WO2022062910A1 - 体声波谐振器及组件、机电耦合系数差值调整方法、滤波器、电子设备 - Google Patents

体声波谐振器及组件、机电耦合系数差值调整方法、滤波器、电子设备 Download PDF

Info

Publication number
WO2022062910A1
WO2022062910A1 PCT/CN2021/117474 CN2021117474W WO2022062910A1 WO 2022062910 A1 WO2022062910 A1 WO 2022062910A1 CN 2021117474 W CN2021117474 W CN 2021117474W WO 2022062910 A1 WO2022062910 A1 WO 2022062910A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resonator
acoustic
acoustic resistance
electromechanical coupling
Prior art date
Application number
PCT/CN2021/117474
Other languages
English (en)
French (fr)
Inventor
庞慰
班圣光
杨清瑞
张孟伦
Original Assignee
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺思(天津)微系统有限责任公司 filed Critical 诺思(天津)微系统有限责任公司
Publication of WO2022062910A1 publication Critical patent/WO2022062910A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • Embodiments of the present disclosure relate to the field of semiconductors, and in particular, to a bulk acoustic wave resonator and an assembly thereof, a method for adjusting the electromechanical coupling coefficient of a bulk acoustic wave resonator, and a method for adjusting the electromechanical coupling of a resonator in a bulk acoustic wave resonator assembly A method of coefficient difference, and a filter and an electronic device.
  • the requirements for data transmission rate are getting higher and higher.
  • the high utilization rate of spectrum resources and the complexity of spectrum is the high utilization rate of spectrum resources and the complexity of spectrum.
  • the complexity of the communication protocol puts forward strict requirements for various performances of the radio frequency system.
  • the radio frequency filter plays a crucial role, which can filter out out-of-band interference and noise to meet the requirements of the radio frequency system and the Communication protocol requirements for signal-to-noise ratio.
  • FBAR thin film bulk acoustic resonator
  • the series resonators and parallel resonators of the prior art filters work together to form the filter passband characteristics.
  • the roll-off characteristic on the right side of the passband of the filter can be effectively improved. It is easy to achieve good roll-off characteristics by applying a small Kt 2 resonator to the filter, but once the design indicators (bandwidth, insertion loss, out-of-band rejection, etc.) are determined, the Kt 2 of the resonator is basically determined, so that the filter bandwidth and filter The good roll-off characteristics of the resonator are contradictory.
  • the present disclosure is made to alleviate or solve at least one aspect of the above-mentioned problems in the prior art.
  • a bulk acoustic wave resonator comprising:
  • the piezoelectric layer includes a first layer and a second layer, an acoustic resistance layer is arranged between the first layer and the second layer, and the inner edge of the acoustic resistance layer is located inside the boundary of the acoustic mirror in the horizontal direction, and the acoustic resistance layer is located inside the boundary of the acoustic mirror.
  • the acoustic resistance of the resistive layer is different from the acoustic resistance of the piezoelectric layer;
  • the material of the first layer is different from the material of the second layer.
  • Embodiments of the present disclosure also relate to a bulk acoustic wave resonator assembly, comprising at least two bulk acoustic wave resonators, wherein at least one bulk acoustic wave resonator is the above-mentioned resonator.
  • Embodiments of the present disclosure also relate to a method of adjusting an electromechanical coupling coefficient of a bulk acoustic wave resonator, the resonator including a substrate, an acoustic mirror, a bottom electrode, a piezoelectric layer, and a top electrode, the piezoelectric layer including a first layer and a second Two layers, an acoustic resistance layer is arranged between the first layer and the second layer, and the method includes the steps of: making the materials of the first layer and the second layer different to adjust the electromechanical coupling coefficient.
  • Embodiments of the present disclosure also relate to a method of adjusting the difference in electromechanical coupling coefficients of resonators within a bulk acoustic wave resonator assembly, the assembly including at least a first resonator and a second resonator, each resonator including a substrate, Acoustic mirror, bottom electrode, piezoelectric layer and top electrode, the piezoelectric layer includes a first layer and a second layer, an acoustic resistance layer is arranged between the first layer and the second layer, and the acoustic resistance of the acoustic resistance layer is different from all the acoustic resistance of the piezoelectric layer, the method comprising the steps of: selecting materials for the first and second layers of the first resonator and the second resonator to adjust the electromechanical coupling coefficients of the first resonator and the second resonator difference.
  • Embodiments of the present disclosure also relate to a filter comprising the resonator or assembly described above.
  • Embodiments of the present disclosure also relate to an electronic device comprising the above-mentioned filter or the above-mentioned resonator or the above-mentioned assembly.
  • FIG. 1 is a schematic top view of a bulk acoustic wave resonator according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional view of a bulk acoustic wave resonator along the MOM' line in FIG. 1 according to an exemplary embodiment of the present disclosure
  • FIG. 3 exemplarily shows the relationship between the width of the AW structure and the electromechanical coupling coefficient
  • FIG. 4 exemplarily shows the width of the AW structure and the parallel resonance impedance of the bulk acoustic wave resonator in the case where the AW structure is provided in the piezoelectric layer and in the case where the AW structure is provided between the top electrode and the piezoelectric layer, respectively.
  • 5A-5G exemplarily show schematic cross-sectional views of the fabrication process of the bulk acoustic wave resonator in FIG. 2 .
  • Substrate, optional materials are single crystal silicon, gallium nitride, gallium arsenide, sapphire, quartz, silicon carbide, diamond, etc.
  • Acoustic mirror which can be a cavity, or a Bragg reflector and other equivalent forms.
  • the embodiment of the present disclosure adopts the form of a cavity.
  • a release channel which communicates the release hole 90 with the cavity of the acoustic mirror.
  • the sacrificial layer 21 Sacrificial layer, when the acoustic mirror is in the form of a cavity, it is set in the cavity during the process of preparing the resonator, and is released in the subsequent process to form the cavity of the acoustic mirror.
  • the sacrificial layer 21 can be optionally two. Silicon oxide, doped silicon dioxide, polysilicon, amorphous silicon and other materials.
  • Bottom electrode (including bottom electrode pins), the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a composite of the above metals or their alloys.
  • the first piezoelectric layer which can be a single crystal piezoelectric material, optional, such as: single crystal aluminum nitride, single crystal gallium nitride, single crystal lithium niobate, single crystal lead zirconate titanate (PZT), Materials such as single crystal potassium niobate, single crystal quartz film, or single crystal lithium tantalate can also be polycrystalline piezoelectric materials (corresponding to single crystals, non-single crystal materials), optional, such as polycrystalline nitridation
  • Aluminum, zinc oxide, PZT, etc. can also be a rare earth element doped material containing a certain atomic ratio of the above materials, for example, can be doped aluminum nitride, and doped aluminum nitride contains at least one rare earth element, such as scandium (Sc) , Yttrium (Y), Magnesium (Mg), Titanium (Ti), Lanthanum (La), Cerium (Ce), Praseodymium (Pr), Neody
  • the second piezoelectric layer may be a single crystal piezoelectric material, optional, such as: single crystal aluminum nitride, single crystal gallium nitride, single crystal niobate Lithium, single crystal lead zirconate titanate (PZT), single crystal potassium niobate, single crystal quartz film, or single crystal lithium tantalate and other materials can also be polycrystalline piezoelectric materials (corresponding to single crystal, non-single crystal material), optional, such as polycrystalline aluminum nitride, zinc oxide, PZT, etc., or a rare earth element doped material containing a certain atomic ratio of the above materials, for example, it can be doped aluminum nitride, doped aluminum nitride Contains at least one rare earth element, such as scandium (Sc), yttrium (Y), magnesium (Mg), titanium (Ti), lanthanum (La), cerium (Ce),
  • Top electrode (including top electrode pins), the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a composite of the above metals or their alloys.
  • Passivation layer or process layer which can be aluminum nitride, silicon nitride or silicon dioxide, etc.
  • Acoustic resistance layer the acoustic resistance of which is different from the acoustic resistance of the first piezoelectric layer 41 and the second piezoelectric layer 42 .
  • it is in the form of an air gap (ie, AW), but may also be in the form of a solid dielectric layer, such as silicon dioxide or its dopants, or silicon nitride or its dopants.
  • the acoustic resistance of the acoustic resistance layer may also be greater than the acoustic resistance of the first piezoelectric layer and the second piezoelectric layer.
  • the sacrificial layer 81 when the acoustic resistance layer is an air gap, it is set at the position corresponding to the air gap during the process of preparing the resonator, and is released in the subsequent process to form the air gap, the sacrificial layer 81 is optional Silicon dioxide, doped silicon dioxide, polysilicon, amorphous silicon and other materials.
  • FIG. 1 is a schematic top view of a bulk acoustic wave resonator according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional view of the bulk acoustic wave resonator along line MM' in FIG. 1 according to an exemplary embodiment of the present disclosure .
  • the BAW resonator includes a substrate 10, an acoustic mirror cavity 20 disposed in the substrate 10, a bottom electrode 30, a top electrode 50, and a piezoelectric layer including a first piezoelectric layer 41 and a piezoelectric layer.
  • the second piezoelectric layer 42 The second piezoelectric layer 42 .
  • An acoustic resistance layer 80 in the form of an air gap is provided between the first piezoelectric layer and the second piezoelectric layer.
  • Passivation layer 70 is also shown in FIGS. 1-2.
  • FIG. 4 exemplarily shows the width of the AW structure and the parallel resonance impedance of the bulk acoustic wave resonator in the case where the AW structure is provided in the piezoelectric layer and in the case where the AW structure is provided between the top electrode and the piezoelectric layer, respectively. diagram of the relationship between them.
  • the abscissa is the width of the AW structure (unit is ⁇ m)
  • the ordinate is the parallel resonance impedance Rp of the resonator (unit is ohm).
  • the broken line represents the case where the AW structure is provided between the top electrode and the piezoelectric layer
  • the solid line represents the case where the AW structure is provided in the piezoelectric layer.
  • the value of the parallel resonance impedance when the AW structure is in the piezoelectric layer is significantly higher than that of the parallel resonance impedance when the AW structure is between the piezoelectric layer and the top electrode. It can be seen that by disposing the acoustic resistance layer 80 between the first piezoelectric layer 41 and the second piezoelectric layer 42 , the performance of the resonator can be effectively improved compared to disposing the acoustic resistance layer between the top electrode and the piezoelectric layer.
  • the value of the electromechanical coupling coefficient of the resonator can also be adjusted. Since the first piezoelectric layer 41 and the second piezoelectric layer 42 are prepared separately, the two piezoelectric layers can be prepared as different materials, so that the electromechanical coupling coefficient of the resonator can be freely adjusted.
  • the first piezoelectric layer 41 is a piezoelectric layer of a certain material (for example, a piezoelectric layer of a material selected from aluminum nitride, zinc oxide, lead zirconate titanate, lithium niobate, quartz, potassium niobate, and lithium tantalate).
  • the second piezoelectric layer 42 is a doped layer doped with at least one rare earth element as mentioned above in the same material layer as the material of the first piezoelectric layer 41
  • the first piezoelectric layer 41 and the second piezoelectric layer 42 are both piezoelectric materials based on aluminum nitride, but one layer of the piezoelectric material is a piezoelectric material without any doping, and the other layer is a doping element scandium piezoelectric material.
  • the first piezoelectric layer and the second piezoelectric layer are both doped layers of the same material, but the doping concentration of the first piezoelectric layer is different from the doping concentration of the second piezoelectric layer.
  • the first piezoelectric layer 41 and the second piezoelectric layer 42 are both piezoelectric materials based on aluminum nitride doped with rare earth element scandium, but the doping concentration of the first piezoelectric layer and the second piezoelectric layer is different. .
  • the material of the first piezoelectric layer 41 is one of aluminum nitride, zinc oxide, lead zirconate titanate, lithium niobate, quartz, potassium niobate, and lithium tantalate
  • the second piezoelectric layer 42 It is a material different from the material of the first piezoelectric layer among aluminum nitride, zinc oxide, lead zirconate titanate, lithium niobate, quartz, potassium niobate, and lithium tantalate.
  • the first piezoelectric The layer is aluminum nitride and the second piezoelectric layer is zinc oxide.
  • the above arrangement of the piezoelectric layers 41 and 42 with different doping can adjust the electromechanical coupling coefficient of the resonator to a relatively large extent.
  • the electromechanical coupling coefficient of the resonator in the transmit filter Tx and the electromechanical coupling coefficient of the resonator in the receive filter Rx need to be quite different (greater than 1%), but in Inside the transmitting filter Tx or the receiving filter Rx, the electromechanical coupling coefficient between different resonators needs to have a small difference (less than 1%).
  • L1 is the width of the AW structure at the non-electrode connection end of the top electrode, which is the distance between the non-electrode connection end of the top electrode and the inner edge of the AW structure in the horizontal direction;
  • L2 is the electrode at the top electrode The width of the AW structure at the connection end, which is the distance in the horizontal direction between the boundary of the acoustic mirror and the inner edge of the AW structure at the connection end of the top electrode.
  • L1 and L2 may be the same or different, but both are in the range of 0.25-10 ⁇ m.
  • FIG. 3 exemplarily shows a graph of the relationship between the width of the AW structure or the air gap and the electromechanical coupling coefficient.
  • the abscissa is the width of the AW structure (unit is ⁇ m)
  • the ordinate is the electromechanical coupling coefficient.
  • Figure 3 shows the influence of the width of the AW structure of the resonator on the electromechanical coupling coefficient when the width of the AW structure on each side of the effective area of the resonator is the same.
  • the electromechanical coupling coefficient increases with the increase of the AW width. slowing shrieking. It can be seen that the electromechanical coupling coefficient of the resonator can be adjusted by adjusting the width of the AW structure.
  • the width of the AW structure on each side can be the same or different.
  • the AW structure or the acoustic resistance layer or the air gap is provided at the non-electrode connection end of the top electrode, and in the case where the effective area of the resonator is a polygon, it may include only one side or multiple sides at the non-electrode connection end The case of being provided may also include the case of being provided on all sides of the non-electrode connection end.
  • an AW structure or an acoustic resistance layer or an air gap is provided at the electrode connection end of the top electrode.
  • the effective area of the resonator is a polygon, it means that the AW structure is provided on the side where the electrode connection end of the top electrode is located. Either an acoustic barrier or an air gap.
  • An AW structure or an acoustically resistive layer or an air gap can also be provided around the entire active area of the resonator.
  • the electromechanical properties of the resonator will be reduced.
  • the coupling coefficient is a definite value.
  • the design freedom of the electromechanical coupling coefficient of the resonator can be increased.
  • the first piezoelectric layer 41 is made of undoped aluminum nitride material
  • the second piezoelectric layer 42 is made of scandium-doped aluminum nitride material.
  • the electromechanical coupling coefficient is 6% when the piezoelectric layer only uses the undoped aluminum nitride piezoelectric layer, and the electromechanical coupling coefficient when the piezoelectric layer only uses the doped aluminum nitride layer is 10%. Therefore, when the thickness of the piezoelectric layer is constant, the electromechanical coupling coefficient of the resonator can be freely changed between 6% and 10% by controlling the doping concentration of the first piezoelectric layer 41 and the second piezoelectric layer 42 .
  • the electromechanical coupling coefficients of different resonators in the filter can be fine-tuned by controlling the change of the width of the AW structure, so this scheme can maximize the increase in the efficiency of the filter.
  • the electromechanical coupling coefficient of the resonator can be adjusted by selecting the materials of the first piezoelectric layer and the second piezoelectric layer.
  • the difference between the electromechanical coupling coefficients of the two resonators can be made through the above method. Values vary between 0%-10%.
  • the materials of the first piezoelectric layer 41 and the second piezoelectric layer 42 are different, and when the thicknesses of the first piezoelectric layer 41 and the second piezoelectric layer 42 are fixed, a certain electromechanical coupling coefficient of the resonator , the required electromechanical coupling coefficient can be achieved by changing the material of the piezoelectric layer. After the doping or materials of the first piezoelectric layer 41 and the second piezoelectric layer 42 are determined, the electromechanical coupling coefficient of the resonator can be further adjusted by changing the widths of the widths L1 and L2 in FIG. 2 .
  • the thicknesses of the first piezoelectric layer 41 and the second piezoelectric layer 42 are H1 and H2, respectively.
  • the ratio of two different piezoelectric materials can be adjusted by adjusting the ratio of H1 and H2, thereby adjusting the electromechanical coupling coefficient of the resonator.
  • H2 and H1 are determined, similarly, the electromechanical coupling coefficient of the resonator can be further adjusted by changing the widths of the widths L1 and L2 in FIG. 2 .
  • the position of the AW structure sandwiched between the first piezoelectric layer 41 and the second piezoelectric layer 42 is not fixed.
  • the distance between the lower surface of the AW structure and the lower surface of the first piezoelectric layer 41 is greater than
  • the distance between the upper surface of the AW structure and the second piezoelectric layer 42 is also greater than
  • the range of thickness of the AW structure is
  • the manufacturing process of the bulk acoustic wave resonator in FIG. 2 is exemplarily described below with reference to FIGS. 5A-5G .
  • a cavity as the acoustic mirror 20 is formed on the upper surface of the substrate 10, and then a sacrificial material is provided on the upper surface of the substrate 10, the sacrificial material fills the cavity, and then, through CMP (Chemical Mechanical Polishing) ) process removes the sacrificial material on the upper surface of the substrate 10 and makes the upper surface of the sacrificial material in the cavity flush with the upper surface of the substrate 10 to form the sacrificial layer 21 .
  • CMP Chemical Mechanical Polishing
  • a layer of electrode material is deposited and patterned on the structure of FIG. 5A to form bottom electrode 30 .
  • a first piezoelectric layer 41 is deposited on the structure of FIG. 5B , which may be, for example, an undoped piezoelectric layer.
  • a sacrificial material is deposited and patterned on the upper surface of the first piezoelectric layer 41 of FIG. 5C to form a sacrificial layer 81 .
  • the sacrificial layer 81 will be released for forming the AW structure 80 at a later stage.
  • a second piezoelectric layer 42 is deposited on the upper surface of the structure of FIG. 5D , which may be, for example, a doped piezoelectric layer.
  • a top electrode 50 and a protective layer or passivation layer 70 are prepared on the upper surface of the structure of FIG. 5E.
  • the sacrificial layer 21 and the sacrificial layer 81 are released to form the acoustic mirror 20 and the AW structure 80, respectively, as shown in FIG. 5G.
  • each numerical range except that it is explicitly stated that it does not include the endpoint value, may be the endpoint value, but also the middle value of each numerical range, and these are all within the protection scope of the present disclosure. .
  • upper and lower are relative to the bottom surface of the substrate, and for a component, the side close to the bottom surface is the lower side, and the side away from the bottom surface is the upper side.
  • inner and outer are in the lateral direction or radial direction relative to the center of the effective area of the resonator (the overlapping area of the piezoelectric layer, the top electrode, the bottom electrode and the acoustic mirror in the thickness direction of the resonator constitutes the effective area).
  • the side or end of a component close to the center of the active area is the inner or inner end
  • the side or end of the component away from the center of the active area is the outer or outer end.
  • being located inside the position means between the position and the center of the effective area in the lateral or radial direction
  • being located outside of the position means more laterally or radially than the position away from the center of the active area.
  • bulk acoustic wave resonators may be used to form filters or other semiconductor devices.
  • a bulk acoustic wave resonator comprising:
  • the piezoelectric layer includes a first layer and a second layer, an acoustic resistance layer is arranged between the first layer and the second layer, and the inner edge of the acoustic resistance layer is located inside the boundary of the acoustic mirror in the horizontal direction, and the acoustic resistance layer is located inside the boundary of the acoustic mirror.
  • the acoustic resistance of the resistive layer is different from the acoustic resistance of the piezoelectric layer;
  • the material of the first layer is different from the material of the second layer.
  • the acoustic resistance layer includes a non-connecting end acoustic resistance layer at the non-electrode connection end of the top electrode, and the inner edge of the non-connecting end acoustic resistance layer is located inside the non-electrode connection end of the top electrode in the horizontal direction.
  • the non-electrode connection end of the top electrode is in the inner side of the boundary of the acoustic mirror in the horizontal direction or is flush with the boundary of the acoustic mirror;
  • the first distance is in the range of 0.25-10 ⁇ m.
  • the acoustic resistance layer includes a connection end acoustic resistance layer at the electrode connection end of the top electrode.
  • the thickness of the first layer is different from the thickness of the second layer.
  • the acoustic resistance layer is a void layer or a solid medium layer.
  • One of the first layer and the second layer is a doped layer of the other;
  • the first layer and the second layer are both doped layers of the same material, and the doping concentration of the first layer is different from that of the second layer.
  • the material of the first layer is one of aluminum nitride, zinc oxide, lead zirconate titanate, lithium niobate, quartz, potassium niobate, lithium tantalate
  • the second layer is aluminum nitride, zinc oxide, zirconium A material different from the first layer material among lead titanate, lithium niobate, quartz, potassium niobate, and lithium tantalate.
  • a bulk acoustic wave resonator assembly comprising:
  • At least two BAW resonators wherein at least one BAW resonator is the resonator according to any one of 1-9.
  • the at least two bulk acoustic wave resonators include a first resonator and a second resonator;
  • Both the first resonator and the second resonator are resonators according to any one of 1-9.
  • the first resonator and the second resonator are the resonators according to 8 or 9.
  • the difference between the electromechanical coupling coefficient of the first resonator and the electromechanical coupling coefficient of the second resonator is in the range of 0%-10%.
  • Both the first resonator and the second resonator are resonators according to 3 or 5;
  • the widths of the acoustic resistance layer of the first resonator and the corresponding acoustic resistance layer of the second resonator are different from each other.
  • a method for adjusting the electromechanical coupling coefficient of a bulk acoustic wave resonator comprising a substrate, an acoustic mirror, a bottom electrode, a piezoelectric layer and a top electrode, the piezoelectric layer comprising a first layer and a second layer, the first An acoustic resistance layer is arranged between the layer and the second layer, and the method includes the steps:
  • the materials of the first layer and the second layer are made different to adjust the electromechanical coupling coefficient.
  • Adjust the width of the acoustic resistance layer to further adjust the electromechanical coupling coefficient, wherein: the width of the acoustic resistance layer, if the non-electrode connection end of the top electrode is the non-electrode connection end of the top electrode and the acoustic resistance layer The distance in the horizontal direction of the inner edge of , if it is at the electrode connection end of the top electrode, it is the distance in the horizontal direction between the boundary of the acoustic mirror and the inner edge of the acoustic resistance layer.
  • a method for adjusting the difference in electromechanical coupling coefficients of resonators in a bulk acoustic wave resonator assembly comprising at least a first resonator and a second resonator, each resonator comprising a substrate, an acoustic mirror, and a bottom electrode , a piezoelectric layer and a top electrode, the piezoelectric layer includes a first layer and a second layer, an acoustic resistance layer is arranged between the first layer and the second layer, and the acoustic resistance of the acoustic resistance layer is different from the acoustic resistance of the corresponding piezoelectric layer. resistance, the method includes the steps:
  • the materials of the first resonator and the first and second layers of the second resonator are selected to adjust the difference in electromechanical coupling coefficients of the first resonator and the second resonator.
  • the heights of the first layer and the second layer of the first resonator and/or the second resonator are adjusted to adjust the difference between the electromechanical coupling coefficients of the first resonator and the second resonator.
  • the assembly includes a first filter including the first resonator and a second filter, the first filter including the second resonator;
  • the method includes the steps of selecting materials for the first and second layers of the resonators in the first filter, and selecting materials for the first and second layers of the resonators in the second filter to tune the first and second layers of the resonator.
  • the width of the acoustic resistance layer if it is at the non-electrode connection end of the top electrode, is the distance between the non-electrode connection end of the top electrode and the inner edge of the acoustic resistance layer in the horizontal direction, if at the top electrode
  • the electrode connecting end is the distance between the boundary of the acoustic mirror and the inner edge of the acoustic resistance layer in the horizontal direction.
  • a filter comprising the BAW resonator according to any one of 1-9, or the BAW resonator assembly according to any one of 10-14.
  • An electronic device comprising the filter according to 22, or the BAW resonator according to any one of 1-9, or the BAW resonator assembly according to any one of 10-14 .
  • the electronic equipment here includes but is not limited to intermediate products such as RF front-end, filter and amplifier modules, and terminal products such as mobile phones, WIFI, and drones.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本公开涉及一种体声波谐振器,包括:基底;声学镜;底电极;压电层;和顶电极,其中:所述压电层包括第一层和第二层,第一层与第二层之间设置有声阻层,所述声阻层的内边缘在水平方向上处于声学镜边界的内侧,所述声阻层的声阻不同于所述压电层的声阻;且第一层的材料不同于第二层的材料。本公开还涉及体声波谐振器组件,一种调整体声波谐振器的机电耦合系数的方法,一种体声波谐振器组件中的谐振器的机电耦合系数差值的调整方法、一种滤波器和一种电子设备。

Description

体声波谐振器及组件、机电耦合系数差值调整方法、滤波器、电子设备 技术领域
本公开的实施例涉及半导体领域,尤其涉及一种体声波谐振器及其组件,一种调整体声波谐振器的机电耦合系数的方法,一种调整体声波谐振器组件中的谐振器的机电耦合系数差值的方法,以及一种滤波器和一种电子设备。
背景技术
随着5G通信技术的日益发展,对数据传输速率的要求越来越高。与数据传输速率相对应的是频谱资源的高利用率和频谱的复杂化。通信协议的复杂化对于射频系统的各种性能提出了严格的要求,在射频前端模块,射频滤波器起着至关重要的作用,它可以将带外干扰和噪声滤除掉以满足射频系统和通信协议对于信噪比的要求。
传统的射频滤波器受结构和性能的限制,不能满足高频通信的要求。薄膜体声波谐振器(FBAR)作为一种新型的MEMS器件,具有体积小、质量轻、插入损耗低、频带宽以及品质因子高等优点,很好地适应了无线通信系统的更新换代,使FBAR技术成为通信领域的研究热点之一。
已有技术中的滤波器的串联谐振器和并联谐振器共同作用形成滤波器通带特性。通过设置串联谐振器的串联谐振频率彼此不同以及串联谐振器的机电耦合系数Kt 2的变化,可以有效改善滤波器通带右侧的滚降特性。滤波器应用小Kt 2谐振器容易实现良好的滚降特性,但是一旦设计指标(带宽、插损、带外抑制等)确定,谐振器的Kt 2也就基本确定了,这样滤波器带宽和滤波器良好的滚降特性是相互矛盾的,常规架构下宽带宽滤波器设计很难实现良好的滚降特性,且对于普通滤波器中的谐振器叠层已确定的条件下,通过对谐振器结构的改变,50Ohm谐振器的Kt 2变化只有±0.5%左右,对滤波器滚降特性的改善有限。所以放开各个谐振器间的Kt 2的自由度的限制,有利于提升整个滤波器的滚降性能。
发明内容
为缓解或解决现有技术中的上述问题的至少一个方面,提出本公开。
根据本公开的实施例的一个方面,提出了一种体声波谐振器,包括:
基底;
声学镜;
底电极;
压电层;和
顶电极,
其中:
所述压电层包括第一层和第二层,第一层与第二层之间设置有声阻层,所述声阻层的内边缘在水平方向上处于声学镜边界的内侧,所述声阻层的声阻不同于所述压电层的声阻;且
第一层的材料不同于第二层的材料。
本公开的实施例还涉及一种体声波谐振器组件,包括至少两个体声波谐振器,其中至少一个体声波谐振器为上述的谐振器。
本公开的实施例也涉及一种调整体声波谐振器的机电耦合系数的方法,所述谐振器包括基底、声学镜、底电极、压电层和顶电极,压电层包括第一层和第二层,第一层与第二层之间设置有声阻层,所述方法包括步骤:使得第一层与第二层的材料不同以调整机电耦合系数。
本公开的实施例也涉及一种调整体声波谐振器组件内的谐振器的机电耦合系数差值的方法,所述组件至少包括第一谐振器和第二谐振器,每个谐振器包括基底、声学镜、底电极、压电层和顶电极,压电层包括第一层和第二层,第一层与第二层之间设置有声阻层,所述声阻层的声阻不同于所述压电层的声阻,所述方法包括步骤:选择第一谐振器以及第二谐振器的第一层和第二层的材料,以调整第一谐振器和第二谐振器的机电耦合系数差值。
本公开的实施例还涉及一种滤波器,包括上述的谐振器或组件。
本公开的实施例也涉及一种电子设备,包括上述的滤波器或者上述的谐振器或上述的组件。
附图说明
以下描述与附图可以更好地帮助理解本公开所公布的各种实施例中的这些和其他特点、优点,图中相同的附图标记始终表示相同的部件,其 中:
图1为根据本公开的一个示例性实施例的体声波谐振器的俯视示意图;
图2为根据本公开的一个示例性实施例的沿图1中的MOM’线的体声波谐振器的截面示意图;
图3示例性示出了AW结构的宽度与机电耦合系数之间的关系图;
图4示例性分别示出了在AW结构设置在压电层中的情况下与在AW设置在顶电极与压电层之间的情况下,AW结构的宽度与体声波谐振器的并联谐振阻抗之间的关系图;
图5A-5G示例性示出了图2中的体声波谐振器的制作过程的截面示意图。
具体实施方式
下面通过实施例,并结合附图,对本公开的技术方案作进一步具体的说明。下述参照附图对本公开实施方式的说明旨在对本公开的总体公开构思进行解释,而不应当理解为对本公开的一种限制。
首先,本公开的附图中的附图标记说明如下:
10:基底,可选材料为单晶硅、氮化镓、砷化镓、蓝宝石、石英、碳化硅、金刚石等。
20:声学镜,可为空腔,也可采用布拉格反射层及其他等效形式。本公开的实施例中采用的是空腔的形式。
20A:释放通道,将释放孔90与声学镜空腔相通。
21:牺牲层,在声学镜为空腔形式的情况下,在制备谐振器的过程中设置在该空腔中,在之后的工艺中被释放以形成声学镜空腔,牺牲层21可选二氧化硅、掺杂二氧化硅、多晶硅、非晶硅等材料。
30:底电极(包括底电极引脚),材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
41:第一压电层,可以为单晶压电材料,可选的,如:单晶氮化铝、单晶氮化镓、单晶铌酸锂、单晶锆钛酸铅(PZT)、单晶铌酸钾、单晶石英薄膜、或者单晶钽酸锂等材料,也可以为多晶压电材料(与单晶相对应,非单晶材料),可选的,如多晶氮化铝、氧化锌、PZT等,还可是包含上 述材料的一定原子比的稀土元素掺杂材料,例如可以是掺杂氮化铝,掺杂氮化铝至少含一种稀土元素,如钪(Sc)、钇(Y)、镁(Mg)、钛(Ti)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)等。
42:第二压电层,其材料与第一压电层的材料不同,可以为单晶压电材料,可选的,如:单晶氮化铝、单晶氮化镓、单晶铌酸锂、单晶锆钛酸铅(PZT)、单晶铌酸钾、单晶石英薄膜、或者单晶钽酸锂等材料,也可以为多晶压电材料(与单晶相对应,非单晶材料),可选的,如多晶氮化铝、氧化锌、PZT等,还可是包含上述材料的一定原子比的稀土元素掺杂材料,例如可以是掺杂氮化铝,掺杂氮化铝至少含一种稀土元素,如钪(Sc)、钇(Y)、镁(Mg)、钛(Ti)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)等。
50:顶电极(包括顶电极引脚),材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
70:钝化层或工艺层,其可以是氮化铝、氮化硅或二氧化硅等。
80:声阻层,其声阻不同于第一压电层41和第二压电层42的声阻。在本公开图示的实施例中,为空气隙(即AW)的形式,但是也可以为固态介质层的形式,例如二氧化硅或其掺杂物,或者氮化硅或其掺杂物。如能够理解的,声阻层的声阻也可以大于第一压电层和第二压电层的声阻。
81:牺牲层,在声阻层为空气隙的情况下,在制备谐振器的过程中设置在该空气隙对应的位置,在后续的工艺中被释放以形成该空气隙,牺牲层81可选二氧化硅、掺杂二氧化硅、多晶硅、非晶硅等材料。
90:释放孔。
图1为根据本公开的一个示例性实施例的体声波谐振器的俯视示意图,图2为根据本公开的一个示例性实施例的沿图1中的MM’线的体声波谐振器的截面示意图。
在图1-2中,体声波谐振器包括基底10,设置在基底10中的声学镜空腔20,底电极30,顶电极50和压电层,压电层包括第一压电层41和 第二压电层42。在第一压电层与第二压电层之间设置有声阻层80,其为空气隙的形式。图1-2中还示出了钝化层70。
图4示例性分别示出了在AW结构设置在压电层中的情况下与在AW设置在顶电极与压电层之间的情况下,AW结构的宽度与体声波谐振器的并联谐振阻抗之间的关系图。在图4中,横坐标为AW结构的宽度(单位为μm),纵坐标为谐振器的并联谐振阻抗Rp(单位为欧姆)。在图4中,虚线表示AW结构设置在顶电极与压电层之间的情况,而实线表示AW结构设置在压电层中的情况。如图4所示,AW结构在压电层中时并联谐振阻抗的值明显高于AW结构在压电层与顶电极之间时并联谐振阻抗的值。可见,通过在第一压电层41与第二压电层42之间设置声阻层80,相对于将声阻层设置在顶电极与压电层之间,可以有效提升谐振器的性能。
通过在第一压电层41与第二压电层42之间设置声阻层80,还可以调节谐振器的机电耦合系数的值。因为第一压电层41和第二压电层42分开制备,因此可以将这两压电层制备为不同的材料,进而可以自由调节谐振器的机电耦合系数。例如,第一压电层41为某种材料的压电层(例如氮化铝、氧化锌、锆钛酸铅、铌酸锂、石英、铌酸钾、钽酸锂中的一种材料的压电层),而第二压电层42则为与第一压电层41的材料相同的材料层中掺杂如上提及的至少一种稀土元素的掺杂层,在一个具体的实施例中,第一压电层41和第二压电层42都是基于氮化铝的压电材料,但是其中一层压电材料是没有任何掺杂的压电材料,另外一层是掺杂元素钪的压电材料。再如,第一压电层与第二压电层均为同一材料的掺杂层,只是第一压电层的掺杂浓度不同于第二压电层的掺杂浓度,在一个具体的实施例中,第一压电层41和第二压电层42都是基于掺杂了稀土元素钪的氮化铝的压电材料,只是第一压电层与第二压电层掺杂浓度不同。又如,第一压电层41的材料为氮化铝、氧化锌、锆钛酸铅、铌酸锂、石英、铌酸钾、钽酸锂中的一种材料,而第二压电层42为氮化铝、氧化锌、锆钛酸铅、铌酸锂、石英、铌酸钾、钽酸锂中不同于第一压电层材料的材料,在一个具体的实施例中,第一压电层为氮化铝,第二压电层为氧化锌。
因此,在本公开中,通过在压电层中设置AW结构来提升谐振器性能的同时,还可以在AW结构上下两侧制备不同的压电层来实现对谐振器的 机电耦合系数的自由设置。
上述设置不同掺杂的压电层41和42可以较大幅度的调节谐振器的机电耦合系数。比如在同一个Die内制作双工器,需要发射滤波器Tx中的谐振器的机电耦合系数和接收滤波器Rx中的谐振器的机电耦合系数有较大的差异(大于1%),但是在发射滤波器Tx或者接收滤波器Rx内部,需要不同的谐振器之间的机电耦合系数有较小差异(小于1%),此时,可以调整AW结构在谐振器的有效区域内的宽度,也就是通过调节图2中的AW结构的宽度L1和L2来调节滤波器内部的谐振器的机电耦合系数。如图2所示,L1为在顶电极的非电极连接端的AW结构的宽度,其为顶电极的非电极连接端与AW结构的内边缘在水平方向上的距离;L2为在顶电极的电极连接端的AW结构的宽度,其为在顶电极的连接端,声学镜边界与AW结构的内边缘在水平方向上的距离。在本公开的一个实施例中,L1和L2可以相同,也可以不同,但均在0.25-10μm的范围内。
图3示例性示出了AW结构或空气隙的宽度与机电耦合系数之间的关系图。在图3中,横坐标为AW结构的宽度(单位为μm),纵坐标为机电耦合系数。图3表示当谐振器的有效区域的每个边的AW结构的宽度相同时,谐振器的AW结构的宽度对机电耦合系数的影响,如图3所示,机电耦合系数随AW宽度的增加而逐渐减小。可见,可以通过调节AW结构的宽度来调节谐振器的机电耦合系数。
对于有效区域为多边形的谐振器来说,每个边的AW结构的宽度可以是相同的,也可以是不同的。
在本公开中,AW结构或者声阻层或者空气隙设置在顶电极的非电极连接端,在谐振器的有效区域为多边形的情况下,可以包括仅在非电极连接端的一条边或多条边设置的情况,也可以包括在非电极连接端的所有边设置的情况。在本公开中,AW结构或者声阻层或者空气隙设置在顶电极的电极连接端,在谐振器的有效区域为多边形的情况下,表示在顶电极的电极连接端所在的边设置有AW结构或者声阻层或者空气隙。AW结构或者声阻层或者空气隙也可以围绕谐振器的整个有效区域设置。
在压电层的厚度一定时,当采用在AW结构的上下两侧采用同一种压电材料时,则无论AW结构设置在压电层内的任一位置,在同等条件下, 谐振器的机电耦合系数是一个确定的值。但是当AW结构的上下两侧采用不同的压电层材料时,可以增加谐振器的机电耦合系数的设计自由度。例如,第一压电层41采用不掺杂氮化铝材料,第二压电层42采用掺杂钪的氮化铝材料。当压电层厚度固定时,例如,压电层只采用不掺杂氮化铝压电层时其机电耦合系数为6%,而压电层只采用掺杂氮化铝时其机电耦合系数为10%。因此,在压电层厚度不变时,通过控制第一压电层41和第二压电层42的掺杂浓度使得谐振器的机电耦合系数在6%-10%之间自由变化。当两层压电层的厚度分别确定后,接着可以通过控制AW结构的宽度的变化,对滤波器内不同的谐振器的机电耦合系数进行微调,所以该方案能够最大限度的提升滤波器内的谐振器的机电耦合系数的设计自由度。
在本公开中,可以通过选择第一压电层与第二压电层的材料,来调节谐振器的机电耦合系数,对于两个谐振器,可以通过上述方式使得两者的机电耦合系数的差值在0%-10%之间变化。
在图2中,第一压电层41与第二压电层42的材料不同,在第一压电层41和第二压电层42的厚度固定时,对于谐振器的某一机电耦合系数,可以通过改变压电层的材料即可达到需要的机电耦合系数。在第一压电层41和第二压电层42的掺杂或者材料确定后,可以通过改变图2中的宽度L1和L2的宽度对谐振器的机电耦合系数做进一步的调整。
图2中还示出了第一压电层41和第二压电层42的厚度,其分别为H1和H2。可以通过调节H1和H2的比例来调整两种不同压电材料的占比,从而调节谐振器的机电耦合系数。当H2和H1确定后,类似的,可以通过改变图2中的宽度L1和L2的宽度对谐振器的机电耦合系数做进一步的调整。
如图2所示,AW结构夹在第一压电层41和第二压电层42的位置不是固定的。在本公开的一个实施例中,AW结构的下表面距离第一压电层41下表面的距离要大于
Figure PCTCN2021117474-appb-000001
AW结构的上表面距离第二压电层42的距离也要大于
Figure PCTCN2021117474-appb-000002
AW结构的厚度的范围是
Figure PCTCN2021117474-appb-000003
下面参照图5A-5G示例性说明图2中的体声波谐振器的制作过程。
第一,如图5A所示,在基底10上表面形成作为声学镜20的空腔,接着在基底10的上表面设置牺牲材料,该牺牲材料填充该空腔,然后, 通过CMP(化学机械研磨)工艺移除基底10上表面的牺牲材料并且使得空腔内的牺牲材料的上表面与基底10的上表面齐平从而形成牺牲层21。
第二,如图5B所示,在图5A的结构上沉积和图形化电极材料层,以形成底电极30。
第三,如图5C所示,在图5B的结构上沉积第一压电层41,其例如可以为未掺杂压电层。
第四,如图5D所示,在图5C的第一压电层41的上表面沉积和图形化牺牲材料,以形成牺牲层81。该牺牲层81在后期将被释放以用于形成AW结构80。
第五,如图5E所示,在图5D的结构的上表面沉积第二压电层42,其例如可以为掺杂压电层。
第六,如图5F所示,在图5E的结构的上表面制备顶电极50和保护层或钝化层70。
第七,释放牺牲层21和牺牲层81,以分别形成声学镜20和AW结构80,如图5G所示。
需要指出的是,在本公开中,各个数值范围,除了明确指出不包含端点值之外,除了可以为端点值,还可以为各个数值范围的中值,这些均在本公开的保护范围之内。
在本公开中,上和下是相对于基底的底面而言的,对于一个部件,其靠近该底面的一侧为下侧,远离该底面的一侧为上侧。
在本公开中,内和外是相对于谐振器的有效区域(压电层、顶电极、底电极和声学镜在谐振器的厚度方向上的重叠区域构成有效区域)的中心在横向方向或者径向方向上而言的,一个部件的靠近有效区域的中心的一侧或一端为内侧或内端,而该部件的远离有效区域的中心的一侧或一端为外侧或外端。对于一个参照位置而言,位于该位置的内侧表示在横向方向或径向方向上处于该位置与有效区域的中心之间,位于该位置的外侧表示在横向方向或径向方向上比该位置更远离该有效区域的中心。
如本领域技术人员能够理解的,体声波谐振器可以用于形成滤波器或其他半导体器件。
基于以上,本公开提出了如下技术方案:
1、一种体声波谐振器,包括:
基底;
声学镜;
底电极;
压电层;和
顶电极,
其中:
所述压电层包括第一层和第二层,第一层与第二层之间设置有声阻层,所述声阻层的内边缘在水平方向上处于声学镜边界的内侧,所述声阻层的声阻不同于所述压电层的声阻;且
第一层的材料不同于第二层的材料。
2、根据1所述的谐振器,其中:
所述声阻层包括在顶电极的非电极连接端的非连接端声阻层,所述非连接端声阻层的内边缘在水平方向上处于顶电极的非电极连接端的内侧。
3、根据2所述的谐振器,其中:
顶电极的非电极连接端在水平方向上处于声学镜边界的内侧或与声学镜边界齐平;
在水平方向上,所述顶电极的非电极连接端与非连接端声阻层的内边缘之间存在第一距离,第一距离在0.25-10μm的范围内。
4、根据1-3中任一项所述的谐振器,其中:
所述声阻层包括在顶电极的电极连接端的连接端声阻层。
5、根据4所述的谐振器,其中:
在水平方向上,所述声学镜的边界与连接端声阻层的内边缘存在第二距离,第二距离在0.25-10μm的范围内。
6、根据1所述的谐振器,其中:
第一层的厚度不同于第二层的厚度。
7、根据1所述的谐振器,其中:
所述声阻层为空隙层或者固态介质层。
8、根据1-7中任一项所述的谐振器,其中:
第一层与第二层中的一层为另一层的掺杂层;或者
第一层与第二层均为同一材料的掺杂层,第一层的掺杂浓度不同于第二层的掺杂浓度。
9、根据1-7中任一项所述的谐振器,其中:
第一层的材料为氮化铝、氧化锌、锆钛酸铅、铌酸锂、石英、铌酸钾、钽酸锂中的一种材料,而第二层为氮化铝、氧化锌、锆钛酸铅、铌酸锂、石英、铌酸钾、钽酸锂中不同于第一层材料的材料。
10、一种体声波谐振器组件,包括:
至少两个体声波谐振器,其中至少一个体声波谐振器为根据1-9中任一项所述的谐振器。
11、根据10所述的组件,其中:
所述至少两个体声波谐振器包括第一谐振器和第二谐振器;
第一谐振器和第二谐振器均为根据1-9中任一项所述的谐振器。
12、根据11所述的组件,其中:
第一谐振器和第二谐振器为根据8或9所述的谐振器。
13、根据12所述的组件,其中:
第一谐振器的机电耦合系数与第二谐振器的机电耦合系数的差值在0%-10%的范围内。
14、根据10-13中任一项所述的组件,其中:
所述第一谐振器和第二谐振器均为根据3或5的谐振器;
第一谐振器的声阻层与第二谐振器的对应声阻层的宽度彼此不同。
15、一种调整体声波谐振器的机电耦合系数的方法,所述谐振器包括基底、声学镜、底电极、压电层和顶电极,压电层包括第一层和第二层,第一层与第二层之间设置有声阻层,所述方法包括步骤:
使得第一层与第二层的材料不同以调整机电耦合系数。
16、根据15所述的方法,还包括步骤:
调整第一层与第二层的高度,以调整机电耦合系数。
17、根据15或16所述的方法,还包括步骤:
调整声阻层的宽度,以进一步调整机电耦合系数,其中:所述声阻层的宽度,若在顶电极的非电极连接端则为所述顶电极的非电极连接端与所述声阻层的内边缘在水平方向上的距离,若在顶电极的电极连接端则为所 述声学镜的边界与所述声阻层的内边缘在水平方向上的距离。
18、一种体声波谐振器组件内的谐振器的机电耦合系数差值的调整方法,所述组件至少包括第一谐振器和第二谐振器,每个谐振器包括基底、声学镜、底电极、压电层和顶电极,压电层包括第一层和第二层,第一层与第二层之间设置有声阻层,所述声阻层的声阻不同于对应压电层的声阻,所述方法包括步骤:
选择第一谐振器以及第二谐振器的第一层和第二层的材料,以调整第一谐振器和第二谐振器的机电耦合系数差值。
19、根据18所述的方法,还包括步骤:
调整第一谐振器和/或第二谐振器的第一层与第二层的高度,以调整第一谐振器与第二谐振器的机电耦合系数差值。
20、根据18或19所述的方法,其中:
所述组件包括第一滤波器和第二滤波器,所述第一滤波器包括所述第一谐振器,所述第二滤波器包括所述第二谐振器;
所述方法包括步骤:选择第一滤波器内的谐振器的第一层和第二层的材料,以及选择第二滤波器内的谐振器的第一层和第二层的材料,以调整第一滤波器内的谐振器的机电耦合系数与第二滤波器内的谐振器的机电耦合系数之间的差值。
21、根据20所述的方法,还包括步骤:
调整第一滤波器内的谐振器的声阻层的宽度以进一步调整第一滤波器内的不同谐振器之间的机电耦合系数差值,和/或调整第二滤波器内的声阻层的宽度以进一步调整第二滤波器内的不同谐振器之间的机电耦合系数差值,
其中:所述声阻层的宽度,若在顶电极的非电极连接端则为所述顶电极的非电极连接端与所述声阻层的内边缘在水平方向上的距离,若在顶电极的电极连接端则为所述声学镜的边界与所述声阻层的内边缘在水平方向上的距离。
22、一种滤波器,包括根据1-9中任一项所述的体声波谐振器,或根据10-14中任一项所述的体声波谐振器组件。
23、一种电子设备,包括根据22所述的滤波器,或根据1-9中任一 项所述的体声波谐振器,或根据10-14中任一项所述的体声波谐振器组件。
这里的电子设备,包括但不限于射频前端、滤波放大模块等中间产品,以及手机、WIFI、无人机等终端产品。
尽管已经示出和描述了本公开的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本公开的原理和精神的情况下可以对这些实施例进行变化,本公开的范围由所附权利要求及其等同物限定。

Claims (23)

  1. 一种体声波谐振器,包括:
    基底;
    声学镜;
    底电极;
    压电层;和
    顶电极,
    其中:
    所述压电层包括第一层和第二层,第一层与第二层之间设置有声阻层,所述声阻层的内边缘在水平方向上处于声学镜边界的内侧,所述声阻层的声阻不同于所述压电层的声阻;且
    第一层的材料不同于第二层的材料。
  2. 根据权利要求1所述的谐振器,其中:
    所述声阻层包括在顶电极的非电极连接端的非连接端声阻层,所述非连接端声阻层的内边缘在水平方向上处于顶电极的非电极连接端的内侧。
  3. 根据权利要求2所述的谐振器,其中:
    顶电极的非电极连接端在水平方向上处于声学镜边界的内侧或与声学镜边界齐平;
    在水平方向上,所述顶电极的非电极连接端与非连接端声阻层的内边缘之间存在第一距离,第一距离在0.25-10μm的范围内。
  4. 根据权利要求1-3中任一项所述的谐振器,其中:
    所述声阻层包括在顶电极的电极连接端的连接端声阻层。
  5. 根据权利要求4所述的谐振器,其中:
    在水平方向上,所述声学镜的边界与连接端声阻层的内边缘存在第二距离,第二距离在0.25-10μm的范围内。
  6. 根据权利要求1所述的谐振器,其中:
    第一层的厚度不同于第二层的厚度。
  7. 根据权利要求1所述的谐振器,其中:
    所述声阻层为空隙层或者固态介质层。
  8. 根据权利要求1-7中任一项所述的谐振器,其中:
    第一层与第二层中的一层为另一层的掺杂层;或者
    第一层与第二层均为同一材料的掺杂层,第一层的掺杂浓度不同于第二层的掺杂浓度。
  9. 根据权利要求1-7中任一项所述的谐振器,其中:
    第一层的材料为氮化铝、氧化锌、锆钛酸铅、铌酸锂、石英、铌酸钾、钽酸锂中的一种材料,而第二层为氮化铝、氧化锌、锆钛酸铅、铌酸锂、石英、铌酸钾、钽酸锂中不同于第一层材料的材料。
  10. 一种体声波谐振器组件,包括:
    至少两个体声波谐振器,其中至少一个体声波谐振器为根据权利要求1-9中任一项所述的谐振器。
  11. 根据权利要求10所述的组件,其中:
    所述至少两个体声波谐振器包括第一谐振器和第二谐振器;
    第一谐振器和第二谐振器均为根据权利要求1-9中任一项所述的谐振器。
  12. 根据权利要求11所述的组件,其中:
    第一谐振器和第二谐振器为根据权利要求8或9所述的谐振器。
  13. 根据权利要求12所述的组件,其中:
    第一谐振器的机电耦合系数与第二谐振器的机电耦合系数的差值在0%-10%的范围内。
  14. 根据权利要求10-13中任一项所述的组件,其中:
    所述第一谐振器和第二谐振器均为根据权利要求3或5的谐振器;
    第一谐振器的声阻层与第二谐振器的对应声阻层的宽度彼此不同。
  15. 一种调整体声波谐振器的机电耦合系数的方法,所述谐振器包括基底、声学镜、底电极、压电层和顶电极,压电层包括第一层和第二层,第一层与第二层之间设置有声阻层,所述方法包括步骤:
    使得第一层与第二层的材料不同以调整机电耦合系数。
  16. 根据权利要求15所述的方法,还包括步骤:
    调整第一层与第二层的高度,以调整机电耦合系数。
  17. 根据权利要求15或16所述的方法,还包括步骤:
    调整声阻层的宽度,以进一步调整机电耦合系数,其中:所述声阻层的宽度,若在顶电极的非电极连接端则为所述顶电极的非电极连接端与所述声阻层的内边缘在水平方向上的距离,若在顶电极的电极连接端则为所述声学镜的边界与所述声阻层的内边缘在水平方向上的距离。
  18. 一种体声波谐振器组件内的谐振器的机电耦合系数差值的调整方法,所述组件至少包括第一谐振器和第二谐振器,每个谐振器包括基底、声学镜、底电极、压电层和顶电极,压电层包括第一层和第二层,第一层与第二层之间设置有声阻层,所述声阻层的声阻不同于对应压电层的声阻,所述方法包括步骤:
    选择第一谐振器以及第二谐振器的第一层和第二层的材料,以调整第一谐振器和第二谐振器的机电耦合系数差值。
  19. 根据权利要求18所述的方法,还包括步骤:
    调整第一谐振器和/或第二谐振器的第一层与第二层的高度,以调整第一谐振器与第二谐振器的机电耦合系数差值。
  20. 根据权利要求18或19所述的方法,其中:
    所述组件包括第一滤波器和第二滤波器,所述第一滤波器包括所述第一谐振器,所述第二滤波器包括所述第二谐振器;
    所述方法包括步骤:选择第一滤波器内的谐振器的第一层和第二层的材料,以及选择第二滤波器内的谐振器的第一层和第二层的材料,以调整第一滤波器内的谐振器的机电耦合系数与第二滤波器内的谐振器的机电耦合系数之间的差值。
  21. 根据权利要求20所述的方法,还包括步骤:
    调整第一滤波器内的谐振器的声阻层的宽度以进一步调整第一滤波器内的不同谐振器之间的机电耦合系数差值,和/或调整第二滤波器内的声阻层的宽度以进一步调整第二滤波器内的不同谐振器之间的机电耦合系数差值,
    其中:所述声阻层的宽度,若在顶电极的非电极连接端则为所述顶电极的非电极连接端与所述声阻层的内边缘在水平方向上的距离,若在顶电极的电极连接端则为所述声学镜的边界与所述声阻层的内边缘在水平方向上的距离。
  22. 一种滤波器,包括根据权利要求1-9中任一项所述的体声波谐振器,或根据权利要求10-14中任一项所述的体声波谐振器组件。
  23. 一种电子设备,包括根据权利要求22所述的滤波器,或根据权利要求1-9中任一项所述的体声波谐振器,或根据权利要求10-14中任一项所述的体声波谐振器组件。
PCT/CN2021/117474 2020-09-22 2021-09-09 体声波谐振器及组件、机电耦合系数差值调整方法、滤波器、电子设备 WO2022062910A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011002147.6 2020-09-22
CN202011002147.6A CN114257208A (zh) 2020-09-22 2020-09-22 体声波谐振器及组件、机电耦合系数差值调整方法、滤波器、电子设备

Publications (1)

Publication Number Publication Date
WO2022062910A1 true WO2022062910A1 (zh) 2022-03-31

Family

ID=80789598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117474 WO2022062910A1 (zh) 2020-09-22 2021-09-09 体声波谐振器及组件、机电耦合系数差值调整方法、滤波器、电子设备

Country Status (2)

Country Link
CN (1) CN114257208A (zh)
WO (1) WO2022062910A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114866063A (zh) * 2022-07-11 2022-08-05 深圳新声半导体有限公司 一种新型压电层及体声波滤波器
CN117294277A (zh) * 2023-11-24 2023-12-26 广州市艾佛光通科技有限公司 一种高功率高机电耦合系数的体声波谐振器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811031A (zh) * 2011-06-02 2012-12-05 安华高科技无线Ip(新加坡)私人有限公司 包括桥部的薄膜体声波谐振器
US20140139077A1 (en) * 2009-06-24 2014-05-22 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator structure having an electrode with a cantilevered portion
CN104854793A (zh) * 2012-12-21 2015-08-19 埃普科斯股份有限公司 Baw部件、baw部件的叠层和用于制造baw部件的方法,所述baw部件包括两个不同的堆叠压电材料
CN205657657U (zh) * 2016-05-18 2016-10-19 华南理工大学 多谐振模式的薄膜体声波谐振器和滤波器
US20170310303A1 (en) * 2016-04-21 2017-10-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave (baw) resonator structure
CN111010131A (zh) * 2019-06-06 2020-04-14 天津大学 掺杂浓度变化的体声波谐振器、滤波器及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140139077A1 (en) * 2009-06-24 2014-05-22 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator structure having an electrode with a cantilevered portion
CN102811031A (zh) * 2011-06-02 2012-12-05 安华高科技无线Ip(新加坡)私人有限公司 包括桥部的薄膜体声波谐振器
CN104854793A (zh) * 2012-12-21 2015-08-19 埃普科斯股份有限公司 Baw部件、baw部件的叠层和用于制造baw部件的方法,所述baw部件包括两个不同的堆叠压电材料
US20170310303A1 (en) * 2016-04-21 2017-10-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave (baw) resonator structure
CN205657657U (zh) * 2016-05-18 2016-10-19 华南理工大学 多谐振模式的薄膜体声波谐振器和滤波器
CN111010131A (zh) * 2019-06-06 2020-04-14 天津大学 掺杂浓度变化的体声波谐振器、滤波器及电子设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114866063A (zh) * 2022-07-11 2022-08-05 深圳新声半导体有限公司 一种新型压电层及体声波滤波器
CN117294277A (zh) * 2023-11-24 2023-12-26 广州市艾佛光通科技有限公司 一种高功率高机电耦合系数的体声波谐振器及其制备方法
CN117294277B (zh) * 2023-11-24 2024-03-26 广州市艾佛光通科技有限公司 一种高功率高机电耦合系数的体声波谐振器及其制备方法

Also Published As

Publication number Publication date
CN114257208A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2021219050A1 (zh) 谐振器组件及其制造方法、半导体器件、电子设备
WO2022062911A1 (zh) 具有空隙层的体声波谐振器及组件和制造方法、滤波器和电子设备
CN112532195B (zh) 一种无源空腔型单晶薄膜体声波谐振器结构及制备方法
WO2022062910A1 (zh) 体声波谐振器及组件、机电耦合系数差值调整方法、滤波器、电子设备
WO2022028401A1 (zh) 带声学解耦层的体声波谐振器组件及制造方法、滤波器及电子设备
CN112134542B (zh) 体声波谐振器、体声波谐振器组件及制造方法、滤波器及电子设备
CN112071975B (zh) 平坦化fbar谐振器制备方法
WO2022028402A1 (zh) 带声学解耦层的体声波谐振器组件及制造方法、滤波器及电子设备
WO2022068562A1 (zh) 体声波谐振器、掺杂浓度确定方法、滤波器及电子设备
WO2022083352A1 (zh) 体声波谐振器及组件、滤波器、电子设备
WO2022148387A1 (zh) 体声波谐振器及其制造方法、滤波器及电子设备
CN112087216A (zh) 具有声学孔的体声波谐振器及组件、滤波器及电子设备
WO2022052915A1 (zh) 滤波器组件及其制造方法、电子设备
WO2022001860A1 (zh) 体声波谐振器及制造方法、滤波器及电子设备
CN111917393B (zh) 体声波谐振器及制造方法、体声波谐振器组件、滤波器及电子设备
WO2024087628A1 (zh) 选择凸起结构的角度以提升性能的体声波谐振器
WO2022228385A1 (zh) 具有加厚电极的体声波谐振器、滤波器及电子设备
WO2022068552A1 (zh) 体声波谐振器、掺杂浓度确定方法、滤波器及电子设备
WO2022068561A1 (zh) 体声波谐振器、掺杂浓度确定方法、滤波器及电子设备
WO2023030359A1 (zh) 包括间隙电极的体声波谐振器、滤波器及电子设备
WO2022228486A1 (zh) 体声波谐振器及制造方法、滤波器及电子设备
WO2022037572A1 (zh) 顶电极具有上下空隙的体声波谐振器及制造方法、滤波器及电子设备
WO2022083712A1 (zh) 体声波谐振器及组件、滤波器、电子设备
WO2022062912A1 (zh) 具有声阻层的体声波谐振器及其组件和制造方法、滤波器和电子设备
WO2022135252A1 (zh) 带温补层的体声波谐振器、滤波器及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21871282

Country of ref document: EP

Kind code of ref document: A1