WO2022062911A1 - 具有空隙层的体声波谐振器及组件和制造方法、滤波器和电子设备 - Google Patents

具有空隙层的体声波谐振器及组件和制造方法、滤波器和电子设备 Download PDF

Info

Publication number
WO2022062911A1
WO2022062911A1 PCT/CN2021/117478 CN2021117478W WO2022062911A1 WO 2022062911 A1 WO2022062911 A1 WO 2022062911A1 CN 2021117478 W CN2021117478 W CN 2021117478W WO 2022062911 A1 WO2022062911 A1 WO 2022062911A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resonator
piezoelectric
void
bulk acoustic
Prior art date
Application number
PCT/CN2021/117478
Other languages
English (en)
French (fr)
Inventor
庞慰
班圣光
徐洋
杨清瑞
张孟伦
Original Assignee
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺思(天津)微系统有限责任公司 filed Critical 诺思(天津)微系统有限责任公司
Publication of WO2022062911A1 publication Critical patent/WO2022062911A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/0072Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks
    • H03H3/0075Arrangements or methods specially adapted for testing microelecro-mechanical resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/131Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials consisting of a multilayered structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/205Constructional features of resonators consisting of piezoelectric or electrostrictive material having multiple resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/462Microelectro-mechanical filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • H03H9/582Multiple crystal filters implemented with thin-film techniques
    • H03H9/586Means for mounting to a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/587Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • H03H9/582Multiple crystal filters implemented with thin-film techniques
    • H03H9/586Means for mounting to a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/588Membranes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • H03H9/582Multiple crystal filters implemented with thin-film techniques
    • H03H9/586Means for mounting to a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/589Acoustic mirrors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/021Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the air-gap type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/023Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/025Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks comprising an acoustic mirror
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/027Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the microelectro-mechanical [MEMS] type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H2009/02165Tuning
    • H03H2009/02173Tuning of film bulk acoustic resonators [FBAR]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H2009/155Constructional features of resonators consisting of piezoelectric or electrostrictive material using MEMS techniques

Definitions

  • Embodiments of the present disclosure relate to the field of semiconductors, and in particular, to a bulk acoustic wave resonator and components thereof, a method of manufacturing a bulk acoustic wave resonator, a filter, and an electronic device.
  • the requirements for data transmission rate are getting higher and higher.
  • the high utilization rate of spectrum resources and the complexity of spectrum is the high utilization rate of spectrum resources and the complexity of spectrum.
  • the complexity of the communication protocol puts forward strict requirements for various performances of the radio frequency system.
  • the radio frequency filter plays a crucial role, which can filter out out-of-band interference and noise to meet the requirements of the radio frequency system and the Communication protocol requirements for signal-to-noise ratio.
  • FBAR thin film bulk acoustic resonator
  • the present disclosure is made to alleviate or solve at least one aspect of the above-mentioned problems in the prior art.
  • a bulk acoustic wave resonator comprising:
  • the overlapping area of the top electrode, the piezoelectric layer and the bottom electrode in the thickness direction of the resonator constitutes an effective area of the resonator
  • the piezoelectric layer includes a first layer and a second layer, a void layer is arranged between the first layer and the second layer, the second layer is above the first layer, and the inner edge of the void layer is located in the horizontal direction. inside the boundary of the active area, the outer edge of the void layer is located inside and defined by the piezoelectric layer;
  • the second layer is not provided with a dedicated release path extending through the second layer in the thickness direction of the second layer and in direct communication with the void layer.
  • Embodiments of the present disclosure also relate to a bulk acoustic wave resonator assembly, comprising at least two bulk acoustic wave resonators, wherein at least one bulk acoustic wave resonator is the above-mentioned resonator.
  • Embodiments of the present disclosure also relate to a method of fabricating a bulk acoustic wave resonator, the resonator including a substrate, an acoustic mirror, a bottom electrode, a piezoelectric layer, and a top electrode, the piezoelectric layer includes a first layer and a second layer, the first A void layer is arranged between the first layer and the second layer, and the method includes the steps:
  • the second layer is not provided with a dedicated release path through the second layer in the thickness direction of the second layer and in direct communication with the interstitial layer, the method further comprising the step of utilizing a release agent permeating the second layer releasing the first sacrificial layer to form the void layer; or
  • the acoustic mirror is an acoustic mirror cavity
  • the resonator includes a release hole and a horizontally extending channel
  • the release hole passes through the first layer and the second layer in the thickness direction of the second layer and is empty from the acoustic mirror.
  • cavity in communication, the horizontally extending channel is between the first layer and the second layer and communicates the void layer with the release hole, the method further comprising the step of releasing the first layer through the release hole and the horizontally extending channel a sacrificial layer to form the void layer.
  • Embodiments of the present disclosure also relate to a filter comprising the resonator or assembly described above.
  • Embodiments of the present disclosure also relate to an electronic device comprising the above-mentioned filter or the above-mentioned resonator or the above-mentioned assembly.
  • FIG. 1 is a schematic top view of a bulk acoustic wave resonator according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional view of a bulk acoustic wave resonator along the MOM' line in FIG. 1 according to an exemplary embodiment of the present disclosure
  • FIG. 3 is a schematic cross-sectional view of a bulk acoustic wave resonator similar to the MOM' line in FIG. 1 , wherein a sacrificial layer is provided within the void layer, according to an exemplary embodiment of the present disclosure;
  • FIG. 4 exemplarily shows the relationship between the width of the AW structure and the electromechanical coupling coefficient
  • FIG. 5 is a schematic top view of a bulk acoustic wave resonator according to another exemplary embodiment of the present disclosure.
  • FIG. 6 is a schematic cross-sectional view of a bulk acoustic wave resonator along the MOM' line in FIG. 5 according to an exemplary embodiment of the present disclosure
  • FIG. 7 is a schematic top view of a bulk acoustic wave resonator according to yet another exemplary embodiment of the present disclosure.
  • FIG. 8A-8H exemplarily show schematic cross-sectional views of the fabrication process of the bulk acoustic wave resonator in FIG. 2 .
  • Substrate, optional materials are single crystal silicon, gallium nitride, gallium arsenide, sapphire, quartz, silicon carbide, diamond, etc.
  • Acoustic mirror which can be a cavity, or a Bragg reflector and other equivalent forms.
  • the embodiment of the present disclosure adopts the form of a cavity.
  • a release channel which communicates the release hole 90 with the cavity of the acoustic mirror.
  • the sacrificial layer 21 Sacrificial layer, when the acoustic mirror is in the form of a cavity, it is set in the cavity during the process of preparing the resonator, and is released in the subsequent process to form the cavity of the acoustic mirror.
  • the sacrificial layer 21 can be optionally two. Silicon oxide, doped silicon dioxide, polysilicon, amorphous silicon and other materials.
  • Bottom electrode (including bottom electrode pins), the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a composite of the above metals or their alloys.
  • the first piezoelectric layer which can be a single crystal piezoelectric material, optional, such as: single crystal aluminum nitride, single crystal gallium nitride, single crystal lithium niobate, single crystal lead zirconate titanate (PZT), Materials such as single crystal potassium niobate, single crystal quartz film, or single crystal lithium tantalate can also be polycrystalline piezoelectric materials (corresponding to single crystals, non-single crystal materials), optional, such as polycrystalline nitridation
  • Aluminum, zinc oxide, PZT, etc. can also be a rare earth element doped material containing a certain atomic ratio of the above materials, for example, can be doped aluminum nitride, and doped aluminum nitride contains at least one rare earth element, such as scandium (Sc) , Yttrium (Y), Magnesium (Mg), Titanium (Ti), Lanthanum (La), Cerium (Ce), Praseodymium (Pr), Neody
  • the material of the second piezoelectric layer may be different or the same as the material of the first piezoelectric layer, and may be a single crystal piezoelectric material, optional, such as: single crystal aluminum nitride, single crystal gallium nitride, Single crystal lithium niobate, single crystal lead zirconate titanate (PZT), single crystal potassium niobate, single crystal quartz film, or single crystal lithium tantalate and other materials, can also be polycrystalline piezoelectric materials (corresponding to single crystal , non-single crystal material), optional, such as polycrystalline aluminum nitride, zinc oxide, PZT, etc., or a rare earth element doped material containing a certain atomic ratio of the above materials, for example, it can be doped aluminum nitride, doped Aluminium heteronitride contains at least one rare earth element, such as scandium (Sc), yttrium (Y), magnesium (Mg), titanium (Ti), lanthanum (La), cerium (C
  • Top electrode (including top electrode pins), the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a composite of the above metals or their alloys.
  • Passivation layer or process layer which can be aluminum nitride, silicon nitride or silicon dioxide, etc.
  • a sacrificial layer which is set at the position corresponding to the air gap during the process of preparing the resonator, and is released in the subsequent process to form the air gap.
  • the sacrificial layer 81 can be selected from silicon dioxide, doped silicon dioxide, and polysilicon , amorphous silicon and other materials.
  • FIG. 1 is a schematic top view of a bulk acoustic wave resonator according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional view of the bulk acoustic wave resonator along the MOM' line in FIG. 1 according to an exemplary embodiment of the present disclosure .
  • the BAW resonator includes a substrate 10, an acoustic mirror cavity 20 disposed in the substrate 10, a bottom electrode 30, a top electrode 50, and a piezoelectric layer including a first piezoelectric layer 41 and a piezoelectric layer.
  • the second piezoelectric layer 42 The second piezoelectric layer 42 .
  • a void layer 80 is provided between the first piezoelectric layer and the second piezoelectric layer, which is in the form of an air gap.
  • Passivation layer 70 is also shown in FIGS. 1-2.
  • FIG. 3 is a schematic cross-sectional view of a bulk acoustic wave resonator similar to the MOM' line in FIG. 1 according to an exemplary embodiment of the present disclosure.
  • the difference between FIG. 3 and FIG. 2 is that in FIG. A sacrificial layer 81 is provided.
  • the structure of FIG. 2 is formed by releasing the sacrificial layer within void layer 81 in FIG. 3 .
  • the AW structure can be a dielectric material or an air gap. If it is a solid dielectric material, there is no need to set up a "special release path" mentioned later, but the acoustic resistance difference between the solid dielectric material and the piezoelectric layer is smaller than the acoustic resistance difference between the air and the piezoelectric layer, so the AW structure is air
  • reference numeral 80 corresponds to the AW structure in the form of a voided layer.
  • the second piezoelectric layer 42 is not provided with extending through the second piezoelectric layer in the thickness direction of the second piezoelectric layer 42 and in direct communication with the void layer 80 .
  • the "special release path" in “special release path” refers to a channel specially formed in the second piezoelectric layer by, for example, etching in order to release the sacrificial material in the void layer 80 . In the top view of the resonator, there are no release holes or dedicated release paths projected into void layer 80 .
  • the AW structure can be fabricated without increasing the area and process complexity of the resonator.
  • a special release hole needs to be provided for the interstitial layer 80 to release the sacrificial material in it
  • a release hole that communicates with the interstitial layer 80 in the vertical direction needs to be arranged outside the non-electrode connection end of the top electrode, for example, This increases the area of the resonator, but if the dedicated relief hole or relief path is omitted, the area occupied by it can be reduced, thereby reducing the area of the resonator.
  • the process complexity of the resonator fabrication is naturally also reduced due to the reduced etching of dedicated release paths.
  • the following exemplifies and specifically describes how to release the sacrificial layer 81 in the void layer 80 without specifically disposing the release hole for the void layer 80 .
  • the surface and inside of the second piezoelectric layer 42 on the upper layer of the AW structure have a pore structure of microvoids or nanovoids, or because the deposited piezoelectric film such as aluminum nitride is a polycrystalline material oriented along the C axis Thus there is a clear polycrystalline texture.
  • the pore structure means a pore structure as long as the release of the sacrificial layer 81 within the void layer 80 via the second piezoelectric layer can be achieved.
  • the second piezoelectric layer 42 allows the release liquid or release agent to pass through the second piezoelectric layer 42 to react with the material of the sacrificial layer 81 in the AW structure or the void layer 80, and the final reaction product also passes through the second piezoelectric layer 42 along with the release agent, etc.
  • the two piezoelectric layers 42 flow out of the void layer 80 .
  • the piezoelectric material of the first piezoelectric layer 41 is different from that of the second piezoelectric layer 42 .
  • the different materials of the first piezoelectric layer and the second piezoelectric layer also It is reflected in the different materials that lead to different electromechanical coupling coefficients.
  • the sacrificial layer 81 can be directly released through the second piezoelectric layer 42, it is not necessary to separately set a special release hole through the second piezoelectric layer 42 to release the sacrificial layer 81 in the void layer 80.
  • the final AW structure, the voided layer, can be obtained.
  • the outer edge of the AW structure or the void layer 80 at the non-connecting end of the top electrode is at the boundary of the effective area of the resonator. Outside, see Figure 1 for example.
  • the cross-sectional structure of the second piezoelectric layer 42 formed of the above piezoelectric materials is a discrete columnar structure , and there are vertical grain boundaries between the grains. These grain boundaries are relatively loose structures, which can pass ions such as HF that can react with the sacrificial layer, so the sacrificial layer can be released without opening the release hole. The material in 81 is released.
  • the structure of the second piezoelectric layer needs to meet the following conditions: (1) the piezoelectric material of the second piezoelectric layer is a piezoelectric material whose lattice structure is oriented along the C-axis; (2) the C-axis is oriented The included angle with the direction perpendicular to the base plane is within ⁇ 30°. Correspondingly, the lattice structure of the first piezoelectric layer is oriented along the C axis.
  • FIG. 5 is a schematic top view of a bulk acoustic wave resonator according to another exemplary embodiment of the present disclosure
  • FIG. 6 is a cross-section of the bulk acoustic wave resonator along the MOM' line in FIG. 5 according to an exemplary embodiment of the present disclosure Schematic.
  • the sacrificial layer 81 within the void layer 80 is released through the release holes 90 for the acoustic mirror.
  • the AW structure or void layer 80 may be connected to the release channel of the acoustic mirror, thus further increasing the release of the sacrificial layer material within the void layer.
  • the AW structure or void layer 80 may be connected to only one release channel or may be connected to multiple release channels.
  • the resonator in order to make the void layer 80 communicate with the release hole 90, the resonator includes a horizontally extending channel 80A, which is located between the first piezoelectric layer and the second piezoelectric layer and connects the void layer 80 with the release hole. 90 are the same.
  • the sacrificial material in the void layer 80 may also be released by only using the passage formed by the release hole 90 and the horizontally extending channel 80A to communicate with the void layer 80 .
  • the second piezoelectric layer 42 may not need to consider the need to allow the release agent and the reaction product to pass through, but may select the same or different piezoelectric material as the piezoelectric material of the first piezoelectric layer.
  • the void layer 80 includes a plurality of void portions that are spaced apart in the circumferential direction along the active area.
  • the use of the second piezoelectric layer 42 to release the sacrificial material within the void layer 80 is preferably employed.
  • the value of the electromechanical coupling coefficient of the resonator can be adjusted. Since the first piezoelectric layer 41 and the second piezoelectric layer 42 are prepared separately, the two piezoelectric layers can be prepared as different materials, so that the electromechanical coupling coefficient of the resonator can be freely adjusted.
  • the first piezoelectric layer 41 is a piezoelectric layer of a certain material (for example, a piezoelectric layer of a material selected from aluminum nitride, zinc oxide, lead zirconate titanate, lithium niobate, quartz, potassium niobate, and lithium tantalate).
  • the second piezoelectric layer 42 is a doped layer doped with at least one rare earth element as mentioned above in the same material layer as the material of the first piezoelectric layer 41
  • the first piezoelectric layer 41 and the second piezoelectric layer 42 are both piezoelectric materials based on aluminum nitride, but one layer of the piezoelectric material is a piezoelectric material without any doping, and the other layer is a doping element scandium piezoelectric material.
  • the first piezoelectric layer and the second piezoelectric layer are both doped layers of the same material, but the doping concentration of the first piezoelectric layer is different from the doping concentration of the second piezoelectric layer.
  • the first piezoelectric layer 41 and the second piezoelectric layer 42 are both piezoelectric materials based on aluminum nitride doped with rare earth element scandium, but the doping concentration of the first piezoelectric layer and the second piezoelectric layer is different. .
  • the material of the first piezoelectric layer 41 is one of aluminum nitride, zinc oxide, lead zirconate titanate, lithium niobate, quartz, potassium niobate, and lithium tantalate
  • the second piezoelectric layer 42 It is a material different from the material of the first piezoelectric layer among aluminum nitride, zinc oxide, lead zirconate titanate, lithium niobate, quartz, potassium niobate, and lithium tantalate.
  • the first piezoelectric The layer is aluminum nitride and the second piezoelectric layer is zinc oxide.
  • the above arrangement of the piezoelectric layers 41 and 42 with different doping can adjust the electromechanical coupling coefficient of the resonator to a relatively large extent.
  • the electromechanical coupling coefficient of the resonator in the transmit filter Tx and the electromechanical coupling coefficient of the resonator in the receive filter Rx need to be quite different (greater than 1%), but in Inside the transmitting filter Tx or the receiving filter Rx, the electromechanical coupling coefficient between different resonators needs to have a small difference (less than 1%).
  • L1 is the width of the AW structure at the non-electrode connection end of the top electrode, which is the distance between the non-electrode connection end of the top electrode and the inner edge of the AW structure in the horizontal direction;
  • L2 is the electrode at the top electrode The width of the AW structure at the connection end, which is the distance in the horizontal direction between the boundary of the acoustic mirror and the inner edge of the AW structure at the connection end of the top electrode.
  • L1 and L2 may be the same or different, but both are in the range of 0.25-10 ⁇ m.
  • FIG. 4 exemplarily shows the relationship between the width of the AW structure or the air gap and the electromechanical coupling coefficient.
  • the abscissa is the width of the AW structure (unit is ⁇ m)
  • the ordinate is the electromechanical coupling coefficient.
  • Figure 4 shows the influence of the width of the AW structure of the resonator on the electromechanical coupling coefficient when the width of the AW structure on each side of the effective area of the resonator is the same.
  • the electromechanical coupling coefficient increases with the increase of the AW width. slowing shrieking. It can be seen that the electromechanical coupling coefficient of the resonator can be adjusted by adjusting the width of the AW structure.
  • the width of the AW structure on each side can be the same or different.
  • the AW structure or the void layer or the air gap is provided at the non-electrode connection end of the top electrode, and in the case that the effective area of the resonator is a polygon, it may include only one side or multiple sides of the non-electrode connection end. It can also include the case where it is provided on all sides of the non-electrode connection end.
  • an AW structure or a void layer or an air gap is provided at the electrode connection end of the top electrode, and in the case that the effective area of the resonator is a polygon, it means that an AW structure or an AW structure is provided on the side where the electrode connection end of the top electrode is located Void layer or air gap.
  • AW structures or void layers or air gaps can also be provided around the entire active area of the resonator.
  • the electromechanical properties of the resonator will be a definite value.
  • the design freedom of the electromechanical coupling coefficient of the resonator can be increased.
  • the first piezoelectric layer 41 is made of undoped aluminum nitride material
  • the second piezoelectric layer 42 is made of scandium-doped aluminum nitride material.
  • the electromechanical coupling coefficient is 6% when the piezoelectric layer only uses undoped aluminum nitride piezoelectric layer, and the electromechanical coupling coefficient is 10% when the piezoelectric layer only uses doped aluminum nitride. . Therefore, when the thickness of the piezoelectric layer is constant, for example, by controlling the doping concentration of the first piezoelectric layer 41 and the second piezoelectric layer 42, the electromechanical coupling coefficient of the resonator can be freely changed between 6% and 10%.
  • the electromechanical coupling coefficients of different resonators in the filter can be fine-tuned by controlling the change of the width of the AW structure, so this scheme can maximize the increase in the efficiency of the filter.
  • the electromechanical coupling coefficient of the resonator can be adjusted by selecting the materials of the first piezoelectric layer and the second piezoelectric layer.
  • the difference between the electromechanical coupling coefficients of the two resonators can be made through the above method. Values vary between 0%-10%.
  • the materials of the first piezoelectric layer 41 and the second piezoelectric layer 42 may be different.
  • a certain electromechanical coupling of the resonator The required electromechanical coupling coefficient can be achieved by changing the material of the piezoelectric layer.
  • the electromechanical coupling coefficient of the resonator can be further adjusted by changing the widths of the widths L1 and L2 in FIG. 2 .
  • the thicknesses of the first piezoelectric layer 41 and the second piezoelectric layer 42 are H1 and H2, respectively.
  • the ratio of two different piezoelectric materials can be adjusted by adjusting the ratio of H1 and H2, thereby adjusting the electromechanical coupling coefficient of the resonator.
  • H2 and H1 are determined, similarly, the electromechanical coupling coefficient of the resonator can be further adjusted by changing the widths of the widths L1 and L2 in FIG. 2 .
  • the position of the AW structure sandwiched between the first piezoelectric layer 41 and the second piezoelectric layer 42 is not fixed.
  • the distance between the lower surface of the AW structure and the lower surface of the first piezoelectric layer 41 is greater than
  • the distance between the upper surface of the AW structure and the second piezoelectric layer 42 is also greater than
  • the range of thickness of the AW structure is
  • the manufacturing process of the bulk acoustic wave resonator in FIG. 2 is exemplarily described below with reference to FIGS. 8A-8H .
  • a cavity as the acoustic mirror 20 is formed on the upper surface of the substrate 10 , and then a sacrificial material is provided on the upper surface of the substrate 10 , the sacrificial material fills the cavity, and then, through CMP (chemical mechanical polishing) ) process removes the sacrificial material on the upper surface of the substrate 10 and makes the upper surface of the sacrificial material in the cavity flush with the upper surface of the substrate 10 to form the sacrificial layer 21 .
  • CMP chemical mechanical polishing
  • a layer of electrode material is deposited and patterned on the structure of FIG. 8A to form bottom electrode 30 .
  • a first piezoelectric layer 41 is deposited on the structure of FIG. 8B , which may be, for example, an undoped piezoelectric layer.
  • a sacrificial material is deposited and patterned on the upper surface of the first piezoelectric layer 41 of FIG. 8C to form a sacrificial layer 81 .
  • the sacrificial layer 81 will be released for forming the AW structure 80 at a later stage.
  • a second piezoelectric layer 42 is deposited on the upper surface of the structure of FIG. 8D , which may be, for example, a doped piezoelectric layer.
  • a top electrode 50 and a protective layer or passivation layer 70 are prepared on the upper surface of the structure of FIG. 8E.
  • the piezoelectric layer is etched to form a release hole 90 that communicates with the cavity of the acoustic mirror through the first piezoelectric layer and the second piezoelectric layer.
  • the sacrificial layer 21 and the sacrificial layer 81 are released to form the acoustic mirror 20 and the AW structure 80, respectively, as shown in FIG. 8G.
  • the release of the sacrificial layer 81 can be achieved based on the aforementioned selection of the material of the second piezoelectric layer so that the release agent of the second piezoelectric layer can be achieved directly, or it can be achieved by means of an acoustic mirror in the cavity.
  • the release channel of the sacrificial layer 21 is realized, or both.
  • each numerical range except that it is explicitly stated that it does not include the endpoint value, may be the endpoint value, but also the middle value of each numerical range, and these are all within the protection scope of the present disclosure. .
  • upper and lower are relative to the bottom surface of the substrate, and for a component, the side close to the bottom surface is the lower side, and the side away from the bottom surface is the upper side.
  • inner and outer are in the lateral direction or radial direction relative to the center of the effective area of the resonator (the overlapping area of the piezoelectric layer, the top electrode, the bottom electrode and the acoustic mirror in the thickness direction of the resonator constitutes the effective area).
  • the side or end of a component close to the center of the active area is the inner or inner end
  • the side or end of the component away from the center of the active area is the outer or outer end.
  • being located inside the position means between the position and the center of the effective area in the lateral or radial direction
  • being located outside of the position means more laterally or radially than the position away from the center of the active area.
  • bulk acoustic wave resonators may be used to form filters or other semiconductor devices.
  • a bulk acoustic wave resonator comprising:
  • the overlapping area of the top electrode, the piezoelectric layer and the bottom electrode in the thickness direction of the resonator constitutes an effective area of the resonator
  • the piezoelectric layer includes a first layer and a second layer, a void layer is arranged between the first layer and the second layer, the second layer is above the first layer, and the inner edge of the void layer is in the horizontal direction. inside the boundary of the active area, the outer edge of the void layer is located inside and defined by the piezoelectric layer;
  • the second layer is not provided with a dedicated release path extending through the second layer in the thickness direction of the second layer and in direct communication with the void layer.
  • the outer edge of the void layer is horizontally outside the boundary of the active area
  • the piezoelectric material of the second layer is a piezoelectric material whose lattice structure is oriented along the C axis; or the second layer has a pore structure with micro-voids or nano-voids.
  • the piezoelectric material of the second layer includes aluminum nitride or doped aluminum nitride or zinc oxide.
  • the acoustic mirror is an acoustic mirror cavity, and the resonator includes:
  • a horizontally extending channel is between the first layer and the second layer and communicates the void layer with the release hole.
  • the piezoelectric material of the first layer is different from the piezoelectric material of the second layer.
  • One of the first layer and the second layer is a doped layer of the other;
  • the first layer and the second layer are both doped layers of the same material, and the doping concentration of the first layer is different from the doping concentration of the second layer; or
  • the material of the first layer is one of aluminum nitride, zinc oxide, lead zirconate titanate, lithium niobate, quartz, potassium niobate, lithium tantalate
  • the second layer is aluminum nitride, zinc oxide, zirconium A material different from the first layer material among lead titanate, lithium niobate, quartz, potassium niobate, and lithium tantalate.
  • the void layer includes a plurality of void portions spaced apart in the circumferential direction along the active area.
  • a bulk acoustic wave resonator assembly comprising:
  • At least two BAW resonators wherein at least one BAW resonator is the resonator according to any one of 1-7.
  • the at least two bulk acoustic wave resonators include a first resonator and a second resonator;
  • Both the first resonator and the second resonator are resonators according to any one of 1-7.
  • the first resonator and the second resonator are the resonators according to 2 or 6.
  • the difference between the electromechanical coupling coefficient of the first resonator and the electromechanical coupling coefficient of the second resonator is in the range of 0%-10%.
  • the widths of the void layers of the first resonator and the corresponding void layers of the second resonator are different from each other.
  • a method for manufacturing a bulk acoustic wave resonator comprising a substrate, an acoustic mirror, a bottom electrode, a piezoelectric layer and a top electrode, the piezoelectric layer comprising a first layer and a second layer, the first layer and the second layer;
  • a void layer is arranged between the layers, and the method includes the steps:
  • the second layer is not provided with a dedicated release path extending through the second layer in the thickness direction of the second layer and in direct communication with the void layer, the method further comprising the step of utilizing a release through the second layer agent to release the first sacrificial layer to form the void layer; or
  • the acoustic mirror is an acoustic mirror cavity
  • the resonator includes a release hole and a horizontally extending channel
  • the release hole passes through the first layer and the second layer in the thickness direction of the second layer and is empty from the acoustic mirror.
  • cavity in communication, the horizontally extending channel is between the first layer and the second layer and communicates the void layer with the release hole, the method further comprising the step of releasing the first layer through the release hole and the horizontally extending channel a sacrificial layer to form the void layer.
  • the lattice structure of the first layer is oriented along the C-axis
  • the lattice structure of the second layer is oriented along the C-axis
  • the angle between the C-axis orientation of the lattice structure of the second layer and the direction perpendicular to the substrate plane is ⁇ 30° within.
  • a filter comprising the BAW resonator according to any one of 1-7, or the BAW resonator assembly according to any one of 8-12.
  • An electronic device comprising the filter according to 21, or the BAW resonator according to any one of 1-7, or the BAW resonator assembly according to any one of 8-12 .
  • the electronic equipment here includes but is not limited to intermediate products such as RF front-end, filter and amplifier modules, and terminal products such as mobile phones, WIFI, and drones.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本公开涉及一种体声波谐振器,包括:基底;声学镜;底电极;压电层;和顶电极,其中:顶电极、压电层、底电极在谐振器的厚度方向上的重叠区域构成谐振器的有效区域;所述压电层包括第一层和第二层,第一层与第二层之间设置有空隙层,第二层处于第一层的上方,所述空隙层的内边缘在水平方向上处于有效区域的边界的内侧,所述空隙层的外边缘位于所述压电层内部且由所述压电层限定,所述第二层不设置有在第二层的厚度方向上延伸穿过第二层且与所述空隙层直接相通的专门释放路径。本公开还涉及体声波谐振器组件,一种体声波谐振器的制造方法,一种滤波器和一种电子设备。

Description

具有空隙层的体声波谐振器及组件和制造方法、滤波器和电子设备 技术领域
本公开的实施例涉及半导体领域,尤其涉及一种体声波谐振器及其组件,一种制造体声波谐振器的方法,以及一种滤波器和一种电子设备。
背景技术
随着5G通信技术的日益发展,对数据传输速率的要求越来越高。与数据传输速率相对应的是频谱资源的高利用率和频谱的复杂化。通信协议的复杂化对于射频系统的各种性能提出了严格的要求,在射频前端模块,射频滤波器起着至关重要的作用,它可以将带外干扰和噪声滤除掉以满足射频系统和通信协议对于信噪比的要求。
传统的射频滤波器受结构和性能的限制,不能满足高频通信的要求。薄膜体声波谐振器(FBAR)作为一种新型的MEMS器件,具有体积小、质量轻、插入损耗低、频带宽以及品质因子高等优点,很好地适应了无线通信系统的更新换代,使FBAR技术成为通信领域的研究热点之一。
但是,随着5G时代来临,在现有技术中,存在进一步减小FBAR的面积的需要,以及存在在不降低性能的情况下降低滤波器的尺寸的需求。
发明内容
为缓解或解决现有技术中的上述问题的至少一个方面,提出本公开。
根据本公开的实施例的一个方面,提出了一种体声波谐振器,包括:
基底;
声学镜;
底电极;
压电层;和
顶电极,
其中:
顶电极、压电层、底电极在谐振器的厚度方向上的重叠区域构成谐振器的有效区域;
所述压电层包括第一层和第二层,第一层与第二层之间设置有空隙层, 第二层处于第一层的上方,所述空隙层的内边缘在水平方向上处于有效区域的边界的内侧,所述空隙层的外边缘位于所述压电层内部且由所述压电层限定;
所述第二层不设置有在第二层的厚度方向上延伸穿过第二层且与所述空隙层直接相通的专门释放路径。
本公开的实施例还涉及一种体声波谐振器组件,包括至少两个体声波谐振器,其中至少一个体声波谐振器为上述的谐振器。
本公开的实施例也涉及一种制造体声波谐振器的方法,所述谐振器包括基底、声学镜、底电极、压电层和顶电极,压电层包括第一层和第二层,第一层与第二层之间设置有空隙层,所述方法包括步骤:
在第一层上形成和图形化第一牺牲层;和
利用第二层覆盖第一层以及其上的第一牺牲层,
其中:
所述第二层不设置有在第二层的厚度方向上穿过第二层且与所述空隙层直接相通的专门释放路径,所述方法还包括步骤:利用透过第二层的释放剂释放第一牺牲层而形成所述空隙层;或者
所述声学镜为声学镜空腔,所述谐振器包括释放孔和水平延伸通道,所述释放孔在第二层的厚度方向上穿过第一层与第二层而与所述声学镜空腔相通,所述水平延伸通道处于第一层与第二层之间且将空隙层与释放孔相通,所述方法还包括步骤:经由所述释放孔以及所述水平延伸通道释放所述第一牺牲层以形成所述空隙层。
本公开的实施例还涉及一种滤波器,包括上述的谐振器或组件。
本公开的实施例也涉及一种电子设备,包括上述的滤波器或者上述的谐振器或上述的组件。
附图说明
以下描述与附图可以更好地帮助理解本公开所公布的各种实施例中的这些和其他特点、优点,图中相同的附图标记始终表示相同的部件,其中:
图1为根据本公开的一个示例性实施例的体声波谐振器的俯视示意图;
图2为根据本公开的一个示例性实施例的沿图1中的MOM’线的体声波谐振器的截面示意图;
图3为根据本公开的一个示例性实施例的类似于沿图1中的MOM’线的体声波谐振器的截面示意图,其中空隙层内设置有牺牲层;
图4示例性示出了AW结构的宽度与机电耦合系数之间的关系图;
图5为根据本公开的另一个示例性实施例的体声波谐振器的俯视示意图;
图6为根据本公开的一个示例性实施例的沿图5中的MOM’线的体声波谐振器的截面示意图;
图7为根据本公开的再一个示例性实施例的体声波谐振器的俯视示意图;
图8A-8H示例性示出了图2中的体声波谐振器的制作过程的截面示意图。
具体实施方式
下面通过实施例,并结合附图,对本公开的技术方案作进一步具体的说明。下述参照附图对本公开实施方式的说明旨在对本公开的总体公开构思进行解释,而不应当理解为对本公开的一种限制。
首先,本公开的附图中的附图标记说明如下:
10:基底,可选材料为单晶硅、氮化镓、砷化镓、蓝宝石、石英、碳化硅、金刚石等。
20:声学镜,可为空腔,也可采用布拉格反射层及其他等效形式。本公开的实施例中采用的是空腔的形式。
20A:释放通道,将释放孔90与声学镜空腔相通。
21:牺牲层,在声学镜为空腔形式的情况下,在制备谐振器的过程中设置在该空腔中,在之后的工艺中被释放以形成声学镜空腔,牺牲层21可选二氧化硅、掺杂二氧化硅、多晶硅、非晶硅等材料。
30:底电极(包括底电极引脚),材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
41:第一压电层,可以为单晶压电材料,可选的,如:单晶氮化铝、单晶氮化镓、单晶铌酸锂、单晶锆钛酸铅(PZT)、单晶铌酸钾、单晶石英 薄膜、或者单晶钽酸锂等材料,也可以为多晶压电材料(与单晶相对应,非单晶材料),可选的,如多晶氮化铝、氧化锌、PZT等,还可是包含上述材料的一定原子比的稀土元素掺杂材料,例如可以是掺杂氮化铝,掺杂氮化铝至少含一种稀土元素,如钪(Sc)、钇(Y)、镁(Mg)、钛(Ti)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)等。
42:第二压电层,其材料与第一压电层的材料可以不同也可以相同,可以为单晶压电材料,可选的,如:单晶氮化铝、单晶氮化镓、单晶铌酸锂、单晶锆钛酸铅(PZT)、单晶铌酸钾、单晶石英薄膜、或者单晶钽酸锂等材料,也可以为多晶压电材料(与单晶相对应,非单晶材料),可选的,如多晶氮化铝、氧化锌、PZT等,还可是包含上述材料的一定原子比的稀土元素掺杂材料,例如可以是掺杂氮化铝,掺杂氮化铝至少含一种稀土元素,如钪(Sc)、钇(Y)、镁(Mg)、钛(Ti)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)等。
50:顶电极(包括顶电极引脚),材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
70:钝化层或工艺层,其可以是氮化铝、氮化硅或二氧化硅等。
80:空隙层或AW结构。
81:牺牲层,在制备谐振器的过程中设置在该空气隙对应的位置,在后续的工艺中被释放以形成该空气隙,牺牲层81可选二氧化硅、掺杂二氧化硅、多晶硅、非晶硅等材料。
90:释放孔。
图1为根据本公开的一个示例性实施例的体声波谐振器的俯视示意图,图2为根据本公开的一个示例性实施例的沿图1中的MOM’线的体声波谐振器的截面示意图。
在图1-2中,体声波谐振器包括基底10,设置在基底10中的声学镜空腔20,底电极30,顶电极50和压电层,压电层包括第一压电层41和第二压电层42。在第一压电层与第二压电层之间设置有空隙层80,其为 空气隙的形式。图1-2中还示出了钝化层70。
图3为根据本公开的一个示例性实施例的类似于沿图1中的MOM’线的体声波谐振器的截面示意图,图3与图2的区别在于,在图3中,空隙层80内设置有牺牲层81。通过释放掉图3中的空隙层81内的牺牲层来形成图2的结构。
AW结构可以是介质材料,也可以是空气隙。如果是固体介质材料,则不存在后面提到的设置“专门释放路径”的需求,但是固体介质材料和压电层的声阻差小于空气和压电层的声阻差,所以AW结构是空气具有最好的效果,即在本公开的实施例中,附图标记80对应空隙层形式的AW结构。
在现有技术下,制备空气隙需要设置额外的释放孔结构,因此会增加谐振器的面积和工艺复杂度,本公开正是从第二压电层的材料和结构进行创新性的研究,去除“专门释放路径”的需求。
在本公开中,例如如图1-2所示,“第二压电层42不设置有在第二压电层42的厚度方向上延伸穿过第二压电层且与空隙层80直接相通的专门释放路径”中的“专门释放路径”是指为了释放出空隙层80内的牺牲材料而专门在第二压电层中通过例如刻蚀的方式形成的通道。在谐振器的俯视图中,不存在投影处于空隙层80内的释放孔或者专门释放路径。
在本公开中,因为没有为空隙层80设置专门的释放孔或释放路径,所以可以在制备AW结构的同时可以不增加谐振器的面积和工艺复杂度。具体而言,如果需要为空隙层80设置专门的释放孔而释放其内的牺牲材料,则需要在例如顶电极的非电极连接端的外侧设置在竖向方向上与空隙层80相通的释放孔,这会增加谐振器的面积,但是如果省略该专门的释放孔或者释放路径,则可以减少其占用的面积,从而降低谐振器的面积。由于减少了对专门的释放路径的刻蚀,自然也降低了谐振器制造的工艺复杂度。
下面示例性具体说明如何不专门设置用于空隙层80的释放孔来释放空隙层80内的牺牲层81。
在本公开中,AW结构上层的第二压电层42的表面和内部具有微空隙或纳空隙的孔隙结构,或者因为沉积得到的例如氮化铝压电薄膜是沿C轴 取向的多晶材料从而有明显的多晶织构。在本公开中,孔隙结构的含义为只要可以实现经由第二压电层对空隙层80内的牺牲层81的释放的孔隙结构即可。
如此,第二压电层42允许释放液或释放剂穿过第二压电层42而与AW结构或空隙层80内的牺牲层81的材料反应,最终反应产物也随着释放剂等通过第二压电层42而流出空隙层80。如本领域技术人员能够理解的,此时,第一压电层41的压电材料与第二压电层42的不同。如前面提及的,在需要通过第一压电层与第二压电层的材料不同来调整谐振器的机电耦合系数的情况下,第一压电层与第二压电层的材料不同还体现在导致机电耦合系数不同的材料不同。
因为可以经由第二压电层42直接释放掉牺牲层81,所以在不需要单独设置专门的穿过第二压电层42的释放孔来释放空隙层80内的牺牲层81的情况下,就可以得到最终的AW结构,即空隙层。
在本公开的一个实施例中,为了便于AW结构或空隙层80内的牺牲材料被有效释放掉,在顶电极非连接端的AW结构或空隙层80的外边缘处于谐振器的有效区域的边界的外侧,例如参见图1。
由于氮化铝/掺杂氮化铝以及氧化锌等压电材料的晶格结构是沿C轴取向的,所以由上述压电材料形成的第二压电层42的截面结构为离散的柱状结构,并且晶粒和晶粒之间存在垂直的晶界,这些晶界是相对疏松的结构,可以通过HF等可以和牺牲层反应的离子,因此能够实现在不开设释放孔的情况下将牺牲层81内的材料释放。
为了达到上述目的,所以第二压电层的结构需要满足以下条件:(1)第二压电层的压电材料为晶格结构沿C轴取向的压电材料;(2)该C轴取向与垂直于基底平面的方向的夹角在±30°以内。相应的,第一压电层的晶格结构沿C轴取向。
图5为根据本公开的另一个示例性实施例的体声波谐振器的俯视示意图,图6为根据本公开的一个示例性实施例的沿图5中的MOM’线的体声波谐振器的截面示意图。在图5-6中,通过用于声学镜的释放孔90来释放空隙层80内的牺牲层81。如图6所示,在一些情况下,可以将AW结构或空隙层80和声学镜的释放通道相连接,因此可以进一步增加空隙 层内的牺牲层的材料的释放。此种情况下,AW结构或空隙层80可以只和一个释放通道相连也可以和多个释放通道相连。相应的,为了使得空隙层80与释放孔90相通,所述谐振器包括水平延伸通道80A,水平延伸通道80A处于第一压电层与第二压电层之间且将空隙层80与释放孔90相通。
需要指出的是,也可以仅仅利用由释放孔90和水平延伸通道80A形成的通路与空隙层80相通来释放空隙层80内的牺牲材料。此时,第二压电层42可以不必考虑需要允许释放剂以及反应产物通过,而是可以选择与第一压电层的压电材料相同或不同的压电材料。
图7为根据本公开的再一个示例性实施例的体声波谐振器的俯视示意图。如图7所示,空隙层80包括多个空隙部,所述多个空隙部沿有效区域在周向方向上间隔开。在如此情况下,最好采用利用第二压电层42来释放空隙层80内的牺牲材料。
通过在第一压电层41与第二压电层42之间设置空隙层80,可以调节谐振器的机电耦合系数的值。因为第一压电层41和第二压电层42分开制备,因此可以将这两压电层制备为不同的材料,进而可以自由调节谐振器的机电耦合系数。例如,第一压电层41为某种材料的压电层(例如氮化铝、氧化锌、锆钛酸铅、铌酸锂、石英、铌酸钾、钽酸锂中的一种材料的压电层),而第二压电层42则为与第一压电层41的材料相同的材料层中掺杂如上提及的至少一种稀土元素的掺杂层,在一个具体的实施例中,第一压电层41和第二压电层42都是基于氮化铝的压电材料,但是其中一层压电材料是没有任何掺杂的压电材料,另外一层是掺杂元素钪的压电材料。再如,第一压电层与第二压电层均为同一材料的掺杂层,只是第一压电层的掺杂浓度不同于第二压电层的掺杂浓度,在一个具体的实施例中,第一压电层41和第二压电层42都是基于掺杂了稀土元素钪的氮化铝的压电材料,只是第一压电层与第二压电层掺杂浓度不同。又如,第一压电层41的材料为氮化铝、氧化锌、锆钛酸铅、铌酸锂、石英、铌酸钾、钽酸锂中的一种材料,而第二压电层42为氮化铝、氧化锌、锆钛酸铅、铌酸锂、石英、铌酸钾、钽酸锂中不同于第一压电层材料的材料,在一个具体的实施例中,第一压电层为氮化铝,第二压电层为氧化锌。
上述设置不同掺杂的压电层41和42可以较大幅度的调节谐振器的 机电耦合系数。比如在同一个Die内制作双工器,需要发射滤波器Tx中的谐振器的机电耦合系数和接收滤波器Rx中的谐振器的机电耦合系数有较大的差异(大于1%),但是在发射滤波器Tx或者接收滤波器Rx内部,需要不同的谐振器之间的机电耦合系数有较小差异(小于1%),此时,可以调整AW结构在谐振器的有效区域内的宽度,也就是通过调节图2中的AW结构的宽度L1和L2来调节滤波器内部的谐振器的机电耦合系数。如图2所示,L1为在顶电极的非电极连接端的AW结构的宽度,其为顶电极的非电极连接端与AW结构的内边缘在水平方向上的距离;L2为在顶电极的电极连接端的AW结构的宽度,其为在顶电极的连接端,声学镜边界与AW结构的内边缘在水平方向上的距离。在本公开的一个实施例中,L1和L2可以相同,也可以不同,但均在0.25-10μm的范围内。
图4示例性示出了AW结构或空气隙的宽度与机电耦合系数之间的关系图。在图4中,横坐标为AW结构的宽度(单位为μm),纵坐标为机电耦合系数。图4表示当谐振器的有效区域的每个边的AW结构的宽度相同时,谐振器的AW结构的宽度对机电耦合系数的影响,如图4所示,机电耦合系数随AW宽度的增加而逐渐减小。可见,可以通过调节AW结构的宽度来调节谐振器的机电耦合系数。
对于有效区域为多边形的谐振器来说,每个边的AW结构的宽度可以是相同的,也可以是不同的。
在本公开中,AW结构或者空隙层或者空气隙设置在顶电极的非电极连接端,在谐振器的有效区域为多边形的情况下,可以包括仅在非电极连接端的一条边或多条边设置的情况,也可以包括在非电极连接端的所有边设置的情况。在本公开中,AW结构或者空隙层或者空气隙设置在顶电极的电极连接端,在谐振器的有效区域为多边形的情况下,表示在顶电极的电极连接端所在的边设置有AW结构或者空隙层或者空气隙。AW结构或者空隙层或者空气隙也可以围绕谐振器的整个有效区域设置。
在压电层的厚度一定时,当采用在AW结构的上下两侧采用同一种压电材料时,则无论AW结构设置在压电层内的任一位置,在同等条件下,谐振器的机电耦合系数是一个确定的值。但是当AW结构的上下两侧采用不同的压电层材料时,可以增加谐振器的机电耦合系数的设计自由度。例 如,第一压电层41采用不掺杂氮化铝材料,第二压电层42采用掺杂钪的氮化铝材料。当压电层厚度固定时,压电层只采用不掺杂氮化铝压电层时其机电耦合系数为6%,而压电层只采用掺杂氮化铝时其机电耦合系数为10%。因此,在压电层厚度不变时,例如,通过控制第一压电层41和第二压电层42的掺杂浓度使得谐振器的机电耦合系数在6%-10%之间自由变化。当两层压电层的厚度分别确定后,接着可以通过控制AW结构的宽度的变化,对滤波器内不同的谐振器的机电耦合系数进行微调,所以该方案能够最大限度的提升滤波器内的谐振器的机电耦合系数的设计自由度。
在本公开中,可以通过选择第一压电层与第二压电层的材料,来调节谐振器的机电耦合系数,对于两个谐振器,可以通过上述方式使得两者的机电耦合系数的差值在0%-10%之间变化。
在图2中,第一压电层41与第二压电层42的材料可不同,在第一压电层41和第二压电层42的厚度固定时,对于谐振器的某一机电耦合系数,可以通过改变压电层的材料即可达到需要的机电耦合系数。在第一压电层41和第二压电层42的掺杂或者材料确定后,可以通过改变图2中的宽度L1和L2的宽度对谐振器的机电耦合系数做进一步的调整。
图2中还示出了第一压电层41和第二压电层42的厚度,其分别为H1和H2。可以通过调节H1和H2的比例来调整两种不同压电材料的占比,从而调节谐振器的机电耦合系数。当H2和H1确定后,类似的,可以通过改变图2中的宽度L1和L2的宽度对谐振器的机电耦合系数做进一步的调整。
如图2所示,AW结构夹在第一压电层41和第二压电层42的位置不是固定的。在本公开的一个实施例中,AW结构的下表面距离第一压电层41下表面的距离要大于
Figure PCTCN2021117478-appb-000001
AW结构的上表面距离第二压电层42的距离也要大于
Figure PCTCN2021117478-appb-000002
AW结构的厚度的范围是
Figure PCTCN2021117478-appb-000003
下面参照图8A-8H示例性说明图2中的体声波谐振器的制作过程。
第一,如图8A所示,在基底10上表面形成作为声学镜20的空腔,接着在基底10的上表面设置牺牲材料,该牺牲材料填充该空腔,然后,通过CMP(化学机械研磨)工艺移除基底10上表面的牺牲材料并且使得空腔内的牺牲材料的上表面与基底10的上表面齐平从而形成牺牲层21。
第二,如图8B所示,在图8A的结构上沉积和图形化电极材料层,以形成底电极30。
第三,如图8C所示,在图8B的结构上沉积第一压电层41,其例如可以为未掺杂压电层。
第四,如图8D所示,在图8C的第一压电层41的上表面沉积和图形化牺牲材料,以形成牺牲层81。该牺牲层81在后期将被释放以用于形成AW结构80。
第五,如图8E所示,在图8D的结构的上表面沉积第二压电层42,其例如可以为掺杂压电层。
第六,如图8F所示,在图8E的结构的上表面制备顶电极50和保护层或钝化层70。
第七,刻蚀压电层以形成穿过第一压电层和第二压电层而与声学镜空腔相通的释放孔90。
第八,释放牺牲层21和牺牲层81,以分别形成声学镜20和AW结构80,如图8G所示。如能够理解的,对牺牲层81的释放,可以基于前面提及的选择第二压电层的材料从而可直接通过第二压电层的释放剂来实现,也可以通过借助声学镜空腔内的牺牲层21的释放通道来实现,或者两者兼而有之。
需要指出的是,在本公开中,各个数值范围,除了明确指出不包含端点值之外,除了可以为端点值,还可以为各个数值范围的中值,这些均在本公开的保护范围之内。
在本公开中,上和下是相对于基底的底面而言的,对于一个部件,其靠近该底面的一侧为下侧,远离该底面的一侧为上侧。
在本公开中,内和外是相对于谐振器的有效区域(压电层、顶电极、底电极和声学镜在谐振器的厚度方向上的重叠区域构成有效区域)的中心在横向方向或者径向方向上而言的,一个部件的靠近有效区域的中心的一侧或一端为内侧或内端,而该部件的远离有效区域的中心的一侧或一端为外侧或外端。对于一个参照位置而言,位于该位置的内侧表示在横向方向或径向方向上处于该位置与有效区域的中心之间,位于该位置的外侧表示在横向方向或径向方向上比该位置更远离该有效区域的中心。
如本领域技术人员能够理解的,体声波谐振器可以用于形成滤波器或其他半导体器件。
基于以上,本公开提出了如下技术方案:
1、一种体声波谐振器,包括:
基底;
声学镜;
底电极;
压电层;和
顶电极,
其中:
顶电极、压电层、底电极在谐振器的厚度方向上的重叠区域构成谐振器的有效区域;
所述压电层包括第一层和第二层,第一层与第二层之间设置有空隙层,第二层处于第一层的上方,所述空隙层的内边缘在水平方向上处于有效区域的边界的内侧,所述空隙层的外边缘位于所述压电层内部且由所述压电层限定;
所述第二层不设置有在第二层的厚度方向上延伸穿过第二层且与所述空隙层直接相通的专门释放路径。
2、根据1所述的谐振器,其中:
所述空隙层的外边缘在水平方向上处于所述有效区域的边界的外侧;且
所述第二层的压电材料为为晶格结构沿C轴取向的压电材料;或者所述第二层具有微孔隙或纳空隙的孔隙结构。
3、根据2所述的谐振器,其中:
所述第二层的压电材料包括氮化铝或掺杂氮化铝或氧化锌。
4、根据1-3中任一项所述的谐振器,其中:
所述声学镜为声学镜空腔,所述谐振器包括:
释放孔,所述释放孔在第二层的厚度方向上穿过第一层与第二层而与所述声学镜空腔相通;和
水平延伸通道,所述水平延伸通道处于第一层与第二层之间且将空隙 层与释放孔相通。
5、根据1-4中任一项所述的谐振器,其中:
第一层的压电材料不同于第二层的压电材料。
6、根据5所述的谐振器,其中:
第一层与第二层中的一层为另一层的掺杂层;或者
第一层与第二层均为同一材料的掺杂层,第一层的掺杂浓度不同于第二层的掺杂浓度;或者
第一层的材料为氮化铝、氧化锌、锆钛酸铅、铌酸锂、石英、铌酸钾、钽酸锂中的一种材料,而第二层为氮化铝、氧化锌、锆钛酸铅、铌酸锂、石英、铌酸钾、钽酸锂中不同于第一层材料的材料。
7、根据2-6中任一项所述的谐振器,其中:
所述空隙层包括多个空隙部,所述多个空隙部沿有效区域在周向方向上间隔开。
8、一种体声波谐振器组件,包括:
至少两个体声波谐振器,其中至少一个体声波谐振器为根据1-7中任一项所述的谐振器。
9、根据8所述的组件,其中:
所述至少两个体声波谐振器包括第一谐振器和第二谐振器;
第一谐振器和第二谐振器均为根据1-7中任一项所述的谐振器。
10、根据9所述的组件,其中:
第一谐振器和第二谐振器为根据2或6所述的谐振器。
11、根据10所述的组件,其中:
第一谐振器的机电耦合系数与第二谐振器的机电耦合系数的差值在0%-10%的范围内。
12、根据8-11中任一项所述的组件,其中:
第一谐振器的空隙层与第二谐振器的对应空隙层的宽度彼此不同。
13、一种体声波谐振器的制造方法,所述谐振器包括基底、声学镜、底电极、压电层和顶电极,压电层包括第一层和第二层,第一层与第二层之间设置有空隙层,所述方法包括步骤:
在第一层上形成和图形化第一牺牲层;和
利用第二层覆盖第一层以及其上的第一牺牲层,
其中:
所述第二层不设置有在第二层的厚度方向上延伸穿过第二层且与所述空隙层直接相通的专门释放路径,所述方法还包括步骤:利用透过第二层的释放剂释放第一牺牲层而形成所述空隙层;或者
所述声学镜为声学镜空腔,所述谐振器包括释放孔和水平延伸通道,所述释放孔在第二层的厚度方向上穿过第一层与第二层而与所述声学镜空腔相通,所述水平延伸通道处于第一层与第二层之间且将空隙层与释放孔相通,所述方法还包括步骤:经由所述释放孔以及所述水平延伸通道释放所述第一牺牲层以形成所述空隙层。
14、根据13所述的方法,其中:
第一层的晶格结构沿C轴取向,且第二层的晶格结构沿C轴取向,第二层的晶格结构的C轴取向与垂直于基底平面的方向的夹角在±30°以内。
15、一种滤波器,包括根据1-7中任一项所述的体声波谐振器,或根据8-12中任一项所述的体声波谐振器组件。
16、一种电子设备,包括根据21所述的滤波器,或根据1-7中任一项所述的体声波谐振器,或根据8-12中任一项所述的体声波谐振器组件。
这里的电子设备,包括但不限于射频前端、滤波放大模块等中间产品,以及手机、WIFI、无人机等终端产品。
尽管已经示出和描述了本公开的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本公开的原理和精神的情况下可以对这些实施例进行变化,本公开的范围由所附权利要求及其等同物限定。

Claims (16)

  1. 一种体声波谐振器,包括:
    基底;
    声学镜;
    底电极;
    压电层;和
    顶电极,
    其中:
    顶电极、压电层、底电极在谐振器的厚度方向上的重叠区域构成谐振器的有效区域;
    所述压电层包括第一层和第二层,第一层与第二层之间设置有空隙层,第二层处于第一层的上方,所述空隙层的内边缘在水平方向上处于有效区域的边界的内侧,所述空隙层的外边缘位于所述压电层内部且由所述压电层限定;
    所述第二层不设置有在第二层的厚度方向上延伸穿过第二层且与所述空隙层直接相通的专门释放路径。
  2. 根据权利要求1所述的谐振器,其中:
    所述空隙层的外边缘在水平方向上处于所述有效区域的边界的外侧;且
    所述第二层的压电材料为晶格结构沿C轴取向的压电材料;或者所述第二层具有微孔隙或纳空隙的孔隙结构。
  3. 根据权利要求2所述的谐振器,其中:
    所述第二层的压电材料包括氮化铝或掺杂氮化铝或氧化锌。
  4. 根据权利要求1-3中任一项所述的谐振器,其中:
    所述声学镜为声学镜空腔,所述谐振器包括:
    释放孔,所述释放孔在第二层的厚度方向上穿过第一层与第二层而与所述声学镜空腔相通;和
    水平延伸通道,所述水平延伸通道处于第一层与第二层之间且将空隙层与释放孔相通。
  5. 根据权利要求1-4中任一项所述的谐振器,其中:
    第一层的压电材料不同于第二层的压电材料。
  6. 根据权利要求5所述的谐振器,其中:
    第一层与第二层中的一层为另一层的掺杂层;或者
    第一层与第二层均为同一材料的掺杂层,第一层的掺杂浓度不同于第二层的掺杂浓度;或者
    第一层的材料为氮化铝、氧化锌、锆钛酸铅、铌酸锂、石英、铌酸钾、钽酸锂中的一种材料,而第二层为氮化铝、氧化锌、锆钛酸铅、铌酸锂、石英、铌酸钾、钽酸锂中不同于第一层材料的材料。
  7. 根据权利要求2-6中任一项所述的谐振器,其中:
    所述空隙层包括多个空隙部,所述多个空隙部沿有效区域在周向方向上间隔开。
  8. 一种体声波谐振器组件,包括:
    至少两个体声波谐振器,其中至少一个体声波谐振器为根据权利要求1-7中任一项所述的谐振器。
  9. 根据权利要求8所述的组件,其中:
    所述至少两个体声波谐振器包括第一谐振器和第二谐振器;
    第一谐振器和第二谐振器均为根据权利要求1-7中任一项所述的谐振器。
  10. 根据权利要求9所述的组件,其中:
    第一谐振器和第二谐振器为根据权利要求2或6所述的谐振器。
  11. 根据权利要求10所述的组件,其中:
    第一谐振器的机电耦合系数与第二谐振器的机电耦合系数的差值在0%-10%的范围内。
  12. 根据权利要求8-11中任一项所述的组件,其中:
    第一谐振器的空隙层与第二谐振器的对应空隙层的宽度彼此不同。
  13. 一种体声波谐振器的制造方法,所述谐振器包括基底、声学镜、底电极、压电层和顶电极,压电层包括第一层和第二层,第一层与第二层之间设置有空隙层,所述方法包括步骤:
    在第一层上形成和图形化第一牺牲层;和
    利用第二层覆盖第一层以及其上的第一牺牲层,
    其中:
    所述第二层不设置有在第二层的厚度方向上延伸穿过第二层且与所述空隙层直接相通的专门释放路径,所述方法还包括步骤:利用透过第二层的释放剂释放第一牺牲层而形成所述空隙层;或者
    所述声学镜为声学镜空腔,所述谐振器包括释放孔和水平延伸通道,所述释放孔在第二层的厚度方向上穿过第一层与第二层而与所述声学镜空腔相通,所述水平延伸通道处于第一层与第二层之间且将空隙层与释放孔相通,所述方法还包括步骤:经由所述释放孔以及所述水平延伸通道释放所述第一牺牲层以形成所述空隙层。
  14. 根据权利要求13所述的方法,其中:
    第一层的晶格结构沿C轴取向,且第二层的晶格结构沿C轴取向,第二层的晶格结构的C轴取向与垂直于基底平面的方向的夹角在±30°以内。
  15. 一种滤波器,包括根据权利要求1-7中任一项所述的体声波谐振器,或根据权利要求8-12中任一项所述的体声波谐振器组件。
  16. 一种电子设备,包括根据权利要求21所述的滤波器,或根据权利要求1-7中任一项所述的体声波谐振器,或根据权利要求8-12中任一项所述的体声波谐振器组件。
PCT/CN2021/117478 2020-09-22 2021-09-09 具有空隙层的体声波谐振器及组件和制造方法、滤波器和电子设备 WO2022062911A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011002156.5 2020-09-22
CN202011002156.5A CN114257198A (zh) 2020-09-22 2020-09-22 具有空隙层的体声波谐振器及组件和制造方法、滤波器和电子设备

Publications (1)

Publication Number Publication Date
WO2022062911A1 true WO2022062911A1 (zh) 2022-03-31

Family

ID=80789607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117478 WO2022062911A1 (zh) 2020-09-22 2021-09-09 具有空隙层的体声波谐振器及组件和制造方法、滤波器和电子设备

Country Status (2)

Country Link
CN (1) CN114257198A (zh)
WO (1) WO2022062911A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115632631A (zh) * 2022-12-08 2023-01-20 深圳新声半导体有限公司 一种散热效果好的薄膜声波滤波器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220321094A1 (en) * 2022-06-21 2022-10-06 Newsonic Technologies Bulk acoustic wave filter having release hole and fabricating method of the same
CN115360996B (zh) * 2022-08-25 2024-01-23 见闻录(浙江)半导体有限公司 一种谐振器、滤波器、电子设备、及谐振器的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107453729A (zh) * 2017-06-28 2017-12-08 中国电子科技集团公司第五十五研究所 一种基于复合结构的温度补偿薄膜体声波谐振器
CN111010104A (zh) * 2019-09-02 2020-04-14 天津大学 压电层具有插入结构的体声波谐振器、滤波器和电子设备
CN111010133A (zh) * 2019-09-03 2020-04-14 天津大学 体声波谐振器及其制造方法、滤波器和电子设备
CN111010135A (zh) * 2019-10-26 2020-04-14 诺思(天津)微系统有限责任公司 体声波谐振器、滤波器及电子设备
CN111245393A (zh) * 2019-12-04 2020-06-05 诺思(天津)微系统有限责任公司 体声波谐振器及其制造方法、滤波器及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107453729A (zh) * 2017-06-28 2017-12-08 中国电子科技集团公司第五十五研究所 一种基于复合结构的温度补偿薄膜体声波谐振器
CN111010104A (zh) * 2019-09-02 2020-04-14 天津大学 压电层具有插入结构的体声波谐振器、滤波器和电子设备
CN111010133A (zh) * 2019-09-03 2020-04-14 天津大学 体声波谐振器及其制造方法、滤波器和电子设备
CN111010135A (zh) * 2019-10-26 2020-04-14 诺思(天津)微系统有限责任公司 体声波谐振器、滤波器及电子设备
CN111245393A (zh) * 2019-12-04 2020-06-05 诺思(天津)微系统有限责任公司 体声波谐振器及其制造方法、滤波器及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115632631A (zh) * 2022-12-08 2023-01-20 深圳新声半导体有限公司 一种散热效果好的薄膜声波滤波器

Also Published As

Publication number Publication date
CN114257198A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2022062911A1 (zh) 具有空隙层的体声波谐振器及组件和制造方法、滤波器和电子设备
WO2021219050A1 (zh) 谐振器组件及其制造方法、半导体器件、电子设备
US11804819B2 (en) Method and structure for high performance resonance circuit with single crystal piezoelectric capacitor dielectric material
CN112134542B (zh) 体声波谐振器、体声波谐振器组件及制造方法、滤波器及电子设备
WO2022028401A1 (zh) 带声学解耦层的体声波谐振器组件及制造方法、滤波器及电子设备
CN112117986B (zh) 谐振器制造方法
WO2022062910A1 (zh) 体声波谐振器及组件、机电耦合系数差值调整方法、滤波器、电子设备
CN112087209B (zh) 谐振器制造方法
CN112071975B (zh) 平坦化fbar谐振器制备方法
CN112087216B (zh) 具有声学孔的体声波谐振器及组件、滤波器及电子设备
WO2022083352A1 (zh) 体声波谐振器及组件、滤波器、电子设备
CN111510092B (zh) 体声波谐振器及其制造方法
WO2022148387A1 (zh) 体声波谐振器及其制造方法、滤波器及电子设备
WO2022052915A1 (zh) 滤波器组件及其制造方法、电子设备
CN113630099A (zh) 体声波谐振器及制造方法、体声波谐振器组件、滤波器及电子设备
WO2022001860A1 (zh) 体声波谐振器及制造方法、滤波器及电子设备
WO2020125352A1 (zh) 基于元素掺杂缩小有效面积的谐振器、滤波器和电子设备
CN111917393B (zh) 体声波谐振器及制造方法、体声波谐振器组件、滤波器及电子设备
WO2022228486A1 (zh) 体声波谐振器及制造方法、滤波器及电子设备
CN116208113A (zh) 中空底电极彼此绝缘的体声波谐振器组件
WO2022068561A1 (zh) 体声波谐振器、掺杂浓度确定方法、滤波器及电子设备
WO2022063149A1 (zh) Fbar谐振器制造方法
WO2022083712A1 (zh) 体声波谐振器及组件、滤波器、电子设备
WO2022062912A1 (zh) 具有声阻层的体声波谐振器及其组件和制造方法、滤波器和电子设备
US20240154602A9 (en) Bulk acoustic wave resonator filters including a high impedance shunt branch and methods of forming the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21871283

Country of ref document: EP

Kind code of ref document: A1