CN102811031A - 包括桥部的薄膜体声波谐振器 - Google Patents

包括桥部的薄膜体声波谐振器 Download PDF

Info

Publication number
CN102811031A
CN102811031A CN2012101959613A CN201210195961A CN102811031A CN 102811031 A CN102811031 A CN 102811031A CN 2012101959613 A CN2012101959613 A CN 2012101959613A CN 201210195961 A CN201210195961 A CN 201210195961A CN 102811031 A CN102811031 A CN 102811031A
Authority
CN
China
Prior art keywords
bridge portion
fbar
electrode
bridge
piezoelectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101959613A
Other languages
English (en)
Other versions
CN102811031B (zh
Inventor
达利斯·布拉卡
菲尔·尼克尔
克里斯·冯
亚历山大·施拉卡瓦
约翰·克伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avago Technologies International Sales Pte Ltd
Original Assignee
Avago Technologies Wireless IP Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/151,631 external-priority patent/US9203374B2/en
Application filed by Avago Technologies Wireless IP Singapore Pte Ltd filed Critical Avago Technologies Wireless IP Singapore Pte Ltd
Publication of CN102811031A publication Critical patent/CN102811031A/zh
Application granted granted Critical
Publication of CN102811031B publication Critical patent/CN102811031B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明涉及包括桥部的薄膜体声波谐振器。薄膜体声学谐振器(FBAR)结构包括设置在衬底上的第一电极、设置在第一电极上的压电层、和设置在第一压电层上的第二电极。桥部设置在第一电极和压电层之间。

Description

包括桥部的薄膜体声波谐振器
技术领域
本申请涉及薄膜体声波谐振器。
本申请涉及Dariusz Burak于2011年3月29日递交的题为“StackedAcoustic Resonator Comprising a Bridge”的美国专利申请No.13/074,262的部分继续申请案,美国专利申请No.13/074,262是Dariusz Burak于2011年2月28日递交的题为“Coupled Resonator Filter Comprising Bridge”的美国专利申请No.13/036,489的部分继续申请案。本申请根据美国法典第35编第120条要求美国专利申请No.13/074,262和No.13/036,489的优先权,这些专利申请的公开文本通过引用方式整体结合于本说明书中。
背景技术
换能器通常将电信号转换成机械信号或振动,和/或将机械信号或振动转换成电信号。具体地,声学换能器使用逆压电效应和正压电效应将电信号转换成声波并将声波转换成电信号。声学换能器通常包括声学谐振器,例如薄膜体声学谐振器(FBAR)、表面声波(SAW)谐振器或体声波(BAW)谐振器,并且声学换能器可以用在很多种电子应用中,例如移动电话、个人数字助理(PDA)、电子游戏设备、笔记本电脑和其他便携式通信设备。例如,FBAR可以用于电学滤波器和电压互感器。通常,声学谐振器具有位于两个导电板(电极)之间的压电材料层,该压电材料层可以形成于薄膜上。具体地,FBAR设备在受到施加的时变电场的激励时产生可以沿着所有可能的侧向传播的声波、以及高阶谐波混频产物。侧向传播模式和高阶谐波混频产物对于功能性会有有害影响。
在FBAR设备中,通过多种方法来实现减少在边界处的声学损耗和FBAR的有源区(顶电极、压电层和底电极重叠的区域)中的产生的模限制。例如,沿着FBAR的一侧或多侧设置框架。框架产生声阻抗失配,声阻抗失配通过将期望模式反射回到谐振器的有源区来减少损耗,因此改进在FBAR的有源区内对期望模式的限制。但是,为改进FBAR的效率,需要更好的声能限制、以及由于更好的声能限制引起的FBAR Q因子(品质因子)的进一步改进。
发明内容
根据代表性实施例,薄膜体声学谐振器(FBAR)结构包括设置在衬底上的第一电极、设置在第一电极上的压电层和设置在第一压电层上的第二电极。桥部设置在第一电极和压电层之间。
根据另一代表性实施例,FBAR结构包括设置在衬底上的第一电极、设置在第一电极上的压电层和设置在第一压电层上的第二电极。第一桥部设置在第一电极和压电层之间,第二桥部设置在压电层和第二电极之间。
根据另一代表性实施例,FBAR结构包括设置在衬底上的第一电极、设置在第一电极上的压电层和设置在第一压电层上的第二电极。第一桥部设置在第一衬底和第一电极之间。第二桥部设置在第一电极和压电层之间、或者压电层和第二电极之间。
附图说明
在结合附图阅读时,从下面的详细描述可最好地理解示例性实施例。应强调的是,各种特征不一定是按照比例绘制的。实际上,为了讨论的清楚性,可能任意地增大或减小了尺寸。在可适用并且可实现的情况下,相似的附图标记表示相似的元件。
图1A示出根据代表性实施例的FBAR的俯视图。
图1B是沿着线1B-1B所取得的图1A的FBAR的截面图。
图1C是根据另一代表性实施例的FBAR的截面图。
图2是常规FBAR和根据代表性实施例的FBAR的Q因子(Q)的比较图。
图3A示出根据代表性实施例的FBAR的俯视图。
图3B是沿着线3B-3B所取得的图3A的FBAR的截面图。
图3C是根据另一代表性实施例的FBAR的截面图。
图3D是根据另一代表性实施例的FBAR的截面图。
图3E是根据另一代表性实施例的FBAR的截面图。
图4A-4B是根据代表性实施例的各自具有设置在FBAR的单一层中的桥部的FBAR的截面图。
图5A-5D是根据代表性实施例的各种具有设置在FBAR的两个层中的桥部的FBAR的截面图。
图6A-6D是根据代表性实施例的各种具有设置在FBAR的两个层中的桥部的FBAR的截面图。
具体实施方式
术语定义
应理解的是,这里使用的术语仅是为了描述特定实施例,并不是为了进行限制。所定义的术语是对在本发明的技术领域中一般理解并接受的限定术语的技术和科学含义的补充。
如在说明书和权利要求书中使用的,除非上下文中清楚地表明其他情况之外,未指明数目的术语包括单数和复数指称。因此,例如,“装置”涵盖了一个装置和多个装置的情形。
如在说明书和权利要求书中使用的,除了一般的含义之外,术语“基本”和“基本上”表示在可接受的限度或程度内。例如,“基本上抵消”意味着本领域技术人员将认为该抵消是可以接受的。
如在说明书和权利要求书中使用的,除了其一般的意义之外,术语“大约”意味着在本领域普通技术人员可以接受的限度或量之内。例如,“大约相同”意味着本领域技术人员将认为相比较的项目是相同的。
详细描述
在下面的详细描述中,为了解释的目的而不是限制的目的而给出了特定的细节,以提供对根据本发明的示例性实施例的透彻理解。但是,对于已经受益于本公开的本领域普通技术人员来说,根据本发明但偏离这里公开的特定细节的其他实施例仍然在权利要求的范围内。此外,可能省略了对于众所周知的设备和方法的描述,以便不会使得对示例性实施例的描述难理解。这样的方法和设备明显在本教导的范围内。
总体上,应理解附图和附图中示出的各种元件不是按比例绘制的。此外,如附图中所示的,相对术语(例如“上方”、“下方”、“顶”、“底”、“上”和“下”)用于描述各种元件彼此的关系。应理解这些术语可包括除了附图中所示的定位之外装置和/或元件的不同定位。例如,如果相对于附图中的视图翻转,则例如,描述为在另一元件“上方”的元件现在将在该另一元件下方。
本发明一般地涉及包括FBAR的BAW谐振器结构。在某些应用中,BAW谐振器结构提供基于FBAR的滤波器(例如,梯级(ladder)滤波器)。在下列共有的美国专利和专利申请中的一项或多项中可以找到FBAR和/或BAW谐振器和谐振滤波器、及其材料和它们的制造方法的某些细节:授权给Lakin的美国专利6,107,721;授权给Ruby等人的美国专利5,587,620、5,873,153、6,507,983、6,384,696、7,275,292和7,629,865;授权给Feng等人的美国专利7,280,007;Jamneala等人的美国专利申请公开20070205850;授权给Ruby等人的美国专利7,388,454;Choy等人的美国专利申请公开20100327697;以及Choy等人的美国专利申请公开20100327994。这些专利和专利申请的公开文本通过引用方式明确地结合于本说明书中。应强调的是,这些专利和专利申请中描述的组件、材料和制造方法是代表性的,可考虑到在本领域普通技术人员的知识范围内的其他制造方法和材料。
图1A示出根据代表性实施例的FBAR 100的俯视图。FBAR 100包括顶电极101,顶电极101具有五(5)个侧边,连接侧102被构造成与互联件(interconnect)103进行电连接。互联件103向顶电极101提供电信号,以在FBAR 100的压电层(图1中未示出)中激发出所需的声波。
图1B示出根据代表性实施例沿着线1B-1B所取得的FBAR 100的截面图。FBAR 100包括堆叠在衬底105上的多个层,衬底105具有腔106。在FBAR 100中包括腔106以用于声波反射仅仅是示例性的。在不脱离本发明范围的情况下,在各种替换构造中,除了腔106之外,可以在衬底105中设置已知的声学反射器(例如,布拉格反射镜(未示出))以提供声学隔离,该已知的声学反射器包括交替的高声阻抗层和低声阻抗层。
第一电极即底电极107设置在衬底105上方,并部分地设置在腔106(或布拉格反射镜)上方。如图所示,平坦化层107’也设置在衬底上方。在代表性实施例中,例如,平坦化层107’包括不可蚀刻硅硼酸盐玻璃(NEBSG)。通常,平坦化层107’不需要存在于结构中(因为这增加了整体处理成本),但是当存在时,平坦化层107’可以改善后续层的生长质量并简化对它们的处理。压电层108设置在底电极107上方,第二电极即顶电极101(图1A所示)设置在压电层108上方。如本领域普通技术人员应理解的,由底电极107、压电层108和顶电极101所提供的结构是体声波(BAW)谐振器。当将BAW谐振器设置在腔上方时,该谐振器就是所谓的FBAR(例如,FBAR 100);当将BAW谐振器设置在声学反射器(例如,布拉格反射镜)上方时,该谐振器就是所谓的实心安装型谐振器(SMR)。本发明可考虑在各种应用(包括滤波器(例如,包括多个BAW谐振器的梯级滤波器))中使用FBAR或SMR。
在图示实施例中,桥部104埋设在底电极107和压电层108之间。桥部104沿着FBAR 100的所有侧边(例如,沿着FBAR 100的周边)设置。例如,在代表性实施例中,桥部104(以及在下文中结合代表性实施例描述的其他桥部)具有梯形截面形状。应强调的是,代表性实施例的桥部的梯形截面形状仅仅是示例性的,桥部不限于梯形截面形状。例如,代表性实施例的桥部的截面形状可以是正方形或矩形、或不规则形状。桥部104(以及在下文中结合代表性实施例所描述的其他桥部)的“倾斜”壁有益于在桥部104(以及在下文中结合代表性实施例所描述的其他桥部)上生长的层的质量(例如,结晶压电层的质量)。桥部104(以及在下文中结合代表性实施例所描述的其他桥部)的典型尺寸是宽度约2.0μm至约10.0μm(图1B所示的坐标系的x维度)、以及高度约至约
Figure BSA00000734227600052
(图1B所示的坐标系的y维度)。
在某些实施例中,桥部104(以及在下文中结合代表性实施例所描述的其他桥部)在腔106上方延伸(图示为图1B中的重叠部分113)。重叠部分113(也称作去耦区域)具有约0.0μm(即,与腔106没有重叠)至约10.0μm的宽度(x维度)。通常,桥部104(以及在下文中结合代表性实施例所描述的其他桥部)的最佳宽度取决于在有源区114(在本文中也称作FBAR区域)和去耦区域(即,重叠部分113)的边界处本征模的反射。由于重叠部分113中层的厚度更小,在FBAR 100的运行频率下只有用于厚度伸缩运动的合成倏逝模(complex evanescent mode)可以存在。这些合成倏逝模的特征在于特征延迟长度(delay length)和特定传播常数(propagation constant)。桥部104(以及在下文中结合代表性实施例所描述的其他桥部)需要足够宽,以确保在有源区114和去耦区域113的边界处激发的合成倏逝波的适当延迟。宽的桥部允许在运行的频率下存在传播模(propagating mode)的情况下、使得能量穿入到场区(field region)115中的现象减至最少。另一方面,如果桥部104太宽,则可靠性问题会出现并还限制将类似FBAR(未示出)放置在附近(因此不必要地增加了芯片的总面积)。在实际情况下,合成倏逝波的传播分量可以用于找到桥部104的最佳宽度。通常,当桥部104的宽度等于合成倏逝波的四分之一波长的奇数倍时,本征模的反射率可以进一步提高,这可以由Rp和Q达到最大值而证实。通常,根据激励机制的细节,去耦区域113的其他传播模(例如,剪切模和弯曲模)会影响Rp和Q。考虑到这些其他的传播模,可以修改桥部104的宽度。可以以试验方式来确定桥部104的这种最佳宽度。
此外,桥部104(以及在下文中结合代表性实施例所描述的其他桥部)的宽度和位置、以及与腔106的重叠部分113的量受到选择,以改进谐振活塞模(resonant piston mode)的Q因子增强,称作Q因子(Q)。通常,桥部104与FBAR 100的腔106的重叠部分113越大,则Q因子的改进越大,在初始增加之后实现的改进相当少。Q因子的改进必须与机电有效耦合系数kt2的降低相当,该有效耦合系数随着桥部104与腔106的重叠部分113增加而减小。kt2的降低引起包括FBAR的滤波器的插入损耗(S21)降低。就此而言,以试验方式来优化桥部104与腔106的重叠部分113。
桥部104(以及在下文中结合代表性实施例所描述的其他桥部)具有约
Figure BSA00000734227600071
Figure BSA00000734227600072
的高度(图1B的坐标系中的y维度)。特别地,通过在形成桥部104(以及在下文中结合代表性实施例所描述的其他桥部)时去除牺牲材料的处理的限度来确定高度的下限,通过在桥部104(以及在下文中结合代表性实施例所描述的其他桥部)上生长的层的质量、并通过可能的非平面结构的后续处理的质量来确定高度的上限。
示例性地,底电极107和顶电极101由具有约
Figure BSA00000734227600073
至约
Figure BSA00000734227600074
厚度的钨(W)形成。其他材料也可以用于底电极107和顶电极101,这些材料包括但不限于钼(Mo)或双金属材料。示例性地,压电层108由具有约至约
Figure BSA00000734227600076
厚度的氮化铝(AlN)形成。其他材料可以用于压电层108,这些材料包括但不限于氧化锌(ZnO)。可以通过对底电极107上的牺牲材料进行图案化、并在上方形成图示的层来形成桥部104。在根据需要形成FBAR 100的层之后,去除牺牲材料,留下“未填充”(即,包含或填充了空气)的桥部104。在代表性实施例中,例如,用于形成桥部104的牺牲材料与用于形成腔106的牺牲材料相同(例如,磷硅玻璃(PSG))。
在代表性实施例中,桥部104沿着FBAR 100的有源区114限定出周边。有源区114因此包括声学谐振器的设置在腔106上方、并由桥部104所提供的周边来限界(bound)的部分。如本领域普通技术人员应理解的,通过至少部分地由桥部104所产生的声阻抗不连续性而围绕FBAR100的周边、并且通过由于存在空气而引起的声阻抗不连续性而沿着上下方向(腔106),来形成FBAR 100的有源区的边界。因此,在FBAR 100的有源区中有利地提供谐振腔。在图示的实施例中,与腔106一样,桥部104是未填充的(即,包含空气)。在下文中参照图1C更全面描述的其他实施例中,桥部104被填充(即,包含电介质或金属材料以提供期望的声阻抗不连续性),以提供桥部104’。应注意到,桥部104没有必要沿着FBAR 100的全部边沿延伸,因此没有必要沿着FBAR 100的周边延伸。例如,桥部104可以设置在图1A所示的五侧边的FBAR 100的四个“侧边”上。
由桥部104所提供的声阻抗失配引起在边界处声波的反射,声波会转而传播离开有源区并消失而引起能量损耗。桥部104用于将感兴趣的模式限定在FBAR 100的有源区114内,并减少FBAR 100中的能量损耗。减少这样的损耗用于增加FBAR 100的Q-因子。在FBAR 100的滤波器应用中,由于减少能量损耗,所以有利地改进了插入损耗(S21)。
在结合图1A和1B所示并描述的代表性实施例中,桥部104是未填充的(即,包含空气作为声学介质)。图1C示出FBAR 100的截面图,其中桥部“填充”有具有声阻抗的材料,以在FBAR区114和去耦区域113之间的边界处提供明显大的侧向声阻抗不连续性。减少填充桥部104’中的损耗的机制依赖于对作为活塞模激励的一部分而在FBAR区114中电学激发出的传播本征模进行抑制和限制。填充桥部104’的两端提供机械不连续性以允许控制反射模的相位、并提供在主FBAR区114中整体有利的抑制传播本征模。在某些实施例中,桥部104’填充有NEBSG、碳掺杂氧化物(CDO)、碳化硅(SiC)或在去除腔106中设置的牺牲材料时将不会被去除的其他适合的电介质材料。在其他实施例中,桥部104’填充有钨(W)、钼(Mo)、铜(Cu)或铱(Ir)当中的一种。通过由已知方法在底电极107上方形成NEBSG或其他填充材料、并在上方形成FBAR 100的压电层108和顶电极101来制造桥部104’。当通过去除牺牲材料来形成腔106时,桥部104’保持填充有所选的材料。
图2示出图1B所示的代表性实施例的FBAR 100的模拟的Q因子相对于频率、与常规FBAR(没有桥部)的Q因子的对比。如图1B所示,桥部104被去除。为了说明在FBAR 100的有源区114中的模式限制方面的改进,桥部104具有约5.0μm宽度(x维度)、高度、以及约2.0μm的重叠部分113。曲线116示出常规FBAR(没有桥部)的Q因子,线117示出去除桥部104的FBAR 100的Q因子。在左侧竖轴上示出Q因子的相应值。与不包括桥部的常规FBAR相比,(根据运行的频率,例如在1.88GHz下)预期Q因子提高达到约350%。
图2还示出图1所示的代表性实施例的FBAR 100的电阻抗Re[Z]的(模拟的)实数部分、与常规FBAR(没有桥部)的电阻抗Re[Z]的实数部分的对比。电阻抗Re[Z]的实数部分的峰值位置表示给定FBAR的并联谐振频率Fp,而电阻抗Re[Z]的实数部分的峰值表示给定FBAR的并联阻抗Rp。曲线118示出常规FBAR(没有桥部)的电阻抗Re[Z]的实数部分,其中峰值位置在约1.88GHz处,峰值为约1500欧姆。曲线119示出如图1所示的去除桥部104的FBAR 100的电阻抗Re[Z]的实数部分,其中峰值位置在约1.88GHz处,峰值为约5000欧姆。在右侧竖轴上示出电阻抗Re[Z]的实数部分的相应值。因此,与不包括桥部的常规FBAR相比,在包括桥部104的FBAR 100中预期并联阻抗Rp提高约400%。
图3A示出根据代表性实施例的FBAR 300的俯视图。与图1A所示的FBAR 100类似,FBAR 300包括顶电极101,顶电极101具有五(5)个侧边,连接侧102被构造成提供与互联件103进行电连接。互联件103向顶电极101提供电信号,以在FBAR 300的压电层(图1中未示出)中激发出期望的声波。此外,FBAR 300的顶电极101包括设置在所有侧边上的第二桥部302(在图3A的俯视图中看不到连接侧102上的桥部)。如之后更全面描述的,围绕FBAR 300的周边来提供第二桥部302,有助于改进在期望频率范围(例如,FBAR的带通)内的插入损耗和Q因子。
图3B示出根据代表性实施例沿着线3B-3B所取得的FBAR 300的截面图。FBAR 300包括堆叠在衬底105上的多个层,衬底105具有腔106(或布拉格反射镜)。具体地,底电极107设置在衬底105上方并部分地设置在腔106(或布拉格反射镜)上方。例如,如图所示,底电极平坦化层107’也(可选地)设置在衬底上,底电极平坦化层107’可以包括NEBSG。压电层108设置在底电极107上方,顶电极101设置在压电层108上方。如上所述,由底电极107、压电层108和顶电极101所提供的结构形成BAW谐振器。
在图示的实施例中,第一桥部301设置在底电极107和压电层108之间,第二桥部302设置在压电层108和顶电极101之间。第一和第二桥部301、302中的每一者都沿着FBAR 300的所有侧边(即,沿着FBAR 300的周边)设置。例如,在代表性实施例中,第一和第二桥部301、302(以及在下文中结合代表性实施例所描述的其他桥部)没有必要是相同的形状(例如,一个可以具有梯形截面形状,一个可以具有矩形截面形状)。第一和第二桥部301、302(以及在下文中结合代表性实施例所描述的其他桥部)的典型尺寸是宽度约2.0μm至约10.0μm(图3B所示的坐标系的x维度)、以及高度约
Figure BSA00000734227600101
至约
Figure BSA00000734227600102
(图3B所示的坐标系的y维度)。
在某些实施例中,第一和第二桥部301、302(以及在下文中结合代表性实施例所描述的其他桥部)在腔106上方延伸(图示为图3B中的重叠部分113)。如上所述,重叠部分113具有约0.0μm(即,与腔106没有重叠)至约10.0μm的宽度(x维度)。特别地,第一和第二桥部301、302(以及在下文中结合代表性实施例所描述的其他桥部)没有必要是相同的尺寸或定位在相同的相对位置上。例如,图3B中示出重叠部分113对于第一和第二桥部301、302是相同的。但是,这不是必需的,因为不同的构造可以包括第一和第二桥部301、302中的一者与腔106重叠达到大于或小于第一和第二桥部301、302中的另一者的程度。
大体上,第一和第二桥部301、302需要足够宽,以确保在有源区114和去耦区域的边界处合成倏逝波的适当延迟,以在运行的频率下存在传播模的情况下、使得模式穿入到场区115中的现象减至最少。此外,与FBAR 100中的桥部104类似,在由第一和第二桥部301、302竖直限界的区域中允许有的合成倏逝波的传播分量或其他传播模(例如剪切和弯曲模)可以用于通过选择桥部的适当宽度来改进FBAR区114中的本征模的反射率。另一方面,如果第一和第二桥部301、302太宽,可靠性问题会出现并还限制将类似FBAR(未示出)放置在附近(因此不必要地增加了芯片的总面积)。就此而言,可以以试验方式来确定第一和第二桥部301、302的最佳宽度。
此外,如上所述,第一和第二桥部301和302、以及与腔106的重叠部分113的宽度和位置经选择,以改进Q因子。通常,第一和第二桥部301、302中的每一者与FBAR 300的腔106的重叠部分113越大,则Q因子的改进越大,在初始增加之后实现的改进相当少。Q因子的改进必须与机电有效耦合系数kt2的降低相当,该有效耦合系数随着第一和第二桥部301、302与腔106的重叠部分113增加而减小。kt2的降低引起包括FBAR的滤波器的插入损耗(S21)降低。就此而言,可以以试验方式来优化第一和第二桥部301、302与腔106的重叠部分113。
示例性地,第一和第二桥部301、302具有约
Figure BSA00000734227600111
Figure BSA00000734227600112
的高度(图3B的坐标系中的y维度)。特别地,通过在形成第一和第二桥部301、302时去除牺牲材料的处理的限度来确定高度的下限,通过在第一和第二桥部301和302上生长的层的质量、并通过可能的非平面结构的后续处理的质量来确定高度的上限。可以通过分别对底电极107和压电层108上的牺牲材料进行图案化、并在上方形成图示的层来形成第一和第二桥部301、302。在根据需要形成FBAR 300的层之后,去除牺牲材料,留下“未填充”(即,包含空气)的第一和第二桥部301、302。在代表性实施例中,例如,用于形成第一和第二桥部301、302的牺牲材料与用于形成腔106的牺牲材料相同(例如,PSG)。
在代表性实施例中,第一桥部301和第二桥部302沿着FBAR 300的有源区114限定出周边。有源区114因此包括声学谐振器的设置在腔106上方、并由第一桥部301和第二桥部302所提供的周边来限界的部分。如本领域普通技术人员应理解的,通过至少部分地由第一和第二桥部301和302所产生的声阻抗不连续性而围绕FBAR 300的周边、并且通过由于存在空气而引起的声阻抗不连续性而沿着上下方向(腔106),来形成FBAR 300的有源区的边界。因此,在FBAR 300的有源区中有利地提供谐振腔。在某些实施例中,与腔106一样,第一桥部301和第二桥部302是未填充的(即,包含空气)。在下文中更全面描述的其他实施例中(例如,参照图3C-3E),第一桥部301、第二桥部302、或两者填充有材料,以提供期望的声阻抗不连续性。在其他实施例中,第一桥部301、第二桥部302的一部分、或两者可以沿着FBAR 300的某些边沿填充,而沿着FBAR 300的其他边沿未填充(即,包含空气)。
应注意到,第一桥部301、第二桥部302、或两者没有必要沿着FBAR300的全部边沿延伸,因此没有必要沿着FBAR 300的周边延伸。例如,第一桥部301、第二桥部302、或两者可以设置在图3A所示的五侧边的FBAR 300的四个“侧边”上。在某些实施例中,第一桥部301沿着FBAR300的与第二桥部302相同的四个侧边设置。在其他实施例中,第一桥部301沿着FBAR 300的四个侧边(例如,除了连接侧102之外的所有侧边)设置,第二桥部302沿着FBAR 300的四个侧边(但不是与第一桥部301相同的四个侧边)设置(例如,第二桥部302沿着图3A中的连接侧102设置)。
由第一桥部301和第二桥部302所提供的声阻抗失配引起在边界处声波的反射,声波会转而传播离开有源区并消失而引起能量损耗。第一桥部301和第二桥部302用于将感兴趣的模式限定在FBAR 300的有源区114内,并减少FBAR 300中的能量损耗。减少这样的损耗用于增大FBAR300的Q-因子。在FBAR 300的滤波器应用中,由于减少能量损耗,所以有利地改进了插入损耗(S21)。
在结合图3A和3B所示并描述的代表性实施例中,第一桥部301和第二桥部302是未填充的(即,包含空气作为声学介质)。图3C示出FBAR 300的截面图,其中两个桥部都“填充”有材料,以提供声阻抗不连续性来减少损耗。在某些实施例中,第一桥部303和第二桥部304填充有NEBSG、CDO、SiC或在去除腔106中设置的牺牲材料时将不会被去除的其他适合的电介质材料。在其他实施例中,第一桥部303和第二桥部304填充有钨(W)、钼(Mo)、铝(Al)或铱(Ir)当中的一种,或者在去除腔106中设置的牺牲材料时将不会被去除的其他适合的电介质材料。通过由已知方法分别在底电极107和压电层108上方形成NEBSG或其他填充材料、并在上方形成FBAR 300的各个层(如果有的话)来第一和第二桥部303、304。当通过去除牺牲材料来形成腔106时,第一桥部303和第二桥部304保持填充有所选的材料。
图3D示出FBAR 300的截面图,其中第二桥部304填充有材料,以提供声阻抗不连续性来减少损耗,而第一桥部301包含空气(未填充)。通过对压电层108上的材料(例如,NEBSG)进行图案化来制造这种修改形式的FBAR 300,该材料在形成顶电极101之前将不会被去除。通过如上所述对底电极107上的牺牲材料进行图案化、并去除牺牲材料,来形成第一桥部301。
图3E示出FBAR 300的截面图,其中第二桥部302包含空气,而第一桥部303填充有材料,以提供声阻抗不连续性来减少损耗。通过对底电极107上的材料(例如,NEBSG)进行图案化来制造这种修改形式的FBAR300,该材料在形成压电层108之前将不会被去除。通过如上所述对压电层108上的牺牲材料进行图案化、并去除牺牲材料,来形成第二桥部302。
包括单一桥部的实施例
在当前所述的实施例中,在示例性FBAR中提供单一桥部。单一桥部设置在每个实施例中的单一层上,并形成围绕FBAR的有源区的周边。通过将桥部放置在不同的层下方,可以对各种实施例进行研究,以测试有源区(FBAR区域)中的模式与场区中的模式的耦合度。大体上,桥部使具有相对大传播常数(kr)的模式与场区中的模式去耦。如下所述,某些实施例包括“填充的”桥部,某些实施例包括“未填充的”桥部。本实施例的很多细节与上面结合图1A-1E的代表性实施例所述的细节是共同的,图1A-1E示出单一桥部(桥部104)位于压电层(压电层108)下方。大体上,在对包括单一桥部的实施例的描述中将不再重复共同的细节。
图4A-4B示出根据代表性实施例的FBAR 400的截面图。参照图4A,在底电极107下方(衬底105上方)设置桥部401。桥部401是未填充的(即,包含空气)。桥部401设置成围绕FBAR 400的有源区114的周边,并促进限制FBAR 400的有源区114中的模式。为了说明在FBAR400的有源区114中的模式限制方面的改进,例如,桥部401具有约2.0-10.0μm宽度(x维度)、和约
Figure BSA00000734227600131
高度(y维度),并且桥部401在腔106上方的重叠部分113为约0μm至约10.0μm。与不包括桥部的常规FBAR相比,(根据运行的频率,例如在1.88GHz下)预期Q因子提高约10%至约50%。
图4B示出示出设置在FBAR 400的底电极107下方的桥部402。桥部402“填充”有材料(例如,NEBSG或上述其他材料),以提供声阻抗不连续性。桥部402设置成围绕FBAR 400的有源区114的周边,并促进限制FBAR 400的有源区114中的模式。使用桥部402,预期有类似于针对桥部401所预期的Q因子改进。有利地,使用填充的桥部提供更坚固的结构。
在替换实施例中,可以按照与上文参照图4A和4B中的桥部401、402描述的大致相同方式,在顶电极101下方(压电层108上方)设置单一填充或未填充的桥部。Choy等人的公开于2010年12月30日的美国专利申请公开20100327994描述了在顶电极下方形成的桥部的示例,该专利申请的公开文本通过引用结合于本说明书中。
包括两个桥部的实施例
在当前所述的实施例中,在示例性FBAR中提供两个桥部。在每个实施例中,一个桥部设置在FBAR的一个层中,第二桥部设置在FBAR的另一层中。桥部尽管形状不是圆形、但大体上是同心的,并且桥部设置成围绕包围FBAR的有源区的周边。通过将桥部放置在不同组合的层下方,可以对各种实施例进行研究,以测试有源区114(FBAR区域)中的模式与场区115中的模式的耦合度。大体上,桥部使具有相对大传播常数(kr)的模式与场区115中的模式去耦。如下所述,各种实施例包括“填充的”和“未填充的”桥部的组合。本实施例的很多细节与上面结合图3A-3D的代表性实施例所述的细节是共同的,图3A-3D示出分别位于压电层(压电层108)下方和顶电极(顶电极101)下方的两个桥部(桥部104和桥部110)位于压电层(压电层108)下方。
图5A-5D示出根据代表性实施例的FBAR 500的截面图。FBAR 500包括设置在衬底105上的多个层,衬底105具有腔106。FBAR 500的很多方面与FBAR 100-400是共同的,并且将不再重复,以避免使对当前所述的代表性实施例的描述难理解。
图5A示出设置在底电极107下方(衬底105上方)的第一桥部501、以及设置在压电层108下方(底电极107上方)的第二桥部502。第一桥部501和第二桥部502都是未填充的(即,包含空气)。第一和第二桥部501、502设置成沿着FBAR 500的有源区114的周边,并促进限制FBAR500的有源区114中的模式。为了说明在FBAR 500的有源区中的模式限制方面的改进,例如,第一和第二桥部501和502各自具有约2.0μm至约10.0μm宽度(x维度)、和约
Figure BSA00000734227600151
高度(y维度),并且第一和第二桥部501和502在腔106上方的重叠部分113为约0μm至约10.0μm。与不包括桥部的常规FBAR相比,例如,由于通过使用代表性实施例的第一和第二桥部501、502而在FBAR 500中对模式增加限制,(根据运行的频率,例如在1.88GHz下)预期Q因子提高约200%至约400%。
图5B示出设置在底电极107下方(衬底105上方)的填充(例如,填充有NEBSG或其他填充材料)的第一桥部503、以及设置在压电层108下方(底电极107上方)的同样填充的第二桥部504。第一和第二桥部503、504设置成围绕FBAR 500的有源区的周边,并促进限制FBAR 500的有源区中的模式。对于与上文参照图5A描述的第一和第二桥部501、502具有相同宽度、高度、以及相同的与腔106的重叠部分113的第一和第二桥部503、504,预期有类似的Q因子改进。有利地,使用两个填充的桥部提供比使用未填充的桥部更坚固的结构。
图5C和5D示出一个桥部未填充而另一桥部被填充的实施例。图5C示出设置在底电极107下方(衬底105上方)的未填充的第一桥部501、以及设置在压电层108下方(底电极107上方)的填充(例如,填充有NEBSG或其他填充材料)的第二桥部504。图5D示出设置在底电极107下方(衬底105上方)的填充(例如,填充有NEBSG或其他填充材料)的第一桥部503、以及设置在压电层108下方(底电极107上方)的未填充的第二桥部502。图5C中的第一和第二桥部501和504、以及图5D中的第一和第二桥部503和502设置成围绕FBAR 500的有源区的周边,并促进限制FBAR 500的有源区中的模式。对于与上文参照图5A描述的第一和第二桥部501、502具有相同宽度、高度、以及相同的与腔106的重叠部分113的第一和第二桥部501、504以及503、502,预期有类似的Q因子改进。有利地,使用填充的桥部提供比使用未填充的桥部更坚固的结构。
图6A-6D示出根据代表性实施例的FBAR 600的截面图。FBAR 600包括设置在衬底105上的多个层,衬底105具有腔106。FBAR 600的很多方面与FBAR 100-500是共同的,并且将不再重复,以避免使对当前所述的代表性实施例的描述难理解。
图6A示出设置在底电极107下方(衬底105上方)的第一桥部601、以及设置在顶电极101下方(压电层108上方)的第二桥部602。第一桥部601和第二桥部602都是未填充的(即,包含空气)。第一和第二桥部601、602设置成沿着FBAR 600的有源区114的周边,并促进限制FBAR600的有源区114中的模式。为了说明在FBAR 600的有源区中的模式限制方面的改进,例如,第一和第二桥部601和602各自具有约2.0μm至约10.0μm宽度(x维度)、和约
Figure BSA00000734227600161
高度(y维度),并且第一和第二桥部601和602在腔106上方的重叠部分113为约0μm至约10.0μm。与不包括桥部的常规FBAR相比,例如,由于通过使用代表性实施例的第一和第二桥部601、602而在FBAR 600中对模式增加限制,(根据运行的频率,例如在1.88GHz下)预期Q因子提高约200%至约400%。
图6B示出设置在底电极107下方(衬底105上方)的填充(例如,填充有NEBSG或其他填充材料)的第一桥部603、以及设置在顶电极101下方(压电层108上方)的同样填充的第二桥部604。第一和第二桥部603、604设置成围绕FBAR 600的有源区的周边,并促进限制FBAR 600的有源区中的模式。对于与上文参照图6A描述的第一和第二桥部601、602具有相同宽度、高度、以及相同的与腔106的重叠部分113的第一和第二桥部603、604,预期有类似的Q因子改进。有利地,使用两个填充的桥部提供比使用未填充的桥部更坚固的结构。
图6C和6D示出一个桥部未填充而另一桥部被填充的实施例。图6C示出设置在底电极107下方(衬底105上方)的未填充的第一桥部601、以及设置在顶电极101下方(压电层108上方)的填充(例如,填充有NEBSG或其他填充材料)的第二桥部604。图6D示出设置在底电极107下方(衬底105上方)的填充(例如,填充有NEBSG或其他填充材料)的第一桥部603、以及设置在顶电极101下方(压电层108上方)的未填充的第二桥部602。图6C中的第一和第二桥部601和604、以及图6D中的第一和第二桥部603和602设置成围绕FBAR 600的有源区的周边,并促进限制FBAR 600的有源区中的模式。对于与上文参照图6A描述的第一和第二桥部601、602具有相同宽度、高度、以及相同的与腔106的重叠部分113的第一和第二桥部601、604以及603、602,预期有类似的Q因子改进。有利地,使用填充的桥部提供比使用未填充的桥部更坚固的结构。
在不脱离本发明的范围的情况下,每个FBAR 100-600可以包括各种附加特征。例如,在FBAR的有源区(例如,有源区114)中在顶电极(例如顶电极101)的顶表面上可以包括内部凸起区域和/或外部凸起区域。内部凸起区域可以与有源区的边缘、或者与外部凸起区域的内边缘分开一间隙。在Shirakawa等人递交于2011年3月29日的题为“StackedBulk Acoustic Resonator and Method of Fabricating Same”的共有美国专利申请No.13/074,094中,描述了这种内部和外部凸起区域的细节(包括内部和外部凸起区域的示例性厚度和宽度尺寸、以及相应间隙的宽度),这份专利申请通过引用结合于本说明书中。桥部、内部凸起区域和/或外部凸起区域的组合进一步改进示例性FBAR 100-600的有源区(例如有源区114)中的模式限制。
根据示例性实施例,描述了包括桥部的BAW谐振器结构和它们的制造方法。本领域普通技术人员可理解,可以有根据本发明的很多修改,且这些修改保持在权利要求书的范围内。对于本领域普通技术人员来说,在查阅这里的说明书、附图和权利要求之后,这些和其他的修改形式将变得显而易见。因此,本发明在权利要求书的精神和范围之内不受限制。

Claims (20)

1.一种薄膜体声学谐振器(FBAR)结构,其包括:
第一电极,其设置在衬底上;
压电层,其设置在所述第一电极上;
第二电极,其设置在所述压电层上;和
桥部,其设置在所述第一电极和所述压电层之间。
2.根据权利要求1所述的FBAR结构,其中,所述桥部包括未填充的桥部,所述未填充的桥部包含空气。
3.根据权利要求1所述的FBAR结构,其中,所述桥部包括填充的桥部,所述填充的桥部包含电介质材料。
4.根据权利要求3所述的FBAR结构,其中,所述电介质材料包括下列项之一:不可蚀刻硅硼酸盐玻璃(NEBSG)、碳掺杂二氧化硅(CDO)、碳化硅(SiC)。
5.根据权利要求3所述的FBAR结构,其中,所述桥部包括填充的桥部,所述填充的桥部包含金属。
6.根据权利要求3所述的FBAR结构,其中,所述金属是钨(W)、钼(Mo)、铜(Cu)或铱(Ir)中的一者。
7.根据权利要求1所述的FBAR结构,其中,所述桥部沿着FBAR的周边设置。
8.根据权利要求1所述的FBAR结构,其中,所述桥部限定了FBAR的有源区的周边。
9.根据权利要求1所述的FBAR结构,其中,所述桥部具有梯形截面形状。
10.一种薄膜体声学谐振器(FBAR)结构,其包括:
第一电极,其设置在衬底上;
压电层,其设置在所述第一电极上;
第二电极,其设置在所述压电层上;
第一桥部,其设置在所述第一电极和所述压电层之间;和
第二桥部,其设置在所述压电层和所述第二电极之间。
11.根据权利要求10所述的FBAR结构,其中,所述第一桥部和所述第二桥部中的每一者包括未填充的桥部,所述未填充的桥部包含空气。
12.根据权利要求10所述的FBAR结构,其中,所述第一桥部和所述第二桥部中的每一者包括填充的桥部,所述填充的桥部包含具有声阻抗的填充材料。
13.根据权利要求10所述的FBAR结构,其中,所述第一桥部包括未填充的桥部,所述未填充的桥部包含空气,并且
其中,所述第二桥部包括填充的桥部,所述填充的桥部包含具有声阻抗的填充材料。
14.根据权利要求10所述的FBAR结构,其中,所述第一桥部包括填充的桥部,所述填充的桥部包含具有声阻抗的填充材料,并且
其中,所述第二桥部包括未填充的桥部,所述未填充的桥部包含空气。
15.根据权利要求10所述的FBAR结构,其中,所述第一桥部沿着FBAR的第一周边设置,所述第二桥部沿着FBAR的第二周边设置。
16.根据权利要求15所述的FBAR结构,其中,所述第二周边与所述第一周边相同。
17.根据权利要求15所述的FBAR结构,其中,所述第二周边与所述第一周边不同。
18.一种薄膜体声学谐振器(FBAR)结构,其包括:
第一电极,其设置在衬底上;
压电层,其设置在所述第一电极上;
第二电极,其设置在所述压电层上;和
第一桥部,其设置在第一衬底和所述第一电极之间。
19.根据权利要求18所述的FBAR结构,还包括:
第二桥部,其设置在所述第一电极和所述压电层之间。
20.根据权利要求18所述的FBAR结构,还包括:
第二桥部,其设置在所述压电层和所述第二电极之间。
CN201210195961.3A 2011-06-02 2012-06-04 包括桥部的薄膜体声波谐振器 Active CN102811031B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/151,631 US9203374B2 (en) 2011-02-28 2011-06-02 Film bulk acoustic resonator comprising a bridge
US13/151,631 2011-06-02

Publications (2)

Publication Number Publication Date
CN102811031A true CN102811031A (zh) 2012-12-05
CN102811031B CN102811031B (zh) 2016-11-30

Family

ID=

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104639087A (zh) * 2013-11-11 2015-05-20 太阳诱电株式会社 压电薄膜共振器、滤波器和双工器
CN104716925A (zh) * 2013-12-17 2015-06-17 太阳诱电株式会社 压电薄膜谐振器及其制造方法、滤波器以及双工器
CN108023563A (zh) * 2016-11-01 2018-05-11 稳懋半导体股份有限公司 具质量调整结构的体声波共振器及其应用于体声波滤波器
CN109167585A (zh) * 2018-07-26 2019-01-08 开元通信技术(厦门)有限公司 体声波谐振器及其制作方法、滤波器
CN109714016A (zh) * 2017-10-25 2019-05-03 安华高科技股份有限公司 体声波谐振器
CN110061712A (zh) * 2018-12-26 2019-07-26 天津大学 包括环形凸起梁檐结构的声学谐振器、滤波器和电子设备
CN110114971A (zh) * 2019-03-28 2019-08-09 深圳市汇顶科技股份有限公司 晶体振荡器及其制作方法和设备
CN110635775A (zh) * 2019-09-10 2019-12-31 北京汉天下微电子有限公司 谐振器及其制造方法
CN110868170A (zh) * 2019-04-23 2020-03-06 中国电子科技集团公司第十三研究所 一种声谐振器
CN110868178A (zh) * 2019-10-11 2020-03-06 中国电子科技集团公司第十三研究所 一种谐振器封装系统
CN110868184A (zh) * 2019-04-23 2020-03-06 中国电子科技集团公司第十三研究所 体声波谐振器和半导体器件
CN110994099A (zh) * 2019-12-06 2020-04-10 北京汉天下微电子有限公司 滤波器封装结构及其制造方法
CN111010112A (zh) * 2019-06-04 2020-04-14 天津大学 台阶结构的空隙被部分填充的谐振器、滤波器及电子设备
CN111010121A (zh) * 2019-10-18 2020-04-14 天津大学 带不导电插入层的体声波谐振器、滤波器和电子设备
CN111010135A (zh) * 2019-10-26 2020-04-14 诺思(天津)微系统有限责任公司 体声波谐振器、滤波器及电子设备
CN111049495A (zh) * 2019-12-30 2020-04-21 中国电子科技集团公司第五十五研究所 一种高品质因数的薄膜体声波谐振器的优选结构
CN111082774A (zh) * 2019-10-23 2020-04-28 诺思(天津)微系统有限责任公司 电极具有空隙层的体声波谐振器、滤波器及电子设备
WO2020098478A1 (zh) * 2018-11-14 2020-05-22 天津大学 体声波谐振器、滤波器和电子设备
CN111371425A (zh) * 2018-12-26 2020-07-03 天津大学 顶电极连接部设有延伸结构的谐振器、滤波器和电子设备
CN111384911A (zh) * 2018-12-31 2020-07-07 天津大学 基于梁檐尺寸调整声学谐振器性能的装置和方法
CN111492496A (zh) * 2017-12-28 2020-08-04 日本碍子株式会社 压电性材料基板与支撑基板的接合体以及弹性波元件
WO2020199508A1 (zh) * 2019-04-04 2020-10-08 中芯集成电路(宁波)有限公司上海分公司 体声波谐振器及其制造方法和滤波器、射频通信系统
CN112003581A (zh) * 2020-08-18 2020-11-27 武汉衍熙微器件有限公司 体声波谐振器
WO2022062910A1 (zh) * 2020-09-22 2022-03-31 诺思(天津)微系统有限责任公司 体声波谐振器及组件、机电耦合系数差值调整方法、滤波器、电子设备
WO2022228384A1 (zh) * 2021-04-27 2022-11-03 诺思(天津)微系统有限责任公司 体声波谐振器、滤波器及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1845453A (zh) * 2005-04-06 2006-10-11 安捷伦科技有限公司 使用填充凹进区的声谐振器的性能增强
US7235915B2 (en) * 2003-11-18 2007-06-26 Matsushita Electric Industrial Co., Ltd. Acoustic resonator device, filter device, manufacturing method for acoustic resonator device, and communication apparatus
US7388454B2 (en) * 2004-10-01 2008-06-17 Avago Technologies Wireless Ip Pte Ltd Acoustic resonator performance enhancement using alternating frame structure
CN101645699A (zh) * 2008-08-08 2010-02-10 富士通株式会社 压电薄膜谐振器、使用压电薄膜谐振器的滤波器和复用器
CN101931380A (zh) * 2009-06-24 2010-12-29 安华高科技无线Ip(新加坡)私人有限公司 包括桥部的声学谐振器结构
US20110084779A1 (en) * 2009-10-12 2011-04-14 Hao Zhang Bulk acoustic wave resonator and method of fabricating same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235915B2 (en) * 2003-11-18 2007-06-26 Matsushita Electric Industrial Co., Ltd. Acoustic resonator device, filter device, manufacturing method for acoustic resonator device, and communication apparatus
US7388454B2 (en) * 2004-10-01 2008-06-17 Avago Technologies Wireless Ip Pte Ltd Acoustic resonator performance enhancement using alternating frame structure
CN1845453A (zh) * 2005-04-06 2006-10-11 安捷伦科技有限公司 使用填充凹进区的声谐振器的性能增强
US7369013B2 (en) * 2005-04-06 2008-05-06 Avago Technologies Wireless Ip Pte Ltd Acoustic resonator performance enhancement using filled recessed region
CN101645699A (zh) * 2008-08-08 2010-02-10 富士通株式会社 压电薄膜谐振器、使用压电薄膜谐振器的滤波器和复用器
US20100033063A1 (en) * 2008-08-08 2010-02-11 Fujitsu Limited Piezoelectric thin0film resonator, filter using the same, and duplexer using the same
CN101931380A (zh) * 2009-06-24 2010-12-29 安华高科技无线Ip(新加坡)私人有限公司 包括桥部的声学谐振器结构
US20110084779A1 (en) * 2009-10-12 2011-04-14 Hao Zhang Bulk acoustic wave resonator and method of fabricating same

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104639087B (zh) * 2013-11-11 2017-10-31 太阳诱电株式会社 压电薄膜共振器、滤波器和双工器
CN104639087A (zh) * 2013-11-11 2015-05-20 太阳诱电株式会社 压电薄膜共振器、滤波器和双工器
CN104716925A (zh) * 2013-12-17 2015-06-17 太阳诱电株式会社 压电薄膜谐振器及其制造方法、滤波器以及双工器
CN104716925B (zh) * 2013-12-17 2018-02-13 太阳诱电株式会社 压电薄膜谐振器及其制造方法、滤波器以及双工器
CN108023563A (zh) * 2016-11-01 2018-05-11 稳懋半导体股份有限公司 具质量调整结构的体声波共振器及其应用于体声波滤波器
CN109714016A (zh) * 2017-10-25 2019-05-03 安华高科技股份有限公司 体声波谐振器
CN111492496B (zh) * 2017-12-28 2024-01-12 日本碍子株式会社 压电性材料基板与支撑基板的接合体以及弹性波元件
CN111492496A (zh) * 2017-12-28 2020-08-04 日本碍子株式会社 压电性材料基板与支撑基板的接合体以及弹性波元件
CN109167585A (zh) * 2018-07-26 2019-01-08 开元通信技术(厦门)有限公司 体声波谐振器及其制作方法、滤波器
WO2020098478A1 (zh) * 2018-11-14 2020-05-22 天津大学 体声波谐振器、滤波器和电子设备
CN111193481A (zh) * 2018-11-14 2020-05-22 天津大学 体声波谐振器、滤波器和电子设备
CN111371425A (zh) * 2018-12-26 2020-07-03 天津大学 顶电极连接部设有延伸结构的谐振器、滤波器和电子设备
CN111371425B (zh) * 2018-12-26 2024-01-26 天津大学 顶电极连接部设有延伸结构的谐振器、滤波器和电子设备
CN110061712A (zh) * 2018-12-26 2019-07-26 天津大学 包括环形凸起梁檐结构的声学谐振器、滤波器和电子设备
CN111384911A (zh) * 2018-12-31 2020-07-07 天津大学 基于梁檐尺寸调整声学谐振器性能的装置和方法
CN110114971A (zh) * 2019-03-28 2019-08-09 深圳市汇顶科技股份有限公司 晶体振荡器及其制作方法和设备
CN111786649A (zh) * 2019-04-04 2020-10-16 中芯集成电路(宁波)有限公司上海分公司 体声波谐振器及其制造方法和滤波器、射频通信系统
CN111786649B (zh) * 2019-04-04 2022-03-04 中芯集成电路(宁波)有限公司上海分公司 体声波谐振器及其制造方法和滤波器、射频通信系统
WO2020199508A1 (zh) * 2019-04-04 2020-10-08 中芯集成电路(宁波)有限公司上海分公司 体声波谐振器及其制造方法和滤波器、射频通信系统
CN110868184A (zh) * 2019-04-23 2020-03-06 中国电子科技集团公司第十三研究所 体声波谐振器和半导体器件
CN110868170B (zh) * 2019-04-23 2024-02-13 中国电子科技集团公司第十三研究所 一种声谐振器
CN110868170A (zh) * 2019-04-23 2020-03-06 中国电子科技集团公司第十三研究所 一种声谐振器
CN111010112B (zh) * 2019-06-04 2023-12-15 天津大学 台阶结构的空隙被部分填充的谐振器、滤波器及电子设备
CN111010112A (zh) * 2019-06-04 2020-04-14 天津大学 台阶结构的空隙被部分填充的谐振器、滤波器及电子设备
CN110635775A (zh) * 2019-09-10 2019-12-31 北京汉天下微电子有限公司 谐振器及其制造方法
CN110635775B (zh) * 2019-09-10 2023-09-12 苏州汉天下电子有限公司 谐振器及其制造方法
CN110868178A (zh) * 2019-10-11 2020-03-06 中国电子科技集团公司第十三研究所 一种谐振器封装系统
CN110868178B (zh) * 2019-10-11 2024-04-16 中国电子科技集团公司第十三研究所 一种谐振器封装系统
CN111010121A (zh) * 2019-10-18 2020-04-14 天津大学 带不导电插入层的体声波谐振器、滤波器和电子设备
CN111082774A (zh) * 2019-10-23 2020-04-28 诺思(天津)微系统有限责任公司 电极具有空隙层的体声波谐振器、滤波器及电子设备
CN111010135A (zh) * 2019-10-26 2020-04-14 诺思(天津)微系统有限责任公司 体声波谐振器、滤波器及电子设备
CN110994099A (zh) * 2019-12-06 2020-04-10 北京汉天下微电子有限公司 滤波器封装结构及其制造方法
CN111049495A (zh) * 2019-12-30 2020-04-21 中国电子科技集团公司第五十五研究所 一种高品质因数的薄膜体声波谐振器的优选结构
CN112003581A (zh) * 2020-08-18 2020-11-27 武汉衍熙微器件有限公司 体声波谐振器
WO2022062910A1 (zh) * 2020-09-22 2022-03-31 诺思(天津)微系统有限责任公司 体声波谐振器及组件、机电耦合系数差值调整方法、滤波器、电子设备
WO2022228384A1 (zh) * 2021-04-27 2022-11-03 诺思(天津)微系统有限责任公司 体声波谐振器、滤波器及电子设备

Similar Documents

Publication Publication Date Title
US9099983B2 (en) Bulk acoustic wave resonator device comprising a bridge in an acoustic reflector
US9136818B2 (en) Stacked acoustic resonator comprising a bridge
US9203374B2 (en) Film bulk acoustic resonator comprising a bridge
US9571064B2 (en) Acoustic resonator device with at least one air-ring and frame
US9083302B2 (en) Stacked bulk acoustic resonator comprising a bridge and an acoustic reflector along a perimeter of the resonator
US9401691B2 (en) Acoustic resonator device with air-ring and temperature compensating layer
US9148117B2 (en) Coupled resonator filter comprising a bridge and frame elements
US9048812B2 (en) Bulk acoustic wave resonator comprising bridge formed within piezoelectric layer
CN102739191B (zh) 包括桥部的堆叠式声学谐振器
US9748918B2 (en) Acoustic resonator comprising integrated structures for improved performance
US9490418B2 (en) Acoustic resonator comprising collar and acoustic reflector with temperature compensating layer
US9691963B2 (en) Capacitive coupled resonator and filter device with comb electrodes and support pillars separating piezoelectric layer
US9571063B2 (en) Acoustic resonator device with structures having different apodized shapes
US9425764B2 (en) Accoustic resonator having composite electrodes with integrated lateral features
US9608594B2 (en) Capacitive coupled resonator device with air-gap separating electrode and piezoelectric layer
US9490770B2 (en) Acoustic resonator comprising temperature compensating layer and perimeter distributed bragg reflector
JP2013005446A (ja) 非圧電層を備えたバルク音響共振器
CN103001602A (zh) 具有多个横向特征的声谐振器
US9698754B2 (en) Capacitive coupled resonator and filter device with comb electrodes and support frame separation from piezoelectric layer
CN110868182B (zh) 谐振器和滤波器
JP2015165659A (ja) アルミニウムスカンジウム窒化物および温度補償要素を含む音響共振器
JP2009290369A (ja) Baw共振装置
CN102811031A (zh) 包括桥部的薄膜体声波谐振器
US20210367577A1 (en) Micro-acoustic device with reflective phononic crystal and method of manufacture
KR20150101961A (ko) 적어도 하나의 에어-링 및 프레임을 갖는 음향 공진기 디바이스

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
ASS Succession or assignment of patent right

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) CORPORAT

Free format text: FORMER OWNER: AVAGO TECHNOLOGIES WIRELESS IP

Effective date: 20130507

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20130507

Address after: Singapore Singapore

Applicant after: Avago Technologies Fiber IP Singapore Pte. Ltd.

Address before: Singapore Singapore

Applicant before: Avago Technologies Wireless IP

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20181029

Address after: Singapore Singapore

Patentee after: Annwa high tech Limited by Share Ltd

Address before: Singapore Singapore

Patentee before: Avago Technologies Fiber IP Singapore Pte. Ltd.

TR01 Transfer of patent right