WO2021219050A1 - 谐振器组件及其制造方法、半导体器件、电子设备 - Google Patents

谐振器组件及其制造方法、半导体器件、电子设备 Download PDF

Info

Publication number
WO2021219050A1
WO2021219050A1 PCT/CN2021/090818 CN2021090818W WO2021219050A1 WO 2021219050 A1 WO2021219050 A1 WO 2021219050A1 CN 2021090818 W CN2021090818 W CN 2021090818W WO 2021219050 A1 WO2021219050 A1 WO 2021219050A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
acoustic wave
layer
piezoelectric layer
wave resonator
Prior art date
Application number
PCT/CN2021/090818
Other languages
English (en)
French (fr)
Inventor
杨清瑞
庞慰
张孟伦
Original Assignee
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺思(天津)微系统有限责任公司 filed Critical 诺思(天津)微系统有限责任公司
Publication of WO2021219050A1 publication Critical patent/WO2021219050A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • H03H3/10Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/205Constructional features of resonators consisting of piezoelectric or electrostrictive material having multiple resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H2003/0071Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of bulk acoustic wave and surface acoustic wave elements in the same process
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/023Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/025Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks comprising an acoustic mirror
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/0421Modification of the thickness of an element
    • H03H2003/0442Modification of the thickness of an element of a non-piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/0471Resonance frequency of a plurality of resonators at different frequencies

Definitions

  • the embodiments of the present disclosure relate to the semiconductor field, and in particular to a resonator assembly and a manufacturing method thereof, a semiconductor device, and an electronic device having the semiconductor device or the resonator assembly.
  • Electronic devices can exert different characteristics and advantages according to different working principles.
  • devices that use the piezoelectric effect or inverse piezoelectric effect
  • bulk acoustic wave resonators and surface acoustic wave resonators are widely used in electronic devices such as filters.
  • they are all processed on different wafers or substrates and then integrated together.
  • the filter structure with resonators arranged in this way is not conducive to further reduction in the size of the filter.
  • the bulk acoustic wave filter and the surface acoustic wave filter have their own advantages.
  • the bulk acoustic wave filter performs better at high frequencies, while the surface acoustic wave filter performs better at low frequencies. Therefore, in In the radio frequency front-end system, two filters are often required to cooperate with each other to realize a multi-band filter bank (ie, a multiplexer).
  • the present disclosure is proposed.
  • the bulk acoustic wave resonator and the surface acoustic wave resonator are integrated on the same side of a substrate or wafer, which facilitates the high integration of the bulk acoustic wave filter and the surface acoustic wave filter.
  • a resonator assembly and a manufacturing method thereof are provided.
  • the resonator assembly includes a bulk acoustic wave resonator and a surface acoustic wave resonator, wherein: the electrode structures of the two resonators are located The same side of a base.
  • the method includes the steps of forming electrode structures of a bulk acoustic wave resonator and a surface acoustic wave resonator on the same side of a substrate.
  • the embodiments of the present disclosure also relate to a semiconductor device including the above-mentioned resonator assembly.
  • the semiconductor device may include at least one of a filter, a duplexer, and a multiplexer.
  • the embodiment of the present disclosure also relates to an electronic device including the above-mentioned semiconductor device or resonator assembly.
  • Fig. 1 is a schematic cross-sectional view of a resonator assembly according to an exemplary embodiment of the present disclosure, in which two resonators are juxtaposed in the same layer in a lateral direction or a radial direction;
  • FIG. 1A-1J exemplarily show the manufacturing process of the resonator assembly shown in FIG. 1;
  • FIGS. 2-5 are schematic cross-sectional views of a resonator assembly according to a plurality of modified exemplary embodiments of the present disclosure, in which two resonators are juxtaposed in the same layer in the lateral direction or the radial direction;
  • FIG. 6 is a schematic cross-sectional view of a resonator assembly according to still another exemplary embodiment of the present disclosure, in which two resonators are staggered and juxtaposed in a lateral direction or a radial direction;
  • 6A-6E exemplarily show the manufacturing process of the resonator assembly shown in FIG. 6;
  • FIG. 7-11 are schematic cross-sectional views of a resonator assembly according to a plurality of modified exemplary embodiments of the present disclosure, in which two resonators are juxtaposed in layers in a lateral direction or a radial direction;
  • FIG. 12 is a schematic cross-sectional view of a resonator assembly according to still another exemplary embodiment of the present disclosure, in which two resonators are stacked in the thickness direction;
  • FIG. 12A-12K exemplarily show the manufacturing process of the resonator assembly shown in FIG. 12;
  • FIG. 13-15 are schematic cross-sectional views of a resonator assembly according to a plurality of different modified exemplary embodiments of the present disclosure, in which two resonators are stacked in the thickness direction;
  • FIG. 16A is a schematic diagram of a duplexer according to an exemplary embodiment of the present disclosure.
  • FIG. 16B is a specific structure diagram of the surface acoustic wave resonator unit in FIG. 16A.
  • FIG. 1 is a schematic cross-sectional view of a resonator assembly according to an exemplary embodiment of the present disclosure.
  • the resonator assembly includes a single crystal acoustic wave resonator and a single crystal film type surface acoustic wave resonator.
  • the piezoelectric layer material can be single crystal aluminum nitride, single crystal gallium nitride, single crystal lithium niobate, single crystal lead zirconate titanate, single crystal potassium niobate, single crystal quartz film, or Materials such as single crystal lithium tantalate.
  • the electrode material may be: gold (Au), tungsten (W), molybdenum (Mo), platinum (Pt), ruthenium (Ru), iridium (Ir), titanium tungsten (TiW), aluminum (Al) , Titanium (Ti), osmium (Os), magnesium (Mg), gold (Au), tungsten (W), molybdenum (Mo), platinum (Pt), ruthenium (Ru), iridium (Ir), germanium (Ge) , Copper (Cu), aluminum (Al), chromium (Cr) and other similar metals.
  • 07 and 05 are the low acoustic impedance layer
  • 06 is the high acoustic impedance layer
  • Both are odd multiples of a quarter wavelength, which corresponds to the shear wave wavelength of the acoustic reflection layer propagating in the longitudinal direction at the resonant frequency of the surface acoustic wave resonator.
  • the thickness of the low acoustic impedance layer and the high acoustic impedance layer can also be It is the optimized thickness considering the suppression of longitudinal waves and shear waves propagating in the longitudinal direction.
  • the number of high and low acoustic impedance layers in the Bragg reflective layer is not limited to the three layers shown in FIG.
  • the substrate 08 is the substrate, and the optional materials are monocrystalline silicon, gallium nitride, gallium arsenide, sapphire, quartz, silicon carbide, diamond, etc.
  • 09 is the top electrode of the single crystal acoustic wave resonator, and its material can be the same as the bottom electrode.
  • the interdigital electrode or electrode structure of the single crystal thin film surface acoustic wave resonator is the interdigital electrode or electrode structure of the single crystal thin film surface acoustic wave resonator, and its material and thickness can be the same as or different from the material and thickness of the top electrode 09 of the bulk acoustic wave resonator.
  • 11 is the release hole of the cavity at the bottom of the single crystal acoustic wave resonator.
  • the single crystal acoustic wave resonator and the single crystal film surface acoustic wave resonator are both single crystal structures.
  • the piezoelectric layer materials are all single crystal materials (such as lithium niobate, lithium tantalate). , Single crystal aluminum nitride, etc.), which can greatly improve the electromechanical coupling coefficient of the resonator.
  • the piezoelectric layer may also be a conventional piezoelectric layer (or polycrystalline piezoelectric layer), such as polycrystalline aluminum nitride, zinc oxide, and the like.
  • the bulk acoustic wave resonator and the surface acoustic wave resonator are arranged horizontally on the same layer on a wafer or substrate, which can effectively reduce the area of device integration, and can reduce process steps and reduce manufacturing cost.
  • an acoustic mirror cavity 12 is provided under the bulk acoustic wave resonator on the left, and a Bragg reflector layer is provided under the surface acoustic wave resonator on the right.
  • FIG. 1 The manufacturing process of the resonator assembly shown in FIG. 1 will be exemplarily described below with reference to FIGS. 1A-1J.
  • a single crystal piezoelectric film layer 02 is formed on the surface of the substrate 01, such as single crystal aluminum nitride (AlN), gallium nitride (GaN), lithium niobate (LiNbO 3 ), tantalum Lithium oxide (LiTaO 3 ) and so on.
  • single crystal aluminum nitride (AlN) and gallium nitride (GaN) films can be formed by but not limited to molecular beam epitaxy; single crystal lithium niobate and lithium tantalate films can be formed by, but not limited to, ion implantation The boundary layer is formed.
  • the piezoelectric layer formed of a single crystal material is a single crystal piezoelectric layer or a single crystal piezoelectric thin film layer, and a piezoelectric layer formed of a non-single crystal material is generally referred to as a conventional piezoelectric layer (or polycrystalline Piezoelectric layer).
  • Step 2 As shown in FIG. 1B, a metal layer is deposited on the surface of the piezoelectric film layer 02 and the metal layer is patterned to form the bottom electrode 03 of the single crystal acoustic wave resonator.
  • Step 3 As shown in FIG. 1C, a sacrificial layer 04 is deposited on the surface of the piezoelectric layer 02 and the bottom electrode 03 of the structure obtained in FIG. 1B, and patterned to form the shape of the air cavity 12 as an acoustic mirror.
  • 04 material can be polysilicon, amorphous silicon, silicon dioxide, doped silicon dioxide and other materials.
  • Step 4 As shown in FIG. 1D, a first low acoustic impedance layer 05 is deposited on the surface of the sacrificial layer 04.
  • the material can be silicon dioxide, silicon oxide, aluminum, carbon-doped silicon oxide, or nanoporous methyl multiplexer.
  • a high acoustic impedance layer 06 is deposited on the low acoustic impedance layer 05, and its material can be composed of high acoustic resistance materials, which can be tungsten, molybdenum, platinum, ruthenium, iridium, tungsten titanium, five Tantalum oxide, aluminum nitride, aluminum oxide, aluminum oxide, silicide complex, niobium carbide, tantalum nitride, titanium carbide, titanium oxide, vanadium carbide, tungsten nitride, tungsten oxide, zirconium carbide, diamond-like carbon, or silicon doped Materials such as diamonds.
  • high acoustic resistance materials which can be tungsten, molybdenum, platinum, ruthenium, iridium, tungsten titanium, five Tantalum oxide, aluminum nitride, aluminum oxide, aluminum oxide, silicide complex, niobium carbide, tantalum nitride, titanium carbide, titanium oxide
  • polysilicon can be selected as the sacrificial layer material
  • silicon dioxide can be selected as the low acoustic impedance layer material
  • aluminum nitride can be selected as the high acoustic impedance layer material.
  • Step 6 Optionally, as shown in FIG. 1F, a second low-acoustic-impedance layer 07 is deposited on the high-acoustic-impedance layer 06.
  • the material can be the same as or different from the first low acoustic impedance layer.
  • more pairs of high and low acoustic impedance layers can be deposited alternately.
  • Step 7 As shown in FIG. 1G, the second low acoustic impedance layer 07 is ground flat by a CMP (Chemical Mechanical Polishing) method. It is more common to smooth the outermost acoustic impedance layer through CMP. At this time, it may happen that the outermost acoustic impedance layer in the thickness direction of the bulk acoustic wave resonator is completely removed, and the exposed inner acoustic impedance layer is flush with the outermost acoustic impedance layer in the thickness direction of the surface acoustic wave resonator.
  • CMP Chemical Mechanical Polishing
  • Step 8 As shown in FIG. 1H, bond the surface of the second low acoustic impedance layer 07 of the structure obtained in step 7 with a surface of another substrate 08 that has been prepared, pay attention to the bonding surface of the substrate 08 There can also be an auxiliary bonding layer (not shown in the figure), such as silicon dioxide, silicon nitride and other materials.
  • an auxiliary bonding layer such as silicon dioxide, silicon nitride and other materials.
  • Step 9 As shown in FIG. 1I, flip the structure obtained in step 8, and remove the substrate 01 by CMP and/or etching or ion implantation layer separation method to expose the surface of the piezoelectric layer 02 and separate it The interface is processed by CMP to make the surface smooth and have a lower roughness.
  • Step 10 As shown in Figure 1J, an electrode metal material layer is deposited on the surface of the piezoelectric layer 02 exposed in step 9, and patterned to form the top electrode 09 of the single crystal acoustic wave resonator and the single crystal thin film surface acoustic wave resonator.
  • the interdigital electrode 10 is then etched on the surface of the piezoelectric layer 02 to form a sacrificial layer release hole 11 to connect it with the sacrificial layer 04.
  • the top electrode 09 of the bulk acoustic wave resonator and the interdigital electrode 10 of the surface acoustic wave resonator may be formed separately, so as to have different thicknesses and/or different materials.
  • Step 11 Finally, the sacrificial layer 04 is released through the release hole 11 to form the cavity structure 12, and the structure shown in FIG. 1 is obtained.
  • FIG. 2 is a schematic cross-sectional view of a resonator assembly according to another exemplary embodiment of the present disclosure.
  • the structure shown in FIG. 2 is basically the same as that in FIG. 1, with the difference that: in the embodiment shown in FIG. 2, the acoustic reflection structure under the single crystal acoustic wave resonator is the Bragg emission layer, and under the single crystal thin film surface acoustic wave resonator The acoustic reflection structure is a cavity. At this time, the thickness of each layer in the Bragg reflective layer needs to be optimized and determined according to the resonant frequency of the bulk acoustic wave resonator. In the embodiment shown in FIG.
  • the Bragg reflection structure is two pairs of alternating high and low acoustic impedance layers, where 05 and 07 are low acoustic impedance layers, and 06 and 13 are high acoustic impedance layers.
  • the number of high and low acoustic impedance layers in the Bragg reflective layer can also be other settings, but it includes at least one low acoustic impedance layer and one high acoustic impedance layer.
  • FIG. 3 is a schematic cross-sectional view of a resonator assembly according to still another exemplary embodiment of the present disclosure.
  • Figure 3 is basically the same as Figure 1, the difference is: in Figure 3, the acoustic reflection structure under the single crystal acoustic wave resonator and the single crystal thin film surface acoustic wave resonator are both Bragg emitting layer structure, and consists of four layers of high, bottom acoustic The impedance layers are alternately formed (same as the embodiment shown in Figure 2), and the thickness of each Bragg reflector layer under the two resonators is the same except for the lowermost layer. In this case, only the bulk acoustic wave resonance can be guaranteed most of the time One of the filter and the surface acoustic wave resonator has good performance.
  • FIG. 4 is a schematic cross-sectional view of a resonator assembly according to still another exemplary embodiment of the present disclosure.
  • Figure 4 is basically the same as Figure 3, the difference is: in Figure 4, the number of Bragg emitting layers under the single crystal acoustic wave resonator and the single crystal thin film surface acoustic wave resonator are different, and the thickness of each layer can be different, and the thickness can be different. According to the optimization of the resonant frequency and the corresponding sound velocity of the bulk acoustic wave resonator and the surface acoustic wave resonator, the application range is wider than that in Fig.
  • FIG. 4 an embodiment is shown in FIG. 4, in the Bragg reflection layer of the surface acoustic wave resonator, an additional low acoustic impedance layer 05a and an additional high acoustic impedance layer 06a are added, and correspondingly can also be added at other required positions.
  • the additional acoustic impedance layer in the Bragg reflection layer of the surface acoustic wave resonator, an additional low acoustic impedance layer 05a and an additional high acoustic impedance layer 06a are added, and correspondingly can also be added at other required positions.
  • the additional acoustic impedance layer is shown in the Bragg reflection layer of the surface acoustic wave resonator, an additional low acoustic impedance layer 05a and an additional high acoustic impedance layer 06a are added, and correspondingly can also be added at other required positions.
  • the additional acoustic impedance layer in the Bragg
  • FIG. 5 is a schematic cross-sectional view of a resonator assembly according to still another exemplary embodiment of the present disclosure.
  • Fig. 5 is basically the same as Fig. 1 except that the acoustic reflection structures under the single crystal acoustic wave resonator and the single crystal film surface acoustic wave resonator in Fig. 5 are both cavity structures, and the cavities may or may not be connected.
  • the support layer 14 under and around the cavity structure is the support layer 14, the material of which can be silicon dioxide, silicon nitride, polysilicon, amorphous silicon, etc.
  • the bulk acoustic wave resonator and the surface acoustic wave resonator share the piezoelectric layer and are arranged spaced apart in the horizontal plane, but the present disclosure is not limited to this, and the two resonators can each use different pressures.
  • the electrical layer is shown in Figures 6-11 mentioned later.
  • Fig. 6 is a schematic cross-sectional view of a resonator assembly according to still another exemplary embodiment of the present disclosure.
  • the resonator assembly includes a general bulk acoustic wave resonator and a single crystal film-type surface acoustic wave resonator.
  • 100 is the substrate; 101 is the cavity structure under the ordinary bulk acoustic wave resonator; 102 is Bottom electrode of ordinary bulk acoustic wave resonator; 103 piezoelectric layer of ordinary bulk acoustic wave resonator, which can be aluminum nitride, gallium nitride, zinc oxide, PZT and other materials, and can also contain rare earth elements with a certain atomic ratio of the above materials
  • the doping material for example, can be doped aluminum nitride, which contains at least one rare earth element, such as scandium (Sc), yttrium (Y), magnesium (Mg), titanium (Ti), lanthanum (La) , Cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Sc), scandium (Sc), yttrium (Y), magnesium (Mg), titanium (Ti), lanthanum (
  • piezoelectric materials can usually be obtained by sputtering processes, and are generally polycrystalline piezoelectric materials.
  • 104 is the top electrode of the ordinary bulk acoustic wave resonator;
  • 105 is the flat layer, and its material can be silicon dioxide, silicon nitride, polysilicon, amorphous silicon, etc.;
  • 106 is the piezoelectric layer of the single crystal film surface acoustic wave resonator , The material can be single crystal lithium niobate, lithium tantalate, potassium niobate, etc.;
  • 107 is the interdigital electrode of the single crystal thin film surface acoustic wave resonator;
  • 108 is the etched cavity structure.
  • the flat layer 105 can also serve as a low acoustic impedance layer of the surface acoustic wave resonator, and the piezoelectric layer 103 can also serve as a high acoustic impedance layer of the surface acoustic wave resonator.
  • the ordinary bulk acoustic wave resonator and the single crystal film surface acoustic wave resonator are horizontally staggered on the same side of the substrate and are not distributed in the same layer, which can realize piezoelectric layers based on different materials and different thicknesses.
  • the integration of the characteristic bulk acoustic wave resonator and surface acoustic wave resonator effectively reduces the device integration area.
  • FIG. 7 is a schematic cross-sectional view of a resonator assembly according to still another exemplary embodiment of the present disclosure. The difference between FIG. 7 and FIG. 6 is that the bulk acoustic wave resonator in FIG. 7 adopts a single crystal acoustic wave resonator structure.
  • FIG. 8 is a schematic cross-sectional view of a resonator assembly according to still another exemplary embodiment of the present disclosure.
  • Fig. 8 is basically the same as Fig. 6, except that, in Fig. 8, a Bragg reflection layer structure is provided under the piezoelectric layer 106 of the single crystal film surface acoustic wave resonator, which consists of a low acoustic impedance layer 109 and a high acoustic impedance layer.
  • the composition of the layer 110 can play a role in limiting the leakage of acoustic waves from the substrate, thereby reducing the loss of acoustic wave energy in the surface acoustic wave resonator.
  • the Bragg reflective layer includes at least one layer of high acoustic impedance and one layer of low acoustic impedance, and it can also be an alternating multilayer structure, such as three or four layers.
  • the thickness of the low acoustic impedance layer and the high acoustic impedance layer is an odd multiple of a quarter wavelength, and the wavelength is the shear wave wavelength corresponding to the longitudinal propagation of the acoustic reflection layer at the surface acoustic wave resonance frequency.
  • the thickness of the low acoustic impedance layer and the high acoustic impedance layer may also be optimized thicknesses after comprehensive consideration of suppression of longitudinal waves and shear waves propagating in the longitudinal direction.
  • FIG. 9 is a schematic cross-sectional view of a resonator assembly according to still another exemplary embodiment of the present disclosure.
  • the acoustic reflection structure under the surface acoustic wave resonator in FIG. 9 is a cavity structure.
  • the support layer 14 can be the same material as the flat layer 105, or it can be different. Bonded to connect together.
  • the bulk acoustic wave resonator and the surface acoustic wave resonator are simultaneously disposed on the same substrate independent of the piezoelectric layer, but the present disclosure is not limited to this.
  • the piezoelectric layer itself can serve as the same substrate, and FIG. 10 shows such an embodiment.
  • FIG. 10 is a schematic cross-sectional view of a resonator assembly according to still another exemplary embodiment of the present disclosure.
  • the surface acoustic wave resonator is a conventional surface acoustic wave resonator, that is, a niobium such as lithium or lithium tantalate wafer is used as the substrate and piezoelectric layer, and the bulk acoustic wave resonator uses a single crystal acoustic wave resonator structure.
  • a niobium such as lithium or lithium tantalate wafer
  • the conventional surface acoustic wave resonator can also be replaced with a thin-film surface acoustic wave resonator structure, that is, the piezoelectric layer is a thin film, and there can also be a Bragg reflection layer structure between the piezoelectric layer and the substrate.
  • the substrate material at this time can be single crystal silicon, gallium nitride, gallium arsenide, sapphire, quartz, silicon carbide, diamond, etc.
  • the piezoelectric layer material can be lithium niobate, lithium tantalate, niobium Potassium acid and so on.
  • the cavity under the bulk acoustic wave resonator in FIGS. 6 to 11 can also be replaced with a corresponding Bragg reflection layer structure.
  • Step 1 As shown in FIG. 6A, a common bulk acoustic wave resonator is processed by a known process, including a top electrode 104, a piezoelectric layer 103, a bottom electrode 102, a cavity structure 101 and a substrate 100. Note that the void at this time The cavity structure 101 is filled with sacrificial layer material.
  • Step 2 As shown in FIG. 6B, a flat layer 105 is deposited on the top electrode 104, the material of which can be silicon dioxide, silicon nitride, polysilicon, amorphous silicon, etc.
  • Step 3 As shown in FIG. 6C, the flat layer 105 is smoothed by a CMP (chemical mechanical polishing) method to make the surface smooth and have a lower roughness.
  • CMP chemical mechanical polishing
  • Step 4 As shown in FIG. 6D, a single crystal thin film piezoelectric layer 106 is formed by bonding or deposition on the flat layer 105.
  • the material can be lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), single crystal Aluminum nitride (AlN), gallium nitride (GaN), etc.
  • single crystal lithium niobate and lithium tantalate thin films can be formed by bonding.
  • the single crystal aluminum nitride (AlN) and gallium nitride (GaN) films can be deposited and formed by molecular beam epitaxy.
  • Step 5 As shown in FIG. 6E, an electrode metal material layer is deposited on the surface of the piezoelectric layer 106, and patterned to form the interdigital electrode 107 of the single crystal thin film surface acoustic wave resonator.
  • Step 6 The flat layer and piezoelectric layer located above the top electrode of the ordinary bulk acoustic wave resonator are etched away to form the cavity 108 structure as shown in FIG. 6, and finally the sacrifice in the cavity 101 is released Layer materials to form a cavity to obtain the structure shown in FIG. 6.
  • the two resonators use different piezoelectric layers and are staggered in the horizontal direction.
  • the piezoelectric layers of the two resonators may also be arranged in the thickness direction. Overlaid. The following is a detailed description with reference to Figures 12-15.
  • FIG. 12 is a schematic cross-sectional view of a resonator assembly according to still another exemplary embodiment of the present disclosure.
  • the resonator assembly includes a single crystal acoustic wave resonator and a single crystal film type surface acoustic wave resonator.
  • the reference signs in Fig. 12 are explained as follows (if not specifically noted, the corresponding parts or parts can be made of the same materials as in Figs.
  • 300 is the substrate of the single crystal thin film surface acoustic wave resonator; 301 and 302 Form a Bragg reflection layer structure, 301 is a high acoustic impedance layer, 302 is a low acoustic impedance layer; 303 is a piezoelectric layer of a single crystal thin film surface acoustic wave resonator; 304 is an interdigital electrode of a single crystal thin film surface acoustic wave resonator; 306 And 311 are flat layers; 314 is a cavity structure; 309 is the bottom electrode of a single crystal acoustic resonator; 308 is the piezoelectric layer of a single crystal acoustic resonator; 312 is the top electrode of a single crystal acoustic resonator; 313 is a cavity structure 314 Release through holes.
  • the single crystal acoustic wave resonator and the single crystal thin film surface acoustic wave resonator are vertically arranged on different layers on the same side of the wafer or substrate, which can effectively reduce the integration area of the device and facilitate its composition.
  • the size of the filter device is reduced.
  • 301 and 302 may be eliminated.
  • FIG. 12 The manufacturing process of the resonator assembly shown in FIG. 12 is exemplarily described below with reference to FIGS. 12A-12K.
  • Step 1 As shown in FIG. 12A, a thin-film surface acoustic wave resonator is fabricated on a substrate 300 by a known processing method, and its structure includes an interdigital electrode 304, a piezoelectric layer 303, a low acoustic impedance layer 302, and a high acoustic impedance layer 301.
  • Step 2 As shown in FIG. 12B, a sacrificial layer 305 is deposited on the surface of the piezoelectric layer 303 and the interdigital electrode 304 of the structure obtained in FIG. 12A, and patterned to form the shape of the lower half of the air cavity 314 as an acoustic mirror
  • the material of the sacrificial layer can be polysilicon, amorphous silicon, silicon dioxide, doped silicon dioxide and other materials.
  • Step 3 As shown in FIG. 12C, a flat layer 306 is deposited on the piezoelectric layer 303 and the sacrificial layer 305, the material of which can be silicon dioxide, silicon nitride, polysilicon, amorphous silicon, etc.
  • Step 4 As shown in FIG. 12D, the flat layer 306 is polished to the surface where the sacrificial layer 305 leaks by a CMP (chemical mechanical polishing) method, so that the surface is smooth and has a lower roughness.
  • CMP chemical mechanical polishing
  • Step 5 As shown in FIG. 12E, a single crystal acoustic resonator is fabricated on the substrate 307. First, a single crystal piezoelectric layer 308 is formed on the surface of the substrate 307. For details, please refer to the step description corresponding to FIG. 1A.
  • Step 6 As shown in FIG. 12F, a metal layer is deposited on the surface of the single crystal piezoelectric layer 308 and the metal layer is patterned to form the bottom electrode 309 of the single crystal acoustic wave resonator.
  • Step 7 As shown in FIG. 12G, a sacrificial layer 310 is deposited on the surface of the piezoelectric layer 308 and the bottom electrode 309 of the structure obtained in Step 6, and patterned to form the shape of the upper half of the air cavity 314 as an acoustic mirror.
  • the material of the sacrificial layer may be polysilicon, amorphous silicon, silicon dioxide, doped silicon dioxide, or other materials.
  • the same material is used for the sacrificial layer 310 and the sacrificial layer 305.
  • Step 8 As shown in FIG. 12H, a flat layer 311 is deposited on the piezoelectric layer 308 and the sacrificial layer 310.
  • the material can be silicon dioxide, silicon nitride, polysilicon, amorphous silicon, etc., optionally,
  • the flat layer 311 and the flat layer 306 use the same material.
  • Step 9 As shown in FIG. 12I, the surface of the flat layer 311 leaking out of the sacrificial layer 310 is ground by a CMP (Chemical Mechanical Polishing) method to make the surface smooth and have a lower roughness.
  • CMP Chemical Mechanical Polishing
  • Step 10 As shown in FIG. 12J, bond the structure shown in FIG. 12I with the structure shown in FIG. 12D, turn it over, and remove the substrate 307 by CMP and/or etching or ion implantation layer separation method, The surface of the piezoelectric layer 308 is exposed, and the separation interface is subjected to CMP treatment to make the surface smooth and have a lower roughness.
  • Step 11 As shown in FIG. 12K, an electrode metal material layer is deposited on the surface of the piezoelectric layer 308 exposed in step 10, and patterned to form the top electrode 312 of the single crystal acoustic wave resonator, and then etched on the surface of the piezoelectric layer 308 The release hole 313 of the sacrificial layer is formed to connect with the sacrificial layer 310 and 305.
  • Step 12 Finally, the sacrificial layers 310 and 305 are released through the release hole 313 to form a cavity structure 314, and the structure shown in FIG. 7 is obtained.
  • FIG. 13 is a schematic cross-sectional view of a resonator assembly according to still another exemplary embodiment of the present disclosure.
  • the structure shown in FIG. 13 is basically the same as that in FIG. 12, with the difference that: in the embodiment shown in FIG. 13, the surface acoustic wave resonator is a conventional structure, that is, in the present disclosure, the conventional surface acoustic wave resonator is used
  • the piezoelectric material acts as a surface acoustic wave resonator for both the substrate and the piezoelectric functional layer, as opposed to a piezoelectric thin film surface acoustic wave resonator using a piezoelectric film.
  • the surface acoustic wave resonator is located on the lower side and the bulk acoustic wave resonator is located on the upper side.
  • the positions of the two can also be exchanged, as shown in the figure 14 and Figure 15.
  • the lower bulk acoustic wave resonator uses a normal bulk acoustic wave resonator
  • the lower bulk acoustic wave resonator uses a single crystal acoustic wave resonator.
  • the upper and lower cavities are not limited to those shown in Figures 12-15. The upper and lower cavities are completely aligned, and they can also be staggered.
  • FIG. 16A is a schematic diagram of a duplexer according to an exemplary embodiment of the present disclosure.
  • the duplexer includes a transmitter filter (Tx) and a receiver filter (Rx).
  • the Tx filter is a single-ended input single-ended output structure
  • X1, X2, X3, X4, and X5 are the series resonators in the Tx filter
  • Y1, Y2, Y3, Y4, and Y5 are the parallel resonances in the Tx filter Device.
  • the Rx filter is a single-ended input and differential output structure.
  • Z1 and Z2 are series resonators in the Rx filter
  • T1 and T2 are parallel resonators in the Rx filter
  • R1, R2, and R3 are dual-mode surface acoustic waves.
  • the specific structure of the resonator (DMS) is shown in Figure 16B.
  • L1 is the matching inductance of the antenna end (Ant).
  • Tx filters have high power requirements
  • Rx filters usually have differential output requirements in order to be compatible with the differential ports of subsequent low noise amplifiers (LNA) to reduce noise.
  • LNA low noise amplifiers
  • bulk acoustic wave resonators Compared with surface acoustic wave resonators, bulk acoustic wave resonators have higher power capacity; and compared with bulk acoustic wave resonators, using surface acoustic wave DMS (dual-mode surface acoustic wave) technology can easily achieve dual-port differential output effects . Therefore, with the solution described in the present disclosure, the Tx filter realized by the bulk acoustic wave resonator and the Rx filter realized by the surface acoustic wave resonator can be integrated on the same chip, thereby reducing the size of the duplexer and using The respective advantages of the bulk acoustic wave resonator and the surface acoustic wave resonator achieve the optimal effect of the duplexer.
  • DMS dual-mode surface acoustic wave
  • the piezoelectric layer of the bulk acoustic wave resonator can be a single crystal structure (or a single crystal piezoelectric layer) or a conventional structure (or a polycrystalline piezoelectric layer); a surface acoustic wave resonator
  • the piezoelectric layer can be a conventional structure or a piezoelectric film structure.
  • Each of the duplexers shown in FIG. 16A may include, for example, the resonator assembly structure shown in FIGS. 1-15,
  • a surface acoustic wave resonator usually has a larger electromechanical coupling coefficient and can achieve a larger bandwidth
  • a bulk acoustic wave resonator usually It has a higher Q value, which is conducive to obtaining steep roll-off characteristics. Therefore, it is possible to achieve a large bandwidth and high Filter performance with roll-off characteristics.
  • the upper and lower sides are based on the bottom surface of the base of the resonator assembly, and the side of the components in the resonator assembly closer to the bottom surface is the lower side, and the side farther away from the bottom surface is the upper side.
  • a resonator assembly including:
  • the electrode structures of the two resonators are located on the same side of a substrate;
  • the two resonators share the same piezoelectric layer, and the piezoelectric layer is a single crystal piezoelectric layer;
  • a top electrode and a bottom electrode are respectively provided on the upper side and the lower side of the piezoelectric layer;
  • an electrode structure is provided on the upper side of the piezoelectric layer.
  • the assembly includes an acoustic mirror structure disposed between the piezoelectric layer and the substrate.
  • the acoustic mirror structure includes an acoustic mirror cavity and/or a Bragg reflection layer.
  • the assembly includes a Bragg reflection layer disposed on a substrate, an acoustic mirror cavity is disposed between the bottom electrode of the bulk acoustic wave resonator and the Bragg reflection layer, and in the area of the surface acoustic wave resonator, the The piezoelectric layer is connected to the Bragg reflective layer; or
  • the component includes a Bragg reflection layer disposed on a substrate.
  • the Bragg reflection layer is disposed between a bottom electrode and the substrate to form an acoustic mirror of the bulk acoustic wave resonator.
  • an acoustic mirror cavity is arranged between the piezoelectric layer and the Bragg reflection layer.
  • the Bragg reflection layer serves as an acoustic mirror of the bulk acoustic wave resonator and the surface acoustic wave resonator at the same time.
  • the number of Bragg reflecting layers in the area of the surface acoustic wave resonator is the same as the number of Bragg reflecting layers in the area of the bulk acoustic wave resonator, and the Bragg reflecting layer is in the area of the surface acoustic wave resonator and the bulk acoustic wave
  • the thickness of at least one layer in the resonator region is the same; or
  • the number of Bragg reflective layers in the region of the surface acoustic wave resonator is different from the number of Bragg reflective layers in the region of the bulk acoustic wave resonator.
  • a resonator assembly including:
  • the electrode structures of the two resonators are located on the same side of a substrate;
  • the piezoelectric layer of the bulk acoustic wave resonator and the piezoelectric layer of the surface acoustic wave resonator are spaced up and down in the thickness direction of the component, and one is an upper piezoelectric layer and the other is a lower piezoelectric layer.
  • One of the bulk acoustic wave resonator and the surface acoustic wave resonator is an upper resonator located above in the thickness direction of the component, and the other is a lower resonator located below; and
  • the upper piezoelectric layer and/or the lower piezoelectric layer are single crystal piezoelectric layers.
  • the upper resonator and the lower resonator are arranged to be spaced apart from each other in the lateral direction;
  • At least the upper piezoelectric layer is removed to expose the electrode structure of the lower resonator on the upper surface of the lower piezoelectric layer.
  • the upper resonator is a surface acoustic wave resonator
  • the lower resonator is a bulk acoustic wave resonator
  • the upper piezoelectric layer is a single crystal piezoelectric layer, and a flat isolation layer and/or a Bragg reflective layer are provided between the single crystal piezoelectric layer and the lower piezoelectric layer;
  • the upper surface of the upper piezoelectric layer is provided with the electrode structure of the upper resonator;
  • the upper piezoelectric layer and the flat isolation layer and/or the Bragg reflection layer are removed to expose the electrode structure of the lower resonator on the upper surface of the lower piezoelectric layer.
  • the upper resonator is a bulk acoustic wave resonator
  • the lower resonator is a surface acoustic wave resonator
  • the upper resonator and the lower resonator are stacked in the thickness direction of the component, and a spacer layer is arranged between the upper resonator and the lower resonator.
  • the surface acoustic wave resonator as the lower resonator is disposed between the bulk acoustic wave resonator as the upper resonator and the substrate, and a space is defined between the lower piezoelectric layer and the upper piezoelectric layer, and the spacer layer surrounds the space
  • the electrode structure of the lower resonator on the upper side of the lower piezoelectric layer is located in the space, and the space forms an acoustic mirror cavity of the upper resonator.
  • the bulk acoustic wave resonator as the lower resonator is arranged between the surface acoustic wave resonator as the upper resonator and the substrate, and a space is defined between the upper piezoelectric layer and the top electrode of the lower resonator, and the spacer layer surrounds the In the space setting, the top electrode of the lower resonator is located in the space, and the projection of the electrode of the upper resonator in the thickness direction is located in the space.
  • the upper piezoelectric layer is a single crystal piezoelectric layer, and the lower piezoelectric layer is a polycrystalline piezoelectric layer.
  • the lower piezoelectric layer constitutes the one substrate.
  • a bulk acoustic wave resonator and a surface acoustic wave resonator spaced apart from each other in the lateral direction are formed on the same side of one substrate, wherein the bulk acoustic wave resonator and the surface acoustic wave resonator share the same piezoelectric layer.
  • a composite structure layer is formed on the other side of the piezoelectric layer, the composite structure layer includes an acoustic mirror structure and a bottom electrode of the bulk acoustic wave resonator, and the side of the composite structure layer away from the piezoelectric layer is a flat surface;
  • a second substrate is provided on the one side of the composite structure layer, and the second substrate is the one substrate;
  • the top electrode of the bulk acoustic wave resonator and the electrode structure of the surface acoustic wave resonator are formed spaced apart in the lateral direction on the one surface of the piezoelectric layer.
  • the acoustic mirror structure includes an acoustic mirror cavity and/or a Bragg reflection layer.
  • the electrode structures of the bulk acoustic wave resonator and the surface acoustic wave resonator are formed on the same side of a substrate.
  • the method includes the steps:
  • At least the upper piezoelectric layer is etched to expose the electrode structure portion of the lower resonator on the upper surface of the lower piezoelectric layer.
  • the lower resonator is a bulk acoustic wave resonator
  • the upper resonator is a surface acoustic wave resonator
  • the upper piezoelectric layer is a single crystal piezoelectric layer, a flat isolation layer and/or a Bragg reflective layer are arranged between the upper piezoelectric layer and the lower piezoelectric layer, and the etching step includes etching the upper piezoelectric layer.
  • the lower resonator is a surface acoustic wave resonator
  • the upper resonator is a bulk acoustic wave resonator
  • the lower piezoelectric layer constitutes the one substrate.
  • the method includes the steps:
  • the first sacrificial layer and the second sacrificial layer are released to form a cavity structure.
  • the lower resonator is a surface acoustic wave resonator, and the upper resonator is a bulk acoustic wave resonator; or
  • the lower resonator is a bulk acoustic wave resonator
  • the upper resonator is a surface acoustic wave resonator
  • the lower resonator is a surface acoustic wave resonator
  • the upper resonator is a bulk acoustic wave resonator
  • the lower piezoelectric layer constitutes the one substrate.
  • a semiconductor device comprising the resonator assembly according to any one of 1-16.
  • the semiconductor device includes at least one of a filter, a duplexer, and a multiplexer.
  • An electronic device comprising the resonator assembly according to any one of 1-16 or the semiconductor device according to 29 or 30.
  • the electronic equipment here includes, but is not limited to, intermediate products such as radio frequency front-ends, filter amplification modules, and terminal products such as mobile phones, WIFI, and drones.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

一种谐振器组件及其制造方法,以及一种具有该谐振器组件的滤波器和一种具有该滤波器或谐振器组件的电子设备。该谐振器组件包括体声波谐振器和声表面波谐振器,其中:所述两个谐振器的电极结构位于一个基底(100)的同一侧。

Description

谐振器组件及其制造方法、半导体器件、电子设备 技术领域
本公开的实施例涉及半导体领域,尤其涉及一种谐振器组件及其制造方法,一种半导体器件,以及一种具有该半导体器件或谐振器组件的电子设备。
背景技术
电子器件作为电子设备的基本元素,被广泛应用于我们生活中的方方面面。不但目前常用的移动电话、汽车、家电设备等地方充满了各式各样的电子器件,而且未来即将改变世界的人工智能、物联网、5G通讯等技术仍然需要依靠电子器件作为基础。
电子器件根据不同工作原理可以发挥不同的特性与优势,在所有电子器件中,利用压电效应(或逆压电效应)工作的器件是其中很重要一类。其中,体声波谐振器及声表面波谐振器在滤波器等电子器件中得到广泛应用。在现有体声波或声表面波滤波器设计或者产品中,都是在不同的晶圆或基底上加工而成,最后再集成在一起,但随着射频前端小型化趋势越来越严峻,以此种方式布置谐振器的滤波器结构不利于滤波器尺寸的进一步缩小。
另一方面,体声波滤波器和声表面波滤波器分别具有各自的优势,比如,体声波滤波器在高频性能表现更好,而声表面波滤波器在低频性能表现更好,因此,在射频前端系统中常常需要两种滤波器相互配合,实现多频段滤波器组(即多工器)。但是传统的基于多晶氮化铝压电材料的体声波滤波器和基于单晶铌酸锂压电材料的声表面波滤波器,由于采用了不同的压电材料、结构和相应制作工艺,因此,在一个基底上同时加工出两种滤波器是不可能实现的,阻碍了射频前端进一步小型化的发展。
发明内容
为解决现有技术中的上述技术问题的至少一个方面,例如为进一步减小体声波滤波器、多工器等半导体器件的集成占用面积,提出本公开。在本公开中,将体声波谐振器和声表面波谐振器集成在一片基底或晶圆的 同侧,便于实现体声波滤波器和声表面波滤波器的高度集成。
根据本公开的实施例的一个方面,提出了一种谐振器组件及其制造方法,该谐振器组件包括体声波谐振器和声表面波谐振器,其中:所述两个谐振器的电极结构位于一个基底的同一侧。所述方法包括步骤:在一个基底的同一侧形成体声波谐振器和声表面波谐振器的电极结构。
本公开的实施例也涉及一种半导体器件,包括上述的谐振器组件。所述半导体器件可包括滤波器、双工器、多工器中的至少一种。
本公开的实施例还涉及一种电子设备,包括上述的半导体器件或者谐振器组件。
附图说明
以下描述与附图可以更好地帮助理解本公开所公布的各种实施例中的这些和其他特点、优点,图中相同的附图标记始终表示相同的部件,其中:
图1为根据本公开的一个示例性实施例的谐振器组件的示意性剖视图,其中两个谐振器在横向方向或径向方向上同层并置;
图1A-图1J示例性示出了图1中所示的谐振器组件的制造过程;
图2-5为根据本公开的多个变型示例性实施例的谐振器组件的示意性剖视图,其中两个谐振器在横向方向或径向方向上同层并置;
图6为根据本公开的还一个示例性实施例的谐振器组件的示意性剖视图,其中两个谐振器在横向方向或径向方向上错层并置;
图6A-6E示例性示出了图6中所示的谐振器组件的制造过程;
图7-11为根据本公开的多个变型示例性实施例的谐振器组件的示意性剖视图,其中两个谐振器在横向方向或径向方向上错层并置;
图12为根据本公开的还一个示例性实施例的谐振器组件的示意性剖视图,其中两个谐振器在厚度方向上叠置;
图12A-12K示例性示出了图12中所示的谐振器组件的制造过程;
图13-15为根据本公开的多个不同变型示例性实施例的谐振器组件的示意性剖视图,其中两个谐振器在厚度方向上叠置;
图16A为根据本公开的一个示例性实施例的双工器的示意图;
图16B为图16A中的声表面波谐振器单元的具体结构图。
具体实施方式
下面通过实施例,并结合附图,对本公开的技术方案作进一步具体的说明。下述参照附图对本公开实施方式的说明旨在对本公开的总体公开构思进行解释,而不应当理解为对本公开的一种限制。
图1为根据本公开的一个示例性实施例的谐振器组件的示意性剖视图,图1中,谐振器组件包括单晶体声波谐振器和单晶薄膜型声表面波谐振器。
图1中的附图标记说明如下:
02为单晶体声波谐振器和单晶薄膜型声表面波谐振器的压电层。压电层材料,基于不同的谐振器,可以为单晶氮化铝、单晶氮化镓、单晶铌酸锂、单晶锆钛酸铅、单晶铌酸钾、单晶石英薄膜、或者单晶钽酸锂等材料。
03为单晶体声波谐振器的底电极。在本公开中,电极材料可以为:金(Au)、钨(W)、钼(Mo)、铂(Pt),钌(Ru)、铱(Ir)、钛钨(TiW)、铝(Al)、钛(Ti)、锇(Os)、镁(Mg)、金(Au)、钨(W)、钼(Mo)、铂(Pt)、钌(Ru)、铱(Ir)、锗(Ge)、铜(Cu)、铝(Al)、铬(Cr)等类似金属形成。
05、06和07分别形成组件的声反射层,构成布拉格反射层,其中07和05为低声阻抗层,06为高声阻抗层,可选的,低声阻抗层和高声阻抗层的厚度均为四分之一波长的奇数倍,该波长为对应声反射层在表面声波谐振器谐振频率处沿纵向传播的剪切波波长,此外,低声阻抗层和高声阻抗层的厚度也可以是综合考虑对沿纵向传播的纵波和剪切波抑制而进行优化后的厚度。本公开中,布拉格反射层中高低声阻抗层层数不限于图1中所示3层,也可以为其他设置,但至少包括一层低声阻抗层和一层高声阻抗层。
08为基底,可选材料为单晶硅、氮化镓、砷化镓、蓝宝石、石英、碳化硅、金刚石等。
09为单晶体声波谐振器的顶电极,其材料可与底电极相同。
10为单晶薄膜声表面波谐振器的叉指电极或电极结构,其材料与厚度可以与体声波谐振器的顶电极09的材料与厚度相同,也可以不同。
11为单晶体声波谐振器底部空腔的释放孔。
12为位于单晶体声波谐振器下的空腔结构,起到声反射的作用。
在本实施例中单晶体声波谐振器和单晶薄膜型声表面波谐振器都为单晶结构,与常规结构相比由于其压电层材料都为单晶材料(如铌酸锂,钽酸锂,单晶氮化铝等),能够大幅提升谐振器的机电耦合系数。不过,在图1所示的实施例中,压电层也可以是常规压电层(或多晶压电层),如多晶氮化铝、氧化锌等。
另外,在图1所示的结构中,体声波谐振器和声表面波谐振器在一片晶圆或基底上同层水平布置,能够有效减小器件集成的面积,并且能够减少工艺步骤、降低制造成本。
如图1所示,左侧的体声波谐振器的下方设置有声学镜空腔12,而右侧的声表面波谐振器的下侧设置布拉格反射层。
下面参照图1A-图1J示例性说明图1中所示的谐振器组件的制造过程。
步骤1:如图1A所示,在衬底01表面上形成单晶压电薄膜层02,如单晶氮化铝(AlN)、氮化镓(GaN)、铌酸锂(LiNbO 3),钽酸锂(LiTaO 3)等。可选的,单晶氮化铝(AlN)、氮化镓(GaN)薄膜可以通过但不限于分子束外延技术沉积形成;单晶铌酸锂、钽酸锂薄膜可以通过但不限于离子注入形成分界层形成。在本公开中,以单晶材料形成的压电层为单晶压电层或单晶压电薄膜层,而以非单晶材料形成的压电层一般称为常规压电层(或多晶压电层)。
步骤2:如图1B所示,在压电薄膜层02表面沉积金属层并将金属层图形化形成单晶体声波谐振器的底电极03。
步骤3:如图1C所示,在图1B所得到的结构的压电层02及底电极03的表面沉积一牺牲层04,并图形化以形成作为声学镜的空气腔12的形 状,牺牲层04的材料可以是多晶硅、非晶硅、二氧化硅、掺杂二氧化硅等材料。
步骤4:如图1D所示,在牺牲层04的表面沉积形成第一层低声阻抗层05,其材料可以是二氧化硅、氧化硅、铝、碳掺杂氧化硅、纳米多孔甲基倍半硅氧烷、纳米多孔氢倍半硅氧烷、包含甲基倍半硅氧烷(methyl silsesquioxane,简称MSQ)和氢硅倍半环氧乙烷(hydrogen silsesquioxane,简称HSQ)的纳米多孔混合物、纳米玻璃、气凝胶、干凝胶、旋涂玻璃、聚对二甲苯、SiLK(SiLK是Dow Chemical公司开发的一种低介电常数材料)或苯并环丁烯等材料。但是其材料与牺牲层材料不同。
步骤5:如图1E所示,在低声阻抗层05上沉积形成高声阻抗层06,其材料可以为高声阻材料组成,可以是钨、钼、铂、钌、铱、钨钛、五氧化二钽、氮化铝、氧化哈、氧化铝、硅化络、碳化铌、氮化钽、碳化钛、氧化钛、碳化钒、氮化钨、氧化钨、碳化锆、类金刚石或硅掺杂的金刚石等材料。
例如:可以选择多晶硅为牺牲层材料,选择二氧化硅为低声阻抗层材料,选择氮化铝为高声阻抗层材料。
步骤6:可选的,如图1F所示,在高声阻抗层06上沉积形成第二层低声阻抗层07。其材料可以与第一低声阻抗层相同或者不同。可选的,还可以交替沉积更多对高低声阻抗层。
步骤7:如图1G所示,通过CMP(化学机械研磨)法将第二低声阻抗层07磨平。更普遍的是将最外侧声阻抗层通过CMP磨平。此时,也可能出现体声波谐振器厚度方向上的最外侧声阻抗层被完全去除掉,而露出靠内侧的声阻抗层与表面声波谐振器厚度方向上的最外侧声阻抗层平齐。
步骤8:如图1H所示,将步骤7所得到的结构的第二低声阻抗层07的表面与另一已经制备好的基底08的一个表面进行键合,注意在基底08的键合表面上还可以具有辅助键合层(图中没有示出),如二氧化硅、氮化硅等材料。
步骤9:如图1I所示,将步骤8所得到的结构翻转,并通过CMP和/ 或刻蚀或离子注入层分离的方法去除衬底01,使压电层02表面暴露,并对其分离界面进行CMP处理,使其表面光整,具有较低的粗糙度。
步骤10:如图1J所示,在步骤9所暴露出的压电层02的表面沉积电极金属材料层,并图形化形成单晶体声波谐振器的顶电极09和单晶薄膜声表面波谐振器的叉指电极10,随后在压电层02的表面刻蚀出牺牲层释放孔11,使其和牺牲层04相连。可选的,体声波谐振器的顶电极09可以与表面声波谐振器的叉指电极10分别形成,从而具有不同的厚度和/或不同的材料。
步骤11:最后通过释放孔11将牺牲层04释放掉形成空腔结构12,得到图1所示的结构。
图2为根据本公开的另一个示例性实施例的谐振器组件的示意性剖视图。图2中所示结构与图1基本相同,区别在于:在图2所示的实施例中位于单晶体声波谐振器下的声反射结构为布拉格发射层,而位于单晶薄膜声表面波谐振器下的声反射结构为空腔。此时布拉格反射层中的各层厚度需要根据体声波谐振器的谐振频率来优化确定。在图2所示的实施例中,布拉格反射结构为两对高、低声阻抗层交替,其中05和07为低声阻抗层,06和13为高声阻抗层。但可以理解的,本公开中,布拉格反射层中高低声阻抗层层数也可以为其他设置,但至少包括一层低声阻抗层和一层高声阻抗层。
图3为根据本公开的再一个示例性实施例的谐振器组件的示意性剖视图。图3与图1基本相同,区别在于:在图3中,位于单晶体声波谐振器和单晶薄膜声表面波谐振器下的声反射结构均为布拉格发射层结构,且由四层高、底声阻抗层交替形成(同图2所示的实施例),且位于两个谐振器下方的布拉格反射层各层厚度除了最下层之外均相同,这种情况下,多数时候只能保证体声波谐振器和表面声波谐振器中的一个具有良好性能。
图4为根据本公开的再一个示例性实施例的谐振器组件的示意性剖视图。图4与图3基本相同,区别在于:在图4中,位于单晶体声波谐振器和单晶薄膜声表面波谐振器下的布拉格发射层的层数不同而且各层厚 度可以不同,其厚度可以分别根据体声波谐振器和表面声波谐振器谐振频率及相应声速优化得到,相比于图3应用范围更广,可以保证任意频率体声波和表面声波谐振器组合时,同时具有良好的性能。可选的,一种实施方案如图4所示,在表面声波谐振器的布拉格反射层中,增加附加低声阻抗层05a,和附加高声阻抗层06a,也可以在其他需要的位置增加相应的附加声阻抗层。
图5为根据本公开的又一个示例性实施例的谐振器组件的示意性剖视图。图5与图1基本相同,区别在于:图5中位于单晶体声波谐振器和单晶薄膜声表面波谐振器下的声反射结构均为空腔结构,其空腔可以连通,也可以不连通。且位于空腔结构下方及周围为支撑层14,其材料可以为二氧化硅,氮化硅、多晶硅、非晶硅等。
在图1-5所示的实施例中,体声波谐振器和声表面波谐振器共用压电层且在水平面间隔开布置,但是本公开不限于此,两个谐振器可以各自使用不同的压电层,如后面提及的附图6-11所示。
图6为根据本公开的还一个示例性实施例的谐振器组件的示意性剖视图。图5所示的实施例中,谐振器组件包括普通体声波谐振器和单晶薄膜型声表面波谐振器。图5中的附图标记说明如下(如非特别指出,对应的部件或部分可以采用与图1中相同的材料):100为基底;101为普通体声波谐振器下的空腔结构;102为普通体声波谐振器的底电极;103普通体声波谐振器的压电层,其可以为氮化铝、氮化镓、氧化锌、PZT等材料,还可包含上述材料的一定原子比的稀土元素掺杂材料,例如可以是掺杂氮化铝,掺杂氮化铝至少含一种稀土元素,如钪(Sc)、钇(Y)、镁(Mg)、钛(Ti)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)等,这些压电材料通常可以通过溅射工艺获得,一般为多晶压电材料。104为普通体声波谐振器的顶电极;105为平坦层,其材料可为二氧化硅,氮化硅、多晶硅、非晶硅等;106为单晶薄膜型声表面波谐振器的压电层,其材料可以为单晶铌酸锂、钽酸锂、铌酸钾等;107为单晶薄膜型声表面波谐振器的叉指电极;108为刻蚀空腔结构。其中,通过设计合理厚度,平坦层105也可以充当表面声波谐振器的低声阻抗层,压电层 103也可以充当表面声波谐振器的高声阻抗层。
在图6所示的实施例中,普通体声波谐振器和单晶薄膜型声表面波谐振器在基底的同侧水平错开布置且不在同一层分布,能实现基于不同材料、不同厚度压电层特性的体声波谐振器和表面声波谐振器的集成,从而有效减小器件集成面积。
图7为根据本公开的再一个示例性实施例的谐振器组件的示意性剖视图。图7与图6的区别在于,在图7中体声波谐振器采用单晶体声波谐振器结构。
图8为根据本公开的再一个示例性实施例的谐振器组件的示意性剖视图。图8与图6基本相同,区别在于,在图8中,在单晶薄膜型声表面波谐振器压电层106的下方设置有布拉格反射层结构,其由低声阻抗层109和高声阻抗层110组成,能够起到限制声波从衬底中泄露的作用,从而减小表面声波谐振器中声波能量的损失。布拉格反射层至少包括一层高声阻抗层和一层低声阻抗层,也可以为多层结构交替而成,如三层或四层。可选的,其低声阻抗层和高声阻抗层的厚度为四分之一波长的奇数倍,该波长为对应声反射层在声表面波谐振频率处沿纵向传播的剪切波波长。此外,低声阻抗层和高声阻抗层的厚度也可以是综合考虑对沿纵向传播的纵波和剪切波抑制而进行优化后的厚度。
图9为根据本公开的再一个示例性实施例的谐振器组件的示意性剖视图。图9与图8的区别在于,在图9中表面声波谐振器下方的声反射结构为空腔结构。且位于空腔结构下方及周围为支撑层14,其材料可以为二氧化硅,氮化硅、多晶硅、非晶硅等,支撑层14可以与平坦层105材料相同,也可以不同,二者通过键合连接在一起。
在图1-9所示的实施例中,体声波谐振器和声表面波谐振器同时设置在独立于压电层之外的同一基底上,但是,本公开不限于此。在特定情况下,压电层本身可以作为所述同一基底,图10示出了这样的实施例。
图10为根据本公开的再一个示例性实施例的谐振器组件的示意性剖视图。在图10中,表面声波谐振器为常规型表面声波谐振器,即采用铌例如酸锂或钽酸锂晶圆作为衬底和压电层,而体声波谐振器采用单晶体声 波谐振器结构。在图10的基础上,还可以将常规型表面声波谐振器替换为薄膜型表面声波谐振器结构,即压电层为薄膜,在压电层与衬底之间还可以存在布拉格反射层结构,如图11所示,此时衬底材料可以为单晶硅、氮化镓、砷化镓、蓝宝石、石英、碳化硅、金刚石等,压电层材料可以为铌酸锂、钽酸锂、铌酸钾等。
需要指出的是,在可选的实施例中,图6-图11中的体声波谐振器下方的空腔也可以替换为相应的布拉格反射层结构。
下面参照图6A-6E示例性说明图6中所示的谐振器组件的制造过程。
步骤1:如图6A所示,通过已知工艺加工出普通的体声波谐振器,包括顶电极104,压电层103,底电极102,空腔结构101和基底100,注意,此时的空腔结构101中填充有牺牲层材料。
步骤2:如图6B所示,在顶电极104上沉积形成一层平坦层105,其材料可以为二氧化硅,氮化硅、多晶硅、非晶硅等。
步骤3:如图6C所示,通过CMP(化学机械研磨)法将平坦层105磨平,使其表面光整,具有较低的粗糙度。
步骤4:如图6D所示,在平坦层105上方通过键合或沉积形成单晶薄膜压电层106,其材料可以为铌酸锂(LiNbO 3),钽酸锂(LiTaO 3)、单晶氮化铝(AlN)、氮化镓(GaN)等。通常,单晶铌酸锂、钽酸锂薄膜可以通过键合形成,未示出的,压电层106和平坦层105之间还可以有辅助键合层。而单晶氮化铝(AlN)、氮化镓(GaN)薄膜可以通过分子束外延技术沉积形成。
步骤5:如图6E所示,在压电层106的表面沉积电极金属材料层,并图形化形成单晶薄膜型声表面波谐振器的叉指电极107。
步骤6:通过刻蚀的方法将位于普通体声波谐振器顶电极上方的平坦层和压电层刻蚀掉形成如图6中所示的空腔108结构,并最终释放空腔101中的牺牲层材料,形成空腔,得到图6所示的结构。
在图6-11所示的实施例中,两个谐振器使用不同的压电层且在水平方向上错开布置,但是本公开不限于此,两个谐振器的压电层还可以在厚度方向上叠置。下面参照图12-15具体说明。
图12为根据本公开的还一个示例性实施例的谐振器组件的示意性剖视图。图12中,谐振器组件包括单晶体声波谐振器和单晶薄膜型声表面波谐振器。图12中的附图标记说明如下(如非特别指出,对应的部件或部分可以采用与图1和6中相同的材料):300为单晶薄膜型声表面波谐振器的基底;301和302形成布拉格反射层结构,301为高声阻抗层,302为低声阻抗层;303为单晶薄膜声表面波谐振器压电层;304为单晶薄膜声表面波谐振器的叉指电极;306和311为平坦层;314为空腔结构;309为单晶体声波谐振器的底电极;308为单晶体声波谐振器的压电层,312为单晶体声波谐振器的顶电极;313为形成空腔结构314的释放通孔。
在图12所示的实施例中,单晶体声波谐振器和单晶薄膜型声表面波谐振器在晶圆或基底的同侧不同层垂直布置,这能够有效减少器件的集成面积,有利于其组成的滤波器器件尺寸的缩小。
在可选的实施例中,可以去除301和302。
下面参照图12A-12K示例性说明了图12中所示的谐振器组件的制造过程。
步骤1:如图12A所示,通过已知加工方法在基底300上制作出薄膜声表面波谐振器,其结构包括叉指电极304、压电层303、低声阻抗层302和高声阻抗层301。
步骤2:如图12B所示,在图12A所得到结构的压电层303及叉指电极304的表面沉积一牺牲层305,并图形化以形成作为声学镜的空气腔314下半部分的形状,牺牲层的材料可以是多晶硅、非晶硅、二氧化硅、掺杂二氧化硅等材料。
步骤3:如图12C所示,在压电层303和牺牲层305的上方沉积一层平坦层306,其材料可以为二氧化硅,氮化硅、多晶硅、非晶硅等。
步骤4:如图12D所示,通过CMP(化学机械研磨)法将平坦层306磨平至漏出牺牲层305的表面,使其表面光整,具有较低的粗糙度。
步骤5:如图12E所示,在衬底307上加工制作单晶体声波谐振器。首先在衬底307表面形成单晶压电层308,具体可以参考图1A对应的步骤说明。
步骤6:如图12F所示,在单晶压电层308表面沉积金属层并将金属层图形化形成单晶体声波谐振器的底电极309。
步骤7:如图12G所示,在步骤6所得到结构的压电层308及底电极309的表面沉积一牺牲层310,并图形化以形成作为声学镜的空气腔314上半部分的形状,牺牲层的材料可以是多晶硅、非晶硅、二氧化硅、掺杂二氧化硅等材料,可选的,牺牲层310与牺牲层305采用相同的材料。
步骤8:如图12H所示,在压电层308和牺牲层310的上方沉积一层平坦层311,其材料可以为二氧化硅,氮化硅、多晶硅、非晶硅等,可选的,平坦层311与平坦层306采用相同的材料。
步骤9:如图12I所示,通过CMP(化学机械研磨)法将平坦层311磨平漏出牺牲层310的表面,使其表面光整,具有较低的粗糙度。
步骤10:如图12J所示,将图12I所示结构与图12D所示结构键合,并将其翻转过来,并通过CMP和/或刻蚀或离子注入层分离的方法去除衬底307,使压电层308表面暴露,并对其分离界面进行CMP处理,使其表面光整,具有较低的粗糙度。
步骤11:如图12K所示,在步骤10暴露出的压电层308的表面沉积电极金属材料层,并图形化形成单晶体声波谐振器的顶电极312,随后在压电层308的表面刻蚀出牺牲层的释放孔313,使其和牺牲层310和305相连。
步骤12:最后通过释放孔313将牺牲层310和305释放掉形成空腔结构314,即得到图7所示的结构。
图13为根据本公开的还一个示例性实施例的谐振器组件的示意性剖视图。图13所示的结构与图12中基本相同,区别在于:在图13所示的实施例中,声表面波谐振器为常规型结构,即在本公开中,常规声表面波谐振器为使用压电材料同时充当基底和压电功能层的声表面波谐振器,与使用了压电薄膜的压电薄膜型声表面波谐振器相对。
在图12和13所示的实施例中,声表面波谐振器位于下侧,而体声波谐振器位于上侧,但是,在可选的实施例中,两者的位置也可以交换,如图14和图15所示。在图14中,下方的体声波谐振器采用普通体声波 谐振器,而在图15中,下方的体声波谐振器采用单晶体声波谐振器。此外,并不局限于图12-15中所示,上下空腔完全对准,也可以有一定的错开,比如下空腔大于上空腔,或者下空腔小于上空腔,或者上空腔与下空腔仅有部分重叠,这些均在本公开的保护范围之内。图16A为根据本公开的一个示例性实施例的双工器的示意图。该双工器包括一个发射端滤波器(Tx)和一个接收端滤波器(Rx)。其中,Tx滤波器为单端输入单端输出结构,X1、X2、X3、X4、X5为Tx滤波器中的串联谐振器,Y1、Y2、Y3、Y4、Y5为Tx滤波器中的并联谐振器。而Rx滤波器为单端输入差分输出结构,Z1、Z2为Rx滤波器中的串联谐振器,T1、T2为Rx滤波器中的并联谐振器,;R1、R2、R3为双模式声表面波谐振器(DMS),其具体结构如图16B所示。L1为天线端(Ant)的匹配电感。通常Tx滤波器具有高功率要求,而Rx滤波器为了与后续低噪声放大器(LNA)的差分端口相兼容,通常具有差分输出要求,从而降低噪声。相比于表面声波谐振器,体声波谐振器具有更高的功率容量;而相比于体声波谐振器,采用声表面波的DMS(双模式声表面波)技术很容易实现双端口差分输出效果。因此,采用本公开所述方案,可以将利用体声波谐振器实现的Tx滤波器,与利用声表面波谐振器实现的Rx滤波器集成在同一个芯片上,从而缩小双工器尺寸,并利用体声波谐振器和表面声波谐振器各自的优点达到双工器的最优效果。
在图16A所示的实施例中,体声波谐振器的压电层可以为单晶结构(或单晶压电层)也可以为常规结构(或多晶压电层);声表面波谐振器的压电层可以为常规结构也可以为压电薄膜结构。在图16A所示的双工器中,均可以包括例如图1-15中所示的谐振器组件结构,
此外,本公开的应用并不限于如图16A所示的情况,例如但不限于如下情况,表面声波谐振器通常具有较大的机电耦合系数,可以实现更大的带宽,而体声波谐振器通常具有更高的Q值,从而有利于获得陡峭的滚降特性,因此,可以在一个滤波器中通过合理安排体声波谐振器和表面声波谐振器的位置及电连接关系,来实现大带宽、高滚降特性的滤波器性能。
可见,通过在同一基底上同时设置或加工出声表面波谐振器和体声波谐振器,有利于结合该两种谐振器的优势,容易获得单一类型谐振器所 不易达到的滤波器、双工器、多工器的性能,还可以使得射频前端进一步小型化。
在本公开中,上下是基于谐振器组件的基底的底面而言,谐振器组件中的部件的更靠近该底面的一侧为下侧,更远离该底面的一侧为上侧。
基于以上,本公开提出了如下技术方案:
1、一种谐振器组件,包括:
体声波谐振器;和
声表面波谐振器,
其中:
所述两个谐振器的电极结构位于一个基底的同一侧;
所述两个谐振器共用同一压电层,且所述压电层为单晶压电层;
在体声波谐振器中,所述压电层的上侧和下侧分别设置有顶电极和底电极;
在声表面波谐振器中,所述压电层的上侧设置有电极结构。
2、根据1所述的组件,其中:
所述组件包括设置在所述压电层与所述基底之间的声学镜结构。
3、根据2所述的组件,其中:
所述声学镜结构包括声学镜空腔和/或布拉格反射层。
4、根据3所述的组件,其中:
所述组件包括设置在基底上的布拉格反射层,所述体声波谐振器的底电极与所述布拉格反射层之间设置有声学镜空腔,在所述声表面波谐振器的区域,所述压电层与布拉格反射层相接;或者
所述组件包括设置在基底上的布拉格反射层,在所述体声波谐振器的区域,所述布拉格反射层设置在底电极与基底之间而形成所述体声波谐振器的声学镜,在所述声表面波谐振器的区域,所述压电层与布拉格反射层之间设置有声学镜空腔。
5、根据3所述的组件,其中:
所述布拉格反射层同时作为体声波谐振器与声表面波谐振器的声学镜。
6、根据5所述的组件,其中:
在所述声表面波谐振器的区域的布拉格反射层的层数与在所述体声波谐振器的区域的布拉格反射层的层数相同,且布拉格反射层在声表面波谐振器区域和体声波谐振器区中至少一层的厚度相同;或者
在所述声表面波谐振器的区域的布拉格反射层的层数与在所述体声波谐振器的区域的布拉格反射层的层数不同。
7、一种谐振器组件,包括:
体声波谐振器;和
声表面波谐振器,
其中:
所述两个谐振器的电极结构位于一个基底的同一侧;
所述体声波谐振器的压电层和所述声表面波谐振器的压电层在所述组件的厚度方向上下间隔开且一个为上压电层、另一个为下压电层,所述体声波谐振器和声表面波谐振器中的一个为在组件的厚度方向处于上方的上谐振器、另一个为处于下方的下谐振器;且
所述上压电层和/或下压电层为单晶压电层。
8、根据7所述的组件,其中:
上谐振器和下谐振器在横向方向上彼此间隔开布置;
在下谐振器的区域,至少所述上压电层被移除以露出下谐振器的在下压电层的上表面的电极结构。
9、根据8所述的组件,其中:
所述上谐振器为声表面波谐振器,所述下谐振器为体声波谐振器。
10、根据9所述的组件,其中:
所述上压电层为单晶压电层,所述单晶压电层与下压电层之间设置有平坦隔离层和/或布拉格反射层;
在所述上谐振器区域,所述上压电层的上表面设置有上谐振器的电极结构;且
在下谐振器的区域,所述上压电层和所述平坦隔离层和/或布拉格反射层被移除以露出下谐振器的在下压电层的上表面的电极结构。
11、根据8所述的组件,其中:
所述上谐振器为体声波谐振器,所述下谐振器为声表面波谐振器。
12、根据7所述的组件,其中:
上谐振器和下谐振器在所述组件的厚度方向上叠置,且上谐振器和下谐振器之间设置有间隔层。
13、根据12所述的组件,其中:
作为下谐振器的声表面波谐振器设置在作为上谐振器的体声波谐振器与基底之间,且下压电层与上压电层之间限定有空间,所述间隔层围绕所述空间设置,且下谐振器在下压电层的上侧的电极结构位于所述空间内,所述空间形成所述上谐振器的声学镜空腔。
14、根据12所述的组件,其中:
作为下谐振器的体声波谐振器布置在作为上谐振器的声表面波谐振器与基底之间,且上压电层与下谐振器的顶电极之间限定有空间,所述间隔层围绕所述空间设置,下谐振器的顶电极位于所述空间内,且所述上谐振器的电极在厚度方向的投影位于所述空间内。
15、根据9或14所述的组件,其中:
所述上压电层为单晶压电层,所述下压电层为多晶压电层。
16、根据11或13所述的组件,其中:
所述下压电层构成所述一个基底。
17、一种根据1所述的谐振器组件的制造方法,包括步骤:
在一个基底的同一侧形成体声波谐振器和声表面波谐振器的电极结构;
在一个基底的同一侧在横向方向上形成彼此间隔开的体声波谐振器和声表面波谐振器,其中:体声波谐振器和声表面波谐振器共用同一压电层。
18、根据17所述的方法,包括步骤:
在第一基底上形成压电层,第一基底在压电层的一侧;
在压电层的另一侧形成复合结构层,所述复合结构层包括声学镜结构以及体声波谐振器的底电极,所述复合结构层的远离所述压电层的一侧为平坦面;
在所述复合结构层的所述一侧设置第二基底,所述第二基底为所述一个基底;
移除第一基底;以及
在压电层的所述一侧表面上在横向方向上间隔开的形成体声波谐振器的顶电极以及声表面波谐振器的电极结构。
19、根据18所述的方法,其中:
所述声学镜结构包括声学镜空腔和/或布拉格反射层。
20、一种根据7所述的谐振器组件的制造方法,包括步骤:
在一个基底的同一侧形成体声波谐振器和声表面波谐振器的电极结构。
21、根据20所述的方法,其中:
所述方法包括步骤:
在下压电层的表面形成下谐振器的电极结构;
形成上压电层,所述上压电层覆盖下谐振器的电极结构的处于下压电层的上表面的电极结构部分;
在下谐振器区域,刻蚀至少上压电层以露出下谐振器的处于下压电层的上表面的电极结构部分。
22、根据21所述的方法,其中:
所述下谐振器为体声波谐振器,所述上谐振器为声表面波谐振器。
23、根据22所述的方法,其中:
所述上压电层为单晶压电层,所述上压电层与下压电层之间设置有平坦隔离层和/或布拉格反射层,所述刻蚀步骤包括刻蚀所述上压电层和所述平坦隔离层和/或布拉格反射层。
24、根据21所述的方法,其中:
所述下谐振器为声表面波谐振器,所述上谐振器为体声波谐振器。
25、根据24所述的方法,其中:
所述下压电层构成所述一个基底。
26、根据20所述的方法,其中:
所述方法包括步骤:
在第一基底上形成下谐振器的压电层以及电极结构,以及形成覆盖下压电层的第一平坦层,第一平坦层包括覆盖下谐振器的电极结构的第一牺牲层;
在第二基底上形成上谐振器的压电层以及电极结构,以及形成覆盖上压电层的第二平坦层,第二平坦层包括第二牺牲层;
将第一平坦层和第二平坦层对置连接且第一牺牲层和第二牺牲层至少有部分重叠;和
释放第一牺牲层和第二牺牲层以形成空腔结构。
27、根据26所述的方法,其中:
所述下谐振器为声表面波谐振器,所述上谐振器为体声波谐振器;或者
所述下谐振器为体声波谐振器,所述上谐振器为声表面波谐振器。
28、根据27所述的方法,其中:
所述下谐振器为声表面波谐振器,所述上谐振器为体声波谐振器,所述下压电层构成所述一个基底。
29、一种半导体器件,包括根据1-16中任一项所述的谐振器组件。
30、根据29所述的半导体器件,其中:所述半导体器件包括滤波器、双工器、多工器中的至少一种。
31、一种电子设备,包括根据1-16中任一项所述的谐振器组件或者根据29或30所述的半导体器件。
需要指出的是,这里的电子设备,包括但不限于射频前端、滤波放大模块等中间产品,以及手机、WIFI、无人机等终端产品。
尽管已经示出和描述了本公开的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本公开的原理和精神的情况下可以对这些实施例进行变化,本公开的范围由所附权利要求及其等同物限定。

Claims (31)

  1. 一种谐振器组件,包括:
    体声波谐振器;和
    声表面波谐振器,
    其中:
    所述两个谐振器的电极结构位于一个基底的同一侧;
    所述两个谐振器共用同一压电层,且所述压电层为单晶压电层;
    在体声波谐振器中,所述压电层的上侧和下侧分别设置有顶电极和底电极;
    在声表面波谐振器中,所述压电层的上侧设置有电极结构。
  2. 根据权利要求1所述的组件,其中:
    所述组件包括设置在所述压电层与所述基底之间的声学镜结构。
  3. 根据权利要求2所述的组件,其中:
    所述声学镜结构包括声学镜空腔和/或布拉格反射层。
  4. 根据权利要求3所述的组件,其中:
    所述组件包括设置在基底上的布拉格反射层,所述体声波谐振器的底电极与所述布拉格反射层之间设置有声学镜空腔,在所述声表面波谐振器的区域,所述压电层与布拉格反射层相接;或者
    所述组件包括设置在基底上的布拉格反射层,在所述体声波谐振器的区域,所述布拉格反射层设置在底电极与基底之间而形成所述体声波谐振器的声学镜,在所述声表面波谐振器的区域,所述压电层与布拉格反射层之间设置有声学镜空腔。
  5. 根据权利要求3所述的组件,其中:
    所述布拉格反射层同时作为体声波谐振器与声表面波谐振器的声学镜。
  6. 根据权利要求5所述的组件,其中:
    在所述声表面波谐振器的区域的布拉格反射层的层数与在所述体声波谐振器的区域的布拉格反射层的层数相同,且布拉格反射层在声表面波谐振器区域和体声波谐振器区中至少一层的厚度相同;或者
    在所述声表面波谐振器的区域的布拉格反射层的层数与在所述体声波谐振器的区域的布拉格反射层的层数不同。
  7. 一种谐振器组件,包括:
    体声波谐振器;和
    声表面波谐振器,
    其中:
    所述两个谐振器的电极结构位于一个基底的同一侧;
    所述体声波谐振器的压电层和所述声表面波谐振器的压电层在所述组件的厚度方向上下间隔开且一个为上压电层、另一个为下压电层,所述体声波谐振器和声表面波谐振器中的一个为在组件的厚度方向处于上方的上谐振器、另一个为处于下方的下谐振器;且
    所述上压电层和/或下压电层为单晶压电层。
  8. 根据权利要求7所述的组件,其中:
    上谐振器和下谐振器在横向方向上彼此间隔开布置;
    在下谐振器的区域,至少所述上压电层被移除以露出下谐振器的在下压电层的上表面的电极结构。
  9. 根据权利要求8所述的组件,其中:
    所述上谐振器为声表面波谐振器,所述下谐振器为体声波谐振器。
  10. 根据权利要求9所述的组件,其中:
    所述上压电层为单晶压电层,所述单晶压电层与下压电层之间设置有平坦隔离层和/或布拉格反射层;
    在所述上谐振器区域,所述上压电层的上表面设置有上谐振器的电极结构;且
    在下谐振器的区域,所述上压电层和所述平坦隔离层和/或布拉格反射层被移除以露出下谐振器的在下压电层的上表面的电极结构。
  11. 根据权利要求8所述的组件,其中:
    所述上谐振器为体声波谐振器,所述下谐振器为声表面波谐振器。
  12. 根据权利要求7所述的组件,其中:
    上谐振器和下谐振器在所述组件的厚度方向上叠置,且上谐振器和下谐振器之间设置有间隔层。
  13. 根据权利要求12所述的组件,其中:
    作为下谐振器的声表面波谐振器设置在作为上谐振器的体声波谐振器与基底之间,且下压电层与上压电层之间限定有空间,所述间隔层围绕所述空间设置,且下谐振器在下压电层的上侧的电极结构位于所述空间内,所述空间形成所述上谐振器的声学镜空腔。
  14. 根据权利要求12所述的组件,其中:
    作为下谐振器的体声波谐振器布置在作为上谐振器的声表面波谐振器与基底之间,且上压电层与下谐振器的顶电极之间限定有空间,所述间隔层围绕所述空间设置,下谐振器的顶电极位于所述空间内,且所述上谐振器的电极在厚度方向的投影位于所述空间内。
  15. 根据权利要求9或14所述的组件,其中:
    所述上压电层为单晶压电层,所述下压电层为多晶压电层。
  16. 根据权利要求11或13所述的组件,其中:
    所述下压电层构成所述一个基底。
  17. 一种根据权利要求1所述的谐振器组件的制造方法,包括步骤:
    在一个基底的同一侧形成体声波谐振器和声表面波谐振器的电极结构;
    在一个基底的同一侧在横向方向上形成彼此间隔开的体声波谐振器和声表面波谐振器,其中:体声波谐振器和声表面波谐振器共用同一压电层。
  18. 根据权利要求17所述的方法,包括步骤:
    在第一基底上形成压电层,第一基底在压电层的一侧;
    在压电层的另一侧形成复合结构层,所述复合结构层包括声学镜结构以及体声波谐振器的底电极,所述复合结构层的远离所述压电层的一侧为平坦面;
    在所述复合结构层的所述一侧设置第二基底,所述第二基底为所述一个基底;
    移除第一基底;以及
    在压电层的所述一侧表面上在横向方向上间隔开的形成体声波谐振器的顶电极以及声表面波谐振器的电极结构。
  19. 根据权利要求18所述的方法,其中:
    所述声学镜结构包括声学镜空腔和/或布拉格反射层。
  20. 一种根据权利要求7所述的谐振器组件的制造方法,包括步骤:
    在一个基底的同一侧形成体声波谐振器和声表面波谐振器的电极结构。
  21. 根据权利要求20所述的方法,其中:
    所述方法包括步骤:
    在下压电层的表面形成下谐振器的电极结构;
    形成上压电层,所述上压电层覆盖下谐振器的电极结构的处于下压电层的上表面的电极结构部分;
    在下谐振器区域,刻蚀至少上压电层以露出下谐振器的处于下压电层的上表面的电极结构部分。
  22. 根据权利要求21所述的方法,其中:
    所述下谐振器为体声波谐振器,所述上谐振器为声表面波谐振器。
  23. 根据权利要求22所述的方法,其中:
    所述上压电层为单晶压电层,所述上压电层与下压电层之间设置有平坦隔离层和/或布拉格反射层,所述刻蚀步骤包括刻蚀所述上压电层和所述平坦隔离层和/或布拉格反射层。
  24. 根据权利要求21所述的方法,其中:
    所述下谐振器为声表面波谐振器,所述上谐振器为体声波谐振器。
  25. 根据权利要求24所述的方法,其中:
    所述下压电层构成所述一个基底。
  26. 根据权利要求20所述的方法,其中:
    所述方法包括步骤:
    在第一基底上形成下谐振器的压电层以及电极结构,以及形成覆盖下压电层的第一平坦层,第一平坦层包括覆盖下谐振器的电极结构的第一牺牲层;
    在第二基底上形成上谐振器的压电层以及电极结构,以及形成覆盖上压电层的第二平坦层,第二平坦层包括第二牺牲层;
    将第一平坦层和第二平坦层对置连接且第一牺牲层和第二牺牲层至 少有部分重叠;和
    释放第一牺牲层和第二牺牲层以形成空腔结构。
  27. 根据权利要求26所述的方法,其中:
    所述下谐振器为声表面波谐振器,所述上谐振器为体声波谐振器;或者
    所述下谐振器为体声波谐振器,所述上谐振器为声表面波谐振器。
  28. 根据权利要求27所述的方法,其中:
    所述下谐振器为声表面波谐振器,所述上谐振器为体声波谐振器,所述下压电层构成所述一个基底。
  29. 一种半导体器件,包括根据权利要求1-16中任一项所述的谐振器组件。
  30. 根据权利要求29所述的半导体器件,其中:所述半导体器件包括滤波器、双工器、多工器中的至少一种。
  31. 一种电子设备,包括根据权利要求1-16中任一项所述的谐振器组件或者根据权利要求29或30所述的半导体器件。
PCT/CN2021/090818 2020-04-30 2021-04-29 谐振器组件及其制造方法、半导体器件、电子设备 WO2021219050A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010368417.9 2020-04-30
CN202010368417.9A CN111865248B (zh) 2020-04-30 2020-04-30 谐振器组件及其制造方法、半导体器件、电子设备

Publications (1)

Publication Number Publication Date
WO2021219050A1 true WO2021219050A1 (zh) 2021-11-04

Family

ID=72985610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090818 WO2021219050A1 (zh) 2020-04-30 2021-04-29 谐振器组件及其制造方法、半导体器件、电子设备

Country Status (2)

Country Link
CN (1) CN111865248B (zh)
WO (1) WO2021219050A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114389561A (zh) * 2021-12-21 2022-04-22 无锡市好达电子股份有限公司 一种混合结构声波器件
CN114884483A (zh) * 2022-05-09 2022-08-09 上海芯波电子科技有限公司 一种saw和baw的混合层叠滤波器芯片及其制造工艺
WO2023169209A1 (zh) * 2022-03-11 2023-09-14 成都芯仕成微电子有限公司 一种声表面波谐振器及滤波器
WO2024025458A1 (en) * 2022-07-26 2024-02-01 Rf360 Singapore Pte. Ltd. Acoustic wave devices with resonance-tuned layer stack and method of manufacture

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111865248B (zh) * 2020-04-30 2021-11-02 诺思(天津)微系统有限责任公司 谐振器组件及其制造方法、半导体器件、电子设备
CN114448377A (zh) * 2020-11-06 2022-05-06 开元通信技术(厦门)有限公司 一种声波器件及滤波设备
CN112383287A (zh) * 2020-11-27 2021-02-19 广东省科学院半导体研究所 声表面波谐振器及其制备方法
CN113659953B (zh) * 2021-08-12 2023-10-27 苏州汉天下电子有限公司 一种体声波谐振器组件、制备方法以及通信器件
CN113572446A (zh) * 2021-09-23 2021-10-29 深圳新声半导体有限公司 用于体声波谐振器制作的方法、体声波谐振器、滤波器
US20220103157A1 (en) 2021-11-26 2022-03-31 Newsonic Technologies Lithium niobate or lithium tantalate fbar structure and fabricating method thereof
CN114826191B (zh) * 2022-05-23 2023-11-07 武汉敏声新技术有限公司 一种薄膜体声波谐振器
CN116683881A (zh) * 2023-07-27 2023-09-01 深圳新声半导体有限公司 一种体声波谐振器的制备方法和封装方法
CN117318646A (zh) * 2023-10-12 2023-12-29 中微龙图电子科技无锡有限责任公司 一种具有温度补偿功能的声表面波滤波器的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120074811A1 (en) * 2010-09-24 2012-03-29 Wei Pang Acoustic wave devices
CN103166596A (zh) * 2013-04-11 2013-06-19 天津大学 谐振器和滤波器
US20160035960A1 (en) * 2014-07-31 2016-02-04 Samsung Electro-Mechanics Co., Ltd. Acoustic resonator and method of manufacturing the same
CN108449068A (zh) * 2018-01-31 2018-08-24 湖北宙讯科技有限公司 双工器
CN109245742A (zh) * 2018-11-27 2019-01-18 杭州左蓝微电子技术有限公司 一种基于声表面波和固体反射层薄膜体声波组合谐振器
CN111865248A (zh) * 2020-04-30 2020-10-30 诺思(天津)微系统有限责任公司 谐振器组件及其制造方法、半导体器件、电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207853859U (zh) * 2018-01-31 2018-09-11 湖北宙讯科技有限公司 双工器
CN108233891B (zh) * 2018-01-31 2023-10-27 湖北宙讯科技有限公司 双工器
CN109257027B (zh) * 2018-10-30 2020-06-30 开元通信技术(厦门)有限公司 一种混合声波谐振器及其制备方法
CN109217841B (zh) * 2018-11-27 2024-03-01 杭州左蓝微电子技术有限公司 一种基于声表面波和空腔型薄膜体声波组合谐振器
CN208924202U (zh) * 2018-11-27 2019-05-31 杭州左蓝微电子技术有限公司 一种基于声表面波和固体反射层薄膜体声波组合谐振器
CN208608966U (zh) * 2018-11-27 2019-03-15 杭州左蓝微电子技术有限公司 一种基于声表面波和空腔型薄膜体声波组合谐振器
CN110601673B (zh) * 2019-08-12 2021-08-13 清华大学 基于铪系铁电薄膜的声表面波器件及薄膜体声波器件
CN110798167A (zh) * 2019-11-25 2020-02-14 开元通信技术(厦门)有限公司 声波器件及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120074811A1 (en) * 2010-09-24 2012-03-29 Wei Pang Acoustic wave devices
CN103166596A (zh) * 2013-04-11 2013-06-19 天津大学 谐振器和滤波器
US20160035960A1 (en) * 2014-07-31 2016-02-04 Samsung Electro-Mechanics Co., Ltd. Acoustic resonator and method of manufacturing the same
CN108449068A (zh) * 2018-01-31 2018-08-24 湖北宙讯科技有限公司 双工器
CN109245742A (zh) * 2018-11-27 2019-01-18 杭州左蓝微电子技术有限公司 一种基于声表面波和固体反射层薄膜体声波组合谐振器
CN111865248A (zh) * 2020-04-30 2020-10-30 诺思(天津)微系统有限责任公司 谐振器组件及其制造方法、半导体器件、电子设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114389561A (zh) * 2021-12-21 2022-04-22 无锡市好达电子股份有限公司 一种混合结构声波器件
WO2023169209A1 (zh) * 2022-03-11 2023-09-14 成都芯仕成微电子有限公司 一种声表面波谐振器及滤波器
CN114884483A (zh) * 2022-05-09 2022-08-09 上海芯波电子科技有限公司 一种saw和baw的混合层叠滤波器芯片及其制造工艺
CN114884483B (zh) * 2022-05-09 2024-01-30 上海芯波电子科技有限公司 一种saw和baw的混合层叠滤波器芯片及其制造工艺
WO2024025458A1 (en) * 2022-07-26 2024-02-01 Rf360 Singapore Pte. Ltd. Acoustic wave devices with resonance-tuned layer stack and method of manufacture

Also Published As

Publication number Publication date
CN111865248B (zh) 2021-11-02
CN111865248A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2021219050A1 (zh) 谐振器组件及其制造方法、半导体器件、电子设备
US7978025B2 (en) Film bulk acoustic resonator, filter, communication module and communication device
CN109150127B (zh) 薄膜体声波谐振器及其制作方法、滤波器
EP1292026B1 (en) Filter structure comprising piezoelectric resonators
CN112383286B (zh) 体声波谐振器组件及其制造方法、滤波器及电子设备
WO2022028401A1 (zh) 带声学解耦层的体声波谐振器组件及制造方法、滤波器及电子设备
CN113497596A (zh) 体声波谐振器及制造方法、体声波谐振器组件、滤波器及电子设备
JP2022507325A (ja) バルク音響波共振器及びその製造方法並びにフィルタ、無線周波数通信システム
JP2022507318A (ja) バルク音響波共振器及びその製造方法並びにフィルタ、無線周波数通信システム
WO2021197500A1 (zh) 半导体器件及其制造方法、具有半导体器件的电子设备
WO2020134804A1 (zh) 顶电极连接部设有延伸结构的谐振器、滤波器和电子设备
WO2022062910A1 (zh) 体声波谐振器及组件、机电耦合系数差值调整方法、滤波器、电子设备
WO2022083352A1 (zh) 体声波谐振器及组件、滤波器、电子设备
WO2022001860A1 (zh) 体声波谐振器及制造方法、滤波器及电子设备
WO2022228385A1 (zh) 具有加厚电极的体声波谐振器、滤波器及电子设备
WO2022228486A1 (zh) 体声波谐振器及制造方法、滤波器及电子设备
CN111245387A (zh) 一种固态装配谐振器的结构及制作工艺
CN116131798A (zh) 一种固态体声波谐振器及其制作方法
CN114696773A (zh) 体声波谐振器及制造方法、滤波器及电子设备
CN115051680A (zh) 具有单晶和多晶体声波谐振器的滤波器及电子设备
WO2022228452A1 (zh) 体声波谐振器、滤波器及电子设备
JP2022507320A (ja) バルク音響波共振器及びその製造方法並びにフィルタ、無線周波数通信システム
WO2022062912A1 (zh) 具有声阻层的体声波谐振器及其组件和制造方法、滤波器和电子设备
CN218450068U (zh) 一种体声波谐振器及通信器件
WO2022028403A1 (zh) 具有混合叠置单元的半导体结构及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21795636

Country of ref document: EP

Kind code of ref document: A1