CN102811817A - 用于磁性固体废物脱油的方法和设备 - Google Patents

用于磁性固体废物脱油的方法和设备 Download PDF

Info

Publication number
CN102811817A
CN102811817A CN2010800532164A CN201080053216A CN102811817A CN 102811817 A CN102811817 A CN 102811817A CN 2010800532164 A CN2010800532164 A CN 2010800532164A CN 201080053216 A CN201080053216 A CN 201080053216A CN 102811817 A CN102811817 A CN 102811817A
Authority
CN
China
Prior art keywords
slurry
oil
containing particulate
processing
softening agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800532164A
Other languages
English (en)
Other versions
CN102811817B (zh
Inventor
M·C·阿米兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN102811817A publication Critical patent/CN102811817A/zh
Application granted granted Critical
Publication of CN102811817B publication Critical patent/CN102811817B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/20Magnetic separation whereby the particles to be separated are in solid form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Sludge (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Processing Of Solid Wastes (AREA)
  • Disintegrating Or Milling (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

本发明公开了处理含油微粒例如钢厂泥的方法和设备,包括:将处理溶液施用于微粒进料流以形成处理浆体,将机械破碎仪应用于该处理浆体以减小平均粒度,将磁选机应用于该处理浆体以形成含铁浆体,和将热分离器应用于该含铁浆体以提取烃部分并产生含铁的产物流。这种基本方法和相关设备可以用许多方式改变,所述方式包括,例如,向含油微粒应用筛分操作以从微粒进料流中除去较大的粒子,冷凝一定体积的烃部分或使用不同强度的磁选机来提供含铁量不同的含铁浆体。

Description

用于磁性固体废物脱油的方法和设备
背景技术
钢厂污泥(steel mill sludge)是在炼钢过程期间产生的含有氧化铁的材料。钢厂污泥,也被简单称为“钢厂泥(mill sludge)”,通常与铁屑的不同在于它的粒度较细和含油量更高。在炼钢过程期间,特别是鼓风炉后的加工期间,产生了通常含有废水、氧化铁基固体、油及其他烃类化合物的流。这些流通常收集在沉降池中,所述流在其中分离成三相,通常是上面的包含轻质游离烃的油相或层、在油相下面的水层或相、和包含钢厂泥和铁屑的下层或相。
钢厂泥中存在的油污染通常来源于制造钢成品中使用的润滑剂和冷却剂以及来自在形成钢成品期间暴露于高温下的加工设备的润滑剂。遍布于钢厂泥中的这种油污染,限制了将含有氧化铁的污泥再循环回到炼钢过程中的可能性。参与炼钢过程的热量从含油物质中释放出烃和烃的各种氧化物,造成空气污染,并使得难以符合环境质量标准。此外,如果再循环到烧结厂(其准备鼓风炉的进料)的材料含有太多的油,将产生操作上问题,例如风机叶片和过滤袋结垢,以及烃排放物过多的问题。
在许多工业中,由于越来越严格的环境法规,管理钢铁制造产生的废物已变成重要的议题。历史上,制钢产生的矿渣、灰尘和污泥被认为是“废物”,并简单运送到填埋场、矿井及其他处置点。随着对减少排放物并改进效率的需要,那些曾经只是“废物”的材料现在已是“副产物”,成为深入的改良和再利用工作的主题。炼钢厂每产一吨钢一般产生约900磅的固体废物,主要由矿渣、灰尘和污泥组成。大部分废物在烧结厂中再利用。然而,烃含量高的废物在回收含铁物再利用之前必须脱油,以降低排放物和积碳问题。
许多专利和专利申请公开了处理污泥脱油的各方面的各种技术、组合物和方法。结合了这些专利的教导的脱油方法是部分有效的,也就是说,除去的油量足以满足当时的环境标准,但是这些现有技术的方法通常不能达到当今需要的高环境标准。虽然传统的“脱油”材料可以包含多达10wt%的油(百万分之100,000),但为了满足当前的环境标准,准备再生的回收的脱油固体必须包含少于百万分之2000、或少于0.2wt%的油。由于环境要求愈益严格,常规方法当前没有被广泛应用,给许多钢铁企业留下了成百上千吨积存的污泥等待处理或在填埋场中进行昂贵的处置。这些积存代表了一种有价值的资源,因为该污泥能够包含50干重%(dwt%)或更多的铁。
传统的现有技术方法不能或有困难达到新法规要求的非常低的脱油水平的一个原因在于钢厂泥本身的性质。特别是,钢厂泥固体的特点在于颗粒的直径非常细小,典型在细粉砂和粘土有关的级别。该极细颗粒允许油分子与该固体颗粒和/或在这种颗粒团块内形成极强的键。常规方法需要应用许多表面活性剂、剪切力和脱水设备来回收该固体。然而,即使重复通过这种常规方法进行的污泥循环通常也不能将钢厂泥的含油量降低到所要求的低于百万分之2000的水平。
代表性的现有技术包括美国专利Nos.3,844,943;4,091,826;4,177,062;4,288,329;4,326,883;4,585,475;4,738,785;4,995,912;5,047,083,5,125,966和7,531,046,其内容在此以其全文引为参考。
美国专利No.7,531,046,公开了处理由烃、固体颗粒和水组成的含油混合物的方法,其包括以下步骤:将含油混合物放入反应腔,用惰性气体吹扫反应腔,和在充有惰性气体的反应腔内生成蒸汽浴,蒸汽浪将烃物质从固体颗粒上游离出来。该方法还包括将反应腔温度上升到相当于含油混合物中烃的沸点温度,升高的温度蒸发的烃在惰性气氛内蒸发。排放反应室,将放出的气体加工成烃产物,同时,脱油的固体颗粒从反应室卸载作为原料或进行处置。
美国专利No.5,125,966,例如,公开了钢厂泥脱油的方法,其包括将钢厂泥与充分的水和充分的表面活性剂混合以提供具有至少25wt%固体含量和基于固体至少4000ppm的表面活性剂的浆体,对该浆体进行高剪切搅拌以形成含油的水乳状液,并从该含油的水乳状液分离至少40wt%的固体。作为这些最低参数的例子,从100重量份的含有25wt%固体(25重量份固体)的浆体中,通过该方法将从含油的水乳状液中分离最少10重量份固体(固体的40wt%)。在公开时,设想了这种用于钢厂泥脱油的方法还涉及将钢厂泥进行加工,然后对从含油的水乳状液回收的固体重复该加工步骤,直至回收的固体的含油量已经降低到所需程度的时候。
发明概要
本发明公开了用于处理含油微粒例如钢厂泥的方法,包括:将处理溶液应用于微粒进料流以形成处理浆体,将机械破碎仪应用于该处理浆体以减小平均粒度,将磁选机应用于该处理浆体以形成含铁的浆体,并将热分离器应用于该含铁的浆体以提取烃部分并产生含铁的产物流。这种基本方法可以用许多方式改变,包括,例如,向含油微粒应用筛分操作以从微粒进料流中除去较大的颗粒,冷凝一定体积的烃部分或使用不同强度的磁选机来提供含铁量不同的含铁浆体。
可以理解,能够利用许多处理溶液,包括,例如,包含石油基柔软剂、软化剂(emollient)、增溶剂和偶联剂的溶液。这些组分可以具有变化的量,包括,例如,包含20至70wt%石油基柔软剂、2至50wt%软化剂、5至25wt%增溶剂和1至10wt%偶联剂的处理溶液。软化剂可以是pH中性软化剂,但是处理溶液的其他实施方式可以包括非中性软化剂和/或pH调节剂和缓冲剂。
石油基柔软剂可以包含一种或多种烃燃料成分,软化剂可以包含一种或多种二醇,增溶剂可以包含一种或多种醚和醇,偶联剂可以包含一种或多种有机酸。一个处理溶液例子是其中石油基柔软剂包含柴油机燃料、软化剂包含聚丙二醇、增溶剂包含选自聚氧乙烯醚和聚氧乙烯醇的至少一种化合物、和偶联剂包含二羧酸的处理溶液。
如下文和附图所详述的,本公开还包含适合于实施本公开方法的设备,其包括安排用于实施完成所述方法所需的操作序列的筛分、传送、喷洒、破碎、分离、加热和冷凝装置的组合件。
附图说明
当结合附图考虑发明内容时,下述实施方式的例子被了解得更清楚,所述附图中:
图1图示说明了污泥制备过程的例子和相应的污泥制备设备的例子。
图2图示说明了分离和回收过程的例子和相应的分离和回收设备的例子。
应当指出,这些图旨在说明实施例中所使用的方法、结构和/或材料的一般特性,是下面提供的书面说明书的补充。然而,这些图并不按比例,并且可能没有精确反映任何给定实施方式的准确的结构或性能特性,并且不应该被理解为规定或限制了实施例所包含的值或性质的范围。
说明内容
在此公开的方法和相关设备提供了能够用于将钢铁工业及其他的油污染废物脱油到低于2000ppm含油量的一体化工业方法。这种方法和设备能够使污泥中回收和再循环到制钢过程中的铁含量比例增加,所述比例可以超过50dwt%(干重百分比)。该方法适用于未稳定化的污泥和以前通过例如添加10至20dwt%石灰和/或其他化合物处理过和/或稳定过的污泥。
方法的例子和设备的例子示于图1和2中,其中污泥制备设备和方法显示于图1的设备100a上,而分离与回收设备和方法显示于图2的设备100b上。如图示说明,从沉降池、贮池、罐或其他贮存设备101抽取钢厂泥或稳定化的钢厂泥102,并将102a进给到一个或多个粗粒筛104或其他适合的分离装置以除去超大碎片104b,例如直径大于4英寸(10.2cm)的那些颗粒。要理解,具体的粒度分级和分拣技术的选择将由许多因素来指导,包括例如钢厂泥的平均粒度、粒度分布和下游分离过程的能力。
通过筛104的污泥进料104a部分然后能够被送入粉碎机或磨机106中,进一步减小颗粒大小以供另外的加工。粉碎的污泥流106a然后可以通过传送带108传输到第二个筛或其他分离器110,以确保剩余的颗粒接近适合的目标大小,例如直径不超过0.5英寸(1.3cm)。粉碎的污泥流106a中那些仍然超过进一步加工的目标大小的颗粒可以通过再循环流110b被送回到粉碎机或丢弃。
洗涤系统,通常包括泵118、用于润湿剂化学品、软化剂化学品、增溶化学品、和偶联剂化学品的化学品贮存器120、水源116、和能够计量例如直至2.0百分比或以上浓度的计量泵122,所述洗涤系统可以用于将处理化学制品122a注入供水118a以产生洗涤液118b。然后这种洗涤液当污泥在筛110上方通过时喷洒124在污泥上、和/或注入浆体混合罐112中。在浆体混合罐中,过筛的污泥和洗涤液被混合和搅拌,以形成含有例如35wt%固体的浆体114。
浆体流112a然后被泵至物理分离器126以进一步加工。物理分离器126可以例如基于文氏管原理操作,利用高压泵128供应的高压流体128a、例如5000至10000psi(344至689bar)的水以产生高速水喷射或流、和/或本技术领域普通技术人员知道的、足以将保留的污泥细颗粒的聚集体降低到较小的聚集体和单个颗粒的其他机械和/或超声方法(未显示),来形成加工过的浆体流126a。要理解,具体的分离技术的选择受到许多因素的来指导,所述因素包括例如浆体流内的平均粒度、粒度分布、结块程度和结块程度的分布。
来自于物理分离器126的加工过的浆体流126a然后被传输到一个或多个湿式圆筒磁选机130、130′,它们被配置用于除去加工浆体中具有足够高浓度的铁和/或其他磁性金属的那些微粒。除去的微粒130a,“固”相,可以然后经历进一步处理以将该分离出的固体脱油。离开磁选机130b的“液”相通常包含水、油和在所述分离器中未除去的非磁性化合物,非磁性化合物包括,例如可以利用传统的废水处理方法134来处理的石墨。
离开磁选机的固相130a通常由含有铁及其他金属的磁性污泥构成,仍然具有一定含油量。该磁性污泥被输送到在600-800°F(316至427℃)下操作的低温提取器132。随着磁性污泥通过提取器132,该磁性污泥中残留的一部分油被提取,产生了表现出含油量低于2,000ppm(mg/kg)的脱油污泥132a。该脱油污泥132a适合于回收146和其含铁物的再利用。
低温提取器的排气132b含有分离的油、轻质有机物和夹带的水。该排气可以由移动排气通过冷凝器138的鼓风机136从提取器132抽出。
在冷凝器138中,油与排气分离。所述排气和油流向接收箱140。从接收箱140提取油140b以供回收加工144,排气140a可以被引向适合的废气处理设备142。
本发明可以用不同的方式构成,只要由所述设备执行的功能能够实现即可。例如,可以根据污泥中铁颗粒的性质使用多个湿式圆筒磁选机130、130′。可能需要高斯强度不同并因此不同的湿式圆筒分离器来除去不同大小的铁颗粒。本领域技术人员将理解,因为有各种各样的压碎和筛分设备以及方法可以适于产生适合的浆体流,所以本公开不局限于在此图示说明和描述的具体的实施例。
适合于在124处注入的洗涤或处理溶液的例子是一种组合物,其包含20和70wt%之间的石油基柔软剂,例如柴油机燃料;2和50wt%之间的软化剂,优选pH中性的软化剂,例如聚丙二醇;5至25wt%之间的增溶剂,例如聚氧乙烯醚和/或聚氧乙烯醇;和1和10wt%之间的偶联剂,例如二羧酸。应该理解,如果选择的软化剂不是pH中性的,所述处理溶液还可以包含pH调节剂和/或缓冲剂,用于控制溶液的pH。预期在大多数情况下,总体中性的pH就足够了,但是根据料浆的性质和组成,可以调整处理溶液的pH,以对将要被送入下游过程的处理浆体实现油释放提高和/或控制pH。
要理解,洗涤液的各种组分可以分别和/或以一种或多种组合物例如母料制剂来运用,以分别提供范围更广的组合物和/或简化过程控制。洗涤液的组分在物理分离器126中具有松开油与固体颗粒之间的化学键和帮助调动油的综合效应,为污泥颗粒的解聚集作准备。
本领域技术人员还将理解,污泥制备方法与分离和恢复方法以及设备、即一体化方法和相应设备的前端和后端可以通过将诸如污泥类型、烃负载水平和成分以及被加工污泥的预定用途等因素纳入考虑而进一步改变以供具体的应用。本技术领域的普通技术人员将理解,所述设备和工艺流体可以针对具体应用的具体需要和要求加以改变。
虽然已经参考本发明的某些实施例对本发明进行了具体的说明和描述,但是本技术领域的普通技术人员将了解,在不背离下述权利要求所限定的本发明的精神和范围的情况下,可以在其中做出各种形式上和细节的改变。

Claims (16)

1.一种处理含油微粒的方法,包括:
将处理溶液施用于微粒进料流以形成处理浆体;
将机械破碎仪应用于该处理浆体以减小平均粒度;
将磁选机应用于该处理浆体以形成含铁浆体;和
将热分离器应用于该含铁浆体以提取烃部分并产生含铁的产物流。
2.权利要求1的处理含油微粒的方法,其进一步包括:
对含油微粒应用筛分操作以从微粒进料流中除去较大的颗粒。
3.权利要求1和2的任一项处理含油微粒的方法,其进一步包括:
冷凝一定体积的烃部分。
4.权利要求1-3任一项的处理含油微粒的方法,其中:
处理溶液包含
石油基柔软剂;
软化剂;
增溶剂;和
偶联剂。
5.权利要求4的处理含油微粒的方法,其中:
处理溶液包含
20至70wt%的石油基柔软剂;
2至50wt%的软化剂;
5至25wt%的增溶剂;和
1至10wt%的偶联剂。
6.权利要求4的处理含油微粒的方法,其中:
软化剂是pH中性软化剂。
7.权利要求4的处理含油微粒的方法,其中:
处理溶液还包含选自pH调节剂和缓冲剂的化合物。
8.权利要求5的处理含油微粒的方法,其中: 
软化剂是pH中性软化剂。
9.权利要求5的处理含油微粒的方法,其中:
处理溶液还包含选自pH调节剂和缓冲剂的化合物。
10.权利要求4的处理含油微粒的方法,其中:
石油基柔软剂包含烃燃料成分;
软化剂包含二醇;
增溶剂包含选自醚和醇的至少一种化合物;和
偶联剂包含有机酸。
11.权利要求4的处理含油微粒的方法,其中:
石油基柔软剂包含柴油机燃料;
软化剂包含聚丙二醇;
增溶剂包含选自聚氧乙烯醚和聚氧乙烯醇的至少一种化合物;和
偶联剂包含二羧酸。
12.权利要求1的处理含油微粒的方法,其中:
所述机械破碎仪包括用足以减少处理浆体内的聚集体和结块的高压流体喷射来冲击所述处理浆体。
13.权利要求1的处理含油微粒的方法,其中:
所述机械破碎仪包括用足以减少处理浆体内的聚集体和结块的量级的超声波能量来冲击所述处理浆体。
14.一种根据权利要求1的方法处理含油微粒的设备,其包括:
喷雾器,其被配置用于向微粒进料流施加处理溶液以形成处理浆体;
机械破碎仪,其被配置用于接收和破碎所述处理浆体以减小所述处理浆体内的平均粒度;
磁选机,其被配置用于去除所述处理浆体的磁性部分以形成含铁浆体;和
热分离器,其被配置用于将所述含铁浆体加热到足以从所述含铁浆体中挥发和除去烃部分的温度。
15.根据权利要求2的方法处理含油微粒的设备,其还包括: 
筛分设备,其被配置用于从含油微粒中分离较大的微粒。
16.根据权利要求14的用于处理含油微粒的设备,其中:
所述机械破碎仪向所述处理浆体施加5,000到10,000psi(344到689bar)压力的工作溶液的射流。 
CN201080053216.4A 2009-10-23 2010-10-25 用于磁性固体废物脱油的方法和设备 Expired - Fee Related CN102811817B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US25426609P 2009-10-23 2009-10-23
US61/254,266 2009-10-23
PCT/US2010/053992 WO2011050370A1 (en) 2009-10-23 2010-10-25 Method and apparatus for de-oiling magnetic solid waste

Publications (2)

Publication Number Publication Date
CN102811817A true CN102811817A (zh) 2012-12-05
CN102811817B CN102811817B (zh) 2016-11-16

Family

ID=43900725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080053216.4A Expired - Fee Related CN102811817B (zh) 2009-10-23 2010-10-25 用于磁性固体废物脱油的方法和设备

Country Status (11)

Country Link
EP (1) EP2490817A4 (zh)
JP (1) JP5928955B2 (zh)
KR (1) KR20130001208A (zh)
CN (1) CN102811817B (zh)
BR (1) BR112012009568A2 (zh)
CA (1) CA2821953A1 (zh)
MX (1) MX2012004754A (zh)
RU (1) RU2569133C2 (zh)
UA (1) UA106092C2 (zh)
WO (1) WO2011050370A1 (zh)
ZA (1) ZA201203723B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104445852A (zh) * 2014-12-19 2015-03-25 辽宁华孚环境工程股份有限公司 一种含油污泥预处理方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2529875A (en) * 2014-09-05 2016-03-09 Darlow Lloyd & Sons Ltd Reuse of by-products from metallurgical processes
GB2529876A (en) * 2014-09-05 2016-03-09 Darlow Lloyd & Sons Ltd Reuse of by-products from metallurgical processes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069444A (en) * 1976-06-01 1978-01-17 Westinghouse Electric Corporation Ultrasonic power generator
US5125966A (en) * 1990-12-20 1992-06-30 Nalco Chemical Company Process for de-oiling mill sludge
US5147554A (en) * 1990-06-26 1992-09-15 Filterwerk Mann & Hummel Gmbh Process for treating wastes from the machining of ferromagnetic materials
US5453133A (en) * 1992-06-09 1995-09-26 National Research Council Of Canada Soil remediation
US6325079B1 (en) * 1994-08-02 2001-12-04 Biogenesis Enterprises, Inc. Apparatus and method for removing contaminants from fine grained soil, clay, silt, and sediment particles
TW200417520A (en) * 2003-03-07 2004-09-16 Chinese Petroleum Corp Treatment process for fast liquefaction and effective recycling of oil-containing sludge
US20050250666A1 (en) * 2004-05-05 2005-11-10 Weatherford/Lamb, Inc. Foamer/sulfur scavenger composition and methods for making and using same
US20060130611A1 (en) * 2004-12-17 2006-06-22 Recovery Technology, Lp Process for de-oiling steelmaking sludges and wastewater streams

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181781A (ja) * 1975-01-16 1976-07-17 Kurenai Sangyo Kk Hoorudosuratsujinosaiseishorihoho
US4129440A (en) * 1975-02-19 1978-12-12 Occidental Petroleum Corporation Process for disposal of solid wastes
JPS532383A (en) * 1976-06-30 1978-01-11 Nippon Steel Corp Treatment of sludge contained oil
JPS5494170A (en) * 1978-01-06 1979-07-25 Nippon Steel Corp Wet process treatment method for recovering oil from oil-containing hot rolled sludge
SU1539000A1 (ru) * 1988-05-10 1990-01-30 В. В. Шевчук, А. И. Ратько. О. М. Дь конов и В. В. Нечаев Способ переработки металлсодержащих шламов шлифовального производства
RU2040367C1 (ru) * 1993-03-16 1995-07-25 Центральный научно-исследовательский институт материалов Способ утилизации металлической стружки
RU2097166C1 (ru) * 1994-08-04 1997-11-27 Ульяновский политехнический институт Способ переработки металлосодержащих шламов
ATE368528T1 (de) * 1999-08-30 2007-08-15 Biogenesis Entpr Inc Vorrichtung und verfahren zum entfernen von verunreinigungen aus fein gemahlener erde, schlick und ton
WO2001096249A1 (de) * 2000-06-14 2001-12-20 Voest-Alpine Industrieanlagenbau Gmbh & Co. Vorrichtung und verfahren zur behandlung eines kohlenwasserstoffhältigen abfallstoffes
RU2217510C2 (ru) * 2001-07-12 2003-11-27 Булыжев Евгений Михайлович Способ переработки металлосодержащих отходов и устройство для его осуществления
RU2262396C1 (ru) * 2004-02-09 2005-10-20 Евдокимов Александр Александрович Способ очистки поверхности от углеводородных загрязнений
RU2279323C2 (ru) * 2004-07-07 2006-07-10 Общество с ограниченной ответственностью "Алмаз-Эко" Способ очистки мазутных резервуаров от мазутных отложений и устройство для его осуществления

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069444A (en) * 1976-06-01 1978-01-17 Westinghouse Electric Corporation Ultrasonic power generator
US5147554A (en) * 1990-06-26 1992-09-15 Filterwerk Mann & Hummel Gmbh Process for treating wastes from the machining of ferromagnetic materials
US5125966A (en) * 1990-12-20 1992-06-30 Nalco Chemical Company Process for de-oiling mill sludge
US5453133A (en) * 1992-06-09 1995-09-26 National Research Council Of Canada Soil remediation
US6325079B1 (en) * 1994-08-02 2001-12-04 Biogenesis Enterprises, Inc. Apparatus and method for removing contaminants from fine grained soil, clay, silt, and sediment particles
TW200417520A (en) * 2003-03-07 2004-09-16 Chinese Petroleum Corp Treatment process for fast liquefaction and effective recycling of oil-containing sludge
US20050250666A1 (en) * 2004-05-05 2005-11-10 Weatherford/Lamb, Inc. Foamer/sulfur scavenger composition and methods for making and using same
US20060130611A1 (en) * 2004-12-17 2006-06-22 Recovery Technology, Lp Process for de-oiling steelmaking sludges and wastewater streams

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104445852A (zh) * 2014-12-19 2015-03-25 辽宁华孚环境工程股份有限公司 一种含油污泥预处理方法及装置
CN104445852B (zh) * 2014-12-19 2016-05-04 辽宁华孚环境工程股份有限公司 一种含油污泥预处理方法及装置

Also Published As

Publication number Publication date
CA2821953A1 (en) 2011-04-28
EP2490817A4 (en) 2017-03-29
WO2011050370A1 (en) 2011-04-28
CN102811817B (zh) 2016-11-16
RU2569133C2 (ru) 2015-11-20
BR112012009568A2 (pt) 2019-09-24
JP5928955B2 (ja) 2016-06-08
KR20130001208A (ko) 2013-01-03
MX2012004754A (es) 2012-10-10
UA106092C2 (uk) 2014-07-25
JP2013508146A (ja) 2013-03-07
ZA201203723B (en) 2013-08-28
EP2490817A1 (en) 2012-08-29
RU2012120810A (ru) 2013-11-27

Similar Documents

Publication Publication Date Title
CN1691991A (zh) 被碳氢化合物污染的钻屑的热处理方法
KR101396416B1 (ko) 열 변형 파쇄를 이용한 복합오염 토양의 유류와 중금속 동시 탈리 장치 및 이를 포함하는 복합오염 토양의 정화 시스템 및 방법
CN102009064B (zh) 回收和去除土壤中残余的溶剂的工艺方法和系统
US5476994A (en) Method for extracting metals from sediment
US5047083A (en) Process for de-oiling mill scale
DE60314398T2 (de) Beschallungsbehandlung von mit polychlorbiphenyl verunreinigten medien
CN109500051A (zh) 一种废弃电路板回收再利用方法
RU2539474C2 (ru) Способ непрерывного магнитного разделения и/или обогащения руды.
CN106111684A (zh) 一种提升土壤洗涤脱附性能的预处理方法及装置
CN102811817B (zh) 用于磁性固体废物脱油的方法和设备
RU2489214C1 (ru) Технологическая линия для переработки золошлаковых отходов - продуктов сжигания угольного топлива
CN108246774B (zh) 一种有机污染物环境保护热解处理系统及方法
CN110563288B (zh) 用于处理罐底油泥的除砂降粘剂及应用
CN108798569A (zh) 一种废油基泥浆回收利用方法
CN112536156A (zh) 一种处理飞灰中重金属的方法
Wang et al. Enhanced green remediation and refinement disposal of electrolytic manganese residue using air-jet milling and horizontal-shaking leaching
US20120097615A1 (en) Method and Apparatus for De-Oiling Magnetic Solid Waste
KR101698575B1 (ko) 원유오염 토양 정화 시설 및 방법
JP2000107736A (ja) シュレッダーダスト乾留物の処理方法
CN111747622A (zh) 一种高效处理油污的方法
KR20170046501A (ko) 계면활성화와 에어를 이용한 원유오염 토양 정화 시설 및 방법
US6932855B2 (en) Method for recycling metals from swarf
TWI749436B (zh) 利用物理特性分離油污染土壤之資源化處理方法
CN217677232U (zh) 一种预处理设备
CN114367631B (zh) 固液废弃物复合再生利用工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161116

Termination date: 20171025

CF01 Termination of patent right due to non-payment of annual fee