多种技术中的任意技术被引入宿主细胞中,包括转化、转染、转导、病毒感染、基因枪或Ti介导的基因转移。特定的方法包括磷酸钙转染、DEAE-葡聚糖介导的转染、脂质体转染(lipofection)或电穿孔。
经工程改造的宿主细胞可在经改良而适用于激活启动子、选择转化体或扩增本发明的基因的常规营养培养基中培养。在对适当的宿主株系转化并且所述宿主株系生长至适当的细胞密度后,可通过适当的手段(例如,温度改变或化学诱导)诱导被选择的启动子并且所述细胞可培养额外的时间以使其产生所需的多肽或其片段。
细胞可通过离心收获,通过物理或化学手段破坏,并且保留所产生的粗提取物以用于进一步纯化。用于蛋白质表达的微生物细胞可通过任意常规方法破坏,包括冻融循环、超声、机械破碎或细胞裂解剂的使用。这些方法是本领域的技术人员所熟知的。可通过包括硫酸铵或乙醇沉淀、酸提取、阴离子或阳离子交换色谱、磷酸纤维素色谱、疏水相互作用色谱、亲和层析、羟磷灰石色谱和凝集素色谱在内的方法从重组细胞培养物中回收和纯化所表达的多肽或片段。在必要的情况下可在完成所述多肽的配置时使用蛋白质重折叠步骤。如果需要,高效液相色谱(HPLC)可被用于最终的纯化步骤。
还可使用各种哺乳动物细胞培养系统以表达重组蛋白质。哺乳动物表达系统的实例包括猴肾成纤维细胞的COS-7细胞系以及能够由相容性载体表达蛋白质的其它细胞系,诸如C127、3T3、CHO、HeLa和BHK细胞系。
可通过常规方式使用宿主细胞中的构建体以产生由所述重组序列所编码的基因产物。根据重组生产程序中所使用的宿主,包含所述载体的宿主细胞所产生的多肽可以是糖基化的或可以是非糖基化的。本发明的多肽可以包含或可不包含起始甲硫氨酸氨基酸残基。
还可使用无细胞翻译系统制备本发明的多肽。无细胞翻译系统可使用通过DNA构建体转录的mRNA,所述DNA构建体包含可操作地与编码所述多肽或其片段的核酸相连接的启动子。在一些方面,DNA构建体可在进行体外转录反应前被线性化。被转录的mRNA随后与适当的无细胞翻译提取物如兔网状细胞提取物进行孵育以产生所需的多肽或其片段。
表达载体可包含一种或多种可选择标记基因以提供用于选择转化宿主细胞的表型性状,例如用于真核细胞培养的二氢叶酸还原酶或新霉素抗性,或者例如大肠杆菌中的四环素或氨苄青霉素抗性。
核酸的扩增
在实施本发明中,编码本发明的多肽的核酸或经修饰的核酸可通过诸如扩增的方式被复制。本发明提供了用于扩增编码本发明多肽的核酸的扩增引物序列对,例如,能够扩增包含flgK蛋白、rpoN蛋白或fliA蛋白或其子序列的核酸序列的引物对。
扩增方法包括,例如,聚合酶链反应PCR(PCR PROTOCOLS,AGUIDE TO METHODS AND APPLICATIONS,Innis编著,AcademicPress,N.Y.(1990)和PCR STRATEGIES,Innis编著,Academic Press,Inc.,N.Y.),连接酶链反应(LCR)(1995)(参见,例如,Wu,Genomics,4:560(1989);Landegren,Science,241:1077(1988);Barringer,Gene,89:117(1990));转录扩增(参见,例如,Kwoh,Proc Natl Acad Sci USA,86:1173(1989));以及自持的序列复制(参见,例如,Guatelli,Proc NatlAcad Sci USA,87:1874(1990));Qβ复制酶扩增(参见,例如,Smith,JClin Microbiol,35:1477-1491(1997)),自动Qβ复制酶扩增分析(参见,例如,Burg,Mol Cell Probes,10:257-271(1996))以及其它RNA聚合酶介导的技术(例如,NASBA,Cangene,Mississauga,Ontario);还参见Berger,Methods Enzymol,152:307-316(1987);Sambrook;Ausubel;美国专利第4,683,195号和第4,683,202号;Sooknanan,Biotechnology,13:563-564(1995)。
核酸的杂交
本发明提供了被分离或重组的核酸,其在严格条件下与本发明的示例性序列杂交。在替代的方面,所述严格条件是高严格性条件、中度严格性条件或低严格性条件,其根据本领域所知或本文所述的。这些方法可被用于分离本发明的核酸。
在替代的方面,根据其在严格性条件下杂交的能力所定义的本发明的核酸可介于约5个残基与本发明核酸的全长之间;例如,它们可为至少5、10、15、20、25、30、35、40、50、55、60、65、70、75、80、90、100、150、200、250、300、350、400、450、500、550、600、650、700、750、800或更多残基的长度,或者基因或编码序列如cDNA的全长。短于全长的核酸也被包括在内。这些核酸可被用作,例如,杂交探针、标记探针、PCR寡核苷酸探针、iRNA、反义序列或编码抗体结合肽(表位)的抗体、基序、活性位点等等的序列。
本文所使用的术语“选择性地(或特异性地)杂交”指的是分子与特定核酸序列(当其存在于复杂混合物(例如,总细胞或文库DNA或RNA)中时)在严格杂交条件下的结合、双链体形成或杂交,其中所述特定核酸序列以至少约十倍于背景而被检测。在一个方面,核酸可根据其在严格条件下与另外确定属于本发明的范围的核酸(例如本文所述的示例性序列)杂交的能力而被确定处于本发明的范围之内。
本文所使用的术语“严格杂交条件”指的是探针将与其靶序列(一般处于核酸的复杂混合物中)杂交但不与显著量的其它序列杂交的条件(阳性信号(例如,本发明的核酸的鉴定)约10倍的背景杂交)。严格条件是序列依赖性的并且在不同情况下应是不同的。较长序列在较高温度下特异性地杂交。对核酸杂交的详尽指导见于,例如,Sambrook和Russell编著,MOLECULAR CLONING:ALABORATORY MANUAL(第3版),第1-3卷,Cold Spring HarborLaboratory(2001);CURRENT PROTOCOLS IN MOLECULARBIOLOGY;Ausubel编著,John Wiley & Sons,Inc.,New York(1997);LABORATORY TECHNIQUES IN BIOCHEMISTRY ANDMOLECULAR BIOLOGY:HYBRIDIZATION WITH NUCLEIC ACIDPROBES,Part I.Theory and Nucleic Acid Preparation,Tijssen编著,Elsevier,N.Y.(1993)。
一般地,严格条件经选择为比特定序列在限定的离子强度pH下的热变性温度I低约5-10℃。Tm(在限定的离子强度、pH和核酸浓度下)是与靶序列互补的50%探针在平衡时与该靶序列杂交的温度(如果所述靶序列过量存在,在Tm下,50%的探针在平衡时被占据)。严格条件选择其中盐浓度在pH 7.0至8.3时低于约1.0M钠离子,一般约为0.01至1.0M钠离子浓度(或其它盐类)并且温度对于短探针(例如,10至50个核苷酸)至少为约30℃并对于长探针(例如,超过50个核苷酸)至少为约60℃。严格条件还可通过添加稳定剂而获得,如根据Sambrook(上文引及)中所述的甲酰胺。对于高严格性杂交,阳性信号至少2倍于背景,优选地十倍于背景杂交。示例性的高严格性或严格杂交条件包含:50%甲酰胺、5×SSC和1%SDS于42℃下孵育或者5×SSC和1%SDS于65℃下孵育,使用0.2×SSC和0.1%SDS在65℃下洗涤。对于选择性或特异性杂交,阳性信号(例如,本发明的核酸的鉴别)约10倍于背景杂交。被用于鉴定本发明范围内核酸的严格杂交条件包括,例如,在42℃下包含50%甲酰胺、5×SSC和1%SDS的缓冲液中杂交,或在65℃下包含5×SSC和1%SDS的缓冲液中杂交,两者均以0.2×SSC和0.1%SDS在65℃下洗涤。在本发明中,可以在标准的Southern印迹中使用本文公开的核酸序列在严格条件下鉴别包含本发明的核酸的基因组DNA或cDNA。用于这些杂交的另外的严格条件(用以鉴定本发明范围内的核酸)是包含处于37℃下40%甲酰胺、1M NaCl、1%SDS的缓冲液中的杂交的条件。
但是,杂交形式的选择并非关键——洗涤条件的严格性给出了确定核酸是否属于本发明范围内的条件。用于鉴定本发明范围内的核酸的洗涤条件包括,例如,在pH 7下约0.02摩尔的盐浓度和至少约50℃或约55℃至约60℃的温度;或者,在72℃下约0.15M的盐浓度中约15分钟;或者,在至少约50℃或约55℃至约60℃的温度下约0.2×SSC的盐浓度约15至约20分钟;或者,在室温下使用包含0.1%SDS的具有约2×SSC盐浓度的溶液对杂交复合物洗涤两次15分钟,并随后在68℃下以包含0.1%SDS的0.1×SSC洗涤两次15分钟;或者等同的条件。SSC缓冲液和等同条件的描述参见Sambrook、Tijssen和Ausubel。
序列同一性程度的测定
对于序列比较,通常一种序列作为测试序列与之进行比较的参比序列发挥作用。当使用序列比较算法时,将测试和参比序列输入计算机中,在必需情况下指定子序列座标,并且指定序列算法程序参数。可使用默认程序参数或指定替代的参数。序列比较算法随后根据程序参数计算测试序列相对于参比序列的百分序列同一性。对于核酸和蛋白质的序列比较,使用了BLAST和BLAST 2.2.2或FASTA第3.0t78版算法和下文讨论的默认参数。
本文所使用的术语“比较窗”包括对选自20至600,通常约50至约200,更为通常约100至150的邻接位置数目中任一数目的片段的指代,其中一个序列可以与具有相同数目邻接位置的参比序列在两个序列被最优地比对后进行比较。用于比较的序列比对方法在本领域中是为人熟知的。用于比较的最优序列比对的实施可通过,例如,Smith& Waterman,Adv Appl Math,2:482(1981)的局部同源性算法(localhomology algorithm)、Needleman & Wunsch,J Mol Biol,48:443(1970)的同源性比对算法、Pearson & Lipman,Proc Natl Acad Sci USA,85:2444(1988)的相似性检索法、这些算法的计算机化实施(FASTDB(Intelligenetics)、BLAST(National Center for Biomedical Information)、GAP、BESTFIT、FASTA和Wisconsin Genetics Software Package,Genetics Computer Group,575 Science Dr.,Madison,WI的TFASTA)或人工比对和目测检定(参见,例如Ausubel等,Current Protocols inMolecular Biology,(1999附录))。
适用于测定百分序列同一性和序列相似性的算法的优选实例是FASTA算法,其被描述于Pearson & Lipman,Proc Natl Acad Sci USA,85:2444(1988)。亦可参见Pearson,Methods Enzymol,266:227-258(1996)。用于对DNA序列的FASTA比对以计算百分同一性的优选参数被优化,BL50 Matrix 15:-5,k-tuple=2;连接罚分(joining penalty)=40,优化=28;空位罚分-12,空位长度罚分=-2;并且宽度=16。
适用于测定百分序列同一性和序列相似性的算法的另一个优选实例是BLAST和BLAST 2.0算法,其被分别描述于Altschul等,NucAcids Res,25:3389-3402(1977);和Altschul等,J Mol Biol,215:403-410(1990)中。以本文所述的参数使用BLAST和BLAST 2.0算法测定本发明的核酸和蛋白质的百分序列同一性。进行BLAST分析的软件可公开获自美国国家生物技术信息中心(http://www.ncbi.nlm.nih.gov/)。该算法包括首先通过在查询序列中鉴定短字长W而确认高得分序列对(HSP),其与数据库序列中的相同长度字段比对时匹配或满足某些取正值阈得分T(positive-valued threshold score T)。T指的是相邻字段得分阈值(Altschul等,同上)。这些初始相邻的字段命中作为种子用于初始检索以寻找包含它们的较长HSP。字段命中以两方向沿各个序列延伸,只要累积比对得分可提高。对于核苷酸序列,使用参数M(一对匹配残基的奖励得分;问总是>0)和N(错配残基的罚分;总是<0)计算累积得分。对于氨基酸序列,使用评分矩阵计算累积得分。字段命中在各方向上的延伸在以下情况时停止:累积比对得分从其最高获得值下降了数量X;一个或多个负评分残基比对的累积而使所述累积得分降至零或更低;或达到了任一序列中的末端。BLAST算法参数W、T和X决定了比对的灵敏度和速度。BLASTN程序(对于核苷酸序列)使用字段长度(W)11、期望值(E)10、M=5、N=-4以及双链比较作为默认值。对于氨基酸序列,BLASTP程序使用字段长度3和期望值(E)10,以及BLOSUM62评分矩阵(参见Henikoff& Henikoff,Proc Natl Acad Sci USA,89:10915(1989))的比对(B)50、期望值(E)10、M=5、N=-4以及双链比较作为默认值。
BLAST算法对还进行两序列之间相似性的统计学分析(参见,例如Karlin & Altschul,Proc Natl Acad Sci USA,90:5873-5787(1993))。BLAST算法提供的一种相似性测量是最小概率总和(P(N)),其提供了两核苷酸或氨基酸序列之间偶然发生匹配的概率的指示。例如,如果在测试核酸与参比核酸比较中最小概率总和低于约0.2,更优选地低于约0.01,并且最优选地低于约0.001,则该核酸被认为与参比序列类似。
有用的算法的另一个实例是PILEUP。PILEUP从相关序列的组使用进行性成对比对创建了多序列比对以显示相关性和百分序列同一性。它还绘出了显示用于创建比对的聚类相关性(clusteringrelationship)的树或树状图(dendogram)。PILEUP使用了Feng &Doolittle,J Mol Evol,35:351-360(1987)的进行性比对方法的简化。所使用的方法类似于Higgins & Sharp,CABIOS,5:151-153(1989)所描述的方法。该程序可比对高达300个序列,各序列最大长度为5,000个核苷酸或氨基酸。多重比对方法起始于两个最为相似序列的配对比对,其产生了两比对序列的簇。该簇随后与仅最相关的序列或比对序列的簇进行比对。通过两个单独序列的配对比对的简单延伸而比对两个序列簇。通过一系列的进行性、配对比对而获得最终的比对。通过指定特定序列及其氨基酸或核苷酸对于序列比较区域的座标并且通过指定程序参数而运行该程序。通过使用PILEUP,参比序列与其它测试序列比较以使用以下参数测定百分序列同一性关系:默认空位权重(3.00)、默认空位长度权重(0.10)以及加权的末端空位。PILEUP可获自GCG序列分析软件包,如7.0版(Devereaux等,Nuc Acids Res,12:387-395(1984))。
适用于多重DNA和氨基酸序列比对算法的另一个优选的实例是CLUSTALW程序(Thompson等,Nucl Acids Res,22:4673-4680(1994))。ClustalW在序列群体之间进行多重配对比较并将它们组合成为基于同源性的多重比对。空位开口和空位延伸罚分分别为10和0.05。对于氨基酸比对,BLOSUM算法可被用作为蛋白质权重(weight)矩阵(Henikoff & Henikoff,Proc Natl Acad Sci USA,89:10915-10919(1992))。
本文所使用的术语“序列同一性”指的是氨基酸或核苷酸序列间的相似性度量,并且可以使用本领域中已知的方法测量,诸如下文所述的方法。
本文在两个或更多个核酸或多肽序列的上下文中所使用的术语“一致”或百分“同一性”指的是,当在比较窗或指定的区域中如使用以下的序列比较算法之一或通过人工比对及目测检定测量而进行最大相关度的比较和比对时,相同或者具有特定百分比的相同氨基酸残基或核苷酸(即,在指定区域中的60%同一性,优选地65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%或更高的同一性)的两个或更多个序列或子序列。
本文在两个或更多个核酸或多肽的上下文中所使用的术语“基本上一致”指的是,当使用以下的序列比较算法之一或通过目测检定测量而进行最大相关度的比较和比对时,至少具有至少60%,通常至少70%,优选地至少80%,最为优选地至少90%或至少95%的核苷酸或氨基酸残基同一性的两个或更多个序列或子序列。优选的情况下,基本同一性存在于至少长约50个碱基或残基的序列的区域,更为优选地至少约100个碱基或残基的区域,并且最为优选的情况下所述序列在至少150个碱基或残基上是基本上同一的。在最为优选的方面,所述序列在编码区域的整个长度上是基本上一致的。
本文在两个或更多个核酸或多肽序列的上下文中所使用的术语“同源性”或“同一性”指的是,当在比较窗或指定的区域中使用以下多种序列比较算法或通过人工比对及目测检定测量而进行最大相关度的比较和比对时,相同或者具有特定百分比的相同氨基酸残基或核苷酸的两个或更多个序列或子序列。对于序列比较,一个序列作为参比发挥作用,测试序列与之进行比较。当使用序列比较算法时,将测试和参比序列输入计算机,在必要情况下指定子序列座标,并且指定算法程序参数。可使用默认程序参数,或指定替代的参数。序列比较算法随后根据程序参数计算测试序列相对于参比序列的百分序列同一性。
本文所使用的“比较窗”包括指众多邻接残基中任意一个的片段。例如,在本发明的替代性方面,将介于本发明的示例性多肽或核酸序列的20个连续残基到全长之间的连续残基与具有相同数目邻接位置的参比序列在所述两个序列被最优地比对之后进行比较。
用于实施本发明的特定方面的下列实施例仅仅用于说明的目的而被提供,并且并非意在以任何方式对本发明的范围进行限制。
示例性方面
实施例1
抗原/单体的制备
靶定的EBV抗原是序列YLLEMLWRL(SEQ ID NO:7)的潜伏膜蛋白-1(LMP-1)。所制备的单体经设计、表达且是FPLC纯化的重组的、无细胞膜的、完全折叠的异三聚体复合体,其为至少一个HLA-A201重链和轻链加上SEQ ID NO:7的抗原性肽。
人I类主要组织相容性复合体(MHC)HLA-A201的重链(HC)和轻链(LC)(B2微球蛋白)作为重组蛋白质在BL21大肠杆菌(Invitrogen,Singapore)中表达。所述重链和轻链作为包涵体被分离并且溶解于8M脲中。图2(A)示出了SDS-PAGE的结果,其中分析了HC和LC包涵体的蛋白质含量。
来自EBV的LMP-1的SEQ ID NO:7的抗原性肽随后经选择并且与HLA重链和轻链重折叠以在体外形成HLA-LMP-1肽单体。使用阴离子交换色谱纯化所述单体。图2(B)示出了(i)快速蛋白质液相色谱(FPLC)和(ii)对纯化的折叠单体的SDS-PAGE分析的结果。处于19分钟的峰A(级分A)仅包含轻链(β2m),而处于36-37分钟的峰B(级分B)同时包含重链(35kD)和轻链(12kD)。
使用以非变性的原始凝胶进行的凝胶印迹证实来自上述FPLC结果的级分B包含完全折叠的HLA-LMP-1肽单体,其中收集自峰B的级分1和2被汇合并分析。使用抗HLA构象特异性的单克隆抗体W6/32(BD-Pharmingen,Singapore)对所述凝胶进行免疫印迹分析。图2(C)中这些结果证实了所述纯化的单体被正确地折叠。
HLA-LMP-1肽单体随后经过四聚化并且针对其结合LMP-1特异性CD8+T细胞的能力进行了测试。图2(D)显示了结合于来自EBV阳性供体(左图)的CD8+T细胞的四聚体和对照四聚体(右图)。这证实了所述HLA-LMP-1肽单体在其被用于免疫小鼠之前已被正确地折叠。
实施例2
使用HLA-LMP-1肽单体对小鼠进行免疫
来自实施例1的HLA-LMP-1肽单体作为抗原用于在免疫的Balb/C小鼠中刺激抗体响应。使用100μl弗氏完全佐剂(Sigma-Aldrich,Singapore)中的25μg纯化的HLA-肽单体腹腔内免疫雌性Balb/C小鼠。此后在第21和35天使用不完全弗氏佐剂(Sigma-Aldrich,Singapore)中的25μg相同单体经腹腔内强化免疫小鼠。在第42天使用无菌盐水中的25μg相同单体通过尾静脉进行最终的静脉内强化。随后在第45天通过CO2窒息无痛致死小鼠并且通过手术去除其脾脏。
实施例3
对于HLA-LMP-1复合体内的LMP-1特异性的B细胞的选择
在第45天,通过以70μm的无菌细胞滤器对所述小鼠脾脏的轻柔匀浆制备脾细胞并在20ml磷酸缓冲盐水溶液(PBS)(InvitrogenSingapore)中洗涤2次。通过在4℃下以300G离心7分钟将脾细胞沉淀于50ml聚苯乙烯锥形管内。具有所需特异性的B细胞被如下纯化:在4℃下50ml聚苯乙烯锥形管内将脾细胞与500μl无菌PBS中的20μg生物素化的HLA-LMP-1肽单体孵育1小时。通过在20ml无菌PBS中洗涤所述脾细胞除去未结合的单体。所述生物素化单体与见于对于所述单体特异性的B细胞表面上并且与所述B细胞分泌的抗体具有相同特异性的特定B细胞受体相结合。抗生物素偶联的免疫磁性珠(Miltenyi-Biotec,Singapore)在20μl珠悬浮液每1×107个脾细胞的浓度下被用于通过结合于所述B细胞表面上的生物素化单体而正向选择被结合的B细胞。通过在5ml无菌PBS中洗涤所述脾细胞两次以除去未结合的珠。随后通过免疫磁性选择(图3)将B细胞富集于磁性柱上(Miltenyi-Biotec,Singapore)。通过在3ml无菌PBS中清洗该柱四次以除去非特异性的细胞。
与标准的杂交瘤方法相比,在骨髓瘤融合前使用连接于免疫磁性珠粒的生物素化形式的单体对来自免疫小鼠的抗原特异性B细胞进行预纯化很大程度上改善了具有正确特异性的杂交瘤的百分比(图5)。
实施例4
选择的B细胞与永生化细胞的融合
使用聚乙二醇(PEG)将来自实施例3的选择的B细胞融合于NS1骨髓瘤细胞。将骨髓瘤细胞吸入具有处于次黄嘌呤氨基蝶呤胸苷(HAT)培养基(Invitrogen,Singapore)中的腹腔巨噬细胞饲养层的96孔微滴度平板中。从第17天至第28天对阳性杂交瘤集落进行评分。通过流式细胞仪(即,荧光激活的细胞分选(FACS))在HLA-A201/肽阳性细胞系上筛选来自杂交瘤集落的上清液。使用HLA-A201/肽阳性细胞系进行的筛选要求高于ELISA筛选方法的特异性并且由此能够实现仅对产生高度特异性抗体的那些杂交瘤的选择。
根据上述实施例所产生的单克隆抗体是独特的免疫靶向试剂,其能够实现在潜伏期和肿瘤发生过程中对EBV-LMP-1抗原加工/呈递的全面研究和对表达LMP-1的EBV相关肿瘤细胞的原位靶定。
实施例5
产生HLA-A201/LMP-1特异性抗体的单克隆杂交瘤的选择
使用流式细胞仪比较了多个杂交瘤细胞系上清液中的抗体对表达HLA-A201的人B细胞系(C1R.A2)的结合亲和性(图4,灰色柱状图),所述B细胞系用LMP-1肽(SEQ ID NO:7)或来自甲型流感病毒的HLA-A201限制性肽(SEQ ID NO:8)(图4,黑色柱状图)激发。使用该方法鉴定和选择了对HLA-A201上的LMP-1肽具有明显特异性的杂交瘤上清液(图4)。图4示出了B细胞杂交瘤克隆LMP1#226的染色模式,其产生具有HLA-A201/LMP-1特异性的TCR样单克隆抗体(灰色柱状图)。
根据图6中所示,对克隆LMP1#226的抗HLA-A201/LMP-1单克隆抗体的免疫球蛋白同种型测试与具有类似特异性的24种其它杂交瘤克隆所观测的测试结果一致。这些结果表明所述克隆LMP1#226包含小鼠IgG1重链和κ轻链。
使用共聚焦显微方法确定克隆LMP1#226是否能检测受到EBV天然感染的人B淋巴细胞系。所需的功能是在人细胞被EBV感染期间检测天然HLA-A201/LMP-1肽单体的能力。在以多克隆抗I类HLA抗体和来自LMP1#226的抗体进行标记并以共聚焦显微方法分析之前,使用EBV对HLA-A2阴性B细胞系(即,2E和RAJI)、HLA-A201B细胞系(即,CF986)和HLA-A203B细胞系(即,CF986)进行了24小时的超感染(super-infect)。HLA-A201B细胞系的EBV感染导致了来自于克隆LMP1#226的单克隆抗体的结合并且所产生的染色模式与多克隆抗HLA抗体共定位。在类似条件下处理的RAJI或HLA-A203阳性B细胞系中未检测到显著的结合。因此,其表明,与呈HLA-201阴性的EBV阴性感染对照细胞系相比,被高浓度EBV在体外超感染的HLA-A201阳性人B细胞可检测到显著水平的抗体结合(图8)。
分析了来自克隆LMP1#226的抗体在检测表达高加索人种形式的HLA-A2(HLA-A201)的人细胞系中的HLA-LMP-1肽单体相对于HLA-A2、HLA-A203、HLA-A206和HLA-A207的亚洲人种变体的能力。图9A中示出了HLA-A2的不同变体所表达的氨基酸序列变化以及它们在高加索和亚洲人群中的频率。图9B中通过流式细胞方法显示了来自克隆LMP1#226的抗体识别这些复合体的能力。细胞系CF801和CM803(HLA-A201)与细胞系CM304和CF1007(分别为HLA-A206和HLA-A207)一同显示了良好的结合水平。细胞系CM392和CM960(HLA-A203)并未表现出任何结合,这提示这些HLA-A2多态性导致了不同的表位特异性。
实施例6
潜伏感染的B细胞中的LMP-1检测
在受到潜伏感染的人B细胞中检测到了LMP-1表达。EBV的潜伏感染通常与肿瘤细胞相关联。在这些情况下,EBV基因表达被限制于包括LMP-1的小的基因亚群。使用市售的抗LMP-1抗体(Acc Chem& Sci Co,USA)针对LMP-1的存在筛选1×106个EBV转化的B细胞(图10(A)的顶图)。针对LMP-1表达而研究了已在培养物中维持最长达10年的四个人潜伏EBV感染B细胞系。这四个细胞系中,显示出50%的LMP-1表达,即所述4个细胞系中的2个(图10(A))。对人HLA(HLA-HC)特异性的单克隆抗体被用作为上样对照。
进行了潜伏EBV感染的B细胞系表面上HLA-LMP-1肽单体的基于流式细胞术的检测,其中使用0.5μg的抗HLA-A201/LMP-1抗体在40℃下对所述EBV永生化人细胞系染色20分钟。在与0.5μg山羊抗小鼠IgG-Alexa-Fluor 488(Jackson Labs,USA)在4℃下孵育20分钟之前,细胞在冰冷的磷酸缓冲盐中洗涤两次。被染色的细胞在冰冷的磷酸缓冲盐中洗涤两次,使用500μl 1%的多聚甲醛进行固定并且在Becton-Dickinson FACs Calibur流式细胞仪上进行分析。图10(B)中示出的结果显示,表达LMP-1的潜伏感染的人B细胞系在使用来自克隆LMP 1#226的抗体进行的表面染色中显示出小但是显著的变动,这提示该单克隆抗体可被用于检测潜伏水平的LMP-1,诸如见于EBV相关肿瘤细胞中的那些。
实施例7
评估TCR样抗体与TCR之间的重叠特异性
本实施例描述了对来自克隆LMP1#226的TCR样抗体与细胞毒性T细胞所使用的TCR之间针对结合于HLA-A201的LMP-1肽的重叠特异性的表征。从健康人类中产生了对于结合于HLA-A201(具有SEQID NO:7)的LMP-1肽特异性的人类CD8+细胞毒性T细胞系。根据MacAry等,Immunity,20:95-106(2004)中的描述将该细胞系用于51Cr释放分析以分析对表达HLA-A201上的LMP-1肽的细胞靶标的杀伤。简而言之,使用1mCi的51Cr(铬酸钠)(GE-Healthcare,Singapore)对靶细胞标记1小时,并且随后在本分析中被用作为靶标之前将其在RPMI-1640中洗涤两次。使用5mM的LMP-1肽(SEQ ID NO:7)在37℃下冲击靶细胞20分钟。对照并未受到抗原性肽的冲击。当使用来自克隆LMP1#226的抗体预孵育靶细胞时,根据培养物上清液中提高的51Cr水平所显示(TopCount,Beckman Coulter,Singapore),所述CD8+T细胞的细胞毒性杀伤水平被降低。TCR的结合降低暗示了在所述T细胞所识别的HLA-肽复合体与来自克隆LMP1#226的抗体的重叠(图11)。
实施例8
测定结合亲和性常数
使用下列公式测定了克隆LMP1#226的亲和结合常数(Kaff)。
K off = ( n - 1 ) 2 ( n [ mAb ′ ] t - [ mAb ] t )
其中:
n = [ mAg ] t [ mA g ′ ] t
[mAb]是游离抗原位点的浓度,并且[mAg]是游离单克隆抗体结合位点的浓度,如在两个不同的抗原浓度下测定的(即,[mAg]t和[mAg’]t)(Beatty等,J Imm Meth,100:173-179(1987))。
图7示出了TCR样单克隆抗体(i)LMP1#226和(ii)BB7.2(抗HLA-A2)在上升的抗原浓度下的实验剂量反应曲线。抗原浓度介于7.5与100ng/ml之间。使用四参数对数逻辑拟合表1和2中示出的数据点。对于全部表达的数据点,离差平方和不高于0.393。据显示克隆LMP1#226对于HLA-A201/LMP-1单体具有高结合亲和性(Kaff=2.16×1013)。
Figure BPA00001578009300533
Figure BPA00001578009300541
表1:LMP1#226的Kaff
Figure BPA00001578009300542
表2:BB7.2(泛抗HLA-A2抗体)的Kaff值。BB7.2是可市售获得的抗HLA-A2抗体。
据显示在名为抗体依赖细胞的细胞毒作用(ADCC)的过程中,来自克隆LMP1#226的抗体能够诱导NK细胞介导的对EBV感染的转化的人B细胞的杀伤。以51Cr标记的CIR.A2细胞作为分析靶用于鼠脾脏NK细胞效应器(根据它们的NK1.1的表达)。源自LMP-1的肽被滴定至CIR.A2靶细胞上,未经冲击的细胞被用作为阴性对照。6小时之后,根据被释放进入培养物上清中的51Cr量测定被杀伤的人靶细胞的数量。结果被表示为LMP-1肽冲击靶相对于对照的百分特异性裂解(三组重复孔的平均值+/-SEM)。与对照相比,源自克隆LMP 1#226的抗体诱导了显著水平的NK细胞介导的对以LMP-1肽冲击的人靶细胞的杀伤。
本说明书中所提及的所有出版物和专利申请的全文均出于全部目的以引用的形式并入本文,其程度正如各出版物或专利申请出于全部目的被具体地并且各自地表明被并入一样。
尽管出于明确了解的目的已经通过说明和实施例以一定的细节描述了前述发明,根据本发明的指导对于本领域的技术人员而言很明显可对其进行特定的变化和修改而不背离附属权利要求书的精神或范围。
Figure IPA00001578008700011
Figure IPA00001578008700031
Figure IPA00001578008700041

Claims (24)

1.一种制备T细胞受体样抗体的方法,所述方法包括以下步骤:
形成包含单体MHC-肽复合体的免疫原;
将有效量的所述免疫原施用于宿主以引起针对所述MHC-肽复合体中的肽的免疫应答;
选择对于所述MHC-肽复合体中的肽特异性的B细胞;
通过将所述B细胞与永生化细胞融合而形成杂交瘤;以及
分离由所述杂交瘤产生的抗体。
2.根据权利要求1所述的方法,其中所述选择B细胞的步骤进一步包括以下步骤:
将对于所述MHC-肽复合体中的肽特异性的B细胞与生物素化的MHC-肽复合体一起孵育,其中所述MHC-肽复合体能够结合所述B细胞;以及
将所述生物素化的MHC-肽复合体与抗生物素偶联珠结合。
3.根据权利要求1所述的方法,其中,作为结合常数(Kaff)测量的,所述抗体以至少1×1010升/摩尔的亲和力结合所述MHC-肽复合体中的肽。
4.根据权利要求1所述的方法,其中所述抗体由ATCC保藏号PTA-10351的杂交瘤细胞系产生。
5.一种分离的抗体或其片段,其根据权利要求1所述的方法制备。
6.根据权利要求5所述的抗体,其中,作为结合常数(Kaff)测量的,所述抗体以至少1×1010升/摩尔的亲和力结合所述MHC-肽复合体中的肽。
7.根据权利要求5所述的抗体,其中所述抗体选自:
由ATCC保藏号PTA-10351的杂交瘤细胞系产生的抗体;
具有由ATCC保藏号PTA-10351的杂交瘤细胞系产生的抗体的结合特性的抗体;
结合能够与由ATCC保藏号PTA-10351的杂交瘤细胞系产生的抗体相结合的表位的抗体;
与包含SEQ ID NO:7、其变体、突变体或片段的氨基酸序列的表位相结合的抗体;以及
包含至少一条轻链和至少一条重链的抗体,其中所述轻链包含选自SEQ ID NO:1至3、其变体、突变体或片段的氨基酸序列,并且所述重链包含选自SEQ ID NO:4至6、其变体、突变体或片段的氨基酸序列。
8.根据权利要求5所述的抗体,其中所述肽是源自EBV的肽。
9.根据权利要求5所述的抗体,其中所述源自EBV的肽是LMP-1、其变体、突变体或片段。
10.根据权利要求5所述的抗体,其中所述肽包含SEQ ID NO:7。
11.根据权利要求5所述的抗体,其中所述抗体是人抗体、人源化抗体或嵌合抗体。
12.根据权利要求5所述的抗体,其中所述抗体以放射性核素标记。
13.根据权利要求5所述的抗体,其中所述抗体以毒素和/或化学治疗试剂标记。
14.一种制备杂交瘤的方法,所述方法包括以下步骤:
形成包含单体MHC-肽复合体的免疫原;
将有效量的所述免疫原施用于宿主以引起针对所述MHC-肽复合体中的肽的免疫应答;
选择对于所述MHC-肽复合体中的肽特异性的B细胞;
通过将所述B细胞与永生化细胞融合而形成杂交瘤;以及
分离所述杂交瘤。
15.根据权利要求14所述的方法,其中选择B细胞的步骤进一步包括以下步骤:
将对于所述MHC-肽复合体中的肽特异性的B细胞与生物素化的MHC-肽复合体一起孵育,其中所述MHC-肽复合体能够结合所述B细胞;以及
使用抗生物素偶联珠结合所述生物素化的MHC-肽复合体。
16.一种具有ATCC保藏号PTA-10351的杂交瘤细胞系。
17.一种在受试者中检测至少一种EBV感染的细胞的存在的方法,所述方法包括:
将根据权利要求5所述的抗体或其片段与获自受试者的样品接触;以及
检测所述抗体与所述EBV感染的细胞的结合。
18.一种治疗EBV关联疾病的方法,所述方法包括将根据权利要求5所述的抗体或其片段施用于需要的受试者。
19.根据权利要求18所述的方法,其中所述EBV关联疾病选自淋巴增生性疾病、感染性单核细胞增多症、鼻咽癌、伯基特氏淋巴瘤和/或霍奇金氏淋巴瘤。
20.一种用于EBV关联疾病治疗的药物组合物,其包含根据权利要求5所述的抗体或其片段。
21.一种用于诊断EBV关联疾病的试剂盒,所述试剂盒包含根据权利要求5所述的抗体或其片段。
22.一种分离的核酸分子,其编码:
至少一条抗体重链,其中所述重链包含选自SEQ ID NO:4至6、其变体、突变体或片段的氨基酸序列;和/或
至少一条抗体轻链,其中所述轻链包含选自SEQ ID NO:1至3、其变体、突变体或片段的氨基酸序列。
23.一种包含根据权利要求22所述的核酸的表达载体。
24.一种包含根据权利要求23所述的表达载体的宿主细胞。
CN2010800618339A 2009-11-19 2010-11-18 用于制备t细胞受体样单克隆抗体的方法及其用途 Pending CN102812043A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US26264409P 2009-11-19 2009-11-19
US61/262,644 2009-11-19
PCT/SG2010/000438 WO2011062560A1 (en) 2009-11-19 2010-11-18 Method for producing t cell receptor-like monoclonal antibodies and uses thereof

Publications (1)

Publication Number Publication Date
CN102812043A true CN102812043A (zh) 2012-12-05

Family

ID=44059854

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800618339A Pending CN102812043A (zh) 2009-11-19 2010-11-18 用于制备t细胞受体样单克隆抗体的方法及其用途

Country Status (5)

Country Link
US (1) US20120294874A1 (zh)
EP (1) EP2501722A4 (zh)
CN (1) CN102812043A (zh)
SG (1) SG10201407519TA (zh)
WO (1) WO2011062560A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107106670A (zh) * 2014-10-31 2017-08-29 宾夕法尼亚大学董事会 用于修饰的t细胞的方法和组合物
CN107779433A (zh) * 2016-08-30 2018-03-09 天津市康婷生物工程有限公司 便捷的刺激nk细胞增殖和分化的饲养层制备方法
CN108026171A (zh) * 2015-06-01 2018-05-11 基因医疗免疫疗法有限责任公司 T细胞受体特异性抗体
CN108218976A (zh) * 2016-12-09 2018-06-29 广东香雪精准医疗技术有限公司 衍生自lmp1的肿瘤抗原短肽
CN108289950A (zh) * 2015-06-09 2018-07-17 纪念斯隆凯特琳癌症中心 特异于人hla呈递的ebv潜伏膜蛋白2a肽的t细胞受体样抗体药剂

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9076843B2 (en) 2001-05-22 2015-07-07 Novellus Systems, Inc. Method for producing ultra-thin tungsten layers with improved step coverage
JP2007506950A (ja) * 2003-09-27 2007-03-22 バイエル・ヘルスケア・エルエルシー Gタンパク質共役受容体AdipoR2(AdipoR2)に関連する疾患の診断および治療
US9159571B2 (en) * 2009-04-16 2015-10-13 Lam Research Corporation Tungsten deposition process using germanium-containing reducing agent
US8623733B2 (en) 2009-04-16 2014-01-07 Novellus Systems, Inc. Methods for depositing ultra thin low resistivity tungsten film for small critical dimension contacts and interconnects
US10256142B2 (en) 2009-08-04 2019-04-09 Novellus Systems, Inc. Tungsten feature fill with nucleation inhibition
CN113862634A (zh) 2012-03-27 2021-12-31 诺发系统公司 钨特征填充
US10381266B2 (en) 2012-03-27 2019-08-13 Novellus Systems, Inc. Tungsten feature fill with nucleation inhibition
US11437269B2 (en) 2012-03-27 2022-09-06 Novellus Systems, Inc. Tungsten feature fill with nucleation inhibition
US9153486B2 (en) 2013-04-12 2015-10-06 Lam Research Corporation CVD based metal/semiconductor OHMIC contact for high volume manufacturing applications
US9589808B2 (en) 2013-12-19 2017-03-07 Lam Research Corporation Method for depositing extremely low resistivity tungsten
WO2015184203A1 (en) 2014-05-29 2015-12-03 Macrogenics, Inc. Tri-specific binding molecules and methods of use thereof
WO2015199617A1 (en) * 2014-06-24 2015-12-30 National University Of Singapore A monoclonal antibody with t-cell receptor-like specificity that targets epstein-barr infected human tumour cells based on their expression of ebna1
WO2015199618A1 (en) * 2014-06-24 2015-12-30 National University Of Singapore Epstein-barr virus lmp2 specific antibody and uses thereof
US9349637B2 (en) 2014-08-21 2016-05-24 Lam Research Corporation Method for void-free cobalt gap fill
US9748137B2 (en) 2014-08-21 2017-08-29 Lam Research Corporation Method for void-free cobalt gap fill
US9997405B2 (en) 2014-09-30 2018-06-12 Lam Research Corporation Feature fill with nucleation inhibition
US9953984B2 (en) 2015-02-11 2018-04-24 Lam Research Corporation Tungsten for wordline applications
US10170320B2 (en) 2015-05-18 2019-01-01 Lam Research Corporation Feature fill with multi-stage nucleation inhibition
US9613818B2 (en) 2015-05-27 2017-04-04 Lam Research Corporation Deposition of low fluorine tungsten by sequential CVD process
US9978605B2 (en) 2015-05-27 2018-05-22 Lam Research Corporation Method of forming low resistivity fluorine free tungsten film without nucleation
US9754824B2 (en) 2015-05-27 2017-09-05 Lam Research Corporation Tungsten films having low fluorine content
NL2014935B1 (en) * 2015-06-08 2017-02-03 Applied Immune Tech Ltd T cell receptor like antibodies having fine specificity.
US10573522B2 (en) 2016-08-16 2020-02-25 Lam Research Corporation Method for preventing line bending during metal fill process
US10211099B2 (en) 2016-12-19 2019-02-19 Lam Research Corporation Chamber conditioning for remote plasma process
US11560432B2 (en) 2017-04-14 2023-01-24 Regents Of The University Of Minnesota Monoclonal antibodies directed to peptide in the context of MHC and methods of making and using monoclonal antibodies
KR20200021074A (ko) 2017-06-14 2020-02-27 아디셋 바이오, 인크. Hla 제한된 방식으로 hla-a2/tyrd를 결합할 수 있는 항체 및 이의 용도
JP2020530881A (ja) 2017-08-14 2020-10-29 ラム リサーチ コーポレーションLam Research Corporation 3次元垂直nandワード線用の金属充填プロセス
CN110407926B (zh) * 2018-04-26 2022-09-09 香雪生命科学技术(广东)有限公司 一种识别lmp1抗原短肽的tcr及其编码序列
JP2021523292A (ja) 2018-05-03 2021-09-02 ラム リサーチ コーポレーションLam Research Corporation 3d nand構造内にタングステンおよび他の金属を堆積させる方法
CN111647564B (zh) * 2020-05-18 2023-07-04 李欣 抗eb病毒lmp1的单克隆抗体及其细胞株和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0332424A2 (en) * 1988-03-09 1989-09-13 Hybritech Incorporated Chimeric antibodies directed against human carcinoembryonic antigen
WO2005116072A2 (en) * 2004-05-27 2005-12-08 Weidanz Jon A Antibodies as t cell receptor mimics, methods of production and uses thereof
US20090233318A1 (en) * 2004-12-28 2009-09-17 Weidanz Jon A Methods of assaying vaccine potency

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPO784197A0 (en) * 1997-07-10 1997-08-07 Csl Limited Treatment of nasopharyngeal carcinoma
AU2001240020B9 (en) * 2000-03-01 2008-12-04 Medimmune, Llc High potency recombinant antibodies and method for producing them
US20090042285A1 (en) * 2004-05-27 2009-02-12 Weidanz Jon A Antibodies at T cell receptor mimics, methods of production and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0332424A2 (en) * 1988-03-09 1989-09-13 Hybritech Incorporated Chimeric antibodies directed against human carcinoembryonic antigen
WO2005116072A2 (en) * 2004-05-27 2005-12-08 Weidanz Jon A Antibodies as t cell receptor mimics, methods of production and uses thereof
US20070092530A1 (en) * 2004-05-27 2007-04-26 Weidanz Jon A Antibodies as T cell receptor mimics, methods of production and uses thereof
US20090233318A1 (en) * 2004-12-28 2009-09-17 Weidanz Jon A Methods of assaying vaccine potency

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107106670A (zh) * 2014-10-31 2017-08-29 宾夕法尼亚大学董事会 用于修饰的t细胞的方法和组合物
CN108026171A (zh) * 2015-06-01 2018-05-11 基因医疗免疫疗法有限责任公司 T细胞受体特异性抗体
CN108289950A (zh) * 2015-06-09 2018-07-17 纪念斯隆凯特琳癌症中心 特异于人hla呈递的ebv潜伏膜蛋白2a肽的t细胞受体样抗体药剂
CN107779433A (zh) * 2016-08-30 2018-03-09 天津市康婷生物工程有限公司 便捷的刺激nk细胞增殖和分化的饲养层制备方法
CN108218976A (zh) * 2016-12-09 2018-06-29 广东香雪精准医疗技术有限公司 衍生自lmp1的肿瘤抗原短肽
CN108218976B (zh) * 2016-12-09 2021-11-05 香雪生命科学技术(广东)有限公司 衍生自lmp1的肿瘤抗原短肽

Also Published As

Publication number Publication date
WO2011062560A1 (en) 2011-05-26
EP2501722A4 (en) 2013-05-01
SG10201407519TA (en) 2015-01-29
EP2501722A1 (en) 2012-09-26
US20120294874A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
CN102812043A (zh) 用于制备t细胞受体样单克隆抗体的方法及其用途
US10005845B2 (en) Antibodies and fragments thereof raised against the alpha-3 domain of HLA-G protein, methods and means for their preparation, and uses thereof
CN103119054B (zh) Vista调节性t细胞介体蛋白、vista结合剂及其用途
CN105452288B (zh) 抗人乳头瘤病毒16 e6 t细胞受体
US7090843B1 (en) Recombinant anti-CD30 antibodies and uses thereof
ES2293748T3 (es) Moleculas de fijacion poliespecificas y usos de las mismas.
JPH05504939A (ja) 自己免疫疾患および悪性疾患の治療のためのt細胞リセプターペプチド
JP2021502810A (ja) Cd137およびpsmaに結合する分子
CN109071679A (zh) 用于靶向的细胞因子递送的组合物和方法
KR20070037570A (ko) 백신에 대한 면역반응을 향상시키는 보강제로서의 조성물및 이의 사용 방법
CN106659775A (zh) 基于il‑15的分子及其方法和用途
JP2000154153A (ja) 多段カスケ―ド型追加免疫ワクチン
KR102011789B1 (ko) 키메라 항원 수용체 및 키메라 항원 수용체가 발현된 t 세포
JPH04506512A (ja) 特定のt細胞集団の病原性応答により生じる疾患に対するワクチン接種および方法
JP2021512635A (ja) 腫瘍微小環境を標的とするキメラ抗原受容体
CN106456726A (zh) 生物标志物导向的多靶点免疫治疗
JP2013507970A (ja) 細胞ベースの抗癌組成物ならびに当該物の製造方法および使用方法
KR20220093103A (ko) 항종양용해 바이러스 항원 항체 및 이의 사용 방법
CN102573902A (zh) 用于基于亚单位的痘病毒疫苗的包含痘病毒衍生肽和针对抗原呈递细胞的抗体的免疫偶联物
RU2725950C1 (ru) Антитела против белка-1 запрограммированной клеточной смерти (pd-1) и их применение
KR20210011909A (ko) 항-gucy2c 키메라 항원 수용체 조성물 및 방법
TR201904121T4 (tr) İnsan bispesifik egfrviii antikoru birleştirme molekülleri.
Aurisicchio et al. Treatment of mammary carcinomas in HER-2 transgenic mice through combination of genetic vaccine and an agonist of Toll-like receptor 9
CN109929037A (zh) 针对程序性死亡配体的结合物及其应用
KR20230042222A (ko) 중증 급성 호흡기 증후군 코로나바이러스 2(sars-cov-2) 폴리펩티드 및 백신 목적을 위한 이의 용도

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121205